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spread and wandering due to air turbulence is superim-
posed by the strong diffraction of the degraded beam itself. 
The problem could be solved by measuring the amplitude 
and phase distributions of the initial laser field and, after 
numerical conditioning, using them as initial conditions in 
the simulation code. However, especially the laser phase 
distribution is only hardly amenable to the experiment. One 
possibility to emulate poor beam quality is to utilize higher-
order mode beams. However, with single pure modes, on 
the one hand, only discrete values of the beam propagation 
factor can be addressed and, on the other hand, the combina-
tion of different modes to exactly match the desired value 
of M2 is laborious.

Early work on propagation of a laser beam in a turbu-
lent medium can be found in Ref. [1] and the references 
given therein. The propagation of fundamental Gaussian 
beams under turbulent conditions is described in detail in 
Ref. [2]. In Ref. [3], the degradation of the beam quality 
due to turbulence in terms of M2 is addressed. Young et al. 
[4] examine the propagation of higher-order Hermite– and 
Laguerre–Gaussian modes based upon the extended Huy-
gens–Fresnel principle. Sprangle et al. [5] report on the 
propagation in turbulent air of incoherently combined high-
power fiber lasers having effective beam quality factors M2 
definitely greater than unity. In Ref. [6], the propagation of 
a beam with an initial quartic phase aberration (spherical 
aberration) in turbulent air is described.

In this paper, two alternative approaches to the fast 
numerical realization of the diffraction behavior of low-qual-
ity laser beams with given initial diameters are presented, 
both relying on the propagation of fundamental Gaussian 
modes. The first method is an extension of the well-known 
method of embedded Gaussians [7] to be used in combina-
tion with a standard turbulence model like the turbulence 
phase screen technique. However, because with this method 

Abstract Novel inherently fast methods basing upon 
fundamental Gaussian modes are presented to numerically 
simulate the propagation behavior of a low-quality laser 
beam, i.e., a beam characterized by a high quality factor 
M

2, in turbulent air. Actually, for a given initial diameter, 
beam wandering and spread at the target position is calcu-
lated. Test results are checked against respective simulations 
using higher-order mode beams having clearly defined qual-
ity factors and nearly perfect agreement is demonstrated. 
Experiments performed on the German Aerospace Center 
(DLR) laser test range at Lampoldshausen near Stuttgart 
satisfactorily accord with the predictions of the proposed 
simulation techniques.

1 Introduction

High-power lasers for long-range applications are often still 
seriously affected by inherently poor beam quality character-
ized by beam quality factors M2 beyond 5. Typically, even 
though the overall beam (near field) intensity profiles appear 
similar to (super) Gaussians, they are commonly joined with 
very high quality factors. Modeling the propagation of such 
a beam with given diameter at the laser output plane and 
quality factor, one is faced with the fact that the angular 
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scaling of the turbulence strength by a certain power of the 
beam quality factor is needed, it can only be used for beams 
described by a single M2-value. In the second procedure 
called method of effective focal length, a defocusing lens is 
introduced in order to account for the additional diffractive 
spread of a beam with quality factor greater than unity. As 
there is no need for any manipulation of the turbulence mod-
ule in the computer code, this method is most flexible and 
can be used for any beams represented by two quality factors 
M2

x
 and M2

y
. Finally, as suggested by the numerical results 

of these two methods, a third, (semi-analytical) “super-fast” 
procedure for the identification of the final beam diameter 
is introduced.

The paper is organized as follows: in “Theoretical basis 
of laser beam propagation in turbulent atmosphere” sec-
tion, a compact introduction to the theoretical basis of laser 
beam propagation in a turbulent atmosphere is given, fol-
lowed by the analytical foundation of the two methods for 
laser beam quality emulation. “Computations with refer-
ence to the propagation of Laguerre–Gaussian beams with 
distinct quality factors” section presents the results of test 
computations with the Code TALAP (developed at the Stutt-
gart DLR Institute of Technical Physics) for both methods 
with reference to propagation simulations of higher-order 
Laguerre–Gaussian beams with distinct quality factors. 
Results of the semi-analytical (third) method conclude this 
section. Finally, results of propagation experiments done at 
the DLR laser test range (135 m) at Lampoldshausen near 
Stuttgart together with conclusions from respective simula-
tions are presented in “Experimental results and numerical 
simulations” and “Conclusions” sections.

