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ON Sp(2) AND Sp(2) · Sp(1)-STRUCTURES
IN 8-DIMENSIONAL VECTOR BUNDLES

Martin Čadek and Jiř́i Vanžura

Abstract
Let ξ be an oriented 8-dimensional vector bundle. We prove
that the structure group SO(8) of ξ can be reduced to Sp(2)
or Sp(2) · Sp(1) if and only if the vector bundle associated to ξ
via a certain outer automorphism of the group Spin(8) has 3 lin-
early independent sections or contains a 3-dimensional subbundle.
Necessary and sufficient conditions for the existence of an Sp(2)-
structure in ξ over a closed connected spin manifold of dimension 8
are also given in terms of characteristic classes.

1. Introduction. In the last years great attention has been devoted
to the study of hyper-Kähler and quaternion-Kähler manifolds of the di-
mension 4n. The structure group SO(4n) of the tangent bundles of
these manifolds can be reduced to Sp(n) and Sp(n) · Sp(1), respec-
tively. (See [Bes].) In the former case we will talk about an Sp(n)-
structure, in the latter case about almost quaternionic structure, which
is an Sp(n) · Sp(1)-structure in the tangent bundle. It is natural to
ask about necessary and sufficient conditions for the existence of these
structures in terms of characteristic classes. In dimension 4 the situa-
tion is easy since Sp(1) ∼= SU(2) and Sp(1) · Sp(1) ∼= SO(4). We will
show that in dimension 8 the existence of an Sp(2)-structure and an
Sp(2) · Sp(1)-structure can be reduced to the problems of existence of 3
linearly independent sections and a 3-dimensional subbundle in a certain
other vector bundle, respectively. These problems have been solved at
least partially.
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To prove the reduction theorems we explore the Cayley numbers, the
principle of triality and the triality automorphism of Spin(8). We use
the triality to describe the isomorhisms between Sp(2) and Spin(5), and
between Sp(2) · Sp(1) and Spin(5) · Spin(3). All this is carried out in
Section 2. The reduction theorems themselves are proved in Section 3.

Section 4 has auxiliary character and contains necessary information
on the cohomologies of classifying spaces and the triality automorphism
in cohomology.

In Section 5 the previous results together with the results of Crabb
and Steer ([CS]) and Dupont ([Du]) are applied to obtain necessary and
sufficient conditions for the existence of an Sp(2)-structure in oriented
8-dimensional vector bundles over closed connected spin manifolds
of the same dimension. At the end we mention also the existence of
Sp(1)-structures and some examples.

The case of almost quaternionic structure needs some more effort and
will be treated in the next paper ([CV2]).

2. The action of Sp(2) and Sp(2) · Sp(1) on the Cayley num-
bers. The letters Z, R, C, H and O will denote integers, real numbers,
complex numbers, quaternions and the Cayley numbers, respectively.

Sp(2) is the group of the quaternionic linear automorphisms acting
from the left on a right quaternionic 2-dimensional vector space preserv-
ing a positive definite Hermitian form on it. If we identify H with the
real 4-dimensional vector space R ⊕ iR ⊕ jR ⊕ kR, we get the inclusion
β : Sp(2) ↪→ SO(8). Let π : Spin(8) → SO(8) be the standard double
covering. Since Sp(2) is simply connected, there is a monomorphism
γ : Sp(2) → Spin(8) such that the diagram

Spin(8)

u
π

Sp(2)
N

N
NNPγ

w
β

SO(8)

commutes.
Sp(2) · Sp(1) is the group Sp(2) × Sp(1)/{(1, 1), (−1,−1)}. The fol-

lowing left action on a right quaternionic 2-dimensional space V

(A,α)v = Avᾱ

where A ∈ Sp(2), α ∈ Sp(1), v ∈ V and ᾱ is a quaternionic conjugate
to α, induces a homomorphism Sp(2) × Sp(1) → SO(8) with kernel
{(1, 1)(−1,−1)}, whence the inclusion ν : Sp(2) · Sp(1) → SO(8). The
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former homomorphism induces also a homomorhism µ : Sp(2)×Sp(1) →
Spin(8). The kernel of this homomorphism is again {(1, 1), (−1,−1)}.
Taking the curve (expπit ⊕ expπit, expπit) ∈ Sp(2)×Sp(1) for 0 ≤ t ≤ 1,
beginning at (1, 1) and ending at (−1,−1), its image is the loop in SO(8)
which is covered by a loop in Spin(8) beginning and ending at 1. That
is why there is an inclusion µ̂ : Sp(2) · Sp(1) → Spin(8) such that the
diagram

Sp(2) × Sp(1) w
µ

u

Spin(8)

u
π

Sp(2) · Sp(1)
A A A AACµ̂

wν SO(8)
commutes.

