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Spreading of slow cortical rhythms into the basal ganglia (BG) is a relatively well-demonstrated phenomenon
in the Parkinsonian state, both in humans and animals. Accordingly, striatal dopamine (DA) depletion, either
acute or chronic, drives cortical-globus pallidus (GP) and cortical-substantia nigra pars reticulata (SNr) slow
wave coherences in urethane-anesthetized rats. This paper investigates the striatal dynamics following acute
DA depletion by tetrodotoxin (TTX) injection in the medial forebrain bundle (MFB) with respect to the trans-
mission of slow cortical rhythms throughout the BG in more detail. The acute DA depletion offers the advan-
tage of detecting electrophysiological changes irrespectively of chronically developing compensatory
mechanisms. We observed that the acute blockade of the dopaminergic nigro-striatal pathway reshapes
the firing rate and pattern of the different striatal neuron subtypes according to cortical activity, possibly
reflecting a remodeled intrastriatal network. The observed alterations differ amongst striatal neuronal sub-
types with the striatal medium spiny neurons and fast-spiking neurons being the most affected, while the
tonically active neurons seem to be less affected. These acute changes might contribute to the diffusion of
cortical activity to BG and the pathophysiology of Parkinson's disease (PD).
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Introduction

Micro-electrode recordings during functional neurosurgery in PD
have allowed the demonstration of abnormally synchronized oscillatory
activity at multiple structures of the BG-cortical loop (Brown, 2003;
Hammond et al., 2007). This excessive synchronization might represent
an electrophysiological trait of the disease being directly correlated to
the clinical state and susceptible to levodopa therapy or deep-brain stim-
ulation (DBS; Eusebio et al., 2011; Kiihn et al., 2006). Similar findings
have been observed in chronically as well as in acutely dopamine-
depleted animals (Fuentes et al., 2009; Galati et al., 2009, 2010; Magill
etal., 2001; Sharott et al., 2005). In these animals, cortical slow wave ac-
tivity (SWA) spreads into the BG network providing evidence of a
perturbed mechanism of cortical input processing in the dopamine-

Abbreviations: PD, Parkinson's disease; BG, basal ganglia; DA, dopamine; MFB, me-
dial forebrain bundle; TTX, tetrodotoxin; ECoG, electrocorticogram; SWA, slow wave
activity; SNr, substantia nigra pars reticulate; STN, nucleus subthalamicus; SNc,
substantia nigra pars compacta; ISI, inter-spike interval; CV, coefficient of variation;
AutoCrl, autocorrelograms; MSN, medium spiny neuron; FSI, fast-spiking interneuron;
TAN, tonically active large aspiny interneuron.
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depleted status (Fuentes et al., 2009; Galati et al., 2009, 2010; Magill
et al., 2001). These features have been ascribed to changes of intrinsic
voltage-gated conductance in the nucleus subthalamicus (STN)
(Beurrier et al., 1999; Nambu and Llinas, 1994) and/or to an impaired
interplay between the STN and the GP, leading to oscillatory behavior
(Plenz and Kitai, 1999). In agreement with these data, we recently de-
scribed that intra-GP haloperidol or bicuculline injection generates
cortical-GP synchronization supporting the presence of local mecha-
nisms in pathological oscillatory neuronal behavior (Galati et al., 2009).