2  Theoretical basis of laser beam propagation 
in turbulent atmosphere

The laser beam propagation code TALAP (“Turbulent 
Atmosphere and Laser Beam Propagation”) solves the par-
axial wave equation for the (scalar) laser field amplitude 
u(x, y, z), see e.g. Ref. [8],

k = 2�∕� denoting the laser wave number, by a Fast Fourier 
Transformation (FFT) method. For the propagation of laser 
radiation (cw or pulsed) of medium power density in air, 
thermal blooming plays a minor role. Hence, a stationary, 
homogeneous and isotropic turbulence flow field may be 
assumed. Here, the Kolmogorov turbulence model applies 
stating that energy is fed into the flow at large scales and 
cascades down at a constant rate per unit mass to small 
scales where it is dissipated by molecular viscosity, e.g. see 

(1)
(
−2ik

�

�z
+

�2

�x2
+

�2

�y2

)
u(x, y, z) = 0,

Ref. [9]. Hence, between a so-called outer scale length L0 
and inner scale length l0 inertial forces dominate viscosity 
and refractive index fluctuations due to the turbulent flow 
field are characterized by the von Karman power spectrum

where C2
n
 is the refractive index structure constant 

with unit [m−2∕3]. The spatial wave number is given by 
�2 = �2

x
+ �2

y
+ �2

z
, while �0 = 2�∕L0 and �m = 5.92∕l0. 

Consequently, for a given laser wavelength � and propaga-
tion distance L, the turbulence problem is governed by the 
three free parameters C2

n
, L0 and l0. An important quantity 

is the Fried parameter r0 (coherence length) [10], scaling 
as �6∕5 ∶

Physically, the Fried parameter may be regarded as the 
aperture of a fictive telescope over which the rms phase 
differences between any two points remain in the order 
of one radian. That means, a telescope with aperture r0 in 
the absence of turbulence (i.e., diffraction-limited) has the 
same image resolution as any telescope under turbulence 
conditions having an aperture arbitrarily larger than r0. In 
our code, the numerical turbulence evaluation is based upon 
the phase-screen approach. Here, the propagation range is 
divided into a number of segments Δz > L0 and the cumula-
tive phase shift of any segment is considered at its upper 
boundary. The cumulative phase shift kΓ(x, y) is given by 
the perturbation of the optical path length

where the local fluctuation of the refractive is denoted by 
�n(x, y, z). As shown in Ref. [11], the optical path length 
perturbation is derived as

with Φ̃n(𝜅x, 𝜅y) = Φn(𝜅x, 𝜅y, 0). The complex random func-
tion a(�x, �y) must have the property a(�x, �y) = a∗(−�x,−�y) 
because Γ(x, y) is a real quantity. Real and imaginary parts of 
a(�x, �y) are independent random numbers with zero mean 
value and variance 1/2. For the numerical realization of 
the phase screen, a Fast Fourier Transform (FFT) method 
is applied to evaluate Eq. 5. To account for very different 
orders of magnitude of outer and inner scales (e.g. L0 in the 

(2)Φn(�) = 0.033 C2

n
(�2 + �2

0
)−11∕6e−�

2∕�2
m ,

(3)r0 =

(
0.423 k2 ∫

L

0

C2

n
dz

)−3∕5

.

(4)Γ(x, y) = ∫
z+Δz

z

�n(x, y, z)dz,

(5)
Γ(x, y) =

√
2𝜋Δz∬

∞

−∞

�
Φ̃n(𝜅x, 𝜅y)a(𝜅x, 𝜅y)

× ei𝜅xxei𝜅yyd𝜅xd𝜅y,
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meter- and l0 in the millimeter range), �0 = 2�∕L0 is not 
explicitly considered in Eq. 2. As indicated in Fig. 1, two 
phase screens are computed instead, one with dimensions 
of the computational area for the beam propagation several 
centimeters squared and the other with large dimensions 
L0 × L0 [12]. The screens are constructed in a way that the 
lowest spatial wave number of the small screen matches the 
highest spatial wave number of the large screen. Phases of 
the large screen, after interpolation (colored square area in 
Fig. 1), are then added to the phases of the small screen. This 
procedure is a kind of technique called “addition of sub-
harmonics” [13]. The method has been successfully tested 
with reference to the theoretical phase structure function 
D𝜙(r⃗) ∶= ⟨[𝜙(r⃗�) − 𝜙(r⃗� + r⃗)]2⟩ = 6.88

�
r∕r0

�5∕3, r = |r⃗| and 
r0 denoting the distance between any two points in the flow 
field and the Fried parameter, respectively. The brackets 
indicate an average over an ensemble of phase screens.

