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It is reported in this work the development and study of the optical and structural properties of a solar
selective absorber cermet based on AlSiOx:W. A four-layer composite film structure, W/AlSiOx:W(HA)/
AlSiOx:W(LA)/AlSiOx, was deposited on stainless steel substrates using the magnetron sputtering deposi-
tion method. Numerical calculations were performed to simulate the spectral properties of multilayer
stacks with varying metal volume fraction cermets and film thickness. The chemical analysis was per-
formed using X-ray photoelectron spectroscopy and the results show that in the high metal volume frac-
tion cermet layer, AlSiOx:W(HA), about one third of W atoms are in the W0 oxidation state, another third
in the Wx+ oxidation state and the last third in the W4+, W5+ and W6+ oxidation states. The X-ray diffrac-
tograms of AlSiOx:W layers show a broad peak indicating that both, W and AlSiOx, are amorphous. These
results indicate that this film structure has a good spectral selective property that is suitable for solar
thermal applications, with the coatings exhibiting a solar absorptance of 94–95.5% and emissivities of
8–9% (at 100 �C) and 10–14% (at 400 �C). The samples were subjected to a thermal annealing at 450 �C,
in air, and 580 �C, in vacuum and showed very good oxidation resistance and thermal stability.
Morphological characterizations were carried out using scanning electron microscopy and atomic force
microscopy. Rutherford Backscattering experiments were also performed to analyze the tungsten depth
profile.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the interest in renewable energies has a high
growth, particularly in the Concentrated Solar Power (CSP) tech-
nologies. These are one of several renewable energy technologies
with significant potential that are benefiting from a great techno-
logical improvement and are gradually more used in different
areas around the world (International Energy Agency, 2014;
Sunshot Vision Study, 2012; Fernández-García et al., 2010;
Viebahn et al., 2011). Linear and point focus systems are the main
receivers used in CSP plants. The parabolic trough linear receivers
rely on a solar selective absorber coating that still has room for
improvement, which can be achieved by emissivity reduction, as
well as increase its durability and oxidation resistance, ideally
under air (Sunshot Vision Study, 2012). In case of parabolic trough
linear receivers working with synthetic oil as heat transfer fluid
(HTF), which operate below 400 �C, the commercialized solar
selective coatings already display high solar absorptance
[as > 95%) and low thermal emittance (e (400 �C) < 10%)
(Burkholder and Kutscher, 2009). In case of using molten salt as
HTF, these systems should withstand operating temperatures in
the range of 350–550 �C (Archimede Solar Energy).

The spectrally selective coating should have low reflectance in
visible and near infrared (IR) regions (k < 2 lm) to absorb the inci-
dent solar radiation. In order to prevent thermal losses the coating
should also have a high IR reflectance (k > 2 lm) (Seraphin, 1976;
Selvakumar and Barshilia, 2012). This implies a drastic reflectance
modification at a cut-off wavelength around 2 lm (Seraphin, 1976;
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Kennedy, 2002). The position of this cut-off wavelength is related
with the black body emission at high temperatures, which starts
to overlap the solar radiation spectra in the infrared tail. Thus, that
position is determined by the compromise between solar irradi-
ance (to be absorbed) and radiative emission of the receiver (to
be avoided). The spectral selectivity can be obtained by the associ-
ation of several materials in a multilayer with adequate optical
properties. The first layer is a back IR reflector metallic layer with
high electrical conductivity (Cu and Al for low temperature absor-
bers and Mo, W and Ni for medium and high temperature absor-
bers (Bogaerts and Lampert, 1983; Kennedy, 2002). The
remaining stack is comprised by a layer structure for solar radia-
tion absorption and finally an antireflection layer. For high temper-
ature applications, the oxides are the most common antireflection
layers (Al2O3 or SiO2 as single layer, or a combination of SiO2 and
TiO2 layers (Kennedy, 2010) due to its optical properties, as well
as to its thermal stabilities.

A very high solar absorption can be achieved when the coating
has a graded refractive index and extinction coefficient, which
should be highest at the interface metal/substrate (infrared reflec-
tor) and then gradually decreasing towards the surface. This grad-
ing behaviour can be simplified by the use of few layers (2–4
layers) (Zhang and Mills, 1992; Yin and Collins, 1995) with contin-
uously decreasing refractive index, namely using a low absorption/
high absorption, (LA/HA) double layer. The use of two absorbing
layers allows the absorption of solar radiation through the materi-
als intrinsic absorption and by phase interference. This can be
achieved using a double cermet (Antonaia et al., 2010; Farooq
and Hutchins, 2002; Wäckelgård et al., 2015; Zhang et al., 1996;
Rebouta et al., 2015), where the metal volume fraction is used to
adjust the refractive index and extinction coefficient of each layer,
or by a layer structure based on two different materials with ade-
quate optical constants, which can be, for example, those based on
transition metal nitride/oxynitride or carbide/nitride layers
(Barshilia et al., 2008; Du et al., 2011; Rebouta et al., 2015;
Barshilia et al., 2008; An et al., 2015; Rebouta et al., 2012; Feng
et al., 2015; Usmani and Dixit, 2016).