Now we convert the Cayley numbers into a right quaternionic vector
space. Although H is a subalgebra of O, the usual multiplication is
not a right action. We define a new multiplication denoted by the dot
· : O × H → O in the following way

x · 1 = x, x · i = xi, x · j = xj, x · k = (xi)j,

where x ∈ O and xy stands for the usual multiplication in O. This
multiplication converts O into a right H-vector space with the basis 1
and e. (The basis of O over R is 1, i, j, k, e, f, g, h, the usual multiplication
is given in the same way as in [Po].)

Since old and new multiplication by i and j from the right are the
same, it is easy to see that

Sp(2) = {A ∈ SO(8) : A(xi) = A(x)i, A(xj) = A(x)j for every x ∈ O}.
For the corresponding Lie algebras it reads as

(1) sp(2) = {a ∈ so(8) : a(xi) = a(x)i, a(xj) = a(x)j for every x ∈ O}.
According to [Fr] (see also [Bra]) there are outer automorphisms λ

and κ of so(8) such that the principle of triality holds. For every x, y ∈ O

and every a ∈ so(8) we have

a(xy) = b(x)y + xc(y)

where
b = (λκ)(a), c = (κλ)(a).

The automorphisms λ and κ are described in detail in [Fr] and [Bra].
For the moment we need only the following properties

λ3 = id, κ2 = id, κλκ = λ2, λ �= id .

Using them we get that (κλ)2 = id. So, for a, b, c in the principle of
triality we have a = (κλ)(c) and b = λ2(c). Let us note that κλ and λκ
are standard spin representations + and −.
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Lemma 2.1. The homomorphism κλ restricted to the Lie algebra

(2) so(5) = {c ∈ so(8) : c(1) = c(i) = c(j) = 0}

is an isomorphism between so(5) and sp(2).

Proof: Let c ∈ so(5), a = (κλ)(c), b = λ2(c). Using the principle of
triality and the characterization of so(5) we get

a(x) = a(x1) = b(x)1 + xc(1) = b(x).

Next

a(xi) = b(x)i + xc(i) = a(x)i
a(xj) = b(x)j + xc(j) = a(x)j.

So we have proved that a = (κλ)(c) ∈ sp(2) for every c ∈ so(5). Since
κλ is a monomorphism and dim sp(2) = dim so(5), we get that κλ is an
isomorhism between so(5) and sp(2).

We will denote corresponding homomorphisms of Lie groups and Lie
algebras by the same letters.

Lemma 2.2. Let υ : Spin(5) → Spin(8) be the canonical inclusion.
Then the diagram

Spin(5) wυ Spin(8)

Sp(2) w
γ

Ø Ø Ø ØØ�
β

u
κλ

Spin(8)

u
π

u
κλ

SO(8)

is commutative.

Proof: The homomorphism γ on the level of Lie algebras is the inclu-
sion given by (1). Hence the upper square commutes on the level of Lie
algebras according to the previous lemma since κλ is involution. So, it
commutes on the level of the corresponding simply connected Lie groups
as well. Finally, γ was chosen for the lower triangle to commute.

Consider so(3) as the following subalgebra of so(8) = so(O)

(3) so(3) = {c ∈ so(8) : c(k) = c(e) = c(f) = c(g) = c(h) = 0}.
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The intersection of this algebra with the algebra so(5) from Lemma 2.1
is zero. The direct sum of these algebras can be characterized in the
following way

(4) so(5) ⊕ so(3) = {c ∈ so(8) : c(1), c(i), c(j) ∈ R〈1, i, j〉}

where R〈1, i, j〉 is the real vector subspace of O generated by 1, i, j.
The Lie algebra sp(1) is the space of purely imaginary quaternions

with the bracket [α1, α2] = α1α2 − α2α1. Its left action on the Cayley
numbers equipped with a right multiplication · by quaternions defined
above is

(α, x) �−→ x · ᾱ
for α ∈ sp(1), x ∈ O. So, we can consider sp(1) as a subalgebra of so(8)
in the following way

(5) sp(1) = {a ∈ so(8) : there is α ∈ H, ᾱ = −α, a(x) = x · ᾱ}.

Lemma 2.3. The algebras sp(2) and sp(1) considered as subalgebras
of so(8) by (1) and (5) have trivial intersection.

Proof: Let a ∈ sp(2), α ∈ H, ᾱ = −α and for all x ∈ O

a(x) = x · ᾱ.

Then also

x · (iᾱ) = (x · i) · ᾱ = a(x · i) = a(x) · i = (x · ᾱ) · i = x · (ᾱi).

Hence iᾱ = ᾱi and similarly jᾱ = ᾱj and kᾱ = ᾱk, which implies
α = 0.