Besides, several lines of evidence have suggested an involvement of
the striatum in the pathogenesis of excessive synchronization in PD,
probably due to an enhanced corticostriatal glutamatergic excitatory
drive and/or to decreased interneuronal inhibition. Three different neu-
ronal cell types in the striatum may be implicated in this electrophysio-
logical phenomenon. It has been quite consistently proven that the
activity of the GABAergic medium spiny neurons (MSN) is increased
(Blume et al., 2009; Galarraga et al., 1986; Liang et al., 2008; Tang et al.,
2001; Tseng et al., 2001; Zold et al., 2012). Accordingly, abnormal MSN
hyperactivity and synchronization in 6-OHDA animals is reduced by
intrastriatal blockade of glutamatergic transmission. However, also the
application of the GABA, receptor blocker bicuculline facilitated the
electrophyiological consequences of dopamine depletion indicating de-
creased interneuronal inhibition and hypothetically reflecting a reduced
activity of the GABAergic fast-spiking interneurons (FSI) (Carrillo-Reid et
al., 2008; Costa et al., 2006; Jaidar et al., 2010; Taverna et al., 2008;
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Tecuapetla et al., 2009). These GABAergic interneurons show a coordi-
nated high-frequency firing coherent with the cortex in normal animals
(Sharott et al., 2009). However, in the chronic DA depletion state the ac-
tivity of the FSI is rather spared. FSI provide a strong feed-forward inhibi-
tion upon the MSN and their stable activity in the DA depletion state
worsened the striatal imbalance between MSN projecting to the GP or
the substantia nigra pars reticulata (Mallet et al., 2006). The GABAergic
effect may also be explained by increased interneuronal inhibition of
MSN that conversely leads to an increased activity of these neurons
(McCarthy et al,, 2011). Besides the cholinergic tonically active large
aspiny interneurons (TAN) have to be taken into consideration as pro-
posed by the intrastriatal infusion of the cholinergic agonist carbachol
(McCarthy et al,, 2011).

So far, the role of the diverse systems controlling the MSN activity
remains poorly defined and has been investigated in a severe chronic
DA depletion state in which many histological alterations have already
occurred. The real impact of the substantia nigra pars compacta (SNc)
DA system upon the striatum and its consequences on the BG network
is not well documented. To address this question we adopted a model
based on an acute block of the medial forebrain bundle (MFB) by tetro-
dotoxin (TTX). In previous observations we recently showed that
TTX-induced MFB impairment considerably changes the interaction be-
tween STN and GP and the BG output (Galati et al.,, 2009, 2010).

Methods
Animals

Experimental procedures were carried out on 49 adult male
Wistar rats weighing 250-300 g in compliance with Swiss laws on
animal experimentation and with the National Institute of Health's
Guide for the Care and Use of Laboratory Animals.

Surgery

Rats were anesthetized with urethane (1.4 g/kg, i.p.) (Sigma
Chemical Co., St. Louis, MO, USA) and mounted on a stereotaxic in-
strument (Stoelting Co., Wheat Lane Wood Dale, IL, USA). Body tem-
perature was maintained at 37-38 °C with a heating pad placed
beneath the animal. A midline scalp incision was made and the skull
was almost completely drilled on the left side or both. The dura was
then removed to expose the cortical surface. All wound margins
were infiltrated with a local anesthetic (bupivacaine).

Electrophysiology

The electrophysiological methods are extensively described else-
where (Galati et al., 2009). Briefly, electrocorticogram (ECoG) recordings
coupled with striatal single unit extracellular recordings were per-
formed. The ECoG was recorded via silver chloride screw electrodes
placed on the cortical surface above the ipsilateral frontal cortex
(3.0 mm anterior of the bregma and 2.0 lateral to the midline) and
referenced against an indifferent electrode. Raw EEG was band-pass-
filtered (0.1-100 Hz), amplified (2000x; model 12A5 amplifier, Grass
Instrument Company, Quincy, MA), sampled (1000 Hz) on-line and
stored on a computer connected to an analog/digital interface
(micro1401 mk II, Cambridge Electronic Design, Cambridge, UK). During
ECoG recording, extracellular action potentials of striatal neurons were
acquired using ~15 MQ glass electrodes (tip diameter ~1.5 um) con-
taining saline solution (2 M NaCl). Electrode signals were amplified
(10.000 x; ISO-DAMS8; World Precision Instruments, Hertfordshire, UK),
band-pass filtered (300-1000 Hz), sampled (60 kHz) on-line and stored
on a computer connected to the Cambridge Electronic Design (CED)
1401 interface (see Galati et al., 2006, 2008, 2009, 2010).

