

Biosecurity measures in meat and milk value chains: A study in Bura sub-county, Kenya

Simon Nyokabi, Regina Birner, Johanna Lindahl and Bernard Bett

5th Leverhulme Centre for Integrative Research on Agriculture and Health (LCIRAH) Annual Research Conference

> London School of Hygiene and Tropical Medicine, London, UK 3-4 June 2015

Why worry about zoonoses?

- New emerging and re-emerging diseases
- Hinders achievement of Millennium Development Goals
- Threat of bio-terrorism
- Globalization of value chains
- > Threaten livelihood of majority in LDCs
- Social and economic costs are very high

(Abushama 2013; Akinwumi et al. 2009; Battelli 2008; Childs et al. 1998; Daszak et al. 2004; Magnusson 2009; McDermott & Grace 2011)

Recent diseases and associated cost

Period	Disease	County	Estimate (USA dollars)
1986-2009	Bovine spongiform Encephalopathy	United kingdom	15.5 billion
1994	Plague	India	2 billion
Sept 1998-April 1999	Nipah virus	Malaysia	671 million
Jan 1999-Dec 2008	West Nile virus	USA	400 million
Nov 2002-July 2003	Severe acute respiratory syndrome (SARS)	Asia	41.5 billion
2003-2007	Bovine spongiform Encephalopathy	USA	11 billion
Jan 2004 –Jan 2009	Highly pathogenic avian influenza	Asia	20 billion
Oct 2005-Jan 2009	Highly pathogenic avian influenza	Europe	500 million
November 2005- January 2009	Highly pathogenic avian influenza	Africa	
November 2006-May 2007	Rift valley fever	Tanzania, Kenya, Somalia	30 million

Costs of disease outbreaks (US\$ billion)

	Period	Costs (conservative estimates)	Annual average
Historical zoonoses	1998-2009	\$80.2 billion total	\$6.7 billion
Severe pandemic	Once a century	\$3 trillion	\$30 billion

Source: World Bank 2012

Cost of prevention: \$3.4 billion/year

Why focus on informal value chains?

> Majority of the world's poor rely on informal value chains

- ✓ Accessible
- ✓ Affordable
- ✓ Employment
- Social arena for many people (information exchange)
- Informal markets <u>have existed</u> and <u>will exist</u> for a long time
- Local and cultural foods
- Difficult to regulate

Challenges in informal value chains

- Low knowledge of diseases, transmission and risks
- Diseases are endemic and often neglected
- Changing climate (unpredictable weather / seasons)
- New agricultural systems (e.g. irrigation schemes)
- Weak regulatory institutions
- Governance challenges like corruption
- Lack of market structures
- Low adoption of hygienic measures

Why adopt biosecurity measures?

Prevention is better than cure!

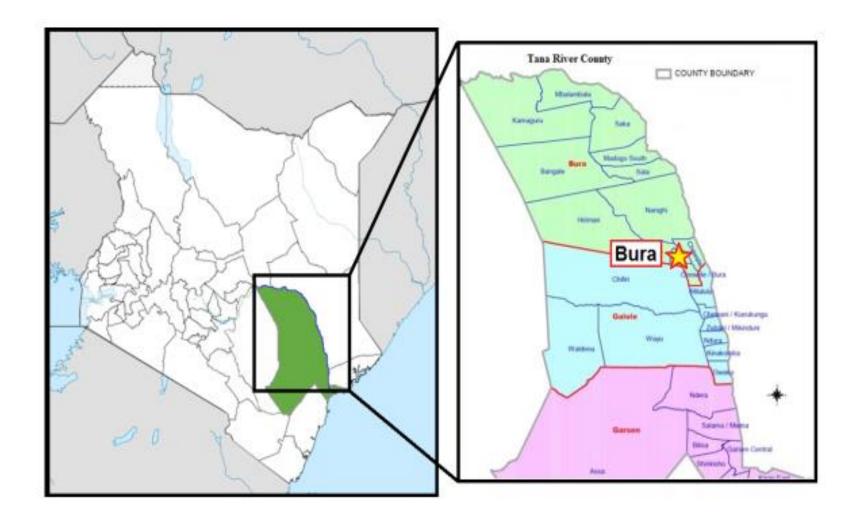
"Biosecurity is the implementation of measures that reduce the risk of the introduction and spread of disease agents."

(FAO, 2008)

- Involves isolation, quarantine, surveillance and prevention of disease transmission.