In what follows we consider so(5)⊕ so(3), sp(2) and sp(1) only as Lie
subalgebras of so(8) determined by (4), (1) and (5).

Lemma 2.4. The image of sp(2) ⊕ sp(1) under the isomorphism κλ
is so(5) ⊕ so(3).

Proof: In Lemma 2.1 we have already proved that κλ(sp(2)) = so(5).
Since κλ is an isomorphism and

dim(so(5) ⊕ so(3)) = dim(sp(2) ⊕ sp(1)),

it is sufficient to show that (κλ)(sp(1)) ⊂ so(5) ⊕ so(3). sp(1) as a Lie
algebra is generated by elements a1, a2, where

a1(x) = x · ī = −xi, a2(x) = x · j̄ = −xj
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for every x ∈ O. It suffices to prove that (κλ)(a1) and (κλ)(a2) are in
so(5) ⊕ so(3).

Let Rα, Lα be usual right and left multiplication by the Cayley number
α. Brada in [Bra] derived that

Rα(xy) = (−Rαx)y + x((Rα + Lα)y).

Comparing it with the principle of triality we get that

c1 = (κλ)(a1) = −(Ri + Li)
c2 = (κλ)(a1) = −(Rj + Lj).

Hence

c1(1) = −2i, c1(i) = 2, c1(j) = 0,
c2(1) = −2j, c1(i) = 0, c1(j) = 2,

which yields c1, c2 ∈ so(5) ⊕ so(3) and completes the proof.

Let θ : so(5) ⊕ so(3) ↪→ so(8) be the canonical inclusion given by (4).
Then the diagram

Spin(5) × Spin(3) wθ Spin(8)

Sp(2) × Sp(1) w
µ

u
κλ

Spin(8)

u
κλ

commutes since it commutes already on the level of Lie algebras accord-
ing to the previous lemma. Moreover, ker θ = {(1, 1), (−1,−1)} and
(κλ)(ker θ) = kerµ. Hence we can factor the homomorphisms θ, µ and
κλ to ϑ, µ̂ and κλ, respectively, and get

Lemma 2.5. The diagram

Spin(5) · Spin(3) wϑ Spin(8)

Sp(2) · Sp(1) w
µ̂

Ø Ø Ø ØØ�
ν

u

κλ

Spin(8)

u
π

u
κλ

SO(8)

commutes.

From Lemma 2.2 and 2.5 we obtain immediately the following conse-
quences.
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Lemma 2.6. The homogeneous space Spin(8)/Sp(2) determined by
the inclusion γ is diffeomorphic to the Stiefel manifold V8,3.

The homogeneous space Spin(8)/Sp(2) · Sp(1) determined by the in-
clusion µ̂ is diffeomorphic to the Grassmann manifold G8,3.

3. Equivalent conditions for the existence. It is well known that
for every topological group G there is a universal principal G-bundle
EG → BG. Using Milnor’s construction of the functor B (see [Mi]) we
can convert the commutative diagrams from Lemma 2.2 and 2.5 into
commutative diagrams of classifying spaces. The mappings between
classifying spaces corresponding to homomorphisms of groups will be
denoted again by the same letters.

Let X be a CW-complex. Applying the functor [X,−] we have

[X,BSpin(5)] w
υ∗ [X,BSpin(8)]

[X,BSp(2)] w
γ∗

Ø Ø Ø ØØ�
β∗

u
(κλ)∗

[X,BSpin(8)]

u
π∗

u
(κλ)∗

[X,BSO(8)]

and
[X,B(Spin(5) · Spin(3))] w

ϑ∗ [X,BSpin(8)]

[X,B(Sp(2) · Sp(1))] w
µ̂∗

Ø Ø Ø ØØ�
ν∗

u
(κλ)∗

[X,BSpin(8)]

u
π∗

u
(κλ)∗

[X,BSO(8)]

where (κλ)∗ and (κλ)∗ are bijections.
Classes of oriented 8-dimensional vector bundles over X are in one-

to-one correspondence with elements of [X,BSO(8)]. A vector bundle
ξ ∈ [X,BSO(8)] has an Sp(2)-structure iff it is in the image of β∗ and
it has an Sp(2) · Sp(1)-structure iff it is in the image of ν∗. A necessary
condition for the existence of any of these structures is the existence of
spin structure, i.e. ξ̄ ∈ [X,BSpin(8)], π∗ξ̄ = ξ.

So, let ξ have a spinor structure ξ̄. Then ξ is in the image of β∗ if and
only if (κλ)∗(ξ̄) is in the image of υ∗ which is equivalent to the fact that
the vector bundle π∗(κλ)∗ξ̄ has 3 linearly independent sections.
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Similarly, ξ is in the image of ν∗ if and only if (κλ)∗(ξ̄) is in the image
of ϑ∗, which is equivalent to the fact that the vector bundle π∗(κλ)∗(ξ̄)
has an oriented 3-dimensional subbundle.