The ceramic-metal composite coating (cermet) is the most com-
mon solution used for high temperature applications, where the
low metal volume fraction cermet layer works as low absorption
layer and the high metal volume fraction cermet layer as the high
absorption layer. The concept offers a broad range of options for
solar selectivity optimization and it depends on the proper choice
of its constituents. Several combinations of the ceramic-metal
composite have been tested and reported, using mainly Al2O3,
SiO2, Si3N4, TiO2 and AlN as matrix. These ceramic materials have
been chosen due to its inherent high chemical and thermal stabil-
ity, together with metals inclusions, such as W, Mo, Ag, Ni, Pt, Nb,
and V, bearing some of these metals a relatively good oxidation
resistance. Those combinations are, for example, Mo-Al2O3

(Zhang et al., 1996; Teixeira et al., 2001; Cheng et al., 2013),
W-Al2O3 (Antonaia et al., 2010; Rebouta et al., 2015; Cao et al.,
2015), Ni-Al2O3 (Boström et al., 2011; Craighead and Buhrman,
1977), Pt-Al2O3 (Lafait et al., 1986; Craighead et al., 1979),
V-Al2O3 (Farooq and Hutchins, 2002), Mo-SiO2 (Esposito et al.,
2009; Zheng et al., 2013; Wang et al., 2011), W-SiO2 (Wäckelgård
et al., 2015), Ag-SiO2 (Granqvist and Hunderi, 1978), Ni-SiO2

(Farooq et al., 1998), Nb-TiO2 (Wäckelgård et al., 2015), W-AlN
(Zhang and Shen, 2004) and Mo-Si3N4 (Céspedes et al., 2014).

This paper presents the development of solar absorber coatings
for high operation temperatures (>400 �C), based on AlSiOx:W
cermets. Alumino-Silicate refractories have a high temperature
volume stability and strength, and excellent resistance to thermal
spalling. The use of an AlSix target allows for obtaining an antire-
flection layer with similar refractive index of SiO2, while using
the same AlSix target for high and low absorption layers. The func-
tionality of the multilayer structures was verified through the solar
absorptance and emissivity measurements. The optical design of
multilayered coatings was performed through tailoring of the spec-
tral optical constants of the single layers, using the modelling soft-
ware SCOUT (Theiss, 2002).
2. Experimental details

The W metallic back layer was deposited on glass and stainless
steel (SS) substrates by DC magnetron sputtering in static mode
from a pure tungsten target, using a current density of 12.5 mA/
cm2. The optical characterization of this layer was previously
reported (Rebouta et al., 2015). Subsequently, the AlSiOx:W cer-
mets were deposited by simultaneous sputtering from pure metal
W and Al targets, the latter with 9 small silicon disc pellets (1 cm in
diameter) within the erosion zone. The 10 cm in diameter circular
targets were placed horizontally, while the substrate holder
rotated with a constant speed over them. The AlSiOx:W cermet
films with varying W volume fraction were obtained by maintain-
ing constant the sputter current for the AlSix target (6.2 mA/cm2)
and O2 flow (5 sccm, corresponding to a partial pressure of
0.065 Pa), and varying the current of the W target from 0.15 A to
0.75 A. Two series were prepared using different substrate holder
rotation speeds, 7 and 15 rpm.

The chemical analysis was performed using a X-ray photoelec-
tron spectroscopy (XPS) equipment from Kratos - Axis Ultra DLD
39-306, equipped with a mono-Al Ka source operated at 300 W.
The spectra were modelled using the XPSPEAK41 software and
the peaks were assumed to have a Gaussian shape and a Shirley
type of background.

The crystalline structure of the absorber coating was studied
using X-ray diffraction employing a Bruker AXS Discover D8, oper-
ating with CuKa radiation. X-ray diffraction measurements were
performed using a 3� incidence angle. Scanning Electron Micro-
scopy (SEM) was performed with a NanoSEM – FEI Nova 200
(FEG/SEM) microscope. Film topography and roughness were
examined using Atomic Force Microscope (Dimension Icon- Bru-
ker) under scan adjust mode. RBS experiments were performed
using a 3.0 MV Van der Graaff accelerator. A 2.0 MeV He+ beam
was used. The backscattered particles were detected by a surface
barrier detector placed at 140� to the beam direction.

