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Abstract 

This paper explains a novel approach for knowledge discovery from data generated by 

Point of Care (POC) devices. A very important element of this type of knowledge 

extraction is that the POC generated data would never be identifiable, thereby 

protecting the rights and the anonymity of the individual, whilst still allowing for vital 

population-level evidence to be obtained. This paper also reveals a real-world 

implementation of the novel approach in a big data analytics system. Using Internet of 

Things (IoT) enabled POC devices and the big data analytics system, the data can be 

collected, stored, and analyzed in batch and real-time modes to provide a detailed 

picture of a healthcare system as well to identify high-risk populations and their 

locations. In addition, the system offers benefits to national health authorities in forms 

of optimized resource allocation (from allocating consumables to finding the best 

location for new labs) thus supports efficient and timely decision-making processes.  

 

Keywords: Point of Care; Big Data Analytics; Internet of Things; Global Health; 

Machine Generated Data; Machine Learning 

1 Introduction  

Diagnostic Point of Care (POC) devices are important tools in the battle against infectious 

diseases as well as other acute and chronic diseases. POC tests can usually run faster than 

conventional laboratory testing and need less equipment [1]–[3]. Combining the test results 

data (generated by POC) with patient demographic data results in a comprehensive dataset 

which can be used efficiently to extract fine-grained surveillance information at individual-
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level as well as at population-level.  With the availability of a comprehensive dataset, 

performing almost any sort of analytics is feasible. Recently various types of real-time 

health monitoring systems have revolutionized the collection, sharing, and utilizing of 

data for personalized healthcare. The availability of a comprehensive dataset, 

advancement in analytical methods and technologies, especially the use of mobile 

devices, has led to the concept of mHealth [4]–[6]. The Executive Board of WHO in 2016 

considered mHealth as an important resource for individual and public health services 

delivery, especially monitoring the health status of each patient. However, there are 

several barriers to using concepts like mHelath in low and middle-income countries.  

For myriad political, social, privacy, technical, and security issues, especially in low and 

middle-income countries [7], coupling demographic data at the individual level is very difficult 

(if not impossible) and needs legal and ethical approval at various levels [8], [9]. If 

demographic data are decoupled from test results, neither individual-level nor population-level 

information can be inferred from the test results. As an example, although access to mobile 

technologies has rapidly expanded in low and middle-income countries, unclear 

healthcare system responsibilities, unreliable infrastructure, and lack of consistent data 

challenge their implementation [10].  

The contribution of this research paper is a new type of knowledge discovery and 

extraction based on just machine generated data e.g. using IoT-enabled POC devices. In 

other words, this paper proposes a novel approach for extracting meaningful and 

valuable population-level insights using just POC generated data including test results, 

duration of the tests, the location of the devices, errors and warnings, and quality control 

parameters. A very important element of this type of knowledge extraction is that the 

POC generated data would never be identifiable, thereby protecting the rights and the 

anonymity of the individual, whilst still allowing for vital population-level evidence to be 

obtained. 

Along with this contribution, we also explain a rather sophisticated architecture for 

implementation of a big data solution to support the main contribution. The implemented 

system of this paper is capable of storing, processing and analyzing the vast amount of data in 

real-time and batch modes. This paper uncovers the potential of using big data analytics in 

the healthcare domain to find useful information in highly valuable (but untapped) POC 

generated data. As illustrated in the paper, the implemented system can also provide the POC 

data to external analytics clients for performing further knowledge extraction using visual 

analytics, spatial analytics, and advanced analytics.  

By using this novel approach, integration of data from heterogeneous POC devices (various 

devices which generate data in different data structures and encoding) is significantly less 

complex and time-consuming than existing approaches. In addition, real-time data collection 

and real-time analytics can be achieved using the approach of this research which supports 

efficient and timely decision-making processes. For example, the system described in this 

paper is capable of detecting anomalies automatically in real-time (without the need for human 



  

3 
 

intervention) to take appropriate actions using alerts and triggers (informing responsible people 

and/or authorities for example).  

In addition, the big data analytics system uses Internet of Things (IoT) enabled POC devices 

to automate data generation and storage. As is illustrated in the paper, the resulting system has 

real-world application for extracting valuable and useful information at a population-level from 

the machine-generated POC diagnostic and laboratory data. The paper has been organized as 

follows: Section 2 describes the importance of the POC devices. Then the technical 

requirements of POC are discussed in section 3. Section 4, illustrates the data that is generated 

by POC devices and then introduces the accessibility issue of the data generated by POC 

machines. The proposed solution, including the common data structure and data analytics, is 

explained in section 5. The big data architecture of the proposed solution, its implementation 

details and the benefits of it over existing approaches, are described in section 6 and 7 

respectively. Some important results of descriptive, diagnostics, predictive and prescriptive 

analytics of the system are illustrated in section 8 and, finally, section 9 concludes the paper 

by discussing proposed future directions for the research project.  

2 The Importance of POC 

The POC diagnostic tests are very important in the battle against infectious diseases as well as 

other acute and chronic diseases. POC tests can usually run faster than conventional laboratory 

testing, and with less equipment, so they can extend healthcare availability into the community 

and reduce the number of patients lost to follow-up (LTFU), or the number of treatments 

initiated too late [11]–[13]. This aspect of POC diagnostics tests is highly valuable for many 

high-burden infectious diseases such as HIV, TB, malaria and others, where earlier diagnosis 

and treatment can also mean the difference between life and death [14], [15]. Most studies have 

concluded that POC devices are suitable alternatives to traditional laboratory devices [11]. 