Hence we have proved

Theorem 3.1. Let X be a CW-complex and let ξ be an oriented
8-dimensional vector bundle over X. Then ξ has an Sp(2)-structure if
and only if it has a spinor structure ξ̄ and the vector bundle π∗(κλ)∗(ξ̄)
has 3 linearly independent sections.

Theorem 3.2. Let X be a CW-complex and let ξ be an oriented
8-dimensional vector bundle over X. Then ξ has an Sp(2) · Sp(1)-
structure if and only if it has a spinor structure ξ̄ and the vector bundle
π∗(κλ)∗(ξ̄) has an oriented 3-dimensional subbundle.

4. Triality automorphism in cohomology. In this section we
summarize the facts on singular cohomology of BSpin(8) and κλ needed
for the computation of necessary and sufficient conditions for the exis-
tence of Sp(2)-structure in terms of characteristic classes.

We will use wm(ξ) for the m-th Stiefel-Whitney class of the vector
bundle ξ, pm(ξ) for the m-th Pontrjagin class, and e(ξ) for the Euler
class. For a complex vector bundle ξ the symbol cm(ξ) denotes the m-th
Chern class. The letters wm, pm, e and cm will stand for the character-
istic classes of the universal bundles over the classifying spaces BSO(8),
BSpin(8) and BU(4), respectively. The mapping ρm : H∗(X,Z) →
H∗(X,Zm) is induced from the reduction mod m.

We say that x ∈ H∗(X; Z) is an element of order m (m = 2, 3, 4, . . . )
if and only if x �= 0 and m is the least positive integer such that mx = 0
(if it exists).

The description of cohomologies of BSpin(8) comes from [Qu] and
[CV1].

Lemma 4.1. The cohomology rings of BSpin(8) are

H∗(BSpin(8); Z2) ∼= Z2[w4, w6, w7, w8, ε]

and
H∗(BSpin(8); Z) ∼= Z[q1, q2, e, δw6]/〈2δw6〉

where q1, q2 and ε are defined by the relations

p1 = 2q1, p2 = q2
1 + 2e + 4q2, ρ2q2 = ε.
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Moreover,
ρ2q1 = w4, ρ2e = w8.

Let ξ be an oriented 8-dimensional vector bundle over a CW-complex
X given by the homotopy class of some mapping ξ : X → BSO(8). ξ
has a spinor structure iff w2(ξ) = 0. If some lifting ξ̄ : X → BSpin(8) is
fixed we can define spin characteristic classes

q1(ξ) = ξ̄∗q1, q2(ξ) = ξ̄∗q2.

The first spin characteristic class is always independent of the choice
of ξ̄. Moreover, if H4(X; Z) has no element of order 4, then it is uniquely
determined by the relations

2q1(ξ) = p1(ξ), ρ2q1(ξ) = w4(ξ).

The second spin characteristic class is independent of the spinor struc-
ture ξ̄ if X is simply connected or H8(X; Z) ∼= Z. In the case of an
8-dimensional manifold q2(ξ) is uniquely determined by the relation

16q2(ξ) = 4p2(ξ) − p2
1(ξ) − 8e(ξ).

See [CV1].

Lemma 4.2. For κ : BSpin(8) → BSpin(8) and λ : BSpin(8) →
BSpin(8) we have

κ∗(q1) = q1

κ∗(q2) = q2 + e

κ∗(e) = −e

λ∗(q1) = q1

λ∗(q2) = −e− q2

λ∗(e) = q2.

Proof: Lemma is an analoque of Theorem 2.1 from [GG]. Unfortu-
nately, there is a mistake there caused by a bad sign in the formula for
the Euler class in the proof. (However, this mistake does not influence
the other results in [GG].) So, we outline the proof once more.

First, we need more information on λ and κ. Put e0 = 1, e1 = i,
e2 = j, e3 = k, e4 = e, e5 = f , e6 = g, e7 = h in O, and define

gstev = δtves − δsvet.

Consider the Cartan subalgebra of so(8) generated by g10, g23, g45 and
g76. This basis obviously satisfies the orientation requirements of [BH]
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(see §9.3, p. 486). Let x1, x2, x3, x4 be the dual basis to g10, g23, g45 and
g76. Then ρ1 = −x3 − x4, ρ2 = x4 − x2, ρ3 = x2 − x1, ρ4 = x1 + x2 are
simple roots of so(8). Another root is also ρ0 = x4 − x3. According to
[Fr] and [Bra] the adjoints to λ and κ acts on these roots in the following
way:

λ∗(ρ1) = ρ3, λ∗(ρ3) = ρ4, λ∗(ρ4) = ρ1, λ∗(ρ2) = ρ2, λ∗(ρ0) = ρ0

κ∗(ρ1) = ρ1, κ∗(ρ3) = ρ4, κ∗(ρ4) = ρ3, κ∗(ρ2) = ρ2, κ∗(ρ0) = ρ0.