Spectral transmittance and reflectance measurements were
performed in the wavelength range of 0.25–2.5 lm, using a Shi-
madzu spectrophotometer. The reflectance measurements were
performed with an incidence angle of 8�, using an integrating
sphere attachment. The normal solar absorptance, asol, is defined
as a weighted fraction between absorbed radiation and incoming
solar radiation and was determined using the spectral reflectance
data and ASTM AM1.5D solar spectral irradiance. A Fourier Trans-
form Infrared (FTIR) spectrophotometer from Agilent Technologies
equipped with a gold integrating sphere and a HgCdTe (MCT)
detector was used to measure the spectral reflectance in the infra-
red wavelength range, 1.6–16.7 lm. The normal thermal emittance
was calculated as the weighted fraction between emitted radiation
and the Planck black body distribution at a specific temperature T,
using the spectral blackbody emissive power and the spectral
reflectance (Trotter and Sievers, 1980). Reflectance measurements
were performed using a gold thin film as a reference. Since gold has
an absolute reflectance lower than 100%, the reflectance of a cop-
per plate was corrected multiplying the reflectance by a constant
factor (lower than 1) in order to obtain a thermal emittance of
3% at 100 �C. This correction was performed for all IR reflectance
measurements.
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3. Results

3.1. Deposition and optical properties

The W layer was previously studied and its optical properties
were already reported (Rebouta et al., 2015). In order to get high
reflectivity it is necessary to have low oxygen content in the W
layer, and different deposition rates were tested (target current
densities of 6.2 mA/cm2 and 12.5 mA/cm2). The best result was
obtained with the highest deposition rate, which is used in this
work. The W layer improves significantly the reflectance of pol-
ished stainless steel to about 96% at k > 2500 nm, leading to an
emissivity decrease from e = 14% (SS substrate) to e = 4% (at
80 �C), On the other hand, the W layer also contributes for solar
radiation absorption, due to its absorptance coefficient of 42%.
The different cermet AlSiOx:W layers deposited on glass substrates
were prepared by varying the current applied to the W target.
Optical spectroscopy in both transmittance and reflectance modes
was used to characterize the optical properties of the films. The
increase in W content in the films led to the expected gradual
decrease of the transmittance and consequently to an increase in
the reflectance, which is consistent with the increasing metallic
character. Fig. 1 depicts the optical transmittance (Fig. 1a) and
reflectance (Fig. 1b) data for representative AlSiOx:W layers pre-
pared with increasing W target current, as indicated in the legend
of Fig. 1. By varying the W target current between 0 and 0.7 A it
was possible to obtain a wide range of reflectance and transmit-
tance values (and consequently optical constants), from which it
is possible to select the layers with adequate optical constants
and construct the desired optical stack. The AlSiOx layer has a high
transmittance and low reflectance, which makes it suitable to be
used as an antireflection layer. This enables the use of same AlSi
target for cermet AlSiOx:W layers and for the antireflection layer.
The spectral reflectance and transmittance of these layers were
modelled with SCOUT software, which allowed the calculation of
the spectral optical constants (refractive index, n, and extinction
coefficient, j), besides the thickness of each individual layer. In this
modelling procedure, an initial attempt was performed starting off
with the dielectric functions obtained from individual W and
AlSiOx layers, based on the two phase composite models of Max-
well Garnett (Maxwell Garnett (1904) and (Bruggeman (1935)),
however the results were not satisfactory. As it will be shown later
in this manuscript, this can be due to the partial oxidation of W
atoms. Thus, a one phase model was used instead, with a Drude
term, representing unbound electron oscillators, a Lorentz term
representing the bound harmonic oscillators (Kim et al., 1992),
which was used to describe the intraband transitions into the
upper half of the conduction band, and a OJL term (O_Leary
et al., 1997) to describe the band gap transitions. A good agreement
between the simulated and experimental data was obtained and
the refractive index and extinction coefficient are plotted in
Fig. 2 as a function of the wavelength, for the same samples shown
in Fig. 1 (substrate holder rotation speed of 15 rpm).

