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We study the Blume-Capel universality class in d ¼ 10
3
− ϵ dimensions. The renormalization group flow

is extracted by looking at poles in fractional dimension of three loop diagrams using MS. The theory is the
only nontrivial universality class which admits an expansion to three dimensions with ϵ ¼ 1

3
< 1. We

compute the relevant scaling exponents and estimate some of the operator product expansion coefficients to
the leading order. Our findings agree with and complement conformal field theory results. Finally we
discuss a family of nonunitary multicritical models which includes the Lee-Yang and Blume-Capel classes
as special cases.

DOI: 10.1103/PhysRevD.96.081701

I. INTRODUCTION

The universal behavior of macroscopic systems has long
been attracting the interest of the scientific community
because it shows unexpected connections among several
different areas of physics and draws interdisciplinary con-
nections with other quantitative sciences. It is well known
that systems undergoing a second order phase transition
exhibit a diverging correlation length at the critical point,
which typically signals the separation among two or more
macroscopically distinct phases. In fact, close to a second
order critical point the system forgets the details of its
microscopic interactions because of the large correlation
length, and therefore very different microscopic models
might exhibit the same macroscopic behavior. Such models
are said to constitute a universality class.
The most famous second order phase transition is

perhaps the one observed in ferromagnetic systems which
demonstrate a separation between ordered and disordered
magnetic phases, and which could be described by the
critical Ising model with nearest neighbor interactions
among microscopic spins. Interestingly the same critical
properties are observed close to the critical point of the
liquid-vapor transition in the phase diagram of water. The
two physical systems therefore belong to the same univer-
sality class, which is known to be described by the ϕ4

model with scalar order parameter ϕ [1].
The study of universality classes systematizes our under-

standing of long range interactions in critical systems. On the
one hand, it is often possible to identify the order parameterϕ
and study the Ginzburg-Landau description of the critical
system in terms of its free energy and its renormalization

group (RG). On the other hand, it has been observed that the
scale invariance of a critical point is often promoted to full
conformal invariance. Solid investigations thus interpolate
various methods of field theory, including perturbation
theory, RG, and conformal field theory (CFT) methods.
Even more interestingly, Nature is not promiscuous in

that it seems to provide us with a comparatively small
number of universality classes in three dimensions, making
the discovery of any new one even more interesting. In fact,
while in two dimensions there is a countable family of
critical models, including the notable examples of the CFT
minimal models Mp;q [2], in three dimensions there is, in
comparison, a scarcity. This is especially true in the absence
of global symmetries and for a single scalar order parameter
ϕ, in which case there might be only three such models: the
Ising universality class, with upper critical dimension dc ¼
4 [3] the Lee-Yang universality class with dc ¼ 6 [4], and
the Blume-Capel universality class with dc ¼ 10

3
which is

the object of this paper.1 These three models are all believed
to be CFTs at criticality [8–14].
The Blume-Capel universality class has some rather

interesting properties: its upper critical dimension is a
rational number slightly above three, meaning that the
model offers a new nontrivial critical point in three
dimensions. In an ϵ-expansion with d ¼ 10

3
− ϵ it is suffi-

cient to set ϵ ¼ 1
3
to estimate the physically interesting case

d ¼ 3. The ϵ-expansion is thus expected to be better
defined and able to give more precise estimates if compared
with the other two non-trivial three dimensional univer-
sality classes. Another property of this universality class is
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1The Tricritical Ising universality class has dc ¼ 3 and there-
fore is Gaussian in d ¼ 3, while the Blume-Capel universality
class is a tricritical generalization of the Lee-Yang class [5] and as
such we refer to it following [6,7].
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that the leading perturbative RG flow must be obtained by
looking at 1

ϵ poles of three loop diagrams.
In this paper we compute for the first time the leading

order corrections in the ϵ-expansion to the spectrum and the
OPE coefficients of the Blume-Capel class. For this
purpose, we use the powerful functional perturbative RG
methods recently developed [15,16]. A preliminary analy-
sis of the conformal data has been performed in [14] with
CFT methods, but up to now only with RG methods it is
possible to obtain the critical coupling at the fixed point
gðϵÞ, which is the gateway for numerical estimates of
critical quantities in d ¼ 3.
We expect that the new critical point can be observed

either theoretically in computer simulations, or experimen-
tally in opportunely tuned systems such as the atomic
mixtures described by the microscopic Blume-Capel model
[17] which has enough degrees of freedom to exhibit the
tricritical phase [6]. The critical point might also be relevant
in the understanding of the full analytic structure of the
partition function of the tricritical Ising model as a function
of the magnetic field [18].
Finally, we complement the analysis by covering a

family of multi-critical non-unitary models which includes
the Lee-Yang and Blume-Capel classes as the first two
special examples. All models besides the first two have
upper critical dimension smaller than three, and thus are
physically interesting in two dimensions, where they are
expected to correspond to a nonunitary subset of the CFT
minimal models Mp;q [6,7,19].

II. BETA FUNCTIONALS

The Landau-Ginzburg description of the Blume-Capel
class consists of an action

S½ϕ� ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
; ð1Þ

in which the potential becomes quintic at criticality. We
renormalized (1) using minimal subtraction (MS) of the 1

ϵ
poles in d ¼ 10

3
− ϵ and we used the results to construct beta

functions for the effective potential VðϕÞ and a wave
function ZðϕÞ in a background field approach. The relevant
diagrams for the leading contributions to the flow appear at

three loops and are shown in Fig. 1 (the next-to-leading
contribution is at six loops).
The beta functionals are

βV ¼ aðVð2ÞðVð4ÞÞ2 − 9

2
ðVð3ÞÞ2Vð4ÞÞ;

βZ ¼ −bðVð5ÞÞ2; ð2Þ

where we defined the positive coefficients

a ¼ Γð1
2
Þ4Γð2

3
Þ

9ð4πÞ5Γð4
3
Þ2 ; b ¼ 3Γð2

3
Þ3

40ð4πÞ5 : ð3Þ

We also checked agreement with the beta functionals of
[15,16], from which (2) can be evinced by analytically
continuing the next-to-leading terms of the even models
ϕ2n to n ¼ 5=2. The beta functional βV should be under-
stood as generating function of the beta functions of the
couplings of the local operators ϕk, and, following the
discussion of [16], the system (2) captures unambiguously
all contributions to the RG flow of all the relevant operators
and the first irrelevant one (k ¼ 1;…; 5).

III. CRITICAL EXPONENTS

Critical properties must be investigated in units of the
RG scale μ. We define the dimensionless potentials

vðφÞ ¼ μ−dVðZ−1=2
0 μd=2−1φÞ;

zðφÞ ¼ Z−1
0 ZðZ−1=2

0 μd=2−1φÞ;

which include the rescaling of the field by the square root of
Z0 ¼ Zð0Þ in order to have a canonically normalized
kinetic term, and introduce an anomalous dimension
η ¼ −βZ0

=Z0. For future purpose and for simplifying the
result, we further rescale v → 2

3
ð4πÞ5=2Γð2

3
Þ−3=2v. The beta

functionals are

βv ¼ −
10

3
vþ 2

3
φv0 þ ϵ

�
v −

1

2
φv0

�
þ η

2
φv0

þ 1

3
vð2Þðvð4ÞÞ2 − 3

2
ðvð3ÞÞ2vð4Þ;

βz ¼
2

3
φz0 þ η

�
zþ 1

2
φz0

�
−

1

30
ðvð5ÞÞ2: ð4Þ

The dimensionless wave function satisfies zð0Þ ¼ 1 by
construction, thus its flow can be used to determine the
anomalous dimension as a function of the dimensionless
potential giving η ¼ 1

30
ðvð5Þð0ÞÞ2.

The fixed point solutions of βv ¼ 0 from (4) is a quintic
potential of the form vðφÞ ¼ gφ5 with the constant g being
a function of ϵ. For the comparison with standard pertur-
bation theory, we find convenient to consider g as the
critical coupling which has beta function

FIG. 1. Diagrams responsible for βV and βZ. The lines represent
massless scalar propagators and vertices correspond to deriva-
tives of VðϕÞ. The first two diagrams contribute to the two terms
of βV , while the third generates βZ.
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βg ¼ −
3

2
ϵg −

153

4
ð5!Þ2g3:

The fixed points of g are in one-to-one correspondence with
fixed points of (4) in the form gφ5. There is a complex-
conjugate pair of nontrivial purely imaginary solutions

gðϵÞ ¼
ffiffiffiffiffiffi
−ϵ

p

60
ffiffiffiffiffiffiffiffi
102

p : ð5Þ

The expansion of critical solutions is thus in semi-odd
powers of ϵ which has been long well known [5].
The critical exponents can be obtained by linearizing the

RG flow (4) around the fixed point solution (5) and
diagonalizing its stability matrix. For this we parametrize
vðφÞ ¼ P

5
i¼0 giφ

i, thus including all relevant operators and
φ5. Within this basis of operators and up to the first order in
ϵ, the stability matrix is already diagonal and the scaling
operators coincide with φi for i ¼ 0;…; 5. It is thus
convenient to express the critical exponents θi in terms
of the operators’ anomalous dimensions ~γi (we follow the
notation of [16] in which quantities with tilde are computed
with MS)

θi ¼
10

3
−
2i
3
þ ϵ

�
−1þ i

2

�
− ~γi

~γi ¼
ϵ

153

�
52

5
i −

139

12
i2 −

1

2
i3 þ 19

12
i4 − δi;5

�
; ð6Þ

in which we use the determination of the anomalous
dimension at the critical point

η ¼ 2~γ1 ¼ 4 · 5! · gðϵÞ2 ¼ −
ϵ

765
: ð7Þ

The critical exponents satisfy the scaling relations
θ1 þ θ4 ¼ θ0 ¼ d, θ1 ¼ ðdþ 2 − ηÞ=2, θ4 ¼ ðd − 2þ
ηÞ=2 [16]. A comparison of our leading estimate for η
with the result given in [20] shows some disagreement,
even when taking into account the different conventions.
However, we can provide several further consistency
checks of our results (see also the following section).
We give numerical estimates for some notable critical

exponents: the anomalous dimension η, the exponent
σ ¼ θ4=θ1, the correlation length exponent ν≡ ðθ2Þ−1,
and a subleading magnetization exponent ζ ¼ θ3=θ1.
Setting ϵ ¼ 1=3 we find

η ¼ −4.357 × 10−4; σ ¼ 0.2030;

ν ¼ 0.4977; ζ ¼ 0.5596: ð8Þ

We do not estimate the correction-to-scaling exponent ω ¼
−θ5 ¼ 3ϵ (which is related to the subleading energy
exponent) because it is expected to receive large corrections
from the next-to-leading orders of the ϵ expansion. One

interesting property is that the leading quantum/statistical
fluctuations drive the correlation length exponent ν ¼
1
2
− 7ϵ

1020
to values that are lower than the mean field νMF ¼

1=2 below the upper critical dimension. This does not
happen to the Ising and Lee-Yang universality classes.
Whether this property is stable under further corrections
requires further study.

IV. CFT DATA

We now turn our attention to the characterization of the
CFT data of the universality class. The scaling dimensions
of the relevant operators are defined as Δi ¼ d − θi. The
case i ¼ 4 is excluded because the operator ϕ4 is a CFT
descendant due to the equations of motion ∂2ϕ ∼ ϕ4. Our
three-dimensional numerical estimates are

Δ1 ¼ 0.4998; Δ2 ¼ 0.9908; Δ3 ¼ 1.5908:

The versatility of the functional approach allows for
estimates of some of the OPE coefficients and therefore
of the structure constants of the CFT (see [16]). Given the
symmetrized fusion rules

ϕði × ϕjÞ ¼
X
k

Ck
ijϕ

k þ � � � ;

the MS scheme provides the following estimates

~Ck
ij ¼

10

3
iði − 1Þjðj − 1ÞgðϵÞf648 − 444ðiþ jÞ

þ 78ði2 þ j2Þ þ 266ij − 37ði2jþ ij2Þ
þ 2i2j2gδiþj−k;5 þ 2gðϵÞfiδi;kδj;5 þ jδj;kδi;5g
þ 10gðϵÞδi;5δj;5δk;5; ð9Þ

for the Ck
ij, whenever iþ j − k ¼ 5. These expressions

require the use of gðϵÞ given in (5). The estimates are
unaffected by mixing with higher derivative operators for i,
j, k ≤ 5.
In [14] the Blume-Capel universality class was consid-

ered in d ¼ 10
3
− ϵ on purely CFT grounds using a method

that allows to build a conformal theory out of the free
theory’s data. The pure CFT construction does not yet
determine all CFT data, but it gives some quantities to
compare with. The following ratio is independent of the FP
coupling and agrees with the same quantity as given in [14]

~γ2
~γ1

¼ 2 − θ2
1
2
η

¼ − 7ϵ
255

þOðϵ2Þ
− 1

2
ϵ

765
þOðϵ2Þ ¼ 42þOðϵÞ;

in which we restored the order of approximation to clarify
which is the next-to-leading contribution. Additionally, we
can compare some ratios involving the ~Ck

ij with the
corresponding structure functions of the CFT three point
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functions Cijk which are related to the OPE coefficients
Ck

ij. The ones that can be compared with [14] are

~C1
15ffiffiffiffiffi
~γ1

p ¼ 4
ffiffiffiffiffi
15

p
þOðϵÞ;

~C1
24ffiffiffiffiffi
~γ1

p ¼ 32
ffiffiffiffiffi
15

p
þOðϵÞ;

~C1
33ffiffiffiffiffi
~γ1

p ¼ −108
ffiffiffiffiffi
15

p
þOðϵÞ; ð10Þ

and they agree exactly. In fact, given our estimate of ~γ1 in
terms of ϵ, we can use the results of [14] to find the leading
ϵ dependence of a family of structure constants which
includes (10)

C1
kl ¼

k!l!

ð4þl−k
2

Þ!ð4þk−l
2

Þ!ðkþl−4
2

Þ!
2

ffiffiffiffiffiffi
−ϵ

p
ðk − lÞ2 − 1

ffiffiffiffiffi
6

17

r
; ð11Þ

in which jk − lj ≤ 4 and kþ l ≥ 4 with k and l being both
even or odd, as well as other constants with a leading ϵ
contribution

C1
14 ¼

9ϵ

17
; C1

16 ¼ −
20ϵ

51
; C1

18 ¼ −
7ϵ

51
; ð12Þ

and one constant with leading ð−ϵÞ32 contribution

C1
11 ¼

�
3

34

�3
2ð−ϵÞ32: ð13Þ

Evaluating these results at ϵ ¼ 1
3
provides a first numerical

estimate for the structure constants of the three-dimensional
Blume-Capel class.

V. OTHER MULTICRITICAL MODELS

It is not difficult to generalize the results presented so far
to the entire family of odd multicritical models ϕ2nþ1.
These models are interesting in their own respect but,
besides the Lee-Yang (n ¼ 1) and Blume-Capel (n ¼ 2)
universality classes, they have upper critical dimension
dc < 3 and therefore only physical d ¼ 2 realizations, apart
from possible fractal realizations. Their upper critical
dimension is

dc ¼ 2þ 4

2n − 1
; ð14Þ

and they can be renormalized starting from the action (1)
and subtracting the poles in d ¼ dc − ϵ. The diagrams
involved in this subtraction have 2n − 1 loops and general-
ize those of Fig. 1.
All the steps leading to the scaling analysis of the n ¼ 2

case can be followed through and are mostly unchanged,

including the definition of dimensionless potential vðφÞ.
The convenient rescaling as a function of n is

v →
8

2n − 1
c−

2n−1
2 v with c ¼ 1

4π

ΓðδnÞ
πδn

; ð15Þ

and replaces the one of the previous sections. We denoted
with δn ¼ 2

2n−1 the canonical dimension of the field ϕ at dc.
The general dimensionless beta functionals in terms of the
label n are given as

βv ¼ −dvþ d − 2þ η

2
φv0

−
1

3
Γð1þ δnÞ

X Bn
rst

r!s!t!
vðrþsÞvðsþtÞvðtþrÞ;

βz ¼ ηzþ d − 2þ η

2
φz0 −

4

ð2nþ 1Þ! ðv
ð2nþ1ÞÞ2; ð16Þ

where r; s; t ∈ N. We defined the coefficients

Bn
rst ¼ An

r;st · An
s;tr · An

t;rs; An
r;st ¼

Γððsþt−rÞ
2

δnÞ
ΓðrδnÞ

: ð17Þ

One can check that this formula reproduces (4) for n ¼ 2
and that of the leading contribution to the Lee-Yang
universality class given in [16].
The anomalous dimension η can be read off imposing

zð0Þ ¼ 1 in (16) to obtain

η ¼ 4ð2nþ 1Þ!g2; ð18Þ

where g comes from the critical potential vðφÞ ¼ gφ2nþ1.
This can be used in βv to find the interacting fixed point
value

gðϵÞ ¼
�
ð2nþ 1Þ!3ΓðδnÞ

X
r;s;t

Bn
rst

ðr!s!t!Þ2

− 3ð4n2 − 1Þð2nþ 1Þ!
�
−1
2 2n − 1

6

ffiffiffiffiffiffi
−ϵ

p
; ð19Þ

where the summation runs over the same indices as (16).
The fixed point can be used in the expression for η to find
its leading contribution.
From the Taylor expansion of the RG flow of (16) at (19)

we find the anomalous dimensions

~γi ¼ ð2nþ 1Þ!
�
2iþ 4ð2nþ 1Þδ2nþ1

i

− ð2nþ 1Þ!i!Γð1þ δnÞ
X
r;s;t

Bn
rst

r!s!2t!2
1

ði − s − tÞ!
�
gðϵÞ2

ð20Þ

and the estimates of some of the OPE coefficients
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~Ck
ij ¼ −Γð1þ δnÞ

X
r;s;t

Bn
rst

r!s!t!2
i!j!ð2nþ 1Þ!gðϵÞ

ðj − s − tÞ!ðiþ s − 2n − 1Þ!
þ 2ð2nþ 1Þ!ðiδ2nþ1

j þ jδ2nþ1
i

þ ð2nþ 1Þδ2nþ1
i δ2nþ1

j ÞgðϵÞ

when iþ j − k ¼ 2nþ 1. Notice that the latter vanish in
the free-theory limit and that MS gives access only to the
“massless” OPE coefficients according to [16].
Let us show explicitly some specific quantities. We have

that ~γ1 can be shown to be η=2 appearing in (18). The
anomalous scaling of the mass ~γ2 gets contributions only
from s ¼ t ¼ 1 in (20)

~γ2 ¼ 4ð2nþ 1Þ!ð2n − 1Þ 2nþ 3

2n − 3
gðϵÞ2: ð21Þ

The OPE coefficients with index k ¼ 1 are

~C1
i;2nþ2−i ¼

2ið2nþ 2 − iÞð2nþ 1Þ!ð2n − 1Þ
ð2n − 2iþ 3Þð2n − 2iþ 1Þ gðϵÞ;

where we neglected the marginal cases in which either i or j
equal 2nþ 1. All the above explicit results reproduce
formulas given in [14], provided that one restores the
factor rescaled away by (15) as well as the factorials, i.e.,
one makes the replacement g → 2n−1

8
c
2n−1
2

g
ð2nþ1Þ!.

VI. DISCUSSION AND OUTLOOK

In this paper we have reported a detailed analysis of
scaling and conformal properties of the Blume-Capel
universality class in the ϵ expansion. Our results are
interesting for two main reasons: This universality class
has been mostly ignored up to now (with some exceptions
[7,14,20]), even though it is nontrivial (and nonunitary) in
dimension three. Its upper critical dimension is fractional
and just above three, which presumably makes the ϵ
expansion more reliable.

We have given some numerical estimates of universal
quantities in three dimensions where ϵ ¼ 1

3
, in the hope that

a numerical simulation might confirm our findings. Based
on the Euclidean/Lorenzian duality arguments of CFT, a
candidate Lorenzian lattice model that might exhibit this
universal behavior is the spin one Blume-Capel model
(hence the name) on a two-dimensional grid (thus in 2þ 1
dimensions) and criticality should be achieved by tuning
the magnetic field to a purely imaginary value. The spin
one Hamiltonian should give enough local degrees of
freedom to probe a tricritical phase which should occur
at imaginary magnetic field because of nonunitarity.
To promote the importance of the Blume-Capel univer-

sality class, it would be interesting to understand if its
Landau-Ginzburg form corresponds to a minimal CFT in
two dimensions. According to [6,7] and following the logic
of the previous paragraph, this minimal model could either
be M2;7 or M2;9 (see also [18] in relation to the Yang-Lee
edge singularity). While there is no definite answer yet, we
believe that it could be achieved using, for example, the
methods of [21].
We have also studied the whole family of multicritical

odd models ϕ2nþ1. The general results compare well with,
and generalize, an analysis based on CFT methods of the
same models, thus strengthening their status as conformal
theories [14]. However for all models n > 2 the upper
critical dimension is smaller than three, implying that they
have only two-dimensional physical realizations (besides
possible realizations on fractals) in which they could be
interpreted as multicritical generalizations of the Lee-Yang
universality class. It would be an outstanding theoretical
achievement to understand which conformal theories these
models correspond to in the two dimensional limit.
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