Pharmacological blockade of the MFB

During ECoG and extra-cellular sampling, TTX (5 uM in NaCl) was
infused in the MFB (stereotaxic coordinates: 2.56 mm posterior to the
bregma, 2 mm lateral to the midline, and 8.6 mm below the cortical
surface; Figs. 1A, B) by a 30 gauge stainless steel tube (external &
0.2 mm) connected via a tubing to a 25 pl pump-driven syringe (CMA
400 syringe pump) at an infusion rate of infusion rate of 1 yl min~!
for 2-5 min (Galati et al,, 2009, 2010).

Data analysis

Single-unit activity and ECoG were analyzed off-line by Spike 2 soft-
ware (CED, Cambridge, UK). During urethane-induced deep anesthesia
frontal ECoG was characterized by regularly occurring slow-waves of
large amplitude (>500 nV) in which a smaller and faster activity
(<200 nv) overlaid specific portions (Galati et al., 2009, 2010; Magill
et al., 2000; Steriade et al., 1993). ECoG was assessed and epochs of ro-
bust cortical SWA were identified before and after MFB injection in con-
junction with a portion of the coincident striatal spike trains of 500
events. These spikes were utilized for the subsequent characterization
of cellular subtypes. Spike sorting was made by applying a principal
component analysis in order to select the spikes belonging to a putative
neuron subtype. We used several parameters from the average wave-
form of the collected spikes. Specifically, we measured the total and
peak amplitude and the total and peak duration. On the basis of
K-means analysis we identified three clearly separate neuronal sub-
types by using the peak/total amplitude ratio and peak length (Fig. 1).

The inter-spike interval (ISI) and related parameters such as the
mean ISI and its reciprocal, mean firing rate, coefficient of variation
(CV), skewness and kurtosis were further analyzed. Autocorrelograms
(AutoCrl) were used to detect the rhythmic neuronal activity by plot-
ting 2000 ms intervals with 1 ms bin width. Phase histograms were
constructed by using the corresponding Spike 2 (CED) script in order
to determine the relationship between spike discharge and ECoG. The
phase histogram was used to show how striatal spikes were distributed
with respect to the cyclical process identified by the peaks of SWA (60
bins). The phase histogram indicates the firing probability of a neuron
with regard to the ECoG. The correlation was recognized by putting a
threshold level above noise (mean threshold SD, 3.2 4+ 1.2) with a visu-
ally pre-set width ranging between 0.5 and 2 s.

Statistics

Statistical analysis was performed by using a statistical software
(IBM SPSS). Statistical comparisons of firing rates and ISI parameters
were conducted using the Mann-Whitney U-test. The comparison
within the values of each phase (60 bins, from 0 to 360°) was performed
using the non-parametric Friedman ANOVA whilst the comparison be-
tween the power of coherence of pre-TTX and post-TTX was performed
by the Mann-Whitney U-test. The Bonferroni correction was applied for
the multiple (60 bins) comparison leading the P value threshold up to
0.0008.

Results
Electrophysiological classification of striatal neuronal types

We recorded the extracellular activity of striatal neurons from
forty-nine rats. The spike waveform of all cells (n = 86) recorded in the
striatum showed a waveform characterized by a biphasic (—/+) action
potential. As previously described, two neuronal types were clearly distin-
guishable on the basis of discharge frequency pattern (Galati et al., 2006;
Kawaguchi, 1993; Mallet et al.,, 2005; Sharott et al., 2009; Wilson et al.,
1990). In urethane-anesthetized rats, the striatal activity is characterized
by TAN with a sustained firing rate and by neurons with sporadic activity.
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Fig. 1. Electrophysiological classification of the striatal neuronal types. A. Plot of the peak/total amplitude ratio and the peak length of the waveforms recorded for the three dis-
tinctive neuronal subtypes. In blue the putative FSI (pFSI; n = 25) with the shortest spike duration; in green the putative MSN (pMSN; n = 31) showing an intermediate spike
duration and in orange the putative TAN (pTANs; n = 30) with a significantly longer spike duration. B. Histogram of spontaneous firing frequency showing of the recorded
PTAN, pFSI and pMSN. *p < 0.05, Mann-Whitney U-test. C. Electrophysiological characterization of the three different striatal neuron types recorded (n = 86). Examples of the