As expected, the extinction coefficient of AlSiOx layer (0 mA) is
almost zero and the refractive index is below 1.6 for wavelengths
higher than 700 nm. This fact is also consistent with a mixture of
aluminium and silicon oxides, and makes this material a good
antireflection layer. The refractive index and extinction coefficient
increase with W content, as expected due to the increase of the
metallic character. The thicknesses of these films were obtained
from the fit to the experimental spectral transmittance and reflec-
tance curves, and ranged from 70 to 91 nm. The deposition rate of
AlSiOx in rotation mode is 11.4 nm/min. The addition of W lead to
its increase, reaching 32 nm/min for a W target current of 0.75 A.
The deposition rate increases linearly with the W target current.
Similar analysis was performed for samples prepared with rotation
speed of 7 rpm, being obtained similar deposition rates, keeping
constant all the other deposition process parameters. However,
the layers prepared with 7 rpm were always less transparent than
those prepared with 15 rpm. The sample prepared with 7 rpm has
a higher extinction coefficient than the one prepared with 15 rpm,
which also means that the former will have a higher absorptance.
This happens systematically with samples prepared with a con-
stant W target current where the one prepared with a lower rota-
tion speed has always a higher extinction coefficient. With lower
rotation speed a higher W thickness is deposited in each cycle
and results in a sample with a higher extinction coefficient; which
is also related with less W atoms in the W6+ and W5+ oxidation
states and more in the W4+ oxidation state, which will be shown
in next section. Films with tungsten atoms in the W6+ oxidation
state are transparent and have a low contribution for solar radia-
tion absorption. However, tungsten atoms in the W5+ and W4+ oxi-
dation states already contribute substantially for solar radiation
absorption. As already reported, WOy substoichiometric films
become coloured for y < 2.75 (Berggren and Niklasson, 2005;
Berggren et al., 2007), what was justified by the presence of W5+

andW4+ oxidation states. Thus, the films prepared with lower rota-
tion speed have higher extinction coefficient not only due to the
increasing number of tungsten atoms at W0 oxidation state but
also to the higher amount of tungsten atoms in the W5+ and W4+

oxidation states.

3.2. Oxidation state of W atoms

In order to assess the chemical composition and chemical state
and bonding information of the films, two single layers were pre-
pared and analyzed by XPS. These two layers, D1 and D2, were
deposited with applied currents of 0.75 A and 0.5 A on W and Al
(Si) targets, respectively, with the same argon and oxygen flow
rates, but with different rotation speed, 15 rpm for D1 and 7 rpm
for D2. This implies that a different amount of material was depos-
ited in each turn.

Core level spectra corresponding to W 4f are shown in Fig. 3.
The C 1s peak (not shown), appearing at 284.5 eV binding energy,
was used as a reference. Fig. 3 shows that tungsten is present in
both metallic and oxidized states, for both samples; the deconvo-
lution of the peaks demonstrates the different oxidation states of
tungsten (see Table 1). The W 4f core level was fitted into peak
doublets with a spin-orbit energy separation of 4f5/2�4f7/2 = 2.1 eV
and an intensity ratio I4f5/2/I4f7/2 = 0.75 (Xie et al., 2012). The
respective energies of W 4f7/2 states are presented in Table 1.
The peaks appearing at 30.5 eV and 30.6 eV binding energies can
be associated with metallic tungsten in D1 and D2 samples, respec-
tively (Xie et al., 2012; Wong et al., 2000). While the peaks at
36 eV, 34.8 eV and 33.1 eV can be ascribed to the oxidation states
of W6+, W5+ and W4+, respectively, (Xie et al., 2012; Uppachai
et al., 2014; Zhang et al., 2009; Yang et al., 2014), and the peaks
at 31.6–31.7 eV can be attributed to the intermediate W1+, W2+

and W3+ oxidation states commonly known as the Wx+ oxidation
state (Xie et al., 2012; Yang et al., 2014). This Wx+ oxidation can
be explained by tungsten ions bonded to oxygen and tungsten ions.
The peak associated withW6+ oxidation state can have a small con-
tribution coming from the W 5p3/2 peak associated with W0 oxida-
tion state, because the binding energy of W 5p3/2 peak is 5.5 eV
above that of the W 4f7/2 peak. However, if any, should be similar
for both samples.

These results show that, in both samples, about one third of W
atoms are in the W0 oxidation state, another third in the Wx+ oxi-
dation state and the last third in the W4+, W5+ and W6+ oxidation
states. Sample D1 has 29.3% of the W atoms at higher oxidation
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Fig. 1. Reflectance (a) and Transmittance (b) of different cermet AlSiOx:W layers deposited on glass, prepared with a substrate holder rotation speed of 15 rpm and with
varying W target current.
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Fig. 2. Refractive index (n) and extinction coefficient (j) as a function of
wavelength for AlSiOx:W layers prepared with a substrate holder rotation speed
of 15 rpm and different W target currents, as indicated in the legend.
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states (W6+ and W5+), while the sample prepared with lower rota-
tion speed (D2) has only 14.0% of the W atoms at those oxidation
states. As it was mentioned in the previous section, this behaviour
can be related with the increase in W layer thickness (in D2)
deposited in each turn due to the decrease of the rotation speed.