Accurate and timely diagnosis of patients has been a key aspect of the response to infectious 

diseases, especially measures to prevent onward transmission. In the recent Ebola outbreak, the 

process for differentiating those who have Ebola from those who do not has posed a great 

danger to patients. During the height of the epidemic, laboratory and surveillance professionals 

were overwhelmed, which often led to long wait times and caused the patients a great deal of 

anxiety [16]. Even after samples are collected, they had to be transported to a laboratory with 

the capacity to perform the complex and time-consuming tests required. In the case of Ebola, 

the time from sample collection to receipt of result reported to be greater than six days on 

average [17]. These delays present patients with an unbearable wait and, more importantly, put 

uninfected individuals at risk of being infected [18], as well as reducing the number of LTFU 

or the number of treatments initiated late [11]. In this case, the use of POC tests can mean that 

the tests can be done where the patients are [15]–[18]. In other words, POC devices can be used 

efficiently to reduce the delay between a patient’s arrival at the clinic and a confirmed 

diagnosis. In addition, it is sometimes possible to use portable (mobile) POC devices and, 

therefore, eliminate the need for transport of samples and more importantly it is possible to test 

patients closer to their community. This is very important since most of the population, 

especially in rural areas particularly in low and middle-income countries, are tested only when 
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they have access to a close healthcare services [1], [15]. The availability of POC (especially 

portable devices) can expand the reach of healthcare beyond what a conventional laboratory 

could do on its own. 

3 Technical Requirements of POC 

The WHO defined an ideal POC with ‘ASSURED’ characteristics, which stands for 

Affordability, Sensitivity, Specificity, User-friendliness, Rapid results, Equipment-free and 

Delivered. Based on this definition an ideal POC would bring the test to the patient in an 

expedient and timely manner. Based on the WHO’s vision working with ideal POC requires 

little technical training or administrating or interpreting. In practice, very few POC diagnostics 

devices meet all of the ASSURED criteria[2], [16], [23]. Critical results (like positive drug 

resistant TB or CD4 t-cell counts of less than 200 in HIV infection) of some POC tests need to 

be confirmed by conventional laboratory tests. In addition, some POC platforms were designed 

for use in specific laboratory settings and take several hours to run the tests. In other words, 

they are hardly meet the “rapid” characteristic. However, in some cases, even the above-

mentioned devices have revolutionized the availability of rapid, accurate diagnosis of some 

serious diseases (especially drug-resistant TB) [24]. Some POC diagnostics, including HIV and 

CD4 rapid tests, are readily available and highly transportable. As an overall statistics, in 2013, 

58 million people were tested using HIV rapid tests [25]. 

From a technical point of view, although the POC devices are very effective, their full potential 

is limited to their connectivity features and the environment in which they are used. In order to 

extend the usefulness of POC devices, two important technical challenges need to be addressed: 

connectivity of devices and analytics of the machine-generated data. 

The connectivity of devices means the POC devices need to be connected to a communication 

infrastructure (wired or wireless network) in order to upload data to databases at both the local-

level (city, region or state) and the national-level. The connectivity allows control programs to 

monitor the quality of tests and testing, and optimize supply chain management; thus, 

increasing the efficiency of healthcare systems and improving patient outcomes [23]. 

Most hospitals and clinics rely on laboratories (external or internal) for test results. In other 

words, laboratories have the POC devices and the actual tests are run in laboratories after 

samples are received from clinics or hospitals. In most low and middle-income countries, there 

is no sufficient digital network infrastructure or regulations to send the results of tests back to 

the clinics and hospitals electronically. Apart from regulations, there must be an automatic 

mechanism to send the test result data back to clinics and hospitals in order to record test results 

along with patient data (local-level connectivity). Also, a centralized database should be hosted 

by Ministry of Health (MOH) or any appropriate national-level authority, and populated by the 

consolidation of all the databases in various healthcare settings (national-level connectivity). 

In this regard, the POC devices need to be able to be automatically connected to a reliable and 

secure communication network or there must be a consistent and regular procedure to record 

the results and send them via qualified personnel. 
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Although Access to mobile phone technology has rapidly expanded in low and middle-

income countries [26]–[29], most POC devices did not have the capability to connect to any 

communication network since connectivity was not considered as a priority at design time (or 

production time) of the devices. In this case, often the operator of the POC device needs to 

write down/copy-paste the results manually and then send them (directly or indirectly) to MOH 

(via mail or email or the internet, and so on). The manual procedure is error-prone and results 

in an increase in turnaround time (at local-level). This issue slows down analysis of the data at 

national-level as well since data at national-level are consolidated from all laboratories. This 

issue gets worse when portable POC devices are used. The closer POC diagnostic testing gets 

to the patient, the harder it becomes to consolidate data so that national-level authorities (like 

MOH) can analyze health outcomes countrywide [11], [30]. In addition, many laboratories are 

private and they just send data back to the hospitals and clinics. In other words, they do not 

send data to MOH. This is another issue at the national-level.    

If reliable connectivity of POC devices is implemented, the time of transmission of test results 

from laboratories to clinics as well as national-level authority (like MOH) can be considerably 

reduced, human errors are eliminated, and a centralized database of all historical test results 

can be created (at both local-level and national-level) therefore decisions can be made without 

waiting for the data to be transmitted (figure 1). 

 

Figure 1: Ideal flow of test results at local-level and national-level 

In the area of device connectivity, some companies have been working on the challenge of 

enhancing connectivity to encourage uptake of their diagnostics and to gain a larger share of 

the market. Recently data connectivity of POC devices has been changed from a “nice to have” 

feature to a “must have” feature in many cases. Some POC device manufacturers utilize built-

in modems to send data. Some other companies use external modems to connect the devices to 

the mobile communication network. A few companies use the above-mentioned method to 

send data to a central database which is deployed in the cloud. Using cloud-based storage has 

many technical as well as cost advantages over traditional on-premises storage approaches. 