According to [BH] we can regard p1, p2 and e as polynomials in
coordinates x1, x2, x3, x4 of the maximal torus with the Lie algebra
R〈g10, g23, g45, g76〉.

2p1 =2(x2
1 + x2

2 + x2
3 + x2

4) = ρ2
0 + ρ2

1 + ρ2
3 + ρ2

4,

16e =16x1x2x3x4 = ρ2
0ρ

2
3 + ρ2

1ρ
2
4 − ρ2

0ρ
2
4 − ρ2

1ρ
2
3,

16p2 =16


 4∑

s �=t=1

x2
sx

2
t


 = ρ4

0 + ρ4
1 + ρ4

3 + ρ4
4 − 2ρ2

0ρ
2
1 − 2ρ2

3ρ
2
4

+ 4ρ2
0ρ

2
3 + 4ρ2

1ρ
2
4 + 4ρ2

0ρ
2
4 + 4ρ2

1ρ
2
3.

Using definitions from Lemma 4.1 we get

16q2 = −ρ2
0ρ

2
1 − ρ2

3ρ
2
4 + ρ2

0ρ
2
4 + ρ2

1ρ
2
3.

Hence the application of λ∗ and κ∗ yields the needed formulas.

5. Existence of Sp(2)-structure. Here we prove our main results
on the existence of Sp(2)-structure in 8-dimensional vector bundles using
Theorem 3.1, Lemma 4.2 and the results of Crabb and Steer [CS] and
Dupont [Du]. First, we describe their results shortly.

The well known Signature Theorem says that the signature of closed
smooth oriented manifold M of dimension m ≡ 0 mod 4, is equal to
the L-genus of this manifold which is a Pontrjagin number. In [CS],
Crabb and Steer took this identity as the definition of the signature of
a tangent bundle and generalized it to arbitrary oriented m-dimensional
vector bundle ξ over M . They put

σ(ξ) = {2m/2Â(M)B̂(ξ)}[M ]

where Â(M) is the Hirzebruch class given by
∏m/2

s=1
1
2ys(sinh 1

2ys)−1, B̂

is given by
∏m/2

s=1 cosh 1
2ys and the Pontrjagin classes are the elementary

symmetric polynomials in the squares y2
s .

The signature defined in this way plays the role of an obstruction when
we deal with the existence of 2 or 3 linearly independent sections of ξ as
well as in the case of tangent bundles.
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Proposition 5.1 ([CS, Theorem 4.10]). Let ξ be an oriented
m-dimensional vector bundle over a closed connected smooth manifold
M of the same dimension m ≡ 0 mod 4 and let w2(ξ) = w2(M). If ξ
has three linearly independent sections with finite singularities, then the
obstructions to existence of three linearly independent sections over the
whole manifold are

(a) e(ξ) = 0
(b) σ(ξ) ≡ 0 mod 8.

Moreover, these sections can be chosen in such a way that they coincide
with the original sections over the (m− 2)-skeleton of M .

Proposition 5.2 (See [Du, Theorem 1.1)]. Let ξ be an oriented
m-dimensional vector bundle over a closed connected smooth manifold
M of the same dimension m ≡ 0 mod 4, and let w2(ξ) = w2(M). If ξ
has three linearly independent sections over the (m − 2)-skeleton of M
then the obstruction to deforming them (relative to the (m− 3)-skeleton
of M) into a set which has an extension over the (m− 1)-skeleton of M
is zero.

Proof: Proceeds in the same way as the proof of Theorem 1.1 in [Du]
which asserts the same for the tangent bundle of M . See also the remark
at the end of [Du]. The only thing we have to change is the Thom
isomorphism for Real K-theory (see [Du])

ΦN : KRj(iTM) → KRj(iTM ⊕ iN ⊕N) = KRj+m+l(N),

where iTM , iN and N stand for the tangent bundle of M with antipodal
involution, the normal bundle with antipodal involution and the normal
bundle with trivial involution, respectively, and l is such an integer that
M can be embedded in R

m+l with normal bundle N .
We replace this isomorphism in the following way. Since M is com-

pact there is a vector bundle ξ′ such that ξ ⊕ ξ′ is (m + l)-dimensional
trivial vector bundle and M can be embedded in R

m+l. Since w2(ξ) =
w2(TM) = w2(N), we get w2(ξ′ ⊕ N) = 0 and the vector bundle
iξ ⊕ N is a Spinc(2l)-bundle over M with the antipodal involution on
the first summand and the trivial involution on the second one. Denote
π : ξ → M the projection. Hence

π∗(iξ′ ⊕N) = iξ ⊕ iξ′ ⊕N = iRm+l ⊕N

is a Spinc(2l)-vector bundle with involution over the Real space iξ. Using
the Thom isomorphism in this case we get the isomorphism

KRj(iξ) → KRj(iξ ⊕ iξ′ ⊕N) = KRj+m+l(N)



394 M. Čadek, J. Vanžura

and we can define an index map in the same way as in [Du].