3.3. Structural properties

AlSiOx:W thick layers (>700 nm) were deposited and subse-
quently analyzed by X-ray diffraction. In Fig. 4 are represented
the XRD patterns for layers prepared with a rotation speed of
15 rpm (Fig. 4a) and of 7 rpm (Fig. 4b) and with different W target
currents, as indicated in the legend. The vertical scale is the same
in both graphs. In all cases a broad peak is present, around
2h = 40�, which could be assigned to (110) planes of bcc W lattice.
The intensity of the broad peak increases with tungsten current,
which is obviously correlated with the tungsten volume fraction.
However, a �7� FWHM indicates that W, SiO2 and Al2O3 phases
are amorphous. Similar behaviour was found for W-Al2O3 cermet
layers deposited by rf sputtering (Antonaia et al., 2010). The other
peaks, referred by S, correspond to the stainless steel substrate. The
W layers, used as infrared back reflectors, are polycrystalline, with
a bcc structure and [110] preferred crystallographic direction.

3.4. Development of the optical stacks

A set of AlSiOx:W layers for each rotation speed (7 and 15 rpm)
with varying the W target current was used to elaborate the opti-
mization of the optical stack. These optical constants were used to
design the structure of the multilayers simulating its reflectance
varying the materials and respective thicknesses. TheW layer, with
a thickness of about 150 nm, was already used and published
(Rebouta et al., 2015; Rebouta et al., 2015), providing good results;
the sameW layer was employed in all stacks. The multilayers were
built with 4 layers, as schematically represented in Fig. 5.

From the optimization procedure, the deposition parameters
were selected for different layers, such as W target current and
respective layer thicknesses, which defines the deposition time.
In Table 2 are presented the parameters associated with the single
layers used in each multilayer coating stack, being identified by the
W target current, the respective thicknesses and deposition times
for the three outermost layers. The first three coatings (A, B and
C) were prepared with a rotation speed mode of 15 rpm, while in
the fourth (sample D) the rotation speed was set to 7 rpm. The
spectral reflectance of these coatings is shown in Fig. 6. The solar
absorptance and thermal emittance (at 400 �C) are shown in the



Table 1
Identification of W 4f core level binding energies from analyzed samples shown in Fig. 3.

Sample D1 D2

Core level BE (eV) Peak area BE (eV) Peak area Oxidation state

W 4f7/2 30.6 33.9% 30.5 35.2% W0

31.7 28.2% 31.6 31.2% Wx+

33.1 8.6% 33.2 19.6% W4+

34.9 20.3% 34.6 9.1% W5+

35.9 9.0% 36.3 4.9% W6+
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Fig. 4. XRD diffractograms performed with an incidence angle of 3� for AlSiOx:W
single layers prepared with different W target currents (indicated in the legend) and
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stainless steel substrate.
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Fig. 5. Sketch of multilayer coatings based on AlSiOx:W cermets.

Table 2
Process parameters of single layers used in the multilayers, including W target
current, layer thickness and deposition time.

Sample W target current (mA) Layer thickness (nm) Deposition time (s)

A 750/200/0 69/30/76 130/105/400
B 750/300/0 58/33/69 110/90/363
C 750/300/0 53/33/62 100/90/326
D 350/200/0 57/30/90 149/83/474
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Fig. 6. Reflectance of different AlSiOx:W absorber coatings described in Table 2. The
absorptance and emissivity at 400 �C are also indicated in the legend.
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legend of this figure. The solar absorptance is higher for sample A,
being related with the higher thicknesses of HA and LA layers, hav-
ing this sample also a higher emissivity (at 400 �C). In sample D,
the step on the wavelength scale is shifted to lower wavelengths,
which impacts in a reduction of both solar absorptance and emis-
sivity at 400 �C.

The different coatings, deposited on polished stainless steel
substrates, were analyzed by SEM. In Fig. 7 are shown the micro-
graphs obtained for samples B (Fig. 7a) and D (Fig. 7b), with the
indication of the constituent layers of the optical stack and the
respective thicknesses. In all cases, the first layer (W) shows a mor-
phology consistent with a columnar growth. The remaining layers
reveal a featureless morphology, which agrees with the amorphous
structure obtained from the XRD analyses, as shown in Fig. 4 for
AlSiOx:W layers. The top layer is the AlSiOx antireflection layer.
The contrast difference between the two cermet layers in the
SEM micrographs is very small, with a slight distinction between
them in Fig. 7a, but indistinguishable in Fig. 7b. This behaviour is
related with metal volume fraction in the different layers. In sam-
ple B, the two cermet layers were deposited applying W target cur-
rents of 0.75 and 0.3 A, respectively, while in sample D the two
cermet layers were deposited with W target currents of 0.35 and
0.2 A, although with different rotation speeds, 15 rpm and 7 rpm,
respectively. The thicknesses are similar to those mentioned in
Table 2, within a deviation of 10%.