In this paper, we concentrate on untwisted (“simple astig-
matic”) laser beams with principal axes being unchanged 
along the direction of propagation. Their propagation behav-
iors are completely defined by the 4�-diameters 2W0x and 2W0y 
based upon the second moments of the intensity distributions 
I(x, y) at respective waist positions z0x and z0y, as well as by 
the respective beam quality factors M2

x
 and M2

y
 [7]. The second 

moment �2
x
 (variance) of the intensity profile is given by

(6)�2

x
=

∬ +∞

−∞
(x − xc)

2I(x, y)dxdy

∬ +∞

−∞
I(x, y)dxdy

,

where the first moment of the intensity profile

represents the center of gravity position (x-centroid) of the 
beam; analogous relations are valid for �2

y
. The definition of 

the second moment (variance) based beam diameter aims 
at the short-term intensity profile at the target position, i.e., 
the effect of beam wandering is eliminated. In contrast, the 
long-term diameter follows as the square root of the mean 
value for an ensemble of propagation runs of the expression 
D2

LT
= (2

√
2)2(�2

x
+ �2

y
+ x2

c
+ y2

c
). The beam quality fac-

tors are defined via the waist parameters as M2

i
= �W0i�i∕�,  

where �i denote the respective far-field divergence half 
angles and i = x, y.

In the following, two methods for the emulation of low-
quality laser beams in a turbulent atmosphere are presented.

2.1  Extended method of embedded Gaussian

As is well known, the second moment based half diameters 
Wi (i = x, y) of a beam with quality factors M2

i
 are rigorously 

governed by the propagation equations

Defining new half diameters as wi = Wi∕Mi, the propagation 
equations now read

This means that a fundamental Gaussian beam (M2

i
= 1) 

with half diameters wi behaves in the same optical fashion 
like a beam with quality factors M2

i
 having the diameters 

2Wi = 2wiMi [7]. Hence, to emulate the propagation of a 
beam with quality factors M2

i
, one has to start at the laser 

output plane with a Gaussian intensity distribution and the 
respective lateral dimensions downscaled by the factors Mi. 
After propagation, the lateral dimensions have to be rescaled 
again at the target plane. Combining the method of embed-
ded Gaussian with the turbulence phase screen approach, 
one has to consider that the ensemble averaged turbulence 
induced part of the variance of the focal (far field) intensity 
profile scales as L2(�∕r0)2. This is easily understood by the 
physical interpretation of the Fried parameter given above 
(Eq. 3). In order to obtain the correct turbulence spread con-
tribution for the beam diameter when rescaling the lateral 
dimensions by M at the end of the propagation distance, 
according to Eq. 3, the refractive index structure constant C2

n
 

(7)xc =
∬ +∞

−∞
xI(x, y)dxdy

∬ +∞

−∞
I(x, y)dxdy

(8)W2

i
(z) = W2

0i
+M4

i

(
�

�W0i

)2

(z − z0i)
2.

(9)w2

i
(z) = w2

0i
+

(
�

�w0i

)2

(z − z0i)
2.

Fig. 1  Schematic diagram of the turbulence double-phase-screen 
used in the propagation code TALAP. The small screen (central small 
square area) constitutes the medium and high spatial wave numbers, 
while the low spatial wave numbers (the lowest defining the outer 
scale) are provided by the large screen
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has to be downscaled before propagation by the factor M−5∕3. 
However, as the mean square of the beam centroid displace-
ments ⟨x2

c
+ y2

c
⟩ (beam wander) is proportional to C2

n
R
−1∕3

0
L3 

(R0 denoting the initial beam radius) [14, 15], the computed 
rms value of the beam centroid displacement at the target 
position must be rescaled by M2∕3 and not by M, thus taking 
into account the additional effect of R−1∕3

0
 being scaled up 

by M1∕3 before propagation. A more detailed outline of this 
scaling relations can be found in the appendix. In order to 
successfully apply this procedure, we must be able to char-
acterize the beam by only one M2, i.e., M2

x
∼ M2

y
= M2.

2.2  Method of effective focal length

Within the framework of the complex Gaussian beam parame-
ter formalism [8, 16] it is easy to demonstrate that the variance 
of the far-field divergence of a beam with initial diameter 2w0 
and quality factor M2 equals the one of a fundamental Gauss-
ian beam (M2 = 1) with the same initial diameter being modi-
fied by a defocusing lens with a certain focal length F < 0.