Biosecurity measures

Pro-active disease surveillance and management


- Economical to implement
- Influenced by policy incentives
- Reduce disease prevalence from farm to fork
- Facilitate access to new markets
- Reduce zoonoses burden on poor households
- Help achieve MDGs in LDCs

Case study: Bura sub-county, Kenya

Bura Tana river county

Research objectives

- To explore value chain actors' knowledge and understanding of zoonotic risks.
- To assess knowledge and perception of the significance of these identified zoonotic risks.
- To assess value chain actors' incorporation of biosecurity measures in their activities and workplaces.
- To identify the factors influencing adoption of biosecurity measures among different value chain actors.

Methodology

- Mixed method approach
- In-depth Interviews with actors
- Informal discussions
- Participatory mapping of value chains and risk assessment
- Observations
- Knowledge Attitude Practices survey (Questionnaire)

Results: Composition of Sample

		Traders	Butchers	Transporters	Slaughter house workers	Milk vendors
Sample size		43	9	35	10	57
Condon (0()	Male	95.3	88.9	97.1	100	7
Gender (%)	Female	4.7	1	1	-	93
Mean age		42.86	38.56	32.17	38.20	32.11

Results: Level of training among actors

	Traders (%)	Butchers (%)	Transporter (%)	Slaughter house workers (%)	Milk vendors (%)
Formal	2.3	-	-	10	1.8
On job training	16.3	44.44	28.6	70	7.0
No training	81.4	55.6	71.4	20	91.2

Results: Level of knowledge

	Traders n=43 (%)	Butchers n=9 (%)	Transporters n=35 (%)	Slaughterhouse workers n=10 (%)	Milk vendors n=57 (%)
Heard zoonoses	72.1	77.8	65.7	90	47.4
Know biosecurity measures	55.8	44.4	48.6	90	36.8
Biosecurity important	58.1	44.4	48.6	90	36.8
Can get infected from livestock or products	72.1	66.7	60.0	90	36.8

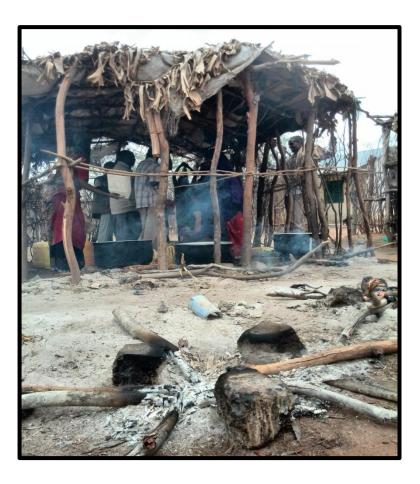
Results: Level of personal biosecurity

	Trader n=57 (%)	Butchers n=9 (%)	Milk vendors n=57 (%)	Slaughterhouse workers n=10 (%)	Transporters n=35 (%)
Use protective gear (PPE)	9.3	88.9	3.5	90	25.7
Medical exams	14	100	17.5	90	28.6

Results: Non-use of PPE

Results: Food biosecurity

Milk Test carried out	Percentage (n=57)	
Clot on boiling	12.3	
Colour	17.54	
Tasting (taking a sip)	77.19	
Butter content	10.53	
Clot on boiling	19.3	


Method of milk storage	Percent (n=57)
Kept boiled	73.68
In closed container	59.65
In open container	3.5

- No microbial test
- Risky milk test
- Unhygienic handling
- Dirty containers
- Unhygienic packaging
- Dirty processing places

Results: Food biosecurity

Poor handling of milk containers and unhygienic milk bulking places

Results: Animal health biosecurity

- No isolation grounds
- Movement certificate not enforced sometimes
- No inspection observed

Traders biosecurity practices				
Traders n=43	Percent (%)			
Are sprayed	86.0			
Are inspected	53.5			
Are isolated	55.8			
Are quarantined	39.5			
Report dead	34.9			

Environmental biosecurity

- Low uptake of latrines
- > Open dumping of wastes
- Lack of sewerage facilities