The featureless morphology obtained for cermet and antireflec-
tion layers is similar to the obtained for the coating based on SiO2:
W layer cermet (Wäckelgård et al., 2015), but contrasts with what
was obtained for SiO2:Mo layer cermets (Esposito et al., 2009). In
that case the two cermet layers and the antireflection layer appear
to continue the columnar growth of the molybdenum layer in spite
of an amorphous structure.

These samples were analyzed by XRD and a similar pattern was
obtained for all as-deposited samples. The pattern measured for
sample D is shown in the Fig. 8. The peaks addressed to tungsten
are related with W layer, which is polycrystalline. As expected,
from the measurements of single layers, the other layers are XRD
amorphous. The small peaks marked with S (2h � 43.6�, 44.5�
and 50.7�) are ascribed to the 304 stainless steel substrate
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(Rebouta et al., 2015), reporting to fcc-austenite (111), bcc-
martensite (110) and austenite (200) phases, respectively (Peng
et al., 2016). The very small peak appearing at 2h � 36� can be
eventually related to (200) diffraction planes from b-W (Sibin
et al., 2015). The small peak at 2h � 38.3� did not appear in the
XRD diffractograms of W layer and antireflection layer (Rebouta
et al., 2015), which means it must be related with the cermet lay-
ers, but cannot be clearly addressed to a tungsten oxide phase or to
aluminium oxide phase.
3.5. Thermal stability

These optical stacks were subjected to a thermal annealing in
air at 450 �C and in vacuum at 580 �C. In Fig. 9 the reflectance of
representative coatings in their as-deposited state and after the
thermal treatments in air (Fig. 9a and b) and in vacuum (Fig. 9c)
is presented. The legends indicate the solar absorptance and ther-
mal emittance (calculated at 400 �C) for different situations.

The reflectance profile of samples A, B and C revealed minor
changes after the annealing in air at 450 �C, similar to those shown
in Fig. 9a. The changes in sample D were slightly higher, as shown
in Fig. 9b. The change in the reflectance profile happened in the
first annealing step, of 200 h, and in the following annealing steps
only minor changes were seen. In terms of annealing in vacuum at
580 �C, the samples A, B and C had a similar behaviour, as the one
represented in the Fig. 9c, showing very small changes in the
reflectance profile after the first annealing step, which induced a
small decrease in solar absorptance, but without significant
changes after the additional steps, although with small changes
in the solar absorptance values. Changes in first annealing steps
followed by steps without significant changes, with very good
thermal stability, were also reported by other authors in coatings
based on Al2O3:W (Antonaia et al., 2010) and SiO2:Mo (Esposito
et al., 2009) cermets. In these reports the changes were seen for
the initial annealing steps within 7 days, which is within the first
annealing step of about 200 h, used in our tests.

In Fig. 10 are shown the solar absorptance and thermal emit-
tance (calculated at 400 �C) values as a function of the annealing
time, for annealing in air at 450 �C (Fig. 10a) and in vacuum at
580 �C (Fig. 10b). The solar absorptance value is maintained after
33 days in air, at 450 �C. The thermal emittance was measured in
as-deposited samples and after all annealing steps. Several samples
revealed a small decrease in emissivity, and only the sample D
showed an increase of thermal emittance. This shows that these
coatings have very good thermal stability and oxidation resistance.
Similar samples were also annealed in air at 400 �C, with identical
results.

Some reasons can influence the latter behaviour. Both silicon
and aluminium oxides are known to have good properties as diffu-
sion barriers and also good thermal stability. Additionally, the film
structure is predominantly amorphous (except for the W layer), as
confirmed by XRD. This is a consequence of the local chemical
bonding effects in the materials, which is important for avoiding
the diffusivity paths when intergranular phases are present, which
improves the performance of oxide layers as oxygen diffusion bar-
rier layers. Finally, the surface finishing also influences this beha-
viour. The low substrate roughness increases the thin film
surface coverage and eventually decreases the interfacial porosity,
what improves the thermal stability. The emissivity decrease after
the thermal annealing in vacuum was also reported in other cases,
for example in SiO2:W cermet layers (Wäckelgård et al., 2015) with
thermal annealing in vacuum at 350 �C. The deterioration of the W
layer would lead to an increase of the emissivity. Thus, the fact that
the emissivity decreases should be related with changes in the
outermost layers. Additionally it was found by XPS that part of
the Si atoms in the antireflection AlSiOx layer were not completely
oxidized and the first annealing step was enough to oxidize these
Si atoms. This oxidation would be responsible for a small increase
of the transmittance in near infrared wavelength range (and a sub-
sequent decrease in absorption) which can lead to a small decrease
in the emissivity.