Providing data connectivity is usually the responsibility of device manufacturers. However, 

providing the communication infrastructure is the responsibility of customers. Technology 

push and demand pull suggests that all POC devices will have data connectivity features in the 

near future. However, the issue with communication infrastructure, especially in low and 

middle-income countries, persists. 
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The second issue, which is highly dependent on the first issue, is that of data analytics. The 

primary purpose of POC devices is to generate data about test results. The test result data items 

coupled with patient demographic data can be used to extract fine-grained surveillance 

information. In other words, the datasets composed of demographic data combined with test 

results can be used to get individual-level as well as population-level pictures of the health of 

patients. Such a picture forms the basis for the penetration and effectiveness of healthcare 

services and, therefore, efficiency of policies in the area of healthcare as well. In addition, by 

combining the above datasets with location data, mobility patterns (of humans, animals, and 

airflow that transmit diseases), trends in disease prevalence can be extracted and utilized for 

prediction, which is highly valuable for decision making.  

In summary, availability of data (as a result of reliable connectivity, regulations, and policies) 

and data analytics are needed in order to support data-driven decision making which is the key 

procedure for monitoring and management of diseases and mitigation in case of diseases 

outbreaks.  

In order to address the device connectivity requirement, some regulations need to: a) be 

proposed and introduced by national and international authorities, b) some technical 

specifications/standards need to be implemented by device manufacturers, and c) suitable 

network infrastructures need to be deployed by all healthcare settings. From the above 

requirements, each country is responsible for providing the network infrastructure. In low and 

middle-income countries providing the network infrastructure is an important problem. The 

proposed solution of this paper illustrates utilizing a variety of connectivity approaches to make 

IoT-enabled POC in order to resolve the connectivity issue when there is no local-level and/or 

national-level connectivity.    

To address the data analytics challenge, cutting-edge big data technologies, which can manage 

and analyze the huge amount of data in batch (analysis on historical data) and real-time should 

be utilized. These technologies need an architecture with scalability, reliability, performance 

and fault tolerance characteristics. The implementation of the architecture using big data 

technologies provides the analytics infrastructure for large-scale management and analysis of 

data from multiple sources. In this case, POC devices can be considered as a data sources. 

However, access to data is a major challenge with a non-technical origin. The solution proposed 

by this paper shows how to provide the analytics infrastructure using state of the art big data 

architecture to get the most out of accessible data. 

4 Data Generated by POC and Accessibility Issue 

Combining the test results data (generated by POC) with patient demographic data results in 

comprehensive datasets. These comprehensive datasets can be used efficiently to extract fine-

grained surveillance information about many diseases via data analytics at individual-level as 

well as at population-level. From a technical point of view in order to use all individual-level 

data analytics procedures, the datasets need to be available, usable and accessible. The 

comprehensive datasets are definitely valuable for extracting surveillance information, but they 

are only partially available and unfortunately are not accessible in most cases. The 
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comprehensive datasets in most cases can be collected from different sources. Most of the time 

data is stored in digital formats so it is possible to create a digital repository of the datasets and 

make them available. As it described in the previous section, eventually all POC devices will 

have data connectivity features and local-level and national-level connectivity will be in place 

in near future, even in low and middle-income countries if the network infrastructure is in place. 

However, there are some serious issues in accessibility of the above-mentioned datasets. The 

comprehensive datasets are highly sensitive and have privacy-related issues. Because of myriad 

political, social, privacy and security issues, accessing individual-level data is very difficult (if 

not impossible). If demographic data are decoupled from test results, neither individual-level 

nor population-level information can be inferred from the test results. In other words, test 

results without patient demographic data lose their contexts and their use is limited to summary 

statistics (calculating count, average, minimum and maximum, for example) which has almost 

no value. Accessibility issue of comprehensive datasets is the most important barrier in front 

of extracting individual-level as well as population-level surveillance information. 

Unfortunately, the major reasons for accessibility issue are not technical and, in most countries, 

there is no feasible solution for this issue.  

5 Proposed Solution 

The POC devices are basically sensors and each sensor can generate large amounts of data 

during its intended measurement. In the case of POC devices, during the processing of a test 

sample, the devices generate lots of data which can be used to contextualize test results [31]. 

In this case, it is impossible to extract individual-level surveillance information. In other words, 

since the test results always contain identifiers (test identifiers), in theory, it is possible to join 

the test results with demographic data (using a patient identifier) to compile a comprehensive 

dataset even from POC deployment site. However, in practice, because of issues of 

accessibility of demographic data (due to its sensitive nature and potential patient identification 

risks), it is nearly impossible to link the test results to demographic data to generate a 

comprehensive dataset especially in low and middle-income countries. The lack of access to 

the comprehensive dataset is a major issue for extracting insights, especially at the individual 

level. POC generated data generally lack patient identifier data.  

However, this lack of patient identification can be seen as an advantage at the population-level 

since it facilitates (or almost fully removes) getting ethical approvals at various hierarchical 

healthcare settings. In other words, while this is a major issue for extracting individual-level 

information, the POC generated data still can be used for extraction of useful population-level 

insights. 