Now it is only a matter of computation to show that for m = 8

σ(ξ) =
1

45 · 8{7p
2
1(M)−4p2(M)+15p2

1(ξ)+60p2(ξ)−30p1(M)p1(ξ)}[M ].

If M is a spin manifold and ξ a trivial vector bundle, then application
of Proposition 5.1 leads to

1
45 · 8{7p

2
1(M) − 4p2(M)}[M ] ≡ 0 mod 8.

That is why for every oriented 8-dimensional vector bundle ξ over a
closed connected smooth spin 8-manifold M with e(ξ) = 0

σ(ξ) ≡ 1
45 · 8{15p2

1(ξ) + 60p2(ξ) − 30p1(M)p1(ξ)}[M ] ≡

≡ 1
3
{q2

1(ξ) − q1(M)q1(ξ) + 2q2(ξ)}[M ] mod 8.

Hence we get

Corollary 5.3. Let ξ be an oriented 8-dimensional vector bundle over
a closed connected smooth spin manifold M of the same dimension with
w2(ξ) = 0. Then ξ has three linearly independent sections if and only if

(1) w6(ξ) = 0
(2) e(ξ) = 0
(3) {q1(M)q1(ξ) − q2

1(ξ) − 2q2(ξ)}[M ] ≡ 0 mod 8.

Proof: The condition w6(ξ) = 0 ensures the existence of three linearly
independent sections of ξ over a 6-skeleton of M . The application of
Proposition 5.2 and 5.1 together with previous computations completes
the proof.

Now we are in a position to state and prove our main result.

Theorem 5.4. Let ξ be an oriented 8-dimensional vector bundle over
a closed connected smooth spin manifold M of the same dimension. Then
ξ has an Sp(2)-structure if and only if w2(ξ) = 0 and

(1) w6(ξ) = 0
(2) {4p2(ξ) − p2

1(ξ) − 8e(ξ)}[M ] = 0
(3) {p1(M)p1(ξ) − p2

1(ξ) + 8e(ξ)}[M ] ≡ 0 mod 32.
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Proof: According to Theorem 3.1 a vector bundle ξ has Sp(2)-struc-
ture if and only if it has a spinor structure ξ̄ and the vector bun-
dle ζ = π∗(κλ)∗(ξ̄) has three linearly independent sections. To apply
Corollary 5.3 to ζ we need to compute its characteristic classes. Using
Lemma 4.2 we get

q1(ζ) = ξ̄∗(κλ)∗(q1) = ξ̄∗(λ∗(κ∗(q1))) = q1(ξ),

w6(ζ) = Sq2ρ2q1(ζ) = Sq2ρ2q1(ξ) = w6(ξ),

e(ζ) = ξ̄∗(κλ)∗(e) = ξ̄∗(λ∗(κ∗(e))) = −q2(ξ),

q2(ζ) = ξ̄∗(κλ)∗(q2) = ξ̄∗(λ∗(κ∗(q2))) = −e(ξ).

Hence using the definition of q1 and q2 in Lemma 4.1, the conditions
(1)-(3) of Corollary 5.3 for ζ read as conditions (1)-(3) of this Theorem
for ξ.

As an immediate consequence we get

Corollary 5.5. A closed connected smooth manifold M of dimension
8 has an Sp(2)-structure if and only if

(i) w2(M) = w6(M) = 0
(ii) {4p2(M) − p2

1(M) − 8e(M)}[M ] = 0
(iii) e(M)[M ] ≡ 0 mod 4.

Corollary 5.6. Let ξ be a complex vector bundle of complex dimen-
sion 4 over a closed connected complex spin manifold M of the same
dimension. Then ξ has Sp(2)-structure with given underlying complex
structure if and only if

(i) c1(ξ) = c3(ξ) = 0
(ii) {2c2(M)c2(ξ) − 2c22(ξ) − c21(M)c2(ξ) + 4c4(ξ)}[M ] ≡ 0 mod 16.