XRD diffractograms of annealed samples and as deposited sam-
ples are shown in Fig. 11. The XRD patterns of annealed samples A
(Fig. 11a) and B (Fig. 11b) show small changes when compared
with those measured in as-deposited state. The main changes
can be seen in the diffraction peaks located at 2h � 43.6�, 44.5�
and 50.7�, which are the peaks associated with SS substrate. A
small increase is registered in the intensity of (110) W peak, which
can be attributed to some degree of recrystallization in the poly-
crystalline W layer.

In order to assess any diffusion of metallic atoms towards the
surface, three multilayer coatings from same run (sample D) were
analyzed by XPS. One was in as deposited state, a second was
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annealed in air at 400 �C and the third was annealed in vacuum at
580 �C, both during 50 h. The antireflection layer, AlSiOx, has a
thickness of about 90 nm, which means the analysis was done
within this surface layer. Core level spectra corresponding to Al
2p, Si 2p, O 1s and W 4f are shown in Fig. 12 and peak data
extracted from this fit are presented in Table 3. The C 1s peak
(not shown) was used as a reference. Fig. 12a shows Al 2p XPS core
level spectra, and the results show that Al is present in oxidized
(�74.8 eV, �75.7 eV and �76.5 eV) states, which binding energies
correspond to Al2O3 and Al(OH)3 compounds (Li et al., 1997).
Fig. 12b shows Si 2p core level spectra. The as deposited sample
revealed a small peak located at �100 eV, which can be ascribed
to the Si+ oxidation state (Shioji et al., 2004), showing that about
4% of the Si atoms are not oxidized. This peak disappeared after
the thermal annealing, what can justify a small change in the opti-
cal properties of the coating. The remaining peaks, located at 102–
104 eV, can be addressed to Si3+ and Si4+ oxidation states or to oxi-
dized Si (Shioji et al., 2004). Oxidation was also reported in similar
coatings based on SiO2:W cermet layers (Wäckelgård et al., 2015),
where was measured a small increase of oxygen amount together
with a decrease of the H content in the surface layer.

The core level spectra corresponding to W 4f electrons are
shown in Fig. 12c. The as deposited sample and the one annealed
at 580 �C in vacuum did not show any peak, in opposition to what
happened with sample annealed in air at 400 �C. The peaks show
the presence of WO3 in the surface of the antireflection layer. This
represents only 0.4 at.% of this layer. More experiments would be
needed to clarify this point, because this behaviour cannot be
explained only by W diffusion. The diffusion is a temperature
dependent process, and at 580 �C would be more favourable as
compared to 400 �C. However, the justification for this behaviour
can be related not only with the annealing temperature but also
with the annealing atmosphere. Under vacuum it mainly occurs
outward diffusion processes, and SiAlOx is known as good barrier
diffusion layer. Under air we have additionally oxidation processes
due to oxygen inward diffusion, which can induce volume increase
and interface degradation. This can also be related with incomplete
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Table 3
Identification of core level binding energies of Al 2p, Si 2p, W4f and O 1s for as-deposited samples and annealed at 400 �C in air and at 580 �C in vacuum.

As-deposited 400 �C air 580 �C vacuum Oxidation state

BE (eV) Peak area (%) BE (eV) Peak area (%) BE (eV) Peak area (%)

Al 2p 74.7 23.2 74.8 41.0 74.8 37.3 Al3+

75.7 49.0 75.7 28.1 75.7 45.0 Al3+ Al2O3

76.6 27.7 76.5 23.8 76.5 17.7 Al3+ Al(OH)3
– – 78.7 7.1 – –

Si 2p 100.0 4.0 – – – – Si+

102.2 23.5 102.2 29.3 102.2 29.2 Si2+

103.2 45.8 103.2 41.9 103.2 53.9 Si3+

104.2 26.8 104.2 28.8 104.2 16.9 Si4+

W 4f 7/2 – – 36.0 60.7 – – W6+

– – 37.4 39.3 – – W6+

O 1s 531.2 23.7 531.2 27.5 531.2 24.9
532.5 54.5 532.4 51.2 532.4 57.6
533.6 21.9 533.7 21.3 533.6 17.5
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surface coverage by the oxide layer due the presence of some
scratches originated by the mechanical surface polishing prior to
deposition. The O 1s peaks, �531.2 and �532.5 eV, (shown in
Fig. 12d) can be addressed to C@O groups and CAOH and/or
CAOAC groups, respectively (Yue et al., 1999). The peak located
at �533.6 eV can be ascribed to SiO2.