Since there is no need to get involved in working with highly sensitive data (patient 

demographic data), the population-level information can be extracted efficiently and quickly 

and, most of the time, without the need for approval of multiple ethics committees at different 

levels. This approach is a novel feature of the research described in this paper, and, to the best 

of the authors’ knowledge, no other research project has been done with this feature. Using just 

data generated by POC devices (including test result and machine-generated data like, for 
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example, the duration of the test, the location of the device, errors and warnings and quality 

control parameters) it is possible to get population-level surveillance information without using 

sensitive data. In other words, the contribution of the solution of this research paper is a new 

type of knowledge extraction based on just POC machine generated data using big data 

analytics. A very important element of this type of knowledge extraction is that the POC 

machine generated data would never be identifiable, thereby protecting the rights and the 

anonymity of the individual, whilst still allowing for vital population-level evidence to be 

obtained.  

In order to implement the proposed solution, data from various types of POC devices need to 

be managed and processed using a common data structure. Moreover, the solution needs to be 

able to run certain types of analytics and be extensible for future analytical needs. The common 

data structure and data analytics influence design and implementation of the system for the 

proposed solution. The following sub-sections explain the common data structure and analytics 

in more detail. 

5.1 Common Data Structure of the Proposed Solution 

The POC machine generated data are composed of a large set of data items about status and 

condition of the device during the test, and the result of the test, and the result of automatic 

quality control procedures during the test. Each type of device generates data in different 

structures, encoding, and formats. In this case, storage, management, and analysis of such POC 

machine generated data need a common data structure. The common data structure provides 

the unique model for mapping of different data structure and formats of various POC devices 

to a single semantic model.  

For this research, a common data structure was designed for POC devices that record 

CD4 t-cell counts. In this case, a single unit of observation contains a hierarchy of data 

about the test (time, date, id, type of test, measurement of t-cell count), device (type, make, 

unique identifier and geographic location), quality control of the test (errors and 

warnings during test), consumables for the device (cartridge unique identifier) and 

operator of the device. The following figure shows a single unit of observation for a 

hypothetical test on a POC diagnostics device (for CD4 t-cell counts-HIV test).  
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Figure 2: Hierarchical data structure of a single unit of observation for t-cell count test (HIV-related 

immune system test) 

5.2 Data Analytics in the Proposed Solution 

In general, there are four categories of analytics: descriptive, diagnostics, predictive and 

prescriptive [32]–[34].  

Descriptive analytics is used to explain what was/is happening in a given situation. This class 

of analytics can be used to answer questions such as how many tests are done each day, week, 

month or in real-time. How many tests has a certain POC device run in weekdays? How many 

types of errors occur? What are the most dominant error types? What are the trends in test 

results in certain POC device? 

Diagnostic analytics helps in understanding why certain things happened and what are the key 

drivers. For example, a national health authority could use this type of analytics to answer 

questions such as why a certain type of POC error is increasing. Why a specific device is not 

working at its highest potential, or why all test results showing CD4 <500 are coming from a 

single device. 

Predictive analytics helps to predict the future based on current and past situations (historical 

data). It is used to predict the probability of an uncertain outcome. For example, it can help to 

answer the following questions: what would be the growth/decay rate of the number of HIV-

positive patients based on recent trends? How many tests are going to be done in next 2 months 

(for preventing cartridge stock out)? Where are additional resources (such as cartridges, 

devices, operators, etc.) needed for next 6 months?  

The prescriptive analysis will suggest the best course of action to take to optimize the outcomes. 

Typically, prescriptive analysis combines a predictive model with domain specific rules. For 

example, it can suggest the best location for deploying a mobile POC devices based on existing 

POC devices, their capacities, population and spatial connectivity between POC devices (road 

network). 
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From analytics point of view, a system for analysis of the POC generated data requires specific 

considerations and solutions in order to implement all four types of analytics. In general, the 

system needs to be able to manage and analyze data in two different modes: batch mode and 

real-time mode. In this research, an architecture for management and analysis of POC 

generated data was designed based on best practices in big data system architecture and 

implemented via a combination of several big data technologies in a cloud environment. 

6 Big Data Architecture of the Proposed Solution 

Big data is defined as high volume, high velocity, and/or high variety information assets that 

require new forms of processing to enable enhanced decision making, insight discovery and 

processes optimization [34], [35]. This definition focuses not only on the characteristics of data 

but also on the way that the data are processed [36]. In fact, the scale of the data, flexibility in 

the integration of data from different sources and the distributed storage and processing of data 

in real-time are the main driving forces for the big data analytics technologies [36], [37].  

Management and analysis of the POC generated data require specific considerations and 

solutions. In general, the system needs to be able to manage different forms and analyze a large 

volume of data in two different modes: batch mode and real-time mode.  

Batch processing is used for getting a holistic view of a complex system which means the 

processing occurs after almost all the data items ingested into the system in a specified 

time. Batch processing is often complex and because of this it usually takes a long time to 

complete (few minutes to several days)[38]. In contrast, in real-time mode, the processing 

and output generation of data is continuously done as soon as new data items are ingested 

into the system[39]. Commonly real-time processing uses a window of time (or time limit) 

for processing of the most recent ingested data in the system[40]. Usually the time window 

is a few minutes, or less. The main difference between batch and real-time processing is 

determined by the time of analysis of data. If the analysis of data is done long after the 

events occurs it is batch mode. In contrast, when the analysis of data occurs at almost the 

same time that events happen, it is a real-time mode [41].   

In the context of this research, there are many situations that a full historical dataset of all POC 

devices is needed to be accessed in order to process data. Processing of full data always takes 

a long time. In this case, processing of data needs to be done in batch mode. For example, in 

order to perform statistical tests, predictive analytics and producing pivot reports, analysis of 

data need to be done in batch mode. As another example training predictive analytics 

models and evaluation of their performance almost always needs batch processing (use 

of historical data). In addition, for providing data to other systems like Geographical 

Information Systems (GIS) data need to be provided in batch mode.  