The 4�-diameter of the actual laser beam (being repre-
sented by the respective embedded Gaussian, cf. “Extended 
method of embedded Gaussian” section) at the output plane 
is denoted as 2w0. With zero curvature of the phase front, its 
beam parameter q̃0 at z = z0 = 0 follows as

or

For the fundamental Gaussian beam emulating the actual 
laser beam we have

or

As in general q(z) = q(0) + z, at the beam position 
z ≫ zRayleigh = 𝜋w2

0
∕𝜆, the inverse complex radii of curva-

ture 1∕q̃ and 1 / q, respectively, follow as

and

(10)q̃0 = i
𝜋w2

0

M2𝜆

(11)
1

q̃0
= −i

M2𝜆

𝜋w2

0

.

(12)
1

q0
= −

1

F
− i

�

�w2

0

(13)q0 =
−

1

F

1

F2
+
(

�

�w2

0

)2
+ i

�

�w2

0

1

F2
+
(

�

�w2

0

)2
.

(14)1

q̃
≃

1

z
− i

1

z2

𝜋w2

0

M2𝜆

For equal far-field divergence angles � and 𝜃, we have to 
demand, because � ≃ w∕z and 𝜃 ≃ w̃∕z, that w̃(z) ≃ w(z). The 
two squared beam half diameters are found by multiplying the 
inverse imaginary parts 1∕ℑ(1∕q̃) and 1∕ℑ(1∕q) by M2�∕� 
and �∕�, respectively. Equating w̃2∕z2 and w2∕z2 leads to

or

Now, if a focused (focal length f) propagation of the two 
beams covering the distance L = f  is considered, the spot 
diameters at the target will be identical, because the focus-
ing lens (mirror) creates the far-field image. Hence, at the 
target, a fundamental Gaussian beam and a focusing device 
with optical power Deff = 1∕feff = 1∕F + 1∕f  emulate the 4�
-spot-diameter of a beam having the same initial diameter 
and a quality factor M2. The effective focal length follows as

In the case of an untwisted beam with principal axes in x- 
and y-direction and respective beam quality factors M2

x
 and 

M2
y
, the procedure can be separately applied to either direc-

tion using an astigmatic defocusing lens with two respec-
tive radii of curvature. As this method does not involve 
any scaling of the lateral dimensions, there is no need for 
any intervention in the turbulence module. Hence, it can 
be applied to any simple astigmatic laser beam as defined 
above. Numerical simulations on the basis of Gaussian beam 
theory or 3D-solutions to the paraxial wave equation confirm 
this result with very high accuracy, cf. “Computations with 
reference to the propagation of Laguerre–Gaussian beams 
with distinct quality factors” section.

3  Computations with reference to the propagation 
of Laguerre–Gaussian beams with distinct 
quality factors

In this section, the results of numerical simulations of the 
propagation of a focused laser beam (λ = 1.03 μm) over a 
distance L = 2000 m are presented. In Fig. 2 the short-term 

(15)
1

q
≃

1

z
− i

1

z2
�

�w2

0

F2
+

�2

�w2

0

.

(16)
M4�2

�2w2

0

=
w2

0

F2
+

�2

�2w2

0

(17)
1

F
= −

√
M4 − 1

�

�w2

0

.

(18)feff =
f

1 −
√
M4 − 1

�f

�w2

0

.
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beam diameter (rms of the 2
√
2

�
�2
x
+ �2

y
-values for an 

ensemble of 100 propagation runs) and (right-hand scale) 
the respective centroid standard deviation (rms of the values 
Δr =

√
x2
c
+ y2

c
 in the ensemble) are shown at the target 

position as functions of the (initial) beam quality factor M2 
for the two proposed methods with reference to pure 
Laguerre–Gaussian (TEMp0) beams with quality factors 
M2 = 2p + 1.  The  t u rbu l ence  pa ramete r s  a r e 
C2
n
= 5.0 × 10−13 m−2∕3, l0 = 8mm and L0 ≈ 3.6m. All prop-

agation runs start out with initial intensity distributions hav-
ing the same 4�-diameter of 2R0 = 8 cm. The computational 
area of 120 cm × 120 cm is sampled with a resolution of 
211 × 211 mesh points. Beam diameters and respective cen-
troid standard deviations versus refractive index structure 
constant C2

n
 for the same parameters but a fixed value M2 = 9 

are displayed in Fig. 3. It is evident that the results of both 
novel computational methods coincide with those of the ref-
erence Laguerre–Gaussian simulations in a nearly perfect 
manner.