Rutherford Backscattering was used to study the possible W dif-
fusion to sample surface with the annealing. Experimental RBS
spectrum of the sample annealed at 400 �C in air is displayed in
Fig. 13. RBS spectra were fitted with IBA DataFurnace (NDF) soft-
ware (Pascual-Izarra et al., 2006). In order to improve the depth
resolution, the spectrum was taken with the sample tilted 20�, as
shown in insert of Fig. 13, and with detected backscattered parti-
cles making 60� with the normal of sample surface. No significant
differences were seen with the other two samples, the as deposited
and the one annealed in vacuum. Since the outermost layer of the
multilayer is the AlSiOx layer, the backscattered signal from the W
in the first AlSiOx:W layer is shifted to lower energies, as shown in
Fig. 13. In this layer was not found any W content (within the error
of the measurement). The minimum amount that can be detected
in this geometry is 0.2 at.%, when the signal can be distinguished
from the pileup background. The W content of the AlSiOx:W(LA)
layer is 14.2 at.%, while for the AlSiOx:W(HA) layer is 19.9 at.%.

AFM was used for studying surface roughness of the same three
samples from same run, one in as deposited state, a second
annealed in air at 400 �C and the third annealed in vacuum at
580 �C. The surface roughness Ra was averaged from three
5 � 5 lm2 scans, and the AFM micrographs of the as-deposited
and annealed films are presented in Fig. 14. Some scratches can
be seen, which are due to the mechanical surface polishing prior
the deposition. The surface morphology indicates featureless grain
growth indicating no clear grain formation, which is in agreement
with the amorphous structure. With the annealing, a slight
increase of surface roughness was found, changing from Ra = 1.9 -
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Fig. 14. Surface roughness imaged by AFM (5 � 5 lm2) of: (a) as deposited coating; (b) after the annealing at 400 �C in air; (c) after the annealing at 580 �C in vacuum.
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nm for the as deposited state to 2.2 nm after the annealing in air,
and 2.5 nm after the annealing in vacuum. This variation is cer-
tainly associated with small spike formation, mainly on scratch
edges, and more evident after the annealing at 580 �C in vacuum.
This behaviour, associated with the oxidation of antireflection
layer, shown in Fig. 12, can be the origin of the small changes in
optical properties, and shown in Figs. 9 and 10.
4. Conclusions

Design and fabrication of a four-layer coating based on the
AlSiOx:W cermet layers for selective absorption of solar radiation
was performed. The X-ray diffractograms of AlSiOx:W layers indi-
cated that both, W and AlSiOx, are amorphous. The dielectric func-
tion and the thickness of the different layers deposited on glass
were calculated through the modelling of the experimental trans-
mittance and reflectance curves by a commercial optical simula-
tion program (SCOUT). The optical constants of the single layers
were then used to construct the four layer stack. The as deposited
optical stack, W/AlSiOx:W(HA)/AlSiOx:W(LA)/AlSiOx, revealed a
solar absorptance of 94–95.5% and emissivities of 8–9% (at
100 �C) and 10–14% (at 400 �C). XPS results showed that the high
metal volume fraction cermet layer, AlSiOx:W(HA), of samples A,
B and C have about one third of W atoms in the W0 oxidation state,
another third in the Wx+ oxidation state and the last third in the
W4+, W5+ and W6+ oxidation states. The samples were subjected
to a thermal annealing at 450 �C in air, and at 580 �C, in vacuum,
and the tandem structure showed very good thermal stability. A
small change in the reflectance profile was found after the first
annealing step, but no significant changes were found after the
additional steps.

It was found that the as deposited AlSiOx antireflection layer has
about 4% of the Si atoms in the Si+ oxidation state, which were oxi-
dized during the annealing steps. This can be one of the reasons for
a small change during the first annealing steps.

Samples annealed in air at 400 �C revealed the presence of W in
the surface of the antireflection layer, whereas the as-deposited
and annealed at 580 �C in vacuum samples did not. In a long term
and under air annealing, this behaviour would have impact on the
optical properties of the absorber. In order to avoid this, the absor-
bers are under vacuum, which improves its durability.
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