On the other hand, time sensitive applications and sensor-based monitoring applications 

need real-time processing of data [42]. For example, anomaly detection or event detection 

need a continuous evaluation of input data items against some criteria. Because of this, in 

the real-time processing, there is no need to access a large portion of historical data, but 

rather a small number of the most recent data inputs (table 1). 
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Table 1: summary of purpose, data size, and type of analytics of batch and real-time processing 

 Batch Processing Real-time Processing 

Main Purpose 
Processing/Analysing of all 

or large part of data 

Processing/Analysing of most 

recent ingested data  

Size of Data 
Large batches of data Individual records of data or 

micro-batches (a few 

records) 

Latency 
High (minutes to hours) Low (milliseconds to few 

minutes) 

Analytics 

Complex Analytics 

(simulations and modeling,  

advanced machine learning, 

predictive analytics, 

statistical learning, etc.) 

Simple and Complex 

Analytics (simple statistics 

like aggregate functions, 

descriptive analytics, 

anomaly detection, etc.).  

 

Designing systems capable of handling both batch and real-time processing is a complex 

task and requires an effective conceptual architecture for implementing the system. As 

an example, to achieve real-time processing capability a system must be able to perform 

message processing without having a costly (computationally) storage operation in the 

critical processing path. In this case, the system must have the capability to distribute 

processing across multiple machines to achieve scalability [42]. Fortunately, with help of 

several big data technologies, it is possible to design and implement a system architecture 

that can handle batch as well as real-time processing in a unified way. One such 

conceptual architecture is lambda architecture. 

Figure 3 shows an architecture based on lambda architecture[43], [44] that has been 

customized and extended for the purpose of this research. Lambda architecture is a 

conceptual, generic, scalable, and fault-tolerant data processing architecture based on 

distributed systems [36]. Lambda architecture is designed to handle massive quantities 

of data by taking advantage of both batch and stream processing [45].  

 

 

 

 

 

 

 

Figure 3: Big Data Architecture of the Proposed Solution 

As is illustrated in Figure 3, in the above architecture data from various types of POC 

devices ingested into the system in two paths for two types of processing. There are three 
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layers in the architecture; batch, speed, and service. The batch and speed layers are 

responsible for performing batch processing and real-time processing respectively, and 

service layer provides access to data in either/both paths. 

The batch layer is composed of a distributed append-only data storage system that stores 

data as time-stamped data items (master dataset in Figure 3). The master dataset 

intentionally does not support update or delete operations, meaning that all the data in 

the master dataset have a time identifier and new data do not override the existing data.  

Based on most common types of analytics, the batch layer pre-computes batch views on the 

master dataset regularly in specified times. These batch views provide a high latency 

representation of whole data. Computations for building batch views usually are written like 

single-threaded programs, and because of this can be automatically parallelized across a cluster 

of machines. This implicit parallelization makes batch layer computations scale to datasets of 

virtually any size.  

Same data ingested into the batch layer is also inserted temporarily in speed layer which is 

responsible for the real-time processing of data. Then, after a specific window of time, new 

data items replace the previously processed data which means only the most recent data is 

stored in the speed layer. The speed layer generates real-time views using real-time streaming 

data. In contrast to batch layer, the speed layer provides a real-time view of the ingested data. 

The major difference between batch and speed layer is that, in order to achieve the lowest 

possible latencies, the speed layer does not look at all the new data at once. Instead, it updates 

the real-time view as it receives new data instead of re-computing them like the batch layer 

does. 

The service layer has the ability to query (access) either historical and real-time data for 

performing analytics, or to provide data to external analytical software. More 

importantly, when access to all data including historical and real-time data are needed, 

the service layer can merge data from batch and speed layers and provide the most 

complete and most recent data for analytics purposes.  

For implementing the designed architecture, each POC device needs to send full generated data 

to a cloud infrastructure (Microsoft Azure) as messages. As mentioned before, many types of 

POC devices are not designed with this capability. Therefore, in order to resolve the 

connectivity issue, we used a few different methods.  

In the first method, we developed a software capable of reading low-level details from the 

devices. Then the software could send the data messages to the cloud platform using USB 

modems and pre-paid sim cards with the help of regional mobile communication network (as 

SMS messages). We utilized this method for 65% of the devices. For remaining 35% devices, 

we used network port of the POC devices (second method). The network port is usually 

utilized for sending the results of tests to a central computer (hub) for printing or sending 

the reports to the clinics or hospitals. In this research, we implemented a rather complex 

software background service called Resilient Queue System (RQS) to send the data over 

Internet to the cloud. The reason for the design and implementation of the RQS was 
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unreliability of Internet in almost 35% of devices. In other words, during the time that 

the devices work, the Internet was available for only a few hours (partially connected 

situation). Therefore, it was not possible to use the first method and send the test results 

as the tests happen. We implemtened the RQS to ensure that all the data were received 

successfully in the cloud. In the RQS, results of tests are stored temporally as messages in 

a resilient queue, until the Internet connection becomes available. The system then sends 

the messages one-by-one (in a first in, first out manner). Sending messages does not stop 

until the network disconnects from the Internet.  

On the cloud side, we implemented a service to receive messages and send an acknowledgment 

code to the RQS. As soon as the RQS gets the acknowledgment code, it removes (deletes) the 

message from the queue.  

The above architecture was implemented using HDInsight family of technologies 

including Apache Strom, Hive, and HBase inside Microsoft Azure cloud computing 

platform (Figure 4). The HDInsight is Microsoft’s managed implementation of Hadoop 

ecosystem [46]. The HDInsight can run on server versions of Linux and Windows. In this 

research, the system utilizes Windows Server at the Operating System level. 