Proof: If a given complex vector bundle ξ has an Sp(2)-structure, then
c1(ξ) = 0 and c3(ξ) = 0 because H∗(BSp(2); Z) = Z[r1, r2] where r1 ∈
H4(BSp(2); Z) and r2 ∈ H8(BSp(2); Z). Since c1(ξ) = 0 there is an
SU(4)-structure on ξ and there is also an underlying Spin(8)-structure
on ξ with q1(ξ) = −c2(ξ) and p2(ξ) = c22(ξ) + 2c4(ξ). This Spin(8)-
structure can be reduced to Sp(2)-structure, which implies (ii) according
to Theorem 5.4.

Let ξ be a complex vector bundle satisfying (i) and (ii). Similarly as
in Section 2 we can show that the diagram

Spin(5) wSpin(6) wSpin(8)

Sp(2) w

u
κλ

SU(4) w

u
κλ

Spin(8)

u
κλ
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where the horizontal arrows are inclusions and the vertical arrows
are isomorphisms, is commutative. Hence the couple (SU(4)/Sp(2),
Spin(8)/Sp(2)) is homeomorphic to (S5 = Spin(6)/Spin(5), V8,3 =
Spin(8)/Spin(5)).

Let us consider the Postnikov resolutions for the fibrations BSp(2) →
BSU(4) and BSp(2) → BSpin(8). It can be shown that there are map-
pings between corresponding stages of the resolutions such that the fol-
lowing diagram commutes:

BSp(2)

u

BSp(2)

u
E2 w

p2

u

E′
2

u
E1 w

p1

u

E′
1

u
BSU(4) w

p
BSpin(8)

For k-invariants c3∈H6(BSU(4);Z), k1∈H7(E1;Z2), w6∈H6(BSpin(8);Z2)
and k′

1 ∈ H7(E′
1; Z2) we get

p∗w6 = ρ2c3, p∗1k
′
1 = k1.

The complex vector bundle ξ is represented by a mapping ξ : M →
BSU(4). Conditions (i) and (ii) ensure that (1), (2) and (3) of Theo-
rem 5.4 are satisfied. Hence the mapping p ◦ ξ : M → BSpin(8) can
be lifted into BSp(2). We want to show that also ξ can be lifted into
BSp(2).

The condition c3(ξ) = 0 ensures that it can be lifted into f1 : M → E1.
Further, ξ can be lifted into f2 : M → E2 iff

0 ∈ f∗
1 k1 + Indet(k1,M) = f∗

1 k1 + Sq2ρ2H
5(M ; Z).

Since w1(M) = w2(M) = 0, for every x ∈ H1(M ; Z2) and every y ∈
H5(M ; Z2) we get

x · Sq2y = Sq2(xy) + Sq2x · y + Sq1(x2) · y = w2(M)xy + x2Sq1y

= Sq1(x2y) + Sq1(x2) · y = w1(M)x2y = 0.
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Hence Sq2ρ2H
5(M ; Z) = Sq2H5(M ; Z2) = 0. Consequently, we know

that

f∗
1 k1 + Sq2ρ2H

5(M ; Z) = (p1f1)∗k′
1 + Sq2H5(M ; Z2)

= (p1f1)∗k′
1 + Indet(k′

1,M).

The last expression is the obstruction for lifting p ◦ ξ into E2 which is
equal to zero.

Denote f2 : M → E2 the mapping which lifts ξ. Since BSp(2) → E2

is 7-equivalence, the restriction of f2 to 7-skeleton M7 can be lifted
into BSp(2). So we have Sp(2)-structure on ξ over M7 the underlying
complex structure of which coincides with the given complex structure
on ξ. Taking into account the first commutative diagram of this proof
the SU(4)-structure of ξ corresponds to a Spin(6)-structure of (κλ)∗ξ.
It means

(κλ)∗ξ = η ⊕ 2ε

where ε is 1-dimensional trivial vector bundle over M and a 6-dimensional
vector bundle η has a nonzero section s over M7. Since ξ as a Spin(8)-
bundle has a Sp(2)-structure, the vector bundle (κλ)∗ξ has three linearly
independent sections over M and we would like to show that η has a
nonzero section over the whole M which is equivalent to the existence of
the reduction of SU(4)-structure in ξ to Sp(2)-structure.

The bundle 2ε and the section s determine 3 linearly independent
sections of (κλ)∗ξ with finite singularities. According to Proposition 5.1,
the Steenrod obstruction of these 3 sections c(s, 2ε) ∈ H8(M ;π7(V8,3))
does not depend on the choice of sections and hence it is zero. Moreover,
the Steenrod obstruction c(s) ∈ H8(M ;π7(V6,1)) for the section s in η
maps into c(s, 2ε). The mapping

i∗ : H8(M ;π7(V6,1)) → H8(M ;π7(V8,3))

given by the inclusion i : V6,1 ↪→ V8,3 is a monomorhism. (Here we use
the fact that Sq1H7(M ; Z2) = w1(M)H7(M ; Z2) = 0.) So c(s) = 0 and
η has a nonzero section over M .