three waveforms (50 superimposed spikes) and the respective inter-spike interval histograms and autocorrelograms (500 spikes) are shown.

The waveform analysis, by plotting the peak/total amplitude ratio and
the peak length of the action potentials, allowed the discrimination of
three clearly distinctive neuronal subtypes (Table 1, Fig. 1): the putative
TAN (pTAN), the putative MSN (pMSN) and the putative FSI (pFSI), with
the latter corresponding to the sporadically active neurons. The cholin-
ergic pTAN (n = 30) featured a significantly longer spike duration
(0.77 £ 0.01 vs pMSN and pFS], p < 0.0001, Mann-Whitney rank sum
test); the GABAergic pFSI (n = 25) showed the shortest spike duration
(0.25 4 0.01 vs pMSN and pTAN, p < 0.0001, Mann-Whitney rank sum
test) and the GABAergic pMSN (n = 31) were characterized by an in-
termediate duration (045 4 0.01 vs pFSI and pTAN, p < 0.0001,
Mann-Whitney rank sum test). The ratio between the peak and total
amplitude was significantly lower in the pFSI (0.46 4+ 0.37 vs pMSN
and pTAN, p < 0.0001, Mann-Whitney rank sum test) in comparison
with the other two waveforms that featured similar values (pMSN

Table 1

Waveform parameters of the recorded striatal neuron subtypes.

Peak length (ms)

Peak/total amplitude

pFSI (n = 25)
pMSN (n = 31)
pTAN (n = 30)

0.25 + 0.01
** vs pMSN
** vs pTAN
0.45 + 0.01
** vs pFSI
** vs pTAN
0.77 + 0.01
** vs pFSI
** vs pMSN

0.46 + 0.37
** yvs pMSN
**vs pTAN
0.74 + 0.01
**vs pFSI
n.s. vs pTAN
0.78 + 0.02
** vs pFSI
n.s. vs pMSN

Data are mean + SEM.

*p < 0.05, **p < 0.0001, Mann-Whitney rank sum test.

n.s. = non significant.
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0.74 4+ 0.01 and pTAN 0.78 + 0.02, not significant; see Table 1, Fig. 1).
The mean ISI (inverse of the firing rate) of all pTAN (0.21 &+ 0.13, vs
PMSN and pFS], p < 0.05, Mann-Whitney rank sum test) was significant-
ly lower than that of the pMSN (0.47 4 0.08) and pFSI (0.35 4 0.03),
while no difference was observed between pFSI and pMSN. The firing pat-
tern was examined by constructing the ISI histograms (ISIHs) and
AutoCrls. As shown in Fig. 1, pFSI were characterized by a bimodal distri-
bution revealing, to some extent, their tendency to burst firing corrobo-
rated by their multi-peaked AutoCrl. pMSN, instead, were characterized
by an asymmetrical ISIH skewed toward shorter intervals demonstrating
anirregular and sporadic firing pattern. The corresponding AutoCrl clearly
showed a slow frequency oscillatory behavior that was the subject of fur-
ther analysis (see below). On the contrary, pTAN predominantly manifest
a unimodal ISI distribution reflecting the tonic, even if irregular, firing pat-
tern of these cells (Fig. 1).