Data ingestion is done in the system using an ASP.NET Web API layer. Then for the batch 

layer, HDInsight storage service was used to store the data (using Azure blob storage) and 

Apache Hive was utilized to create and update batch views. Apache Storm was deployed for 

generating real-time views in the service layer and Apache HBase was used in the service layer. 

Finally, for end users, a dashboard for different batch and real-time metrics was created using 

the PowerBI. Also for other software that solicit data from the system, APIs were provided 

using ASP.NET Web API.  

In addition to the dashboard, all data in the system is accessible to external analytical clients 

like R (for performing statistical analysis), Python (for performing machine learning) and 

ArcGIS (for performing spatial analysis). In section 10, the dashboards, results of a machine 

learning model for anomaly detection, and a spatial analysis for finding optimal location of a 

new mobile lab are illustrated.  
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Figure 4: Implementation of proposed solution 

7 Benefits of the method for research communities, health authorities, and 

device manufacturers 

The proposed method provides the ability to perform all types of analytics (descriptive, 

diagnostics, predictive and prescriptive) using just POC generated data (unidentifiable 

data) to extract useful information and insights potentially for three groups; researchers, 

healthcare settings, and device manufacturers.   

To the best of authors' knowledge the current paper is the first research paper about 

using just POC machine generated data for scientific purposes. Identification of trends 

in the distribution of diseases, evaluation of influential factors in disease spread, pinpoint 

the high-risk areas and population (for fine-grained confirmatory analysis) are a few 

examples of opportunities for research communities.  

For device manufacturers, POC machine generated data sometimes have been used for 

monitoring the operational status and performance of devices (from quality control 

perspectives). However, POC generated data hardly ever have been utilized for other 

useful applications such as modernizing supply chain management, planning the required 

equipment and consumables, and predictive (or preventive) maintenance of devices. 

For healthcare settings (labs, clinics, hospitals as well as national authorities) the method 

can be utilized for improving internal workflow (such as monitoring the performance of 

lab facilities and device operators), eliminating latency in availability and visibility of test 

results, providing quality control visibility of all settings, preventing stock-outs (of 

cartridges for example), optimizing usage of the devices, dynamic resource allocation 
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(finding best locations for deploying mobile labs), and enabling further health-related 

analysis of data.   

From the implementation point of view, the system has been designed in a way that can 

handle a huge amount of data from different data sources in both batch and real-time modes. 

Since the system is deployed to the cloud, there is no need for the establishment of highly 

expensive data centers or buying expensive servers. The fact that the cloud provider company 

(Microsoft inc. in the case of this research) is responsible for providing security, availability, 

recovery, and maintenance of the system is also a benefit. The horizontal scalability is done 

automatically by the cloud provider (this is called an elastic computing cloud). The horizontal 

scalability is one of the advantages of the modern architecture of the implementation of the 

method proposed in this research over conventional healthcare data management and analysis 

systems. In general, most conventional data analysis techniques are not suitable for working 

with huge amounts of data from different sources and with various data structures. However, 

as illustrated in the paper, careful design and implementation of the system enable benefiting 

from all advantages of the cloud. 

In addition, the implemented system can deliver data to external analytical software for 

further analysis. For example, it is very easy to connect to the system and get data in 

environments such as R and Python (for statistical learning and machine learning), 

ArcGIS (for spatial analysis and geostatistics), and Tableau (for visual analytics). The 

following section provides a broad range of analytics using the POC generated data for 

three above mentioned categories. 

8 The implemented Data Analytics and Dashboards 

For testing the functionality of the implemented system data from more than 2000 POC, 

devices in 3 countries in Africa ingested in the system (all from 2012-2014). The Data were 

gathered from national health authorities in those countries, African Health Observatory 

(AHO), The Global Health Network, device manufacturers and private companies (a few 

private consultancy companies like, for example, Alere and Cepheid), and WHO. Also, a 

large amount of simulated data were continuously generated and ingested in the system to test 

the real-time and batch processing capabilities and analytics of the system. Several types of 

data analytics were implemented.  

Table 2, shows details of data input, and data analysis in the implemented system. Since data 

records of the POC machine data are stored and analyzed as events (time-series observations), 

the table contains two categories of analytics that cover the full spectrum of analytics; temporal 

and spatio-temporal. The main difference between the two types of analysis is that in spatio-

temporal data analysis, location (position) and spatial relationships (like distance, direction, 

and connectivity between locations of the devices) were used for grouping and clustering the 

data whereas in temporal data analysis time of the test is mostly used for that purpose.  

Table 2: Implemented Analytics on POC generated machine data 
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Type Data Input Analytics 

Temporal  

Historical and Real-

Time information for 

all sites, group of sites 

and individual sites 

total successful tests, total errors, average tests per month 

(week, day and hour), average successful tests, tests 

statistics, error rate, top error types, the total number of 

operators, relationships among errors and number of tests 

through different types of regressions 

Health-Related 

Measurements and 

Metrics 

Percentage of patients with CD4 <200 (some important 

values for CD4 are 500, 350 and 200), real-time 

monitoring of sites with average CD4<500 or monitoring 

sites which has large number of patients with CD4 < 350, 

Number of tests with CD4 <200 in order to estimate the 

needed resources for ART (Antiretroviral Therapy), 

providing personalized advice after tests (if a 

professional was available and results were ready). 