Remark 5.7. It is known ([Hi, p. 124]) that for a closed connected
complex manifold M of real dimension 8

{2c4(M) + c3(M)c1(M)}[M ] ≡ 0 mod 12.
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Hence the existence of Sp(2)-structure on this manifold implies

e(M)[M ] ≡ 0 mod 12

according to Corollary 5.5 (iii).

Remark 5.8. Existence of Sp(1)-structure. It is well known that
Sp(1) ∼= SU(2). Using the Postnikov tower for the fibration BSU(2) →
BSO(4) it can be easily proved that the structure group of an oriented
4-dimensional vector bundle ξ over a CW-complex X of the same dimen-
sion can be reduced to Sp(1) ∼= SU(2) if and only if

w2(ξ) = 0 and p1(ξ) + 2e(ξ) = 0.

Consider a simply connected closed smooth 4-manifold M . According
to the remark after Rochlin’s Theorem in [FU], the condition w2(M) =
0 is equivalent to the fact that the intersection form ω of M is even.
Rochlin’s Theorem ([FU, Theorem 1.2]) asserts that its signature σ(ω)
is divisible by 16 and Donaldson’s Theorem ([FU, Theorem 1.3]) says
that ω is indefinite. Using the classification of indefinite forms over Z we
get

(∗) ω = −2nE8 ⊕m

[
0 1
1 0

]

where m ∈ N, n ∈ Z, E8 being described in [FU], rank E8 = 8, σ(E8) =
8. Then the signature of M is σ(M) = −16n and the Euler characteristic
is 16n + 2m + 2. Moreover, the Signature Theorem yields

p1(M)[M ] = 3σ(M).

Hence the tangent bundle of M has Sp(1) ∼= SU(2)-structure if and only
if it has the intersection form (∗) and

{p1(M) + 2e(M)}[M ] = 4m− 16n + 4 = 0,

which means
m = 4n− 1, n ≥ 1.

Example 5.9. Let n ≥ 1 and M(n) be a simply connected closed
smooth 4-manifold with the intersection form (∗) where m = 4n − 1.
Then the tangent bundles of the manifolds M(n1) × M(n2) have an
Sp(1) × Sp(1)-structure and that is why also an Sp(2)-structure.
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Example 5.10. The manifolds S2 × S6 and S8 do not carry an
Sp(2)-structure since

4p2(M) − p2
1(M) − 8e(M) = −8e(M) �= 0.

The tangent bundle to the manifold S3 × S5 admits an Sp(2)-structure
since all the characteristic classes are zero. (In fact, it is trivial.)

Example 5.11. Quaternionic projective space HP 2 does not carry an
Sp(2)-structure. (It has not even almost complex structure, which was
proved in [Hi]). Borel and Hirzebruch ([BH]) computed

p1(HP 2) = 2u, p2(HP 2) = 7u2, e(HP 2) = 3u2

where u ∈ H4(HP 2; Z) and H∗(HP 2; Z) = Z[u]/〈u3〉. So (iii) of Corol-
lary 5.5 is not satisfied.

Example 5.12. Complex Grassmann manifold G4,2(C) does not ad-
mit an Sp(2)-structure. From [BH] we know that

H∗(G4,2(C); Z) = Z[u, v]/〈u3 − 2uv, v2 − u2v〉

where u ∈ H2(G4,2(C); Z) and v ∈ H4(G4,2(C); Z) and

c1(G4,2(C)) = −4u c2(G4,2(C)) = 7u2

c3(G4,2(C); Z) = −12uv c4(G4,2(C)) = 6u2v.

But the condition (ii) of Corollary 5.6 is not satisfied.

Example 5.13. In [Bea] and [Bes] there are two examples of closed
simply connected hyper-Kähler manifolds of dimension 8. They are ob-
tained by special constructions applied to the Kummer surface K3 and
the complex torus. Using Remark 5.7 we can conclude that their Euler
characteristics are divisible by 12.

Example 5.14. Complex 4-dimensional projective surfaces

Vd = {(z0, z1, . . . , z5) ∈ CP 5; zd
0 + zd

1 + · · · + zd
5 = 0}

considered as closed oriented smooth manifold of real dimension 8 do not
carry an Sp(2)-structure. The equation

{4p2(Vd) − p2
1(Vd) − 8e(Vd)}[Vd] = d(d− 2)(d− 6)(−5d2 + 8d− 8) = 0
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has in positive integers the only solutions d = 2 and d = 6. But for both
these d

e(Vd)[Vd] ≡ 2 mod 4.

Acknowledgement. The authors are grateful to the referee for the
helpful comments which have improved this work.
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