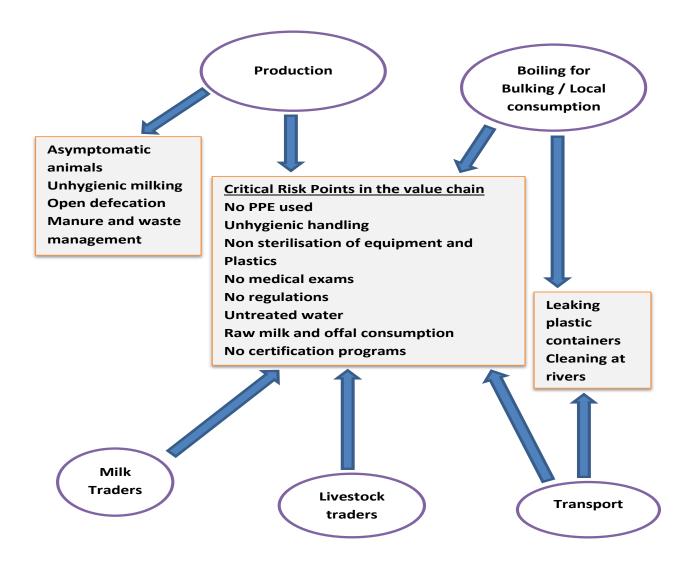
What traders do when an animal dies				
Traders n=43	Percentage (%)			
Burn	25.6			
Bury	16.3			
Report to vet	2.3			
Slaughter	9.3			
Dispose of	46.5			

Slaughterhouse visits

Mixing intestines and carcass

Dirty water and intestine cleaning containers

Slaughterhouse visits



Slaughtering on the ground and non-use of PPE

Qualitative risk analysis

What can we do about the future????

Matrix of Biosecurity:

Costs

VS.

Ease of Implementation

	Ease of Implementation						
	Easy - Expensive	Somehow Easy - Expensive	Difficult – Expensive				
		Vaccinations	Sewer systems				
	Testing for diseases	Cooling facilities	Testing labs				
	Testing for diseases	Pasteurization	Good infrastructure				
	Isolation of animals	Sterilization of milk (in bottle)	Good governance and				
	Quarantine facilities	UHT (ultra-high-temperature) treatment	Laws and policies				
	Public education	institutional capacity	Competent body of inspectors (veterinarians, meat inspectors)				
с		Certification	Testing and culling				
0	Easy - Medium Cost	Somehow Easy – Medium Cost	Difficult - Medium Cost				
s t	Protective clothing	Toilets	New food laws				
Ľ	Meat inspection	Public education	Testing equipment				
	Refrigeration	Food testing	Animals tracing				
		Aluminium milk containers					
	Easy - Cheap	Somehow Easy - Cheap	Difficult – Cheap				
	Washing hands	Medical check ups					
	Disinfection						
	Water treatment	Licencing	Manure disposals				
	Sanitation use	Ante mortem inspection	Low cost packaging				
	Premises inspections	post-mortem examination					

Looking ahead to the future.....

- More multidisciplinary research approach
- Environmental conservation
- Traceability of animal and animal source products
- Compensation schemes when culling
- > Better regional and international policies
- Proactive disease surveillance and research
- Adaptation and climate change mitigation
- > One health approach and resource sharing

(Abushama 2013; Akinwumi et al. 2009; Battelli 2008; Childs et al. 1998; Daszak et al. 2004; John McDermott and Delia Grace 2011; Magnusson 2009)

The benefits and costs of sharing biosecurity resources in zoonoses control

	Annual benefit	Annual cost	Confidence in investment
Sharing resources	4 billion	1 billion	++
Controllable zoonoses	85 billion	21 billion	+++
Timely response	6 billion		++
Averting pandemics	30 billion	3.4 billion	+
Generating insights	?	?	+++
Bottom line	125 billion	25 billion	+++