Stock Information 

 

Report of daily consumption of resources (for each device 

or site), current stock value (for each site), total stock 

used, estimated daily consumption, estimated stock out 

date for each site, the prediction of consumption of 

cartridges for next two months, efficient allocation of 

cartridges (transporting cartridges from sites with 

low demand to sites with high demand), warning and 

alert long before stock out.  

Operator-related 

Information 

Real-time performance monitoring of operators, 

determining most and least precise operators for 

retraining purposes (with errors that are related to the 

operator like expiry date of cartridges). 

Spatio-

Temporal  

Location, population, 

mobility, connectivity 

of devices (by 

transportation 

networks) 

Spatial distribution of sites, service area determination of 

sites, and optimized resource allocation for finding the 

best place to deploy mobile clinics (based on location, 

distance, population and existing transportation network). 

 

The result of above analytics in the implemented system is a set of interactive dashboards. 

There are three main dashboards (Healthcare Settings, Test Analytics, Errors and 

Warnings) in the system. Each dashboard consists of a set of interactive panels of 

visualizations and reports. The following illustrations display separate visualizations and 

reports of some of the dashboards, and describe how some useful information can be 

extracted based on the POC generated data. Figures 5 and 6, illustrate parts of “Test 

Analytics” and “Healthcare Settings” dashboards respectively.  
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Figure 5: Part of Test Analytics dashboard. Two left panels show the count of tests with CD4 < 200 and 

CD4 < 500. On right panels, devices with highest number of results with CD4 < 200 and CD4 < 500 are 

shown (each device has a location). 

 

Figure 6: Part of Healthcare Setting dashboard. The two left panels illustarate the count of tests and 

successful tests in different healthcare settings. Hovering mouse over the pie chart shows the count and 

percentage of the tests grouped by healthcare setting type. 
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Figure 6 show some information about successful and failed tests in different healthcare 

settings. More than half of tests (54.7%) had been done in labs and about 27.3% and 18% were 

performed at hospitals and mobile labs respectively. Based on Figure 7, in spite of the fact that 

a number of tests in labs are almost three times more than the number of tests in mobile labs, 

the percentage of failed tests in mobile labs is more than labs and hospitals as well. This 

interesting observation can be seen as the red line in Figure 7. This line can be interpreted as a 

result of one or combinations of following reasons: 1) Non-uniform allocation of human 

resources e.g. relatively inexperienced operators in mobile labs, 2) Allocation of faulty devices 

to mobile labs (or any problem associated with transportation of devices) and 3) Existence of 

a serious maintenance issue due to environment; for example, maintaining cartridges in 

environments with more than 40 degree centigrade for devices or test sample in mobile lab 

settings.

 

Figure 7: Total Tests (blue bars), Failed Tests (yellow bars) and Failed Tests Percentage (red line) for 

each Site Type  

Figure 8, illustrates the monthly trend of tests (successful tests per months for all sites) in 2014. 

January to February, August to September and November to December show decreases. 

Similarly, February to March, June to July and September to October show increases in tests. 

These trends might have occurred randomly, or because of cultural, social or environmental 

factors. Further studies need to be done for any causal statements about this observation.  
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Figure 8: Trend of Number of tests per months for 2014  

Figure 9 represents the monthly trends of tests based on site type. As illustrated in the figure, 

unlike the general monthly trend of Figure 8, in mobile labs the number of tests increased 

during April to May, and the November to December periods. 

 

 

Figure 9: Trend of Number of tests per months for 2012 for each Site Type 

The monthly trends (Figure 8, 9) for different years, can be compared and general anomalies 

can be detected. Further research and observations are needed in order to determine reasons  

for the causality of the anomalies. However, this can be seen as an advantage of the method 

proposed in this paper, especially in real-time data collection. It is possible to extract norms of 

the data in different seasons based on historical data and then using some rules for anomaly 

detection or using artificial intelligence techniques for the system to learn from data. The 

system then is capable of detecting anomalies automatically without the need for human 

interaction. This anomaly detection can be done in real-time. In this case, the system can take 

appropriate actions by using alerts or triggers, for example, by broadcasting an email to 

responsible people to make them aware of the current situation. In other words, the value 
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remains in that these anomalies could be determined in real time and not require the delay that 

validation of traditional surveillance methods usually entails. In addition, these anomalies can 

result in automatic actions (like an alert, or in more serious situations shutting down of the 

device). 

Figure 10 shows the pie chart for errors. As is illustrated in the figure, human error (errors 

related to the manual tasks of operators) accounts for 77% percent of all errors. In other words, 

using expired cartridges (cartridge expiry) and putting the inadequate amount of blood in the 

cartridge (volume errors) account for 77% of all errors. This is a highly valuable observation 

since it means operators may need more training about using and maintaining the devices and 

cartridges in appropriate conditions. At the other hand, this important observation means with 

relevant actions (like more training) it is possible to eliminate about 77% of total errors. Again, 

the effectiveness of relevant actions can be monitored in real-time, with the impact on the 

quality of tests being observed immediately. 

 

Figure 10: Major Error Types  

As it stated above, the mentioned valuable observation about error types might be because of 

some maintenance issues. For example, the POC devices and their cartridges have to be 

maintained and used in a certain range of temperature (2-30 centigrade) or humidity (10%-

75%). With further investigations about weather condition from multiple sources, just 12% of 

measurements were done outside of the temperature and humidity range. Therefore, 

oversimplifying of the maintenance and usage procedures of POC devices might be the cause 

of this error. This might lead us to another interesting fact. International health organizations 

like CDC and WHO tend to oversimplify the usage and maintenance procedures of various 

POC devices in resource-limited settings. This can be seen in the following quote “The 

characteristic of the Pima CD4 assay indicates that it is ideal for a point-of-care or resource-

limited setting.  The assay requires minimal training and technical skill with no sample 

processing manages results and reports on the analyzer, and does not require maintenance, 

cold-chain storage, or ancillary equipment.”[47]. Although enthusiasm and hope are increasing 

around POC diagnostics for diseases of global health importance, a deeper appreciation of 
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likely barriers in each healthcare setting and operations (for example lack of training) might 

help test developers and public health managers to identify the complexities of using POC [48]. 