Changes in the activity and phase locking of striatal neurons to cortical
SWA before and after TTX injection of the MFB

We examined the phase relationship between the spiking activity of
single neuronal activity and the oscillatory ECoG dynamics (Fig. 2). A

total of 86 neurons were recorded in the striatum before and after TTX
injection into the MFB and considered eligible for subsequent analysis.
The electrophysiological effect of TTX on ISI parameters are summarized
in the Table 2. We conducted a population study collecting at least two
neurons before and after the TTX injection from the same animal.
Before (n = 13) and after TTX pFSI (n = 12) showed a sporadic
activity with a tendency to clustered firing in phase with the positive
peak of SWA (Table 2). pFSI activity was affected by injection of the
neurotoxin as shown by a significant increase of the mean ISI that in-
versely represents the firing rate (p <0.05 Pre-TTX vs Post-TTX,
Mann-Whitney rank sum test). No major changes of the other ISI pa-
rameter were observed, that featured a quite stable pattern of activi-
ty. With respect to the ECoG, the activity of pFSI was clearly
correlated to the positive phase of cortical activity. As depicted on
the phase polar plots, a peak of firing probability was statistically
demonstrated before TTX infusion (Friedman ANOVA, y? 430.52; df
59; p < 0.0008) ranging between 12° and 60° (Wilcoxin comparison
test after Bonferroni-Holmes correction; p < 0.0008). TTX adminis-
tration caused no considerable effect on the relationship between
ECoG and pFSI (Friedman ANOVA, x? 416.77, df 59, p < 0.0008), al-
though the extent of the firing probability was slightly more widely
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Fig. 2. Phase locking of striatal neurons to cortical SWA before and after TTX injection of MFB. A. Distribution of inter-spike interval histogram (ISIH) before and after the TTX in-
jection of the three different striatal neuron types. pFSI (blue) show a sporadic activity that did not change after TTX injection; pMSN (green) showed a clear change of their firing
pattern after TTX while no modification were noted in pTAN (orange) after the neurotoxin. The shaded lines on both sides of the mean lines are the standard error. B. Representative
spike probability polar-phase plots for the three different striatal neuron types before and after TTX injection. The activity of pFSI is in phase with the positive peak of SWA. After
TTX injection the activity of pFSI shows a slight extension of the firing probability; pMSN were clearly in phase with the cortex but after the TTX injection the coherence is dispersed;
the activity of pTAN did not correlate with cortical activity. C. Simultaneous ECoG recordings and single striatal unit activity for pFSI, pMSN and pTAN before and after TTX injection

are shown.
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Table 2
Effect of TTX on ISI parameters of the recorded striatal neuron subtypes.
Pre-TTX Post-TTX
Mean ISI cv Skewness Kurtosis Mean ISI cv Skewness Kurtosis
pFSI (n = 13) 0.35 + 0.03 0.91 + 0.08 2.56 + 043 8324194 pFSI(n = 12) 0.47 + 0.05* 0.92 + 0.06 2.10 4+ 0.34 6.42 + 1.79
pMSN (n = 16) 0.47 + 0.08 132 £ 012 428 £059  22.6 + 440 pMSN (n = 15) 0.22 4+ 0.03* 1.97 £+ 0.16* 2.82 4+ 0.28* 7.85 + 1.39*
PTAN (n = 12) 021 £ 0.13# 143 £ 0.23 3.20 £+ 0.65 19.3 + 6.39 pTAN (n = 18) 0.17 £ 0.04* 1.50 + 0.10 3.09 + 0.30 145 + 3.19

Data are mean + SEM.
*p < 0.05, **p < 0.0001 Pre-TTX vs Post-TTX, Mann-Whitney rank sum test.
# p < 0.05 pTAN vs pMSN and pFSL.

ranged (Wilcoxin comparison test after Bonferroni-Holmes correc-
tion between 6° and 72° p < 0.0008).