Thank you for your attention

UNIVERSITÄT HOHENHEIM

References

- Abushama, Hind Mohamed. 2013. "Zoonoses, Neglected Community and Poverty (The Connected Scenario)." Air & Water Borne Diseases 02(01):1–2. Retrieved December 8, 2013 (http://www.omicsgroup.org/journals/zoonoses-neglected-community-and-poverty-the-connected-scenario-2167-7719.1000106.php?aid=15415).
- Agriterra. 2012. Scanning of the Livestock Sector for the Identification of Investment Opportunities in Uganda-Embassy of the Kingdom of the Netherlands in Uganda :Draft Report May 2012.
- Akinwumi, James, Iheanacho Okike, Bernard Bett, Thomas Fitz Randolph, and and Karl M. Rich. 2009. "Controlling Avian Flu and Protecting People' S Livelihoods in Africa and Indonesia Analyses of the Poultry Value Chain and Its Linkages and Interactions with HPAI Risk Factors in Nigeria." (16).
- Battelli, Giorgio. 2008. "Zoonoses as Occupational Diseases." *Veterinaria italiana* 44(4):601–9. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/20411487).
- Bett, Bernard, Rosemary Sang, Salome Bukachi, Salome Wanyoike, and Ian Njeru. 2013. Nternational Livestock Research Institute Workshop Report Development of a Protocol for the Rift Valley Fever Case Study, Dynamic Drivers of Disease in Africa: Ecosystems, Livestock/wildlife, Health and Wellbeing Project.
- Childs, J. et al. 1998. "Emerging Zoonoses." *Emerging infectious diseases* 4(3):453–54. Retrieved (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2640307&tool=pmcentrez&rendertype=abstract).
- Daszak, Peter, Gary M. Tabor, A. Marm Kilpatrick, J. O. N. Epstein, and Raina Plowright. 2004. "Conservation Medicine and a New Agenda for Emerging Diseases." 11:1–11.
- FAO. 2008. Biosecurity for Highly Pathogenic Avian Influenza-Issues and Options.
- Grace, Delia. 2014. "The Business Case for One Health." In Proceedings of the 2nd One Health Conference in Africa. Jointly Organised by the Southern African Centre for Infectious Disease Surveillance and the Tanzania National Institute for Medical Research, Held at the Snow Crest Hotel in Arusha, Tanzania from 16, 1–6. doi:10.4102/ojvr.v81i2.725. http://www.sacids.org/kms/frontend/ index.php?m=119.

UNIVERSITÄT HOHENHEIM

References

- Grace Delia. 2012. "Agriculture for Development The Deadly Gifts of Livestock Zoonoses." *Tropical Agriculture Association*, 14.
- Grace, Delia. 2012. "Zoonoses : The Lethal Gifts of Livestock." in *ILRI Livestock Live Seminar international Livestock Research Institute* 31 October 2012.
- Grace, Delia et al. 2014. "Disease, Social, Environmental and Economic Values." in DDDAC meeting, Lake Naivasha, Kenya 24th-27th June, 2014.
- IFAD. 2006. Value Chains , Linking Producers to the Markets-Thematic Paper.
- IFAD. 2011. "Access to Markets :Making Value Chains Work for Poor Rural People."
- John McDermott and Delia Grace. 2011. "Agriculture-Associated Diseases: Adapting Agriculture to Improve Human Health (Washington, DC: International Food Policy Research Institute, 2011)."
- Kaplinsky, Raphael, and Mike Morris. 2000. "A HANDBOOK FOR VALUE CHAIN An Important Health Warning or A Guide for Using This Handbook." (September).
- Magnusson, Ulf. 2009. "Overview of Infectious Diseases and the Wildlife-Livestock Interface." 2005–8.
- Mazet, J. (2013). Predicting the Unpredictable : Identifying emerging infectious diseases at the human-domestic animal-wildlife interface. In What's Up Seminar Series-California National Primate Research Center Seminar Hall 4/16/2013.
- Mwangi, Evans et al. 2013. "RESEARCH UPDATE SITUATION ANALYSIS." (September):1–6.
- Narrod, Clare, Jakob Zinsstag, and Marites Tiongco. 2012. "A One Health Framework for Estimating the Economic Costs of Zoonotic Diseases on Society." *EcoHealth* 9(2):150–62. Retrieved November 19, 2013 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3415616&tool=pmcentrez&rendertype=abstract).
- Olwande, Portas, and Mwihia Evalyn. 2013. "BRUCELLOSIS SITUATION IN KENYA." in BRUCELLOSI S SITUATION IN KENYA Presented on: 5th March 2013 Venue: University of Wyoming.
- Rich K, Baker D, I. Okike, and F. Wanyoike. 2009. "The Role of Value Chain Analysis in Animal Disease Impact Studies: Methodology and Case Studies of Rift Valley Fever in Kenya and Avian Influenza in Nigeria." (1).
- Sidahmed, Ahmed E. 2010. "Utilization of Value Chain Analysis in the Livestock Development Sector: The Case of the Zambia Beef Industry." (May):4–6.
- USaid. 2012. "END MARKET ANALYSIS OF KENYAN LIVESTOCK AND MEAT -A DESK STUDY." microREPOR(March).
- World Bank. 2012. PEOPLE, PATHOGENS AND OUR PLANET Volume 2 The Economics of One Health.