Figure 11 shows the monthly trends of errors. This reveals a remarkable observation; the errors 

seem to be based on repeating patterns in every successive two or three months. This might be 

due to the pattern of the inspection procedure every successive two or three months. As another 

observation, before the new years’ holidays, error rates increase while after holidays error rates 

decrease. This can be hypothesized as most of the experienced operators tend to go to new 

years’ holidays before the New Year eve. These kinds of patterns can be identified and detected 

by defining rules or inferring patterns in the system. Using the mentioned rules or patterns, the 

system can identify similar trends automatically in real-time and then inform the responsible 

people (via email for example) in order to take appropriate actions. 

 

 

Figure 11: Error Rate per months  

Treatment guidelines generally recommend that HIV-infected patients with a CD4 cell count 

less than 350 should receive highly active antiretroviral therapy (HAART) [16]. Figure 12 

shows that mobile labs have the most of the tests with CD4 less than 350. This information can 

be used for identification of population or areas at high risk, or to allocate more resources (in 

this case enough HAART therapy or HAART therapy adherence support) to those sites. 
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Figure 12: CD4 < 350 grouped by site type per month  

It is possible also to create similar reports for other amounts of CD4 for different purposes. It 

is also easy to calculate simple statistics for any numeric or categorical variable in the dataset. 

Figure 12, shows the descriptive statistics for CD4 variable. As it is shown, the amount of CD4 

in 25% of all tests are less than 218 (First Quartile). 

 

Figure 13: Summary Statistics for CD4 (25% of test results are below 218, 25% are more than 644) 

As it described before, these reports can be used effectively to identify high-risk areas and 

population. Figure 14 illustrates the top 10 devices (and therefore sites) with the highest number 

of CD4 less than 500. Finding the location of the devices is an easy task since the location is 

part of stored data in the common data structure. 

 

 

 

 

 

 

Figure 14: Devices with the highest number of CD4 <500 

Figure 15 shows operator ID codes of those who made lowest mistakes (defined as failed tests 

due to human error). The similar report could show the operator ID and related sites which 

made the highest number of failed tests. The latter report can be used for providing more 

training or frequent inspection (or unannounced inspections). 
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Figure 15: Top 10 Most Precise Operators 

Figure 16 shows ten devices with the highest number of tests. This report can be used for 

regular checks and overhaul maintenance planning of the devices. Also, the similar report can 

show which devices are mostly idle. The advanced type of analytics (optimization) can use the 

mentioned report for producing a plan for allocation of idle devices or consumables to the sites 

which need more capacity.  

 

 

 

  

 

Figure 16: Top 10 Most Used Devices (regular checks is more needed than other devices) 

The location of devices is an important data item in the common data structure. The locations 

of devices can mostly be considered as the location of hospitals and labs for which the tests are 

done. This assumption can be automatically controlled with the IP (Internet Protocol) address 

of the network (via geolocation API of HTML5). For mobile labs (and the devices with sim 

modems), there are several techniques for determining the location of the devices. Generally 

using cell towers location in a communication network and techniques like triangulation are 

precise enough to calculate the location of mobile labs automatically. A good example of 

prescriptive analytics is to find the most suitable location for a new mobile lab. For performing 

the site suitability analysis, population data of the country, road network, and location and 

capacity of existing labs were utilized as input to a complex spatial analysis model for 

determining a most suitable location in a GIS environment (figure 17). 
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Figure 16: Most suitable location for a new mobile lab  

(size of red symbols are proportional to capacity of sites) 

9 Conclusions and Future Work 

This research paper describes a novel approach for knowledge extraction for healthcare 

domain. Usually demographic data about each patient is needed for performing complex 

analytics. Unfortunately, because of a mixture of political, social, privacy, technical, and 

security issues, especially in low and middle-income countries, using demographic data 

at the individual level is very difficult (if not impossible). The contribution of the paper is 

the performance advanced analytics to extract valuable insights without using 

demographic data at the individual level. An important and unique aspect of this novel 

approach is the data are not individually identifiable so there is no concern about privacy. 

In this research, just device (POC) generated data has been used to extract valuable and 

useful information and insights at a population-level. The proposed method provides the 

ability to perform all types of analytics (descriptive, diagnostics, predictive and 

prescriptive) using just POC generated data (unidentifiable data) to extract useful 

information and insights potentially for researchers, healthcare settings, national and 

international health authorities, and device manufacturers. Identification of high-risk 
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areas and high-risk populations are two important results of applying the method 

described in the paper.  

Also, the paper describes the implementation of the method, using a large-scale and 

complex architecture using IoT-enabled POC devices and big data analytics. As 

illustrated in the paper, the implemented system can perform descriptive, diagnostic, 

predictive, and prescriptive analytics in batch and real-time modes.   

Combining POC machine data with other sources of data, especially volunteer content 

generation applications such as social microblogging (like Twitter), social networking (like 

Facebook), location-based services (like Foursquare), and volunteer geographic information 

(like OpenStreetMap) is a future direction for this research. With these data sources and by 

using cutting-edge methods from artificial intelligence and machine learning, a new set 

of analysis can be done on the data and therefore new insights can be extracted from 

different types of analytics.  
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