After TTX injection (n = 15), we observed a clear modification of the
firing pattern of the pMSN with a significant change in the distribution of
ISI and a remarkable reduction of the mean ISI in parallel with significant
changes of the other pattern-linked parameters (p < 0.05, Pre-TTX vs
Post-TTX, Mann-Whitney rank sum test). As depicted in Fig. 2, acute
nigro-striatal DA-blockade led to a redistribution of the ISI of these neu-
rons with a less skewed-peaked ISIH suggesting a reduced amount of
grouped spikes. As far as the pMSN activity is concerned, we had striking
changes before and after the TTX injection of the MFB. Specifically, the
pre-TTX (n = 16) period was characterized by a clear-cut peak in the
phase histogram ranging between 348° and 12° that corresponds to
the positive phase of SWA (Friedman ANOVA, yx* 237.08; df 59;
p < 0.0008; Wilcoxon comparison test after Bonferroni-Holmes correc-
tion). TTX-related changes of the pMSN were characterized by a disper-
sion of the cortico-striatal signal (Friedman ANOVA, x? 164.22; df 59;
p < 0.0008) with no identifiable peak of firing probability (p > 0.0008;
Wilcoxon comparison test after Bonferroni-Holmes correction).

The activity of pTAN was influenced to a certain degree by TTX treat-
ment. Although the ISI were not altered by the inactivation of MFB
transmission with respect to the firing pattern, the mean ISI was signif-
icantly reduced by the TTX injection (p < 0.05, Pre-TTX vs Post-TTX,
Mann-Whitney rank sum test). pTAN were not affected by the SWA
(Friedman ANOVA, x? 113.75; df 59; p < 0.0008; p > 0.0008; Wilcoxon
comparison test after Bonferroni-Holmes correction), and their activity
before and after TTX injection remained stable (p > 0.0008; Wilcoxon
comparison test after Bonferroni-Holmes correction).

Discussion

In this study we extend the analysis of the effect of the acute block-
ade of the MFB by TTX on the striatum that along with the STN, repre-
sents the main input structure of BG (Crutcher and DeLong, 1984).
We have previously shown that TTX-induced MFB blockade dramatical-
ly changes the STN-GP interaction by increasing the cortical influence
on the STN and by dictating a cortical rhythm to the GP (Galati et al.,
2009). Similarly, the TTX injection into the MFB was able to change
the SNr firing pattern suggesting a dysfunctional control conveyed
within the cortical-BG-thalamic loop possibly causing akinesia (Galati
et al,, 2010). Although, the involvement of the cortical-STN hyperdirect
pathway could explain the abnormal propagation of pathological
rhythms in the BG (Beurrier et al., 1999; Galati et al., 2009; Nambu
and Llinas, 1994), several lines of evidence also suggested a critical
role exerted by the striatum (Blume et al,, 2009; Carrillo-Reid et al.,
2008; Costa et al., 2006; Liang et al, 2008; Taverna et al, 2008;
Tecuapetla et al., 2009; Tseng et al., 2001; Zold et al., 2012).

Striatal neurons are characterized by an extensive range of activity
and waveform morphology and their spontaneous activity is markedly
influenced by DA control. In agreement with previous reports (Galati
et al., 2006; Mallet et al., 2006; Sharott et al., 2009, 2012) we classified
the three predominant subtypes of striatal neurons on the basis of
their spike waveform and firing-rate pattern. The GABAergic inhibitory
MSN and the GABAergic inhibitory large aspiny FSI exhibit a low firing

rate, while the GABAergic inhibitory TAN present a sustained firing
under urethane anesthesia (Carrillo-Reid et al., 2009; Crutcher and
DeLong, 1984; Kimura, 1992; Liang et al., 2008). Regarding the anesthe-
sia it is important to consider the limitations of the extrapolation of the
striatal firing rate; however, the rate frequencies observed were consis-
tent with those previously described in urethane-anesthetized animals
(Mallet et al., 2005, 2006; Tseng et al., 2001). Despite the possible limi-
tations, the urethane-induced SWA allowed us to analyze how this ac-
tivity spreads within striatum.