3.1  Super‑fast semi‑analytical method

The numerical results in Fig. 2, indicating a slightly para-
bolic behavior of the diameter and a nearly constant cen-
troid deviation, encourage for trying the following semi-
analytical approach for the evaluation of the beam diameter 

D (short-term or long-term) after focused propagation over 
a distance L in turbulent air:

Here, D2

1
 denotes the computed square of the second 

moment-based (short-term or long-term) diameter of a 
fundamental Gaussian beam at the target position. That 
means, D2

1
 is proportional to the sum of the Gaussian beam 

variance due to diffraction and the turbulence-induced vari-
ance including or not including beam wander. The term 
4(�L∕�R0)

2(M4 − 1) represents the spread due to diffrac-
tion of the higher order beam modes; again, R0 denotes the 
initial beam radius. The relation (19) is easily transformed 
to M4

total
= 1 +M4

ab
+M4

turb
, where M4

ab
 and M4

turb
 are due to 

initial higher order modes in the beam (aberration) and tur-
bulence, respectively [6].

With a beam diameter D1 = 440.0mm for M2 = 1 (cf. 
Fig. 2), the numerical evaluation of Eq. 19 is shown in 
Fig. 4, again, with reference to pure Laguerre–Gaussian 
beams. We conclude from the nice agreement that, in this 
turbulence regime of medium strength (Rytov parameter 
�2

R
= 0.63(�L∕r2

0
)5∕6 ≈ 57), inherent diffraction of the beam 

due to poor initial quality and turbulence-induced spread are 
statistically fairly independent processes, i.e., the respective 
variances simply add. In practice, for a given turbulence 
state, this semi-analytical third method provides “super-fast” 
information about the relevant beam properties in the focal 
plane for any value of initial M2.

(19)D2 = 4

(
�L

�R0

)2

(M4 − 1) + D2

1
.

Fig. 2  Computations for the two proposed methods with refer-
ence to pure TEMp0 modes: beam diameter (open circle symbols, 
left hand scale) and centroid standard deviation (plus symbols, 
right hand scale) versus beam quality factor M2. The parameters 
are: � = 1.03 μm, R

0
= 4.0 cm, L = 2000m, C2

n
= 5.0 ⋅ 10−13 m−2∕3, 

l
0
= 8mm and L

0
≈ 3.6m

Fig. 3  Computations for the two proposed methods with reference 
to a pure TEM40 mode: beam diameter (open circle symbols, left 
hand scale) and centroid standard deviation (plus symbols, right hand 
scale) versus refractive index structure constant C2

n
. The parameters 

are: � = 1.03 μm, R
0
= 4 cm, L = 2000m, M2 = 9, l

0
= 8mm and 

L
0
≈ 3.6m
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4  Experimental results and numerical simulations

For the experimental analysis of the dependence of the 
beam propagation on weather conditions, the DLR oper-
ates a free transmission laser test range at Lampoldshausen, 
Germany. It consists of two stations, the transmitting (TS) 
and the receiving (RS) one confining a 135-m-long pathway 
with a beam path 1 m above asphalt ground. Optical turbu-
lence has been measured by a surface layer scintillometer 
(SLS 20-A, Scintec AG, Germany). A more comprehensive 
description of the optical test range including installed sen-
sors continuously monitoring the local atmosphere can be 
found in Ref. [17]. The simultaneous characterization of the 
laser beam is performed with sensors inside of the TS and 
RS. These measurements address power, intensity distribu-
tion, and jitter of the beam.

The laser system used is a TruDisk 6001 (4C) disk laser 
(Trumpf, Germany). It operates at a wavelength of 1.03 μm 
and achieves an adjustable output power (continuous wave) 
between 180 and 6000 W. The beam quality factor M2 of the 
laser system is measured as about 10 at 180 W and increases 
with power. The collimated beam is guided into a telescope 
setup consisting of two off-axis parabolic mirrors with 
respective focal lengths of 227 and 2272 mm and a magnifi-
cation of 10. The distance between the telescope mirrors is 
adjusted to obtain the focus point at 135 m distance.

In Figs. 5 (� = 0.532 μm, M2 = 3) and 6 (� = 1.03 μm,  
M2 = 18), comparisons between experiment and simula-
tion are shown with respect to the 4�-beam diameter and 
the beam centroid standard deviation as functions of the 

refractive index structure constant C2
n
. Clearly, particularly 

in Fig. 6, the very poor initial beam quality dominates the 
turbulence-induced effect on the beam diameter at the target 
position. In both cases, however, the increase of the 4�-beam 
diameters with growing C2

n
-values as predicted by the simu-

lation is reflected by the measurement. The experimental 

Fig. 4  Evaluation of Eq.  19 with reference to pure TEMp0 modes: 
Beam diameter versus beam quality factor M2. The parameters 
are: � = 1.03 μm, R

0
= 4 cm, L = 2000m, C2

n
= 5.0 ⋅ 10−13 m−2∕3, 

l
0
= 8mm and L

0
≈ 3.6m

Fig. 5  Simulation of a DLR “green laser” propagation experiment: 
beam diameter (open circle symbols, left hand scale) and centroid 
standard deviation (plus symbols, right hand scale) versus refrac-
tive index structure constant C2

n
. The parameters are: � = 0.532 μm,  

R
0
= 10 cm, L = 135m, M

2 = 3, 5.6mm < l
0
< 7.4mm and 

L
0
≈ 1.5m

Fig. 6  Simulation of a DLR “5 kW laser” propagation experiment: 
Beam diameter (open circle symbols, left hand scale) and centroid 
standard deviation (plus symbols, right hand scale) versus refrac-
tive index structure constant C2

n
. The parameters are: � = 1.03 μm,  

R
0
= 10 cm, L = 135m, M

2 = 18, 5.3mm < l
0
< 6.6mm and 

L
0
≈ 1.5m
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and computational absolute values of the diameters also 
agree very well. Additionally, the measured beam centroid 
standard deviations exhibit satisfactory consistency with the 
theoretically expected values.

5  Conclusions

In this paper, we concentrated on the problem of numeri-
cally emulating laser beams propagating in the turbulent 
atmosphere with initial quality factors M2 far beyond unity. 
With the extended method of embedded Gaussian and the 
method of effective focal length, two numerical techniques 
were introduced relying on (focused) Gaussian beams which 
yield the laser intensity distribution at the target position in 
a fast and flexible manner. As far as the simulation of the dif-
fractive spread due to the initial beam quality is concerned, 
we presented rigorous analytic foundations for both methods. 
Hence, with atmospheric conditions admitting a description 
within the framework of a Kolmogorov turbulence model, 
both procedures generally apply. A semi-analytical procedure 
for a first (approximate) determination of the laser focal spot 
diameter completes our theoretical proposal. These novel 
numerical tools are ready now to provide support, for exam-
ple, to investigations of the relative importance of beam qual-
ity and air turbulence for laser beam propagation. As a first 
application, we simulated propagation experiments done at 
the DLR 135 m laser test range and found good agreement 
with respect to beam diameter and centroid standard devia-
tion. Experiments with two or three paths along the 135 m 
laser test range would further increase the turbulence-induced 
effects and are intended for the future together with applica-
tions of the presented tools to more experimental data.
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Appendix

Scaling relations for the extended method of embedded 
Gaussian

As explicated in the body of the paper, the method of 
embedded Gaussian demands a downscaling of the initial 

diameter of the focused beam by the factor M and, at the 
end of the propagation distance, a rescaling of the lat-
eral dimensions by M. Hence, to end up with the correct 
turbulence-induced beam spread (i.e., the spread which 
remains if the initial beam diameter grows to infinity) being 
inversely proportional to the Fried parameter (correlation 
length) r0, the turbulence strength must be diminished by 
artificially enlarging the correlation length: r̄0 = r0M. Thus, 
because r0 ∝ (C2

n
)−3∕5, we have to replace the true refrac-

tive index structure constant C2
n
 in the phase screen routine 

by C̄2
n
= C2

n
M−5∕3. Addressing now the mean square of the 

beam centroid displacements ⟨x2
c
+ y2

c
⟩ being proportional 

to C2
n
R
−1∕3

0
L3, we have to consider that, because R0 has been 

downscaled by M, at first, we compute a mean square beam 
wander determined by the factor C2

n
M−5∕3R

−1∕3

0
M1∕3, where 

C2
n
 and R0 denote the true refractive index structure constant 

and initial beam radius, respectively. Hence, in order to meet 
the correct (true) rms value of the beam centroid displace-
ments we have to rescale by the factor 

√
M5∕3M−1∕3 = M2∕3.
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