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ABSTRACT 

Essential oils of different medicinal and aromatic plants have been potential candidates as source 

of food preservation, pharmaceuticals, alternative medicines and natural therapies in addition to 

their pharmacological properties like hepatoprotective, carminative, anticarcinogenic and 

antiviral effects. 

In present study some selected plants from Pothohar plateau were collected and subjected to 

essential oil extraction by hydrodistillation followed by assessment of their physical parameters 

like color, specific gravity, % yield etc and their biological activities including antioxidant, 

antimicrobial and cytotoxic attributes. The oils were then characterized by using GC and GC-MS 

techniques to find the chemical constituents. Overall the examined oils exhibited good 

antioxidant and antimicrobial behavior. To the best of our knowledge the essential oil of 

Parthenium hysterophorus has never been reported with regard to its composition as well as 

biological activities before present study. In general, Trachyspermum ammi and Cuminum 

cyminum essential oils showed significant activity in most of the assays performed in this study. 

Both showed remarkable potential for scavenging of DPPH free radical with IC50 values 2.61and 

16.86 μg/mL, respectively and inhibited linoleic acid by 80.73 and 79.36% respectively. For T. 

ammi most sensitive bacterium was Streptococcus mutans (Inhibition zone=19.7mm; MIC=1.41 

mg/mL) and fungus was Ganoderma lucidum (Inhibition zone=17.0mm; MIC=1.72 mg/mL) 

while for C. cyminum most sensitive bacterium was Bacillus subtilis (Inhibition zone=27.3mm; 

MIC=1.10 mg/mL) and fungus was Ganoderma lucidum (Inhibition zone=27.0mm; MIC=1.40 

mg/mL). Both T. ammi and C. cyminum exhibited minimum hemolysis of human erythrocytes 

i.e. 7.98 and 4.51% respectively at 0.5 mg/mL concentration. GC-MS analysis revealed that 

thymol (37.75%) was the major component of T. ammi essential oil while cumaldehyde 

(24.10%) in C. cyminum essential oil. All the experiments were done in triplicate and mean ± 

S.D. was calculated. 
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CHAPTER 1                                      

     INTRODUCTION 

The history of medicinal plants for the treatment of different diseases is as ancient as that 

of humans. The use of these plants have provided a source of basic health care in the whole 

world, especially in South American countries (Maciel et al., 2002). According to the WHO, 

more than 80% of the world’s total population depends upon indigenous forms of medicine 

which are mostly obtained from plants to fulfill the basic health care needs (Holley and Cherla, 

1998). It has been estimated that total number of plant species which are present on earth range 

from 250 to 500 thousand and among them only 1 to 10% are being consumed as food by 

animals and human beings (Cowan, 1999).  There are considerable evidences that plants contain 

certain classes of compounds e.g. flavonoids, phenolic acids, vitamins and terpenes etc. which 

play an important role in maintainance of health and also show preventive role against some 

common diseases like cancer, neurodegenerative disorders and cardiovascular diseases etc 

(Dorman et al., 2003; Fan  et al., 2007) 

Reactive oxygen and nitrogen species are the dangerous byproducts of normal cellular 

metabolism, under normal conditions. The harmful effect of free radicals towards biological 

system involve overproduction of ROS/RNS and is termed as oxidative and nitrosative stress 

respectively (valko et al., 2001). The overproduction of free radicals in living systems or 

deficiency of enzymatic or non-enzymatic antioxidants is responsible for this stress. The excess 

ROS can damage proteins, lipids or DNA by inhibiting their normal functions and changing their 

structures. The oxidative stress, in fact, is responsible for a number of human diseases. Within 

the biological system the primary ROS is the superoxide radical (O2
•-) which is created by 

premature electron leak to oxygen in electron transport phase of aerobic metabolism. The 

presence of unpaired electron in valence shell make this radical reactive, due to which it reacts 

with other molecules to give secondary radicals such as hydroxyl radical (OH•), peroxynitrate 

(ONOO•), hydrogen peroxide H2O2 and peroxyl radical (LOO•), it can also split to give singlet 

oxygen (O•).   
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Fe+2  + H2O2                         Fe+3 + OH• + OH- 

O2
•- + H2O2   O2 + OH• + OH- 

NO• + O2
•-   ONOO- 

By nature a large number of food products decay and it is necessary to take serious steps 

to prevent them from spoilage at the stage of their preparation, storage and distribution in order 

to check their proper shelf life. Normally the area where food is prepared is far away from where 

it is to be sold. So properly expanded shelf life is much desired in such food items. Although 

certain advancements have been done in cold distribution to perform trade of such perishable 

food internationally, but only refrigeration cannot guarantee the complete safety and quality of 

all such kind of food. There are large number of commonly used preservatives which have 

shown much effectiveness but their safety is the matter of great concern (Branen, 1983). Some 

other alternatives for preservation of food include pulsed light, high pressure, pulsed electric and 

magnetic fields, inert gases, antimicrobial agents and different radiations are being practiced for 

their use in food industry (Butz and Tauscher, 2002; Lado and Yousef, 2002) 

Poisoning of food has been a great problem for both industrialists and common users 

although there are several classical methods for their preservation but due to the immunity which 

microbes  develop against antimicrobial agents resulting in various intestinal disorders, diarrhea 

and vomiting (Friedman et al., 2002).  Lipid peroxidation and microbial contamination in foods 

not only reduce shelf life and deterioration of eatables but also causes several diseases and 

ultimately the economic and health losses. To prevent or slow down  this  autoxidation  process, 

various traditional synthetic antioxidants for example bulylated hydroxytoluene (BHT), bulylated 

hydroxyanisole (BHA), tertiary  butyl  hydroquinone  (TBHQ) and propyl gallate (PG)  have  

been  used  for past 50 years. These artificial compounds are although much effective but have 

adverse health effects. Due to this problem, studies are focused to discover the substances of 

natural origin which can serve the purpose. In this regard antioxidants obtained from large 

number of different aromatic and medicinal plants have been studied. Among them a large 

number of plants have proved to be effective antioxidants and delayed the process of lipid 

peroxidation of fatty food and oils. So many research groups are showing much interest in such 
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aromatic and medicinal plants (Kulisic et al., 2004). Due to this reason their demand and worth 

have increased rapidly throughout the world. 

 A lot of work is in progress in order to find out such plants including fruits, vegetables, 

leaves, bark, seeds, roots and herbs (Rababah et al., 2004). Like extracts of weeds and herbs, 

spices have also shown much potential as antimicrobial agents and as food preservatives. In fact 

the crude extract and biologically active compounds can be obtained from different plant species 

that can play a very important role as medicines and in preservation of valuable food items 

(Fatimi et al., 2007). 

Essential oils 

Essential oils (EOs) are also known as volatile oils (Guenther, 1948) and are composed of 

low molecular weight aromatic compounds with characteristic fragrances. These are extracted 

from either whole plant or from its different parts like flowers, leaves, buds, bark, wood and 

roots. Different methods are there in practice for their extraction which include fermentation, 

enfluerage, expression, solvent extraction etc but the most commonly used is hydro or steam 

distillation which is equally popular at both laboratory and industrial scale. About 3000 EOs 

have been reported so far, among of which 300 have got commercial importance as fragrances 

and flavors of different food items (Braak and Leijten, 1999).  

Essential oils are hydrophobic liquid which are concentrated in mixtures of volatile 

aromatic compounds produced by plants of known taxonomic origin. These complex compounds 

vary from plant to plant and are generated in them as secondary metabolites. A variety of these 

essential oils have many ecological roles e.g. they can perform action as internal messengers, 

they produce scents which can attract insects and can be helpful in pollination, on the other hand 

this scent could be noxious and help them as repellents for animals by causing irritation 

(Harrewijn et al., 2001). 

Essential oils are very complex mixtures mostly composed of 25-65 compounds in 

varying percentages. Every oil has 2-3 major components which may constitute 25-75% of total 

oil, while other are present in traces, for example, In essential oil of Coriandrum sativum linalool 

is the major component (68%) , whereas carvacrol and thymol are the major components in the 

essential oil of Origanum compactum (30% and 27%, respectively). Similarly in Artemisia 
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herba-alba major components are α- and β-thujone 57% and camphor 24%, whereas α -

phellandrene and limonene are 36% and 31% of leaf and carvone and limonene 58% and 37% 

respectively in the seed essential oil of Anethum graveolens, 50% of the total composition of 

Cinnamomum camphora essential oil is occupied by 1,8-cineole and in Mentha piperita, menthol 

is present in 59%. Normally, the properties shown by the oils are due to presence of these major 

components. The components of essential oils can be divided into two groups; (i) terpene and 

terpenoids (ii) aliphatic and aromatic constituents (Croteau et al., 2000; Betts, 2001; Bowles, 

2003; Pichersky et al., 2006)..  

Terpenes 

Terpenes are of various classes, different in structure and functions. A 5-carbon unit 

known as isoprene is the base of their structure. Actually they are hydrocarbons with both single 

and double covalent bonds. Terpenes containing 10 carbon atoms is called monoterpene, 10 C-

atoms sesquiterpene, 20C-atom ditepene and 30 C-atom triterpene etc. If there is present O-atom 

in terpene, it is also called terpenoid. When two isoprene units join together they give 

monoterpenes; the major components of essential oils (about 90%).  
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Extraction methods 

Some of the methods of extraction are discussed here 

Expression 

This method was mostly applied for the extraction of orange peel oil. It does not involve 

any heat source, also known as cold pressing. Fruit is removed and peels are soaked into water 
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which are then pressed using stones or wooden tools which break down the oil bearing cells and 

oil is squeezed out.  

Hydro / Steam Distillation 

It is the process in which evaporation is done followed by condensation. These are most 

widely used methods for extraction of essential oils worldwide. The equipment for extraction 

may vary in size and design depending upon the requirement but the principle is same. Plant 

material from which oil to be extracted is dipped in water (Hydrodistillation) or suspended over 

boiling water (Steam distillation). High energy steam molecules break the oil glands in plant 

material and carry volatile molecules together with them and reach condenser, where they are 

collected as the mixture of oil and water.  

Maceration 

Maceration procedures utilize a variety of solvents to extract complex oils and fragrances 

from plant material. Traditional maceration procedures require whole or ground plant material to 

soak in a water, oil or alcohol-based solvent, inside a sealed glass container, at ambient 

temperature for days or weeks. This technique varies depending on the location, composition and 

temperature stability of the extractable oil. Oils stored near the surface of the plant part may 

diffuse in a solvent more quickly than oils deep within the plant.  

Enfleurage 

In this method we use glass plates in wooden frame. These plates are covered with animal 

fat. Freshly collected flowers are embedded into this fat for some days, then these flowers are 

replaced by other fresh petals. The process is continued till the saturation of fat. Then petals are 

removed and fat is washed with alcohol to remove essential oil from it and this fat can be used in 

synthesis of soap.  

Solvent extraction 

Another method for extraction of EO’s is solvent extraction. In this technique different 

solvents are used like hexane, methanol, petroleum ether etc. this technique is normally used for 

extraction through delicate parts of plants like in case of jasmine, tuberose etc.  
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Supercritical carbon dioxide Extraction 

Sometimes supercritical carbon dioxide is used as the solvent for extraction of EO’s. this 

is the most safe and reliable method because in solvent extraction the solvent could be toxic and 

flammable but it is safe to use and can be easily separated too; its advantage over steam 

distillation is that it is operated on reduced temperature so other products can also be obtained 

like plant waxes.  

EO’s are mainly composed of mono and sesquiterpenes and their oxygenated derivatives. 

Besides these there could be present compounds of other classes like esters, alcohols and 

aldehydes (Croteau et al., 2000). Since they are composed of large number of molecular species, 

so their chemical characterization is performed using modern analytical techniques.  

Chromatography is the basic technique which is used in most of the analytical methods used for 

EO’s characterization. But for reliable identification of compounds, further confirmatory sources 

are required. 

 Gas liquid chromatography (GLC) was first described by James and Martin, also known 

as GC (James  and  Martin, 1952), a milestone in the evolution of instrumental chromatographic 

methods. In mass spectrometry (MS) substances are identified by converting them into gaseous 

ions by the bombardment of high energy electron beam, following their characterization 

according to their mass to charge ratios (m/z) and relative abundances (Todd, 1995). The 

combined technique of gas chromatography-mass spectrometry (GC-MS) has shown a great 

potential for analysis of volatile components, which are present in flavors and fragrances. The 

identity of compounds is further confirmed when retention indices are used together with the 

information supplied by the GC-MS. It means retention indices when merged with MS libraries, 

act as a filter and thus make it easy to confirm compounds by matching and thus increasing the 

quality of MS identification (Costa et al., 2007). 

There are many factors defining the yield and the quality of the EO’s in addition to the 

methods of processing and storage (Viljoen, 2006; Vuuren et al., 2007). Actually EO’s inhere in 

special oil glands present in the cellular structure of the plants. Although EO’s may be extracted 

from the same plant population, there could be variation in their chemical composition and thus 

quality. There are different factors like genetic, environmental, physiological and even 
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processing methods which directs their phytochemistry and chemical composition (Masotti  et 

al., 2003; Angioni et al., 2006). Moreover, the effect of different environmental factors like 

climate, soil quality, water stress, location of oil cells, timing of harvest and method of extraction 

have also been reported in literature together with physic-chemical variation of EO’s of various 

plants (Novak, 2005 ; Hussain et al., 2008; Anwar et al., 2009a) 

EO’s are well known for their action to kill germs, harmful bacteria, fungi and viruses. 

These medicinal properties and their pleasant smell make them useful for preservation of dead 

bodies, food preservative, analgesic, sedative, anti-inflammatory, spasmolytic and locally 

anesthesic medicines. These characteristics are not much changed, even today, but there is 

emergence of much more of their mechanism of action and properties specially antimicrobial. 

They are frequently being used especially in large number of industries like food, sanitary, 

pharmaceutical and agronomic. Some of EO’s components or they as a whole are used in 

perfumes and cosmetics , in dentistry, in agriculture, as food preservatives and additives, and as 

natural remedies. For example, in creams, soaps and perfumes geranyl acetate , d-limonene, or d-

carvone are used, whereas these are also used in household cleaning products as fragrances and 

in food as flavors. EO’s massages have become very much popular where there are applied 

together with any carrier oil because its molecules are smaller with low molecular weights so 

they can easily enter the body giving soothing effect. One more application is aromatherapy. Due 

to their medicinal potential they are also used to cure different diseases in systemic order (Silva 

et al., 2003; Hajhashemi et al., 2003; Perry et al.,2003). 

Pothohar Plateau 

The Pothohar Plateau is situated between 32° 32' and 34° north latitude and 70° 17' and 

73° 5' east longitude, north-eastern Pakistan, forming the northern part of Punjab. It borders 

the western parts of Azad Kashmir and the southern parts of Khyber Pakhtunkhwa (KPK). It 

covers an extensive area of 1.5 million hectares. The area was the home of the Soanian culture, 

which is evidenced by the discovery of fossils, tools, coins, and remains of 

ancient archaeological sites. The Pothohari Punjabi language is a major language, 

while Hindko Punjabi is also spoken by much of the population.  It is bounded on the east by 

the Jhelum river, on the west by the Indus river, on the north by the Kala Chitta Range and the 

Margalla Hills, and on the south by the Salt Range (Dasti et al., 2007). The Kāla Chitta Range 
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thrusts eastward across the plateau toward Rawalpindi; the valleys of the Haro and Soan rivers 

cross the plateau from the eastern foothills to the Indus. The ramparts of the Salt Range 

stretching from east to west in the south separate Pothohar from the Punjab Plain. The Pothohar 

Plateau includes the current four districts of Jhelum, Chakwal, Rawalpindi and Attock. The 

terrain is undulating. The Kala Chitta Range rises to an average height of 450-900 metres 

(3,000 ft) and extends for about 72 kilometres (45 miles). The Swaan River starts from 

nearby Murree and ends near Kalabagh in the Indus river. Sakesar is the highest mountain of this 

region. 

Most of the hills and rivers are bordered by dissected ravine belts. Agriculture is 

dependent largely on rainfall, which averages 15 to 20 in. (380 to 510 mm) annually; rainfall is 

greatest in the northwest and declines to arid conditions in the southwest. The chief crops 

are wheat, barley, sorghum and legumes while onions, melons, and tobacco are grown in the 

more fertile areas near the Indus. 

The diverse wildlife includes urial, chinkara, chukar, hare, mongoose, wild boar, 

and Yellow-throated Marten. Due to low rain fall, extensive deforestation, coal 

mining, oil and gas exploration, the area is becoming devoid of vegetation. The underwater areas 

of lakes (Uchali, Khabeki, Jhallar and Kallar Kahar) have been reduced to much smaller areas 

than in the past. The plateau is the location of major Pakistani oil fields. The major cities 

of Islamabad, Rawalpindi and the smaller cities of Chakwal, Jhelum and Attock are situated on 

the plateau. 

The climate of the area is of an extreme nature. The western portion of tract is hotter and 

drier than the eastern and northern parts. The winter is bitterly cold while the summer is 

unbearably hot. The temperature rises first in April, than remains almost steady, due to 

windstorms from Baluchistan, up to the middle of May when it shoots up again. June and July 

are the hottest months (average maximum temperature 42°C), while December and January are 

the coldest months (average minimum temperature 1.7°C). The monsoon starts by the third week 

of July and continues till the beginning of September when the nights get cooler. The cold 

weather sets in by the middle of October. During winter the days are bright, and the nights are 

clear. Early spring frosts are common and sufficiently severe to cause wide spread injury to 

plants, even to the indigenous tree growth in a fairly advanced stage of development. Preliminary 

analyses of weather data indicate that mean temperature decreases in a linear fashion with 
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altitude (Champion et al., 1965). Frost may occur especially at the upper altitudinal limits and in 

valley bottoms. Rainfall is scanty and uncertain, and its annual distribution is very uneven. The 

annual rainfall varies from 250 to 750 mm. Monsoons start late in July, and most of the annual 

rain is before September. Spring and fall rains are rare and uncertain. Winter rains start by the 

end of December. They stop by the end of February when the windstorms set in. Winter rains 

generally extend over a shorter period than the monsoons, followed by a prolonged period of dry 

weather. Humidity is also generally low, falling to about 15% in the summer afternoons, the 

annual mean being about 50% (Hussain & Ilahi 1991). The ground water resources are limited. 

The sources of water for humans and livestock are wells and dugout ponds. The drainage is very 

satisfactory. The entire area is drained off to the west into the Indus River, largely through Soan 

River. Springs are mostly seasonal and flow only during the rains. Perennial springs are very few 

and are found at only 14 places. 

Aims and Objectives of the Present Study 

Although plenty of studies have been carried out and a lot of results has been obtained 

regarding chemical characterization and biological activities of spices and herbs  (Muthamma et 

al., 2008; Rota et al., 2008), however, to the best of our knowledge there are no detailed findings 

on chemical composition and biological activities of spices and herbs native to Pothohar region 

of Pakistan. The present study was actually designed to explore the aromatic plants of Pothohar 

plateau and to check their medicinal value. 

The present project was designed with the following principal objectives: 

1) Exploration of essential oil potential of selected plants indigenous to  Pothohar 

Plateau. 

2) Investigation of antioxidant and biological (antibacterial and antifungal) activities 

of essential oils. 

3) Studying the profiles of bioactive constituents of essential oils using  modern 

chromatographic/spectroscopic techniques. 

4) Evaluation of essential oils for the potential uses as food additives/ food 

preservatives.  
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Medicinal Plant’s revival of learning is happening all over the globe. Safety is highly 

concerned with the herbal products when compared with the synthetic medicinal products which 

are considered unsafe for both human and environment. The synthetic products although have 

remarkable importance due to their effective and quick mode of action yet herbs are considered 

important due to their medicinal abilities, flavoring and aromatic qualities. Despite the distinctive 

properties of the synthetic drugs, herbal products due to their security and safety are turning the 

people to trust on theses, blindly. Over three quarters of the world population is entangled by the 

plants and plants extracts for their health. About 3-% or more of botanical species are being used 

all over the world for medicinal intentions. The consumption of the plant drugs was estimated to 

be 25% of the total drugs consumed in the developed countries such as United States whereas the 

consumption was 80% in the developing countries including China and India. Thus, the 

medicinal plants are economically important to the countries such as India when compared to the 

rest of the world. Two third of the plants is reported to be used in modern medicinal and health 

care system by these countries where local medicinal system are used by the rural population 

(Joy, et al., 1998).   
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2.1. Essential Oils 

Essential oils (EOs) are considered as the secondary metabolites produced by the 

aromatic plants. The strong odor is a main characteristic of these volatile oils. Complex natural 

compounds are used in order to concentrate these Essential Oils (Bakkali et al., 2008; Guenther, 

1948). Variety of chemically pure and volatile (under normal conditions) aromatic substances 

combine to give these essential oils having a characteristic odor thus making them to be used in 

many ways by the society (Gunther, 1952). 

2.2. Sources: 

A plant of a known origin or a part of it  produce essential oils when subjected to physical 

means of isolation like pressing and distillation. Principally, volatile compounds are produced by 

all the plants quite often or in traces. By definition, “Essential oil plants” are those plant species 

which are known to produce an essential oil of commercial interest (Harrewijn et al., 2001). 

Approximately 300 out of 3000 known essential oils are being used commercially in 

pharmaceuticals, food, sanitary, cosmetics agronomics and perfume industries these days (Braak 

and Leijten, 1999). The families of Lamiaceae, Umbelliferae and Asteraceae contain most of the 

plants which produce essential oils (Burt, 2004; Celiktas et al., 2006; Hussain et al., 2008). 

Different parts of the plants are used as a source of different aromatic oils such as flowers of 

rose, jasmine etc,  clove’s buds, seeds of carrot and caraway, curry leaves and basil leaves,  twigs 

of pine, clove’s  stem, cinnamon’s bark,  wood of sandalwood, fruits of citrus and fennel, lemon 

grass and ginger roots (Shahat et al., 2011; Burt,  2004; Hassine et al., 2012). 

2.2.1. Parthenium hysterophorus 

Parthenium hysterophorus (carrot weed) belongs to a large and widespread family of 

angiosperms called Asteraceae; the largest family of flowering plants distributed worldwide 

(except Antarctica) with 1,620 genus and above 23,600 species (Stevens, 2001). This family is 

generally found in Brazil, southern Africa, central Asia and in the tropical and subtropical 

regions of North America. Asteraceae is the family of herbs, shrubs and even trees but 

principally in the tropical regions, herbs are of primary importance. All the disturbed land, 

including farms, pastures, and roadsides are invaded by P. hysterophorus (Shabbir and Bajwa, 

2006).  
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An annual herb is approximately 2 m high with trichomes covering the branched stem. 

Leaves are up to 30 cm long, closed to the soil, lobed, hairy (small hair on both the sides), with a 

pale green color, alternate, irregularly dissected and bipinnate. About 6-55 leaves are present per 

plant. Five seeds (2 mm long) with scales are present in each flower. Up to 100,000 seeds in the 

lifecycle of a single plant are produced. 22 to 25°C is the optimum temperature required by 

Parthenium seeds to germinate but the seeds can also germinate at 8 to 30° C. The outbreaks of 

epidemic proportions, in some areas also affect agriculture, livestock and human health. 

P. hysterophorus after their extraction of water-soluble drug substances, has shown 

activity to treat various diseases like fever, diarrhea, neurologic disorders, infections in urinary 

tract, dysentery, in malaria, inflammation, eczema, skin rashes, herpes, rheumatism, cold, heart 

pain and gynecological disorders (Surib-Fakim et al., 1996). It has also shown potential 

pharmacologically as pain reliever in muscular rheumatism, therapeutic for neuralgia and as 

vermifuge and in hepatic disorders (Maishi et al., 1998). The major element of this plant is 

Parthenin, which has anticancer properties (Venkataiah et al., 2003). Significant antitumor 

activity was shown by the methanol extract of its flowers (Das et al., 2007). Formerly, the in vivo 

and in vitro antitumor potential of P. hysterophorus extracts were established by Ramos et al. 

(2002) showing positive results with reduced tumor size and overall survival of cell lines. When 

the aqueous extracts were tested on alloxan-induced diabetic rats, P. hysterophorus showed 

hypoglycemic activity against them (Patel et al., 2008). So drugs can be developed for diabetes 

mellitus by using flower extracts of this weed. Silver nanoparticles synthesized from the plant’s 

extract have shown bactericidal, wound healing and other medical properties (Parashar et al., 

2009).  

2.2.2. Eucalyptus camaldulensis 

It belongs to Myrtaceae; a family of flowering trees and shrubs. Dicotyledonous plants 

occupy the major space in this family. All the species included in this genus are woody, 

with essential oils (Wilson et al., 2001) with evergreen simple leaves, alternate to opposite, 

usually with an entire margin which is not toothed. Recently, it is estimated that over 5650 

species are included in some 130-150 genera of Myrtaceae (Cheewangkoon et al., 2009). Species 

of some Corymbia, Eucalyptus and Syzygium genera (within the Myrtaceae) are widespread in 

tropical and temperate regions of the Southern Hemisphere (Wilson et al. 2001; Ball, 1995).  
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Eucalyptus spp. being more abundant than other myrtaceous genera is widely distributed 

due to their frequent growth as exotics in commercial plantations. The tree flora of Australia is 

dominated by the members of this genus. Only 15 species are present in the regions other than 

Australia, out of which, 6 are present in Australia as well. Though most of the species are unable 

to tolerate the frost, yet the wide cultivation is observed in the America, Europe, Africa, 

the Middle East, India, Pakistan and China. Some eucalyptus species have characteristic 

properties including fast growth of wood, producing oil which is being used as cleaning, 

insecticidal purpose, or in drain swamps reducing the risk of malaria. The total impact of 

eucalyptus is controversial as they are laudable for their economically beneficial impact for poor 

populations on one hand while they are criticized for being invasive water-suckers on the other 

hand (Ball, 1995).  

E. camaldulensis, native to Australia is distributed worldwide, especially in Africa 

(Francisco et al., 2001). Eucalyptus trees are also distributed over a considerable extent in all 

Mediterranean basins (Ergin et al., 2004). E. camaldulensis is a perennial, single-stemmed, size 

ranging from medium to tall tree with a height of up to 30 m (Bren and Gibbs, 1986), although 

the heights up to 45 m and 0.8m in diameter are also reported. February to April is the flowering 

time followed by fruiting in May until August. 15-30 cm long leaves with 2-5 cm width and of 

yellow-green in color (Baytop, 1999). Many species of eucalyptus produce three types of volatile 

oils; medicinal oils, perfumery oils and industrial oils (Toloza et al., 2008). Both plant extract 

and essential oil from some of the eucalyptus species have been reported to exhibit antifungal, 

antibacterial, analgesic and anti-inflammatory properties. (Falahati et al., 2005; Hasegawa et al., 

2008). The essential oil extracted from leaves of eucalyptus is widely used as a mosquito 

repellant, externally and as an insecticide in India. In Spain, colds and catarrh are being treated 

by the inhalation therapy for which the essential oil of fruits and leaves is used (Ross and 

Totowa, 2001). Leaf extract obtained by hot water has shown hypoglycemic abilities if given 

orally (Ross and Totowa, 2001). The camphor smell of eucalyptus oil affects the nervous system 

and provides a feeling of alleviation. Moreover, it is useful to stop bleeding, migraine headaches 

(when applied by massaging), malaria, inflammations and wounds. Its chewing is helpful in 

treatment of congestion in respiratory tract, bronchitis, cough, tuberculosis, gum and mouth 

diseases (Baytop, 2000). 
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2.2.3. Eucalyptus citriodora 

It is a tall tree with a height of 35 m (or more sometimes), mostly found in 

temperate and tropical north eastern Australia natively but its commercial cultivation was 

introduced in other parts of the world including Asian countries (Grieve, 1997).   

Eucalyptus citriodora has blatantly narrow-leaves with a strong smell of lemon. The tree 

is covered by the smooth, powdery, pale bark which is completely or slightly blotched and sheds 

in thin curly flakes throughout the height of the tree. Corner of the leaf and the stem junction is 

occupied by the pear-shaped buds present in clusters of three whereas fruit (capsule) is in urn-

shape. Flowering of this plant takes place in January, April, May-October and December. 

The tree is highly enriched in citronellal essential oil which is extracted from its dried 

leaves with a highest percentage of essential oil (0.4%) greater than the other species (Elaissi et 

al., 2011). It potentially acts as insects repellent (Olivero-Verbel et al., 2010) to control poultry 

red mites (George et al., 2009). The essential oil extracted from leaves  shows some other 

properties such as it acts as an acaricidal (Clemente et al., 2010), anti-inflammatory (Silva et al., 

2003), antibacterial (Low et al., 1974), and to treat influenza, skin rashes and chest problems 

(Khalil and Dababneth, 2007). Antifungal activity is significantly associated with the oil 

extracted from bark, flowers and fruits (Musyimi and Ogur, 2008). Besides essential oils, 

eucalyptin, β-sitosterol and triterpenoids are some other active compounds extracted from leaves 

(Asolkar et al., 1992). In vitro cytokine’s production and arachidonic acid metabolism in human 

blood monocytes is inhibited by eucalyptol (1, 8-cineole), an active element of the essential oil 

(Jeurgens et al., 1998). 

2.2.4. Eucalyptus tereticornis 

Eucalyptus tereticornis is a tall tree with a height of 30-45 m with a faster growth rate. 

The specie occupies its space along streams, in open forests or as scattered in alluvial plains. 

They show better growth in light textured, neutral, or slightly acid. The species tolerates 

temperatures of -7°C in the South of China and Pakistan. Long periods of drought are not 

tolerable by the specie. The areas with annual precipitation of 800 mm to 1500 mm are the best 

for its vigorous growth, but the areas with less rainfall such as India, Israel and Zimbabwe and 

the areas with considerably more rainfall (Colombia and Papua New Guinea) are also suitable for 

its growth.  

http://en.wikipedia.org/wiki/Temperate
http://en.wikipedia.org/wiki/Tropics
http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/Flower
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The earlier reports support the presence of α-pinene and 1,8-cineole as major active 

components of E. tereticornis essential oil (Coelho et al., 2005; Ogunwande et al., 2003; Pino et 

al., 2001). The antioxidant activity was associated with essential oil extracted from fresh and 

decaying leaves of E. tereticornis (Singh et al., 2009). A strong fungitoxic activity against 

Fusarium oxysporum and Heminthosporium oryzae was also found in essential oil of E. 

tereticornis (Kaur et al., 2011). 

2.2.5. Syzygium aromaticum 

Syzygium aromaticum (common name: clove) from the family Myrtaceae, is an 

important aromatic spice. Commercial cultivation of clove is exercised in India, Sri Lanka, 

Indonesia and South China. Clove oil is widely used as a flavoring agent to flavor pastry, special 

sauces and condiments. It is also used in medicines, especially in those prepared for gum and 

teeth. The tinctures, extracts and oleoresins of Clove are also used (Atal and Kapur, 1982). Clove 

bud oil has antioxidant property and is effective against bacteria, fungi and insects. It is used as 

flavoring agent and antimicrobial material in food (Huang et al., 2002; Lee and Shibamoto, 

2001; Velluti et al., 2003). The strong biological and anti-microbial activity of the Clove 

essential oil is due to the presence of eugenol; a phenolic compound which denatures proteins 

and changes the permeability by reacting with membrane phospholipids (Briozzo, 1989; Deans 

& Ritchie, 1987). 

2.2.6. Myristica fragrans 

Myristica fragrans (Nutmeg) is a member of Myristicaceae family of flowering plants 

present in Europe, Asia and America. This family after the name of nutmeg plant is also called 

Nutmeg family. About 20 genera along with approximately 440 species of trees and shrubs of 

this family are found in tropical areas. The large trees are valuable for the timber industries. 

Myristica fragrans is a 12 m high evergreen plant imported to the Europe in 12th century 

by the Arab traders (Barceloux, 2008). Two important species of the family; Nutmeg (nut) and 

Mace (dried scarlet) are processed separately when dried. The composition and organoleptic 

properties of nutmeg and mace oils has been evaluated in the last century (Choo, 1999). Meat 

dishes, pastry, liqueurs, cola drinks and perfumes are flavored by using nutmeg and mace oils. 

They were found useful against stomachache, rheumatism and vomiting during pregnancies. α -

pinene being a dominant component of Myristica fragrans oils was 25.07% along with sabinene 



38 

 

(21.38%), 4-terpinol (13.92%) and myristicin (13.57%). when analyzed chemically (Olajide et 

al., 1999; Sonavane et al., 2002). 

Studies (both in vivo and in vitro) show pharmacological activities associated with 

nutmeg (El-Alfy et al., 2009) for example hepatoprotective activity against some chemicals 

damaging liver (Morita et al., 2003). The volatile oil of M. fragrans showed antibacterial 

activities against some bacteria (Dorman and Deans, 2000). When compared with antioxidants, 

ascorbic acid and alpha tocopherol, the essential oil acted as a scavenger. About 30% in the 

extract is myristicin in the essential oil acting as an anticancer agent (Chirathaworn et al., 2007; 

Stefano et al., 2011). The presence of this compound in the nutmeg essential oil contributes to its 

anti-tumoral properties. 

2.2.7. Citrus reticulata 

 It is a member of citrus family called Rutaceae. Citrus is one of the most economically 

important genus including 17 species such as C. sinensis (orange), C. limon (lemon), C. paradisi 

(grapefruit), and C. aurantifolia (lime) etc. (Davies and Albrigo, 1994; Shaw, 1977). Generally 

found in tropical and temperate regions and in the hilly states of northern India with 1200m 

altitude (Davies and Albrigo, 1994). It is one of the ancient crops cultivated by the humans 1200 

BC (Moore, 2001). They are traditionally used as jams, juices and desserts. A considerable 

amount (50%) raw processed food as a byproduct from seeds, peels and pulps is produced by 

food and agro food processing industries (Anwar et al., 2008). Flavonoids, dietary fibers and 

essential oils are produced by these by products as functional ingredients (Senevirathne et al,. 

2009). Lime is used to flavor beverages, cookies and desserts (Buchel, 1989; Dharmawan et al; 

2007). 

 Essential oil is extracted from fruits and leaves and contains d-limonene, β-myrcene, α-

pinene, sabinene, 3-carene, α-terpinolene and others (Stashenko et al., 1996; Sharma and 

Tripathi, 2008). Limonene and β-pinene were the major components of the essential oil extracted 

from C. jambhiri found in Florida, USA (Shaw and Wilson, 1976). When oil extracted from the 

same specie collected from France, 91.4% of limonene and 2% sabinene were present (Lota et 

al,. 2002). The percentages were different in the essential oils of the species from Jeju island and 

Korea (Baik et al,. 2008). The variation in quantity of limonene directly influences the odor and 
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quality of the oil extracted from the species of different climatic conditions (Dharmawan et al., 

2007). 

A wide spectrum of biological activities of Citrus essential oils makes them safe to use. 

They showed antimicrobial, antioxidant and anti-inflammatory properties (Fisher and Phillips, 

2008; Rehman, 2006). Essential oils of Citrus limon and Citrus aurantifolia showed more 

inhibitory actions against fungus growth than Citrus paradisi and Citrus sinensis (Kaute et al., 

2006). C. limettioides oil has linalool, α-pinene, α-terpinol (Myoatasyoh et al., 2007) along with 

citral which showed fungicidal and bactericidal activities by forming a charge transfer complex 

to fungal cell with an electron donor (Kurita et al., 1981). A significant antioxidant activity was 

found associated with EO of C. pyriformis when compared with ascorbic acid (Hamdan et al., 

2010). 

2.2.8. Murraya koenigii 

 

 Murraya koenigii with a common name: “curry leaf” or “Kari patta” is a member of 

Rutaceae family including more than 150 genera with 1600 species (Satyavati et al., 1987). It is 

generally found in India, Sri Lanka and South Asia. It is a 6 m high deciduous shrub with a 

diameter of 15-40 cm; characterized by short trunk, smooth grey or brown bark and thick 

shadowy crown (Mhaskar et al., 2000). Essential oils extracted from fresh or dried leaves 

powder both are used as flavors in soups, curries, fish, meat and egg dishes. Different soaps and 

cosmetic aromatherapy industries also utilize its essential oil (Rao et al., 2011). It has been used 

traditionally as antiemetic, anti-diarrheal, antipyretic, blood purifier, antifungal, antidepressant, 

anti-inflammatory, in body aches and kidney pains (Rana et al., 2004; Ningappaa et al., 2010; 

Khuntia et al., 2011). 

Highest antioxidant activity was shown by 1:1 ratio alcohol-water extract of curry leaves 

(Ningappaa et al., 2008). Carbazole alkaloids and carotenoids being the most described 

components in essential oil contribute to remarkable antioxidant activity. In vitro antioxidant 

activity of different extracts of Marraya koengii was found to be as followed; seeds aqueous > 

leaf aqueous > leaf CHCl2: MeOH > seed CHCl2: MeOH (Minakshi and Minali, 2004).  

A strong antifungal activity against human pathogenic fungi was shown by Murrayanine, 

girnimbine and mahanimbine, the components present in stem bark (Das et al., 1965). The 

presence of β-caryophyllene and gurjunene in the essential oil makes it effective against 

Rhizoctania batiticola and Helminthosporium oryza (Iyer and mani, 1990). Oils and aqueous 
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extracts of leaves are active against some staphylococcus and streptococcus bacterial species. A 

promising antibacterial activity was shown by the crude extracts, chloroform soluble and 

petroleum ether soluble fractions (Akerel and Ayinde, 1998; Sanjay and Singh, 2001). 

2.2.9. Piper nigrum 

Piper nigrum is famous for its pungent quality and is called as “spice king” belonging to 

the family Piperaceae (Srinivasan, 2007; Ahmad et al., 2010; Abbasi et al., 2010). The group 

includes 13 genera with almost 1920 species estimated roughly. P. nigrum, P. longum and P. 

betle are the most famous species in tropical and subtropical regions of Asia (Khan et al., 2010). 

Black pepper is generally used in dietary items and medicines. They are also used as 

preservatives (Hussain et al., 2011). Piperine; an active component of the plant activates 

pancreatic enzymes and the enzymes of intestines and thus increases the bile secretion when 

given orally (Tiwari and Singh, 2008). It is used to treat digestive and respiratory disorders such 

as cold, fever and asthma (Dhanya et al., 2007; Parganiha et al., 2011). P. guineense is beneficial 

to treat bronchitis, gastric ulcer, rheumatism and some viruses (Parmar et al., 1997). Piperine can 

also influence mood and cognitive disorders (Wattanathorn et al., 2008). 

About 64.05% of the total P. nigrum oil was comprised of monoterpene compounds and 

relatively lower amount of oxygenated sesquiterpene (13.06 %). The major compounds present 

in the fruits of black pepper were 35.06% limonene, 12.95% β-pinene and 9.55% linalool (Fan et 

al., 2011).  β-caryophyllene; a sesquiterpene in P. nigrum was reported to be the major 

component as 24.2% (Singh et al., 2004). The essential oil extracted from dried fruits of black 

pepper from Cameron contained D-germacrene, limonene, β-pinene, β-caryophyllene, α-

phellandrene (Jirovetz et al., 2002). The essential oil from the leaves was found to be enriched 

with limonene, β-pinene and β-caryophyllene (Sasidharan and Menon, 2010).  

When compared with tetracyclin (anti bacterial) and nystatin (anti fungal), fresh pepper 

berry oil was found to be more active against Bacillus subtilus and Pseudomonas aerugenosa.  It 

was also active against Penicillium spp., Candida albicans, Saccharomyces cerevisiae (yeast) 

and Trichoderma spp. Pepper leaf oil showed less activity against all the reference organisms 

studied (Sasidharan and Menon, 2010).  

2.2.10. Elettaria cardamomum 

 

Elettaria cardamomum is a perennial herb also known as cardamom (local name), small 

cardamom and elaichi etc. it is a 4 m tall plant commonly found in Pakistan, India, Burma and 
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Sri Lanka (Rahman et al., 2000; Nadkarni, 1976). It is the member of ginger family called 

Zingiberaceae; a family of flowering plants consisting of 52 genera and 1300 species of aromatic 

herbs. Once the teguments are opened, fragrance is lost so the premature green-colored seeds are 

collected which are then used as a spice. A large number of beauty products uses its essential oil. 

It is widely used in flatulence, acts as diuretic, abortifacient, antibacterial, antiviral and 

antifungal and also treats constipation, colic, diarrhea, vomiting, headache, epilepsy and 

cardiovascular disorders (Khan and Rahman, 1992; Duke et al., 2002). 

Multiple chemical compounds were reported when analyzed such as α-terpineol, 

heptanes, linalool, α-pinene, β-pinene, limonene, phytol, borneol, geranyl acetate, terpinene and 

others (Shaban et al., 1987; Gopalakrishnan et al., 1990; Duke, 1992). Antibacterial and 

anticancer activities were also shown by cardamom essential oils (Gilani et al., 2008; Jamal et 

al., 2006). 

2.2.11.   Amomum subulatum 

 
It is also a perennial herb called “large cardamom (elaichi)” commonly found in Asia, 

Himalya, Nepal and Bengal. It belongs to the family Zingiberaceae (approx. 150 species); the 

second largest genus (Thomas et al., 2009). It is a 2-6 m tall plant with long, dark green leaves 

and a pod with green color carrying 10-15 seeds (Hussain et al., 2009) which is used as a 

flavoring agent and spice (Naik et al., 2006). Its seeds are used s appetizer, diuretics, liver tonic 

to treat vomiting, indigestion, gastric and rectal diseases (Jafri et al., 2001). Biological, 

hepatoprotective, and anti-inflammatory activities are associated with essential oil of cardamom 

(Bisht et al., 2011; Alam et al., 2011; Parmar et al., 2009). 

 α-pinene, β-pinene, terpinene-4-ol, 1-8-cineole, α-terpineol, D,L-limonene and nerolidol 

were the major components reported in the essential oils when analyzed by GC-MS (Satyal, et 

al., 2012; Joshi et al., 2013). These oils were active against some Gram-positive bacteria 

(Bacillus cereus), Staphylococcus aureus, Bacillus subtilus, Pseudomonas aeruginosa, fungus 

(Aspergillus niger) and yeast (Sacharomyces cerevisiae) (Agnihotri et al., 2012). 

2.2.12.   Trachyspermum ammi 

 

Ajowain (common name) is a member of a well known family of aromatic plants 

Apiaceae including 434 genera and 3700 species such as cumin, dill, fennel, celery and coriander 
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etc. generally found in Pakistan, Iraq, Iran, Afghanistan and India (Zargari, 1989). It is a 60-90 m 

tall herb grows in waterless soil with high salt concentrations (Joshi, 2000). 

The essential oil is chemically composed of thymol, p-cymene, β-pinene and γ-terpinene 

(Gandomi et al., 2013; Singh et al., 2004). Variations in thymol concentration may be due to 

geographical location changes, time taken by the plant to grow, preparation procedures etc. 

(Dehkordi et al., 2010). T. ammi is one of those plants showing potent antimicrobial activities. 

Ethanolic extracts of T. ammi inhibited the mycelia growth and spore germination of a fungus 

named Aspergillus ochraceus which produces toxins (Murthy et al., 2009). The presence of a 

phenolic group (–OH group) in the thymol is responsible for its high microbicidal and anti-

aflatoxigenic property (Farag et al. 1989). 

The antioxidant activity increases as the concentration of T. ammi’s essential oil 

increases. The activity of alcohol extract of the oil was lower than its water extract (Khanum et 

al. 2011). 

2.2.13. Foeniculum vulgare 

 

Foeniculum vulgare (saunf) is a 2.5 m tall plant with yellow flowers, feathery leaves (40 

cm long) and hollow stems. It is an aromatic plant whose seeds are used to flavor bakery 

products, ice cream, alcoholic beverages and some dishes (Maroto et al., 2006). Fennel’s 

essential oil is used to flavor bread, pickles and cheese. It is an active component in cosmetic and 

pharmaceutical products due to their medicinal activity (Piccaglia and Marotti, 2001). Its herbal 

drugs were reported to have hepatoprotective, antispasmodic effects (Ozbek et al., 2003; 

Reynolds, 1982) along with anti-inflammatory, analgesic and antioixidant activities (Choi and 

Hwang, 2004). The anticancer activity was also associated with the fennel seeds oils (Anand et 

al., 2008). 

Renjie et al. (2010) reported phenylpropanoid derivatives and monoterpenoids as the 

major components along with anethole, limonene, β-thujaplicin (in leaf, having antifungal and 

antibacterial activities), pinene, limonene and fenchone (Maroto et al., 2006; Arima et al. 2003; 

Morita et al. 2004). The percentage of anethole and limonene was different in the essential oils 

of leaves and seeds. Anethole was 51.08% in leaves oil and 58.54% in seeds whereas limonene 

was 22.9% in leaves and 19.6% in seeds as the major constituents (Chowdhry et al., 2009). 
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 β-myrcene (0.19%), limonene (5.76%) and trans-anethole (78.39%) in Foeniculum 

vulgare essential oil were reported to be major components by Yu et al. (2013) and they were 

found Trans-anethole (65.4%), fenchone (8.26%), estragole (5.2%) and limonene (4.2%)  (Roby 

et al., 2013). 

The quenching ability of Foeniculum vulgare of DPPH radical is higher (0.35mg/ml) 

when compared with ascorbic acid or BHT (0.44mg/ml) (Shahat et al., 2011). High antibacterial 

effect of fennel oil on Candida albicans was reported by Khaldun (2006). Ozcan et al. (2006) 

reported bactericidal action of Foeniculum vulgare on Salmonella typhimurium and Salmonella 

dysenteriae. Scavenging activity by methanol extract was high as compared to ethanol extracts. 

B. cereus and A. flavus showed highest sensitivity through largest inhibition zones whereas E. 

coli showed the smallest inhibition zone with highest MIC value (Cantore et al., 2004). Fennel 

essential oils inhibit inhibit a wide range of bacillus species and aspergillus species (Ozcan et al., 

2006; Mimica-Dukic et al., 2003). 

2.2.14. Cuminum Cyminum 

Cumin (Cuminum cyminum) with a common name “jeera: (in idia) and “zira” (in Pakistan 

and Iran) is a flowering plant of Apiaceae family with a distinctive aroma of the seeds and is 

found in India and Mediterranean (Nadeem and Riaz, 2012). Cuminum cyminum is herb with a 

20-30 cm tall having branched stem and 5-10 cm long leaves or leaflets which are pinnate or 

bipinnate. A single seed is present in 4-5 mm long lateral cone-shaped fruit. The spice is 

regularly used as a flavoring agent (2nd most popular; the first being black pepper), in Indian and 

Roman cuisines. It is used on meat along with other common seasonings (Thippeswamy and 

Naidu, 2005; Raghavan, 2007). Cumin is a famous spice in Pakistan, India, North Africa, Middle 

East, Sri Lanka, Cuba, Northern Mexico and in some parts of Western China (Daniel and Maria, 

2000).  

The  GC-MS analysis inferred that C. cyminum essential oil was enriched with α-pinene 

(29.1%), limonene (21.5%), eucalyptol (17.9%), and linalool (10.4%) as the main components 

contributing the well characterized flavor and strong aroma (Allahghadri et al., 2010). 

Supercritical carbon dioxide extraction method reported the presence of β-pinene and γ -

terpinene as the chief components of cumin oil (Eikani et al., 1999). About 37 major components 

isolated through hydrodistillation of the essential oil were γ -terpinene, cuminal, safranal, 

cuminic alcohol, p-cymene, and β-pinene (Rong and Zi-Tao, 2004). GC-MS of the essential oil 
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showed p-cymene, carvacrol, α-thujene, thymol, α-pinene, β-pinene, and t-anethole as main 

components as biologically active ingredients (Sultan et al., 2009). 

C. cyminum L. exhibited potential activity against various microbes including bacteria 

and fungi (Iacobellis et al., 2005). In fact the oil was found to be more effective than antibiotics 

even when used in its very low concentration (Singh et al., 2002). The scavenging activity for  

DPPH radical (presented as IC50 values) was 31 μg/mL for C. cyminum oil and 11.5 μg/mL for 

BHT (Hajlaoui et al., 2010). β-carotene bleaching was also inhibited by the C. cyminum essential 

oil and BHT. The IC50 values were found to be 20 and 75 μg/mL, respectively (Gachkar et al., 

2007). In another study, IC50 value was found to be 54.7 g/mL (Milan et al., 2008). The 

oxidation of β-carotene and linoleic acid and DPPH  was monitored in coupled form using black 

cumin essential oil as antioxidant and profound reduction in lipid peroxidation was observed 

(Sultan et al., 2009). 

2.2.15. Cinnamomum zelenicum 

 
Cinnamomum zelenicum is a small evergreen tree with a height of 10-15 meters falls in 

family Lauraceae. It is the family of flowering plants including 3000 species in 50 genera, 

present in tropical and temperate areas of Asia and America. It is indigenous to Sri Lanka and 

tropical parts of Asia. Cinnamon bark is efficient in medicines acting as an antiemetic, anti-

diarrheal and anti-flatulent (Hsieh, 2000). It is a spice and is used in perfumes, as a flavoring 

agent and by pharmaceutical industries in various medicines (Raina et al., 2001; Simic et al., 

2004). 

Eugenol was found to be the main component in the volatile oil of leaf (87.3%) when 

analyzed by GC-MS and GC. Other components were bicyclogermacrene, α-phellandrene, and 

β-caryophyllene, benzyl benzoate, linalool and eugenyl acetate in Cinnamomum zeylanicum leaf 

essential oil collected from Sri Lanka (Singh et al., 2007; Schmidt et al., 2006). The 

concentration of these compounds in the leaf essential oil may vary as the variation in origin of 

the plant (Patel et al., 2007). There were 23 different chemical compounds detected with eugenol 

(being the major one) from the essential oils extracted through hydro-distillation of leaves and 

twigs of C. zeylanicum (Lima et al., 2005). 

Ooi et al. (2006) found that the growth of all the microbes studied was inhibited by 

cinnamon oil with the MIC range between 75 - 600 μg/mL with the best activity for Vibrio 

parahaemolyticus and least for Pseudomonas aeruginosa and E.coil. Leaf volatile essential oil at 
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6 μL was found to be 100% active against all fungus except A. ochraceus and A. terreus.  The 

growth of these fungal species was completely inhibited at 2 μL. The remarkable activity was 

against A. flavus with complete inhibition at only 2 μL concentration whereas the other studied 

species were completely inhibited by bark oil at 6 μL (Singh et al., 2007). 

The methanolic extracts obtained from bark of C. verum showed the better antioxidant 

activity in comparison with other reference compounds. Bark extract exhibited more ability to 

donate hydrogen atom (reducing power) and also the scavenging ability towards free radicals and 

chelate formation with metals (Mathew and Abraham, 2006). Significant activity (more than 

95%) with high (420 mg/g) gallic acid equivalent was associated with cinnamon leaf oil. The 

antiradical activity of leaf oil was reported to be higher when compared with butylated hydroxyl 

toluene (IC50 = 4.5 mg/L for the former and IC50 = 7 mg/L for the later) (Dongmo et al., 2007). 

The radical activities were very strong with IC50 (18.4 μg/mL) (Chericoni et al., 2005). 

2.3. History of Essential oils 

French chemist M. J. Dumas was the first to inspect the components of volatile oils 

systematically in 1800-1884. In his results published in 1884, he analyzed the components 

containing hydrocarbons, oxygen, sulfur and nitrogen. However, the most significant work was 

performed by O. Wallach, (1914) who found that the terpenes (naming based on their botanical 

sources) were chemically identical. An individual component of essential oil was isolated 

through distillation techniques and the basic characterization was performed by treating with a 

number of inorganic reagents. The hydrocarbons with the molecular formula C10H16 at that time 

were named “terpenes” by Kekule as they were present in turpentine oil. The components with 

the molecular formula C10H16O and C10H18O were also referred to as terpenes.  

In 1891, various terpenes including pinene, limonene, phellandrene, terpinolene, 

sylvestrene, and fenchene were reported by Wallach in one of his book named Terpene and 

Campher consisting of 180 articles (Wallach, 1914). He got Nobel Prize in 1910 due to his 

proposal that isoprenes are the building subunits of terpenes.  F. W. Semmler and G. Wagner, in 

1899, analyzed geraniol, linalool, citral, and many more as those were occurring most frequently.  

The structure of a bicyclic sesquiterpene, caryophyllene, has been the matter of doubt for 

several years for chemists. W. Treibs in 1952 isolated caryophyllene epoxide from the oxidation 

products of clove essential oil and then infrared (IR) studies showed that caryophyllene had 4 



46 

 

and 9 rings (Sorm et al., 1950). Later on, the Nobel Prize in Chemistry was awarded to Barton 

(Barton and Lindsay, 1951), upon confirming Sorm’s suggestion in 1969. 

The chemical structures of various terpenes and products of natural origin were 

interpreted and explained by Woodward using UV-Vis spectroscopy during the early 40s. 

Maximum absorption of UV and the substitution pattern of a diene or unsaturated ketone (either 

α or β) were correlated to figure out the structure of new natural compound. The series of these 

rules were later called as Woodward rules (Woodward, 1941). Subsequently, separation methods 

of chromatography and NMR (nuclear magnetic resonance) spectroscopy were introduced to 

organic chemistry to clarify and explain the further structure of terpenes. 

2.4. Chemistry of Essential oils 

Essential oils are the complex mixtures of volatile components synthesized biologically 

by the living organisms. Hydro distillation, steam distillation and expression (for citrus fruit) can 

be used in order to extract the oil from their matrix (Baser, 1995). Volatile hydrocarbons and 

oxygen derivatives of terpenoids and non-terpenoid compounds are present in essential oils. 

Nitrogen or sulfur derivatives of alcohols, acids, esters, epoxide, aldehydes, ketones, amines, 

sulphides may also be present in essential oils. Monoterpenes, sesquiterpenes, diterpenes, 

phenylpropanoids, fatty acids, esters and their decomposed products may also contribute in the 

composition of essential oils (Breitmaier, 2005). Essential oils are generally extracted from the 

aromatic plants. Some are obtained from the animal sources such as musk, civet or sperm and 

microorganisms (Baser, 2005). 

 The components of essential oil are divided into terpenoids and non-terpenoid 

hydrocarbons. 

2.4.1. Terpenoids 

Terpenes being an important component of essential oil are one of the largest chemicals 

found naturally. They are also called isoprenoids. Two or more isoprene molecules in a head-to-

tail fashion rearrange themselves to form a terpene molecule. A large number of terpenoids 

(>30,000) has been isolated from plants, animals and microorganisms (Dewick, 2002). 

Hemiterpenes have molecular formula of C5H8. Two molecules of isoprene join to form 

Monoterpenes with a molecular formula C10H16 and joining of three forms Sesquiterpenes with 

the formula C15H24. Four isoprene molecules form Diterpenes (C20H32) (Dewick, 2002).  
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2.4.2. Monoterpenes 

Two isoprene units when join together, they form monoterpenes. They can be either 

cyclic or acyclic. β-myrcene, β-Ocimene are acyclic whereas p-menthane or p-cymene are 

monocyclic. δ-3-carene is a bicyclic whereas  tricyclene is a tricyclic monoterpene found in 

essential oils (Wise and Croteau, 1999). 

 

β-ocimene  β-myrcene  p-menthane  p-cymene 

 
Essential oils of many species contain aromatic monoterpenes like p-cymene, carvacrol, 

and thymol etc. are found in oregano, thyme, savory  and rose essential oils.  

2.4.3. Acyclic Monoterpenes 

It is a small class of monoterpenes in which the trienes are included such as myrcene, 

Ocimene and alcohols like geraniol, nerol, linalool, etc. 

 
              Linalool            Nerol        Geraniol 
 

2.4.4. Cyclic Monoterpenes 

Based on the size of the ring, cyclic monoterpenes are divided in three subgroups: 

I. Monocyclic monoterpenes 

II. Bicyclic monoterpenes 

III. Tricyclic monoterpenes 

2.4.5. Monocyclic Monoterpenes 

A single ring is present in these monoterpenes. They are also classified in monoterpene 

hydrocarbon’s group. Limonene, (α,β,γ)-terpinene, terpinolene, α-phellandrene and β-

phellandrene are some of the compounds included in this group. Aromatic monoterpenes include 
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p-cymene is an aromatic monoterpene which forms a thymol derivative when hydroxylated and 

carvacrol when isomerized. α-terpineol, menthol, isopulegol and cis-hexahydrocuminyl alcohol 

are the oxygenated derivatives also called as monoterpene alcohols whereas carvone, 

dihydrocarvone, isomenthone, piperitone etc are the ketones included in the group. 

 
  α-terpineol     Menthol          isopulegol     cis-hexahydrocuminyl 

 

 

      Carvone          dihydrocarvone        isomenthone       piperitone  
 

2.4.6. Bicyclic Monoterpenes 

1, 8-Cineole, 1, 4-cineole, α-Pinene and β-pinene are the bicyclic monoterpenes. The 

bicyclic skeleton is present in borneol, isobornyl acetate, camphene, camphor, fenchone. An 

unusual group of monoterpenes called thujane type monoterpenes have a cyclopropane ring in 

the bicyclic skeleton. They include α-thujene, sabinene, α-thujone, β-thujone etc.  

 
    1, 8-Cineole             1,4-cineole             α-Pinene                β-pinene  

 

          Borneol     isobornyl acetate    camphene      camphor          fenchone 
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      α-thujene          sabinene               α-thujone                    β-thujone 

2.4.7. Tricyclic Monoterpenes 

Various essential oils contain tricyclene or 1,7,7-trimethyltricyclo[2.2.1.02,6]heptanes 

which are good examples for this class of compounds. 

2.4.8. Sesquiterpenes 

These are formed when there is added an isoprene unit into monoterpene molecule. They 

could be linear, branched or cyclic unsaturated compounds with a molecular formula of C15H24. 

2.4.9. Acyclic Sesquiterpenes 

Hops oil and many others have β-farnesene as an essential component. It is the structural 

isomer of α-Farnesene. Flowers oils of rose, acacia and cyclamen are enriched in farnesol. 

 
       β-Farnesene       α-Farnesene   Farnesol 

 
2.4.10. Monocyclic Sesquiterpenes 

α-bisabolene is an example of monocyclic sesquiterpene which is distributed widely in 

nature. This sesquiterpene is an essential component of some oils including bergamot and myrrh. 

Chamomile is enriched in the oxygenated derivatives of this compound called α-bisabolol and β-

bisabolol.  

 
α-bisabolene                    α-bisabolol             β-bisabolol   
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2.4.11. Bicyclic Sesquiterpenes 

They are bi-ringed sesquiterpenes including α-cadinene, α-selinene, α-Eudesmol, α-

Cyperone etc. 

 
      α-cadinene    α-Selinene                α-Eudesmol       α-Cyperone  

2.4.12. Miscellaneous Sesquiterpenes 

Clove oil was the source from where caryophyllene was first time isolated which has 

become a common constituent of majority of essential oils. β-Caryophyllene is the widely found 

form of caryophyllenes. The later was first isolated in clove oil as a common and generally found 

component. Humulene is an isomer of caryophyllene.  

 
           β-Caryophyllene    Humulene 

2.4.13. Diterpenes 

Four isoprene units rearrange themselves in an alternate fashion to give rise diterpenes 

(C20H32) which are generally found in pimaric acid. Phytol is a diterpene generally found in 

essential oils (MacMillan and Beale, 1999). More energy is required by the diterpenes to go to 

the vapor state. So a longer distillation time is required to recover them. Geranyl citronellol is an 

acyclic diterpene, camphorene is a cyclic, sclareol is a bicyclic and phyllocladene is a tricyclic 

diterpene.  

 
  

     Geranylcitronellol          Camphorene    Sclareol       phyllocladene 
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2.5. Biological activities of essential oils 

Essential oils extracted from different plants show variety of bioactivities including 

antioxidant, antitumor, antibacterial, antifungal and insecticidal properties (Burt, 2004). 

2.5.1. Antioxidant activities: 

Antioxidant: 

The substances having a capability to delay or inhibit the oxidative processes and are less 

in concentration than the oxidation substrate are called antioxidants.  

Antioxidant Assays 

Various chemical reactions are involved when essential oils behave as antioxidants. 

Depending upon the chemistry of these reactions, the assays can be put into two categories: First 

assay is based on the principle that hydrogen atom is transferred (HAT) from antioxidant during 

reaction while in second electron is transferred (ET). There occur redox reactions in ET based 

assays in which an oxidant behaves as an indicator of end point. The radical scavenging capacity 

is basically measured by these assays rather than preventive antioxidant capacity of sample. In 

HAT-based assays, the competitive reaction kinetics is measured, in which the kinetic curves 

help to evaluate the quantitation from the reaction. A synthetic free radical generator, an 

oxidizable molecular probe, and an antioxidant are the major ingredients of HAT-based methods. 

Antioxidant reaction rates are relatively high against oxidants (especially peroxyl radicals), they 

act as standard parameters for antioxidant capacity (Huang et al., 2005). 

The DPPH assay due to its simplicity and high sensitivity is widely used nowadays to 

study natural antioxidants considering the antioxidants as hydrogen donors and DPPH• as 

hydrogen acceptor (Figure 1). DPPH• is a stable organic nitrogen radical available commercially 

(MacDonald-Wicks et al., 2006). The higher the disappearance of DPPH in the sample, higher is 

the antioxidant potential of sample. ESR; electron spin resonance spectroscopy /plant powders 

(Calliste et al., 2001), NMR / catechins (Sawai and Sakata, 2001), and UV spectrophotometry / 

polyphenols (Chaillou and Nazareno, 2006) are some methods used to monitor DPPH• amount in 

the sample among which UV spectrometer is widely used for its accuracy. A strong absorption of 

DPPH• is shown at 517 nm (purple). After the hydrogen donated by an antioxidant is absorbed, 

DPPH• is converted to DPPH which is indicated by change in the color from purple to yellow. 

IC50 is the amount of antioxidant required for reduction in concentration of DPPH• by 50% 

(Brand-Williams et al., 2006). 
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Figure 1. DPPH• / antioxidant reaction to form DPPH 

 

DPPH method sometimes is the only method used to assess antioxidant activities of 

essential oils due to its sensitivity and simplicity. Mothana et al. (2010), studied antioxidant 

potential of essential oils of two species from Commiphora and found it to be very low even at 

high concentrations. Other methods were not used by the authors to evaluate the essential oils in 

which phenolic compounds were not present. Barra et al. (2010) reported that the essential oils 

of E. camaldulensis growing wild in locality of Sardinia had a high antioxidant activity. 

β-carotene is also known to be an antioxidant or a scavenger generally reacts with the 

peroxyl radical to give β-carotene epoxides (Kennedy and Liebler, 1991). Lipids, such as linoleic 

acid, in presence of O2 and ROS, form a peroxyl radical i.e. LOO• which has ability to react with 

β-carotene thus forming a stable β-carotene radical, reducing the concentration of β-carotene 

subsequently in a testing solution (Figure 2) (Tsuchihashi et al., 1995). However, if there is 

present an antioxidant in the reaction media, it reacts competitively with the peroxyl radical 

(Takada et al., 2006). So the antioxidant effect of β-carotene at 470nm using a 

spectrophotometer is monitored easily as the color of the test solution is bleached out. 

 

 
 
Fig 2; Adduct formation from β-carotene and antioxidant with a lipid peroxide  

  radical 
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Essential oils of seven species belonging to Lauraceae family, enriched in 

sesquiterpenoids were subjected for evaluation of antioxidant potential using linoleic acid 

oxidation system. Both oil inhibited the oxidation of linoleic acid system. Furanodiene, 

germacrene D and curzerenone were the found to be the major constituents of the oils extracted 

(Joshi et al., 2010). Ahmadi et al. (2010) evaluated the antioxidant potential of Iranian 

Hymenocrater longiflorus in which α-pinene, 1, 8-cineole, β-eudesmol, spathulenol etc were 

found to be the chief constituents of the essential oil which inhibited the bleaching of β-carotene 

by 64%. The antioxidant activity of the oil extracted from Artemisia herbaalba Asso. collected 

from Tunisia was evaluated by Mighri et al. (2010) by using a number of methods especially the 

β-carotene bleaching test. The best percentage inhibition showed was 12.5% by the oil enriched 

in β-thujone despite it is much lower than BHA which was 89.2%. The results are credited to the 

absence of phenolic compounds in the samples. 

2.5.2. Antimicrobial activities: 

To treat the several infections, two main types of microbial agents were introduced by the 

Microbiologists: 1) naturally produced antibiotics by micro-organisms 2) chemically synthesized 

chemotherapeutic agents (Davidson and Harrison, 2002). Selective toxicity should be the first 

and foremost property when the host is considered. This property indicates that bacterial cells 

when are compared with the animal cells, impart different type of biochemical reaction. This 

difference between animal and bacterial cell is taken as benefit in chemotherapy. Generally, two 

modes of action are exhibited by the antibiotics. They are either bactericidal (killing bacteria) or 

bacteriostatic (inhibiting bacterial growth). The range of bacteria and other microorganisms at 

which they are influenced by specific types of drugs is called their spectrum of specificity (Burt, 

2004). 

Antimicrobial assays 

Antimicrobial activity can be checked by dilution and diffusion methods (Rios et al., 

1988). The NCCLS method were used for antibacterial susceptibility, principally reasoned to test 

antibiotics which has been changed for testing EOs (Hammer et al., 1999; NCCLS, 2000).  But 

still the results can be varied by certain factors like the method of extraction of essential oils 

from plant source, inoculum volume, phase of growth, type of culture medium used, pH of the 

media, incubation time and temperature (Rios et al., 1988). Many scientists have reviewed 
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methods used to study antibacterial potential of EOs (Nychas, 1995) and many researchers have 

cited the disc diffusion method and minimum inhibitory concentration (MIC) to check the 

performance of EOs. Often the previous one is used to screen the EOs for their antibacterial 

activity. In this method, a paper disk soaked with EO is placed in the middle of the agar plate. 

This is prelude checking of antibacterial activity over more studies. Some factors are very 

important to consider such as; volume of EO used, thickness of agar plate and the type of the 

solvent used. Hence it is proved by experiment that this method can be useful for selection of 

different EOs but when we compare the data with published papers then it is not proved to be 

possible. The agar first has to be tested very carefully in which EO is introduced. Many wells can 

be cut if EO or is to be tested against large number of isolates (Dorman and Deans, 2000). 

Dilution of EO in broth or agar can be useful to determine the strength of antimicrobial activity. 

Pear review of literature can be used to make a selection of different types of solvents in order to 

dilute EOs in medium (Pintore et al., 2002), variable volumes of inoculum ranging from 1–100 

μl (Prudent et al., 1995). End point determination in broth studies are carried out by optical 

density (OD) measurement and by viable counting of colonies which is very laborious. OD 

measurement is an automated method performed easily. Visual monitoring method to visualize 

the end points and conductivity is less used now-a-days. Minimum inhibitory concentration is 

determined by the new method called micro-dilution. Resazurin as a visual indicator is used in 

MIC of oil based compounds (Salvat et al., 2001). It is a redox indicator that helps to evaluate 

the cell growth, especially in many cytotoxicity assays (McNicholl et al., 2006). This indicator is 

blue in color, non-fluorescent and non-toxic dye. It gives pink fluorescence when converted into 

resorufin by the enzyme oxidoreductase present in the viable cells. This resorufin dye is further 

converted into hydroresorufin by further reduction which is non-colored and non flourescent. For 

decade, resazurin reduction has been used to detect bacterial and yeast contamination in milk 

(McNicholl et al., 2006). 

This method varies because in many cases EOs whether or not is dissolved in emulsifier 

or water based solvents to stabilize the EO. Certain solvents have been used for this aim: ethanol 

(Packiyasothy and Kyle, 2002), methanol (Onawunmi, 1989), Tween-20 (Bassole et al., 2003), 

acetone with Tween-80 (Prudent et al., 1995), polyethylene glycol (Pintore et al., 2002), 

propylene glycol (Negi et al.,1999), n-hexane (Senatore et al., 2000), dimethyl sulfoxide (Firouzi 
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et al., 1998) and agar (Burt and Reinders, 2003). The use of additives was found unnecessary by 

some researchers (Cimanga et al., 2002).  

 

 

 

 

 

 

 

 

 

 

2.5.3. Cytotoxicity 

The cytotoxicity of a drug is necessarily tested by testing its hemolytic activity. In 

pharmacological applications, the testing assists to determine the antioxidant and other biological 

activities of a specific drug (Kalaivani et al., 2010). Physical and structural properties of the 

membrane of erythrocytes are tested in order to measure the cytotoxicity of various components. 

The mechanical stability of the membrane in this aspect acts as an indicator. Plasmodium 

falciparum a resident parasite along with other microbial organisms cause hemolysis on the 

membrane of red blood cells in case of infectious diseases (Mohan et al., 1992). The erythrocytic 

membrane leads to the significant variations in its interaction; best instanced with detergents 

(Aki and Yamamoto, 1991) and well characterized drug-induced hemolysis due to its dynamic 

structure. The distinct actions of chloroquine, primaquine and quinine (antimalarial agents) on 

red blood cell membrane in vitro are determined based on the principle that membrane proteins 

have different electrophoretic patterns (Kotsifopoulos, 1975).  

Erythrocytes of human, bovine and chicken when compared in the presence of essential 

oils, the highest sensitivity shown by bovine erythrocytes was at 158.3 μg/mL and it was 156.2 

μg/mL for human erythrocytes (highest for both) and MCnH 583.7 μg/mL for chicken (showing 

less sensitivity) without causing hemolysis (Silva et al., 2008). When hemolytic assay was 

applied, six different grasses were evaluated for their cytotoxicity, in which the extract of 

Cymodocea rotundata exhibited the haemolytic activity with 5.26 ± 1.63% at 1000 μg/mL 



56 

 

concentration (maximum activity) and H. pinifolia extract showed the haemolytic activity with 

2.07 ± 0.63% at 1000 μg/mL concentration (minimum activity). The increase in hemolytic 

activity was reported as the concentration of the sample was increased (Kannan et al., 2013). The 

cytotoxic activity of essential oils of Eugenia uniflora at the highest concentration of 400𝜇g/mL 

was 63.22% for the erythrocytes of O+ human blood type. At a reduced concentration of 

50𝜇g/mL, it was found non toxic (Rodrigues et al. 2013). 
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Chapter 3                              

 

 

MATERIALS  

&  

METHODS  
 

 

 

The research work presented in this dissertation was conducted in the Central Hi-Tech 

Lab, University of Agriculture, Faisalabad; Bioassay Section, Medicinal and Molecular Biology 

Lab (MMBL), Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan and 

Lab of Medicinal and Aromatic Plants, Stockbridge School of Agriculture, University of 

Massachusetts, Amherst, USA 

3.1. Materials: 

3.1.1. Reagents: 

Linoleic acid, 2, 2,-diphenyl-1-picrylhydrazyl (DPPH), sodium nitrite, aluminum 

chloride, ammonium thiocyanate, ferrous chloride, ferric chloride, potassium fericyanate, 

butylated hydroxytoluene BHT (99.0 %), Dimethylsulfoxide (DMSO),  rifampicin, homologous 

series of C9-C28 n-alkanes and various reference chemicals (α-pinene, camphene, β- pinene, β-

myrcene, α-phellandrene, limonene, p-cymene, β-Ocimene, δ-terpinene, 1,8- cineol, γ-terpinene, 

linalool, menthone, borneol, menthol, terpinene-4-ol, α-terpineol, estragole, dihydrocarveol, 

dihydrocarvone, pulegone, carvone, pipretone, thymol, fenchone, fenchyl alcohol, fenchyl 

acetate, anethole, piperitenone oxide, p-anisaldehyde α-copaene, β-bourbonene, β-elemene, β-

caryophyllene, β-cubebene, α-bergamotene, α- caryophyllene, γ-muurolene, germacrene D, γ-

cadinene and caryophyllene oxide etc.) used to identify the constituents were obtained from 

Sigma Chemical Co. (St Louis, MO, USA). Sterile resazurin tablets were obtained from Sigma 

chemical Co. All other chemicals (analytical grade) i.e. anhydrous sodium sulphate, ferrous 

chloride, ammonium thiocyanate, chloroform and methanol used in this study were purchased 

from Merck (Darmstadt, Germany), unless stated otherwise. All culture media and standard 

antibiotic discs were purchased from Oxoid Ltd., (Hampshire, UK). 
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3.1.2. Instruments 

The instruments used for different analyses during the study along with their company 

identification are listed in Table 3.1. 

Table 3.1. Instruments used with their model and company 

Instrument Manufacturing company 

GC/MS HP (5890) series II equipped with mass 

spectrophotometer, MSD 5972 system 

GC HP (5890)-series II with Flame ionization 

detectors (FID) 

Double beam spectrophotometer Lambda 25, Perkin Elmer, USA 

Laminar air flow  Memmert, Germany 

Analytical balance AUY 220, SHIMADZU, Japan  

Water Bath  Memmert, Germany 

Orbital shaker Yellowline, OS10 Basic 

Magnet Stirrer  Yellowline, IKA, USA 

Autoclave  JICA, Japan 

Centrifuge  Eppendrof, 5804, Hamburg, Germany 

Refractometer R 3261, ATAGO Digital refractometer 

Sonicator Transsonic T 460/H Elma, Germany 

Vortex mixer Heidolph Reax Top D-91, Schwabach 

ELISA microplate reader Bio-Tek-USA 

Incubator Memmert, Germany 

pH meter     WTW Inolab multi, 720, Germany 

Commercial blender (BL-335) Kenwood 

 

3.1.3. Collection of Plant Material & Identification 

Plant material was collected from different parts of Pothohar plateau including leaves, 

flowers fruits, buds etc. Cultivated species were collected from Kamal Laboratories present on 

Rawalpindi-Chakwal road.  Whereas, the leaves/aerial parts of wild species were collected from 

wild populations in the periphery of Islamabad, Rawalpindi, Chakwal and Gojar khan region. 

Collections were made in the months of March-April. The plant materials were further identified 
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and authenticated by a Taxonomist, Dr. Mansoor Hameed, Associate Professor, Department of 

Botany, University of Agriculture, Faisalabad, Pakistan. 

List of Plants studied in present research 

• Parthenium hysterophorus (Gajar Ghass) 

• Eucalyptus camaldulensis  

• Eucalyptus citriodora  

• Eucalyptus tereticornis  

• Citrus reticulata (Kinnow) 

• Syzygium aromaticum (clove, long) 

• Myristica fragrans (N) (Nutmeg, Jaifal) 

• Myristica fragrans (M) (Mace, Jawatri) 

• Murraya koenigii (Curry leaves, curry patta) 

• Piper nigrum (Black pepper, Syah mirch) 

• Elettaria cardamomum (Green cardamom, Choti Ilaichi) 

• Amomum subulatum (Black cardamom, Bari ilaichi) 

• Trachyspermum ammi (Ajowain) 

• Foeniculum vulgare (fennel, Saunf) 

• Cuminum cyminum (Cumin, Zeera) 

• Cinnamomum zeylanicum (Cinnamon, Dar Chini) 

3.1.4. Strains of microorganisms utilized to access the antimicrobial activity of essential 

 oils 

Bacterial Strains 

• Bacillus subtilis (Gram positive) 

• Lactobacillus rhamnosus (Gram positive) 

• Staphylococcus aureus (Gram positive) 

• Streptococcus mutans (Gram positive) 

• Escherichia coli (Gram negative) 

• Pasteurella multocida (Gram negative) 

 

Fungal Strains 

• Alternaria alternata  
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• Aspergillus niger  

• Aspergillus flavus  

• Ganoderma lucidum  

The pure cultures of bacterial and fungal strains were obtained from Bioassay Section, 

Medicinal and Molecular Biology Lab (MMBL), Department of Chemistry and Biochemistry, 

University of Agriculture, Faisalabad, Pakistan, except two of bacterial strains including 

Lactobacillus rhamnosus and Streptococcus mutans which were obtained from Medicinal and 

Aromatic plants laboratory, Stockbridge School of Agriculture, University of Massachusetts, 

USA. These bacterial and fungal strains were used to evaluate the antimicrobial activity of 

selected plant’s essential oils. 

3.2. Experimental Protocol 

3.2.1. Isolation of Essential Oils 

The shade-dried and finely ground plant materials were subjected to hydrodistillation for 

3 h using a Clevenger-type apparatus. Distillates of essential oils were dried over anhydrous 

sodium sulfate, filtered and stored at -4 °C until analyzed. 

3.2.2. Analysis of Essential Oil 

3.2.2.1. Physical analyses 

The refractive index (30°C) and density (30°C) of essential oils were determined 

following standard methods (Guenther, 1960). A digital refractometer R 3261, ATAGO Digital 

refractometer, was used for the determination of refractive index of the essential oils tested. 

Other physical parameters which were noted include color, specific gravity and percent yield. 

3.2.2.2 Chromatographic analysis 

3.2.2.3. Gas chromatography analysis 

The gas chromatograph,  HP 5890-series II equipped with Flame ionization detectors 

(FID), was used for the analysis of the volatile oils using a Phenomenex ZB-5MS column (30 m 

length x 0.25 mm ID x 0.25 μm film thickness). Nitrogen was used as carrier gas (0.7 mL/min). 

The programming of oven temperature was 1 min isothermal at 40oC, then 40–240oC @ 8oC/min 

and held isothermal for 2 min, then 240-300oC @ 10oC/min. The temperature for injection port 

was 250oC while for detector it was 275oC. Volume injected was 1μL of 1% solution (diluted in 

hexane). The quantitative analysis of the components in the form of percentages was done by 

electronic integration of FID peak areas. 
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3.2.2.4. Gas chromatography/mass spectrometry (GC-MS) analysis 

The gas chromatograph, HP 5890-series II equipped with mass spectrophotometer, MSD 

5972 system, was used for the analyses of the volatile samples. Phenomenex ZB-5MS column 

(30 m length x 0.25 mm ID x 0.25 μm film thickness) was directly coupled to the MS. Helium 

was used as carrier gas, with a flow rate of 0.7mL/min. The programming of oven temperature 

was as follows; 1 min isothermal at 40oC, then 40–240oC @ 8oC/min and held isothermal for 2 

min, then 240-300oC @ 10oC/min.  The injection port temperature was 250oC, detector 275oC. 

Volume injected was 1μL of 1% solution (diluted in hexane); HP 5972 recording at 70 eV; mass 

range 50–550 amu. Software used to handle mass spectra and chromatograms was Chem Station.  

3.2.2.5. Compounds identification 

The components of the essential oils were identified by comparison of their mass spectra 

with those in NIST 98 NIST/EPA/NIH mass spectral library, as well as by comparison of their 

retention indices with literature data (Adams, 1995; Sibanda et al., 2004). Retention indices of 

the components were determined relative to the retention times of a series of n-alkanes (relative 

to C9– C28 on the same column). 

3.3. Biological Activities of Essential oils  

3.3.1. Evaluation of antioxidant activity of essential oils 

Following antioxidant assays were employed for the assessment of antioxidant activity of 

essential oils. 

3.3.1.1.  DPPH radical scavenging assay 

The ability of essential oils to scavenge 2, 2-diphenyl-1-picrylhydrazyl stable radical was 

used as a test to check their antioxidant activity (Hussain, et al., 2008) with slight modifications. 

The essential oils were diluted in methanol to get different concentrations from which 2 mL were 

added to equal quantity of a 90 μM methanolic solution of DPPH. The mixture was shaken 

firmly and left in dark at room temperature, standing. The absorbance was measured after 30 min 

at 515 nm using double beam spectrophotometer (Lambda 25, Perkin Elmer, USA) and percent 

(%) scavenging of free radicals by DPPH in percent (%) was calculated as follows: 

𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 (%) = 100 × (𝐴𝑐 × 
𝐴𝑠𝑎𝑚

𝐴𝑐

) 
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Where Ac and Asample are the absorbances of control and test compound respectively. The 

antioxidant activity was expressed as IC50 (μg/mL), which is defined as the dose which creates 

50% scavenging of free radical. Lesser the IC50 value, higher the potential of that essential oil to 

show antioxidant activity (Hajlaoui et al., 2010).  

3.3.1.2.  Percent inhibition in linoleic acid system 

Inhibition of linoleic oxidation system was also used to test the antioxidant activity of 

essential oils (Iqbal and Bhanger, 2005) with modifications. The test samples (50, 30 and 10 μL) 

were dissolved to a 1 mL of ethanol, linoleic acid (2.5% v/v), 4mL of 99.5% ethanol and 4 mL of 

0.05 M sodium phosphate buffer having pH=7. The entire composition was incubated for 168 hrs 

at 40oC and oxidation was measured by peroxide value using thiocyanate method (Yen et al., 

2000). In 10 mL of 75% ethanol, 0.2 mL of 30% aqueous solution of ammonium thiocyanate, 0.2 

mL of sample solution and 0.2 mL of (20 mM in 3.5% HCl) ferrous chloride (FeCl2) solution 

were added, sequentially. Absorption was calculated at 500nm as peroxide contents after 3 min 

of stirring, using spectrophotometer (Lambda 25, Perkin Elmer, USA). Linoleic acid without 

essential oil was taken as control. Butylated hydroxytoluene (BHT) was taken as positive 

control. Percent (%) Inhibition of linoleic acid oxidation was calculated as follows: 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 (%)𝑜𝑓 𝑙𝑖𝑛𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛

= 100 − [
𝐴𝑏𝑠. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡 168ℎ

𝐴𝑏𝑠. 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑡 168ℎ
× 100] 

3.3.1.3.  β-Carotene / linoleic acid bleaching assay 

Antioxidant potential of the essential oils was assessed by bleaching of β-carotene/ 

linoleic acid emulsion system (Cao et al., 2009) with slight modification. β-carotene and linoleic 

acid mixture was prepared by adding 1 mg β-carotene in 1 mL chloroform (HPLC grade). In a 

boiling flask containing 20 mg of linoleic acid, 0.2 mL of carotene-chloroform solution was 

added to 200 mg of tween 40. Chloroform was evaporated at 40oC for 5 min and 50 mL distilled 

water was added with vigorous agitation to form an emulsion. The different concentrations of 

essential oil samples were prepared in methanol. BHT concentration was prepared as positive 

control. Then, 0.2 mL of these solutions were added individually to 5 mL of the above emulsion 

in test tubes and mixed gently. The absorbance was taken immediately at 470 nm against a blank, 

consisting of an emulsion without β-carotene. The tubes were placed at 50oC in water bath and 
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oxidation of the emulsion was checked spectrophotometrically for every 30 min until 180 min, at 

470 nm. Control samples contained 0.2