In our conditions, FSI were also characterized by a shorter spike
duration and by a reduced ratio between the amplitude of the first de-
flection and the total amplitude. The other two neuronal populations
were identified on the basis of their spontaneous activity character-
ized by slower and irregular activity of the MSN and a faster and
more regular one of TAN (Carrillo-Reid et al., 2009; Crutcher and
DeLong, 1984; Galati et al., 2006; Kimura, 1992; Liang et al., 2008;
Mallet et al., 2006; Sharott et al., 2009).

Dopamine exerts a profound effect upon these neuronal popula-
tions; for instance chronic DA depletion tends to increase the spontane-
ous activity of the MSN (Day et al., 2006; Liang et al., 2008; Uhlhaas and
Singer, 2006; Zold et al, 2012), that was linked to an augmented
glutamatergic tone (Galarraga et al., 1986; Goldberg et al., 2004; Raz
et al, 1996; Tseng et al, 2001) and to reducing the feed-forward
FSI-mediated inhibition (Bracci et al., 2002; Magill et al., 2006). In our
study we observed a pronounced reconfiguration of the striatal microcir-
cuit following the blockade of the nigro-striatal interplay. The acute
DA-denervated model allowed us to examine what occurs immediately
after the functional interference of the SNc¢ DA signaling flow to the stria-
tum. Regardless of cortical activity, TTX injection profoundly modified the
activity of striatal neuronal subtypes. In accordance with the literature on
chronically denervated animals, we found a mean overall increase of the
firing rate of putative striatal projection neurons(Flores-Barrera et al.,
2010; Hernandez-Lopez et al., 2000; Mallet et al,, 2006; Shen et al,
2007; Surmeier et al., 2010; West and Grace, 2002). Striatal cholinergic in-
terneurons undergo an increase in excitability in chronically dopamine-
depleted animals (Salin et al., 2009). Accordingly, a study in rat brain
slices of acutely dopamine-depleted animals demonstrated that MSN
and cholinergic interneurons become more excitable, while GABAergic
interneurons do not significantly change their firing rate (Fino et al.,
2007).

So far, under physiological conditions the activity of striatal neurons
appears strongly influenced by the cortical activation state (Mallet et
al,, 2005; Sharott et al,, 2012). MSN change their firing rates and patterns
mainly according to SWA and interneuronal activity. As recently demon-
strated by Sharott et al. (2012), histologically identified cholinergic and
GABAergic parvalbumine positive (PV +) interneurons show higher fir-
ing rates during the cortical activation state rather than during SWA,
whereas the average firing of the MSN population seems to be unaffected
by cortical activity. The physiological activity of the striatal projection
neurons as well as the FSI is already in phase with the SWA (Mallet et
al,, 2005; Tseng et al., 2001; present observations). The firing probability
of the MSN achieved its maximum during the peak of SWA firing that co-
incides with the up-state membrane potential of the MSN (Tseng et al.,
2001). Similarly to the physiological condition, the chronic denervated
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state did not alter this cortico-striatal coherence, although the overall ac-
tivity was augmented (Tseng et al., 2001). Other authors suggested that
the DA depletion in 6-OHDA-lesioned rats increases the ability of MSN to
escape from the feed-forward inhibition by FSI, with the unchanged FSI
activity in this experimental setting resulting in a further dyscontrol of
MSN activity (Mallet et al., 2005). We found that acute DA denervation
led to a tendency of the pMSN to discharge with an enlarged time win-
dow with respect to the SWA, breaking up the usual cortico-striatal
inter-talk. Furthermore, the acute interference with nigro-striatal signal-
ing by TTX unmasked change of the interplay between SWA and FSI
activity with a slight but significant more widespread phase correlation.
FSI are considered the GABAergic PV + striatal interneurons that target
the MSN in close proximity to their soma and receive cortical input
(Kawaguchi, 1993; Mallet et al.,, 2005; Ramanathan et al., 2002). There-
fore, we suppose that slight changes of FSI activity strongly affect the
MSN. The acute DA depletion protocol allowed us to reveal the mecha-
nism of action of DA upon the FSI-MSN interaction in vivo. Indeed, in
vitro studies have shown that DA directly depolarizes FSI via D1-like re-
ceptors and decreases the inhibitory synaptic input to these cells via pre-
synaptic D2-like receptors (Ballion et al., 2009; Bracci et al., 2002;
Centonze et al,, 2003). In agreement, we found that the TTX-mediated ef-
fect on FSI was characterized not only by a significant decrease of the fir-
ing rate, but also by a slightly more widespread firing probability during
the active component of SWA. Thus, as opposed to what was observed in
the chronic animal model (Mallet et al., 2006), we found a clear-cut de-
crease of FSI inhibitory tone upon the MSN with a probable escape of
these neurons from cortical control. The role of TAN can possibly rather
be linked to the thalamo-striatal pathway. Indeed, cholinergic neurons
are quite independent of cortical control (i.e. less affected by SWA),
whilst showing an augmented activity in Parkinsonian state, in both
the chronic (Sanchez et al, 2011) and acute condition (Fino et al.,
2007; present data). We hypothesize that they maintain a surrogate
role as feedback circuit not necessarily involving the cortex. In fact,
the thalamic gating of cortico-striatal signalling by TAN works in a
way that activation of thalamo-striatal axons induces a burst of spikes
in striatal cholinergic interneurons followed by a pause lasting more
than half a second (Ding et al., 2010). This patterned interneuron activ-
ity suggests that the transient presynaptic suppression of cortical input
to MSN is able to control the end of a movement. Thus, this differential
regulation of the cortico-striatal circuitry operated by TAN provides a
neural substrate for attentional shifts and cessation of ongoing motor
activity with the appearance of salient environmental stimuli. This
mechanism could hypothetically also play a role in the clinical observa-
tion of PD patients, apparently akinetic or even stuck to the floor due to
a desperate freezing, are suddenly capable of escaping from a fire.
Therefore, in functional terms, the PD patients’ inability to walk auton-
omously might be due to the fact that the striatum is unable to direct,
discriminate and convey the “go” signal. Their surprising ability to run
away could be explained by the surrogate order of the thalamo-TAN
pathway coming into play, activated by the sudden attentional shift.
However, an extensive degeneration of thalamic relay neurons, the
major source of the thalamo-striatal system, may in fact occur in PD
representing a major obstacle when transferring data from rodent
models, whose degeneration is by definition limited to nigro-fugal
elements.

Conclusions

Altogether, the TTX-induced blockade of the nigro-striatal interplay
led to an impaired and poorly timed cortical-driven pFSI activity with a
consequent impairment of the otherwise tightly controlled activity of
the striatal projection neurons. Thus, pMSN tended to fire irrespectively
of the cortical activity and were less affected by the pFSI. We therefore
suggest that during acute DA depletion the striatal projection neurons
are less phase-locked to the SWA. This dispersion of pMSN discharges
immediately after the TTX infusion indicates that the principal output

cells lose their dependency on cortical inputs. The striking change of
pFSI discharges supports the contention that the interaction between
pFSI-pMSN is the critical message disrupted. On the one hand this
does not imply an exclusion of the striatum in shaping BG circuitry,
but on the other hand suggests that the striatum has probably lost the
ability to convey messages through selective (i.e. direct vs indirect)
pathways. Thus its involvement in cortical-BG synchronization seems
questionable, making the participation of the hyperdirect pathway
more likely as previously discussed (Galati et al., 2009). We cannot ex-
clude, however, that the timing dysfunction of different neurons, main-
ly the pFSI and pMSN, might also alter downstream network activities
rendering them more susceptible to cortical rhythms.

In summary, our data improve the understanding of the effect of
dopaminergic dysfunction on the striatal network and encoding of
cortical information and on the propagation of rhythmic activity in
Parkinsonian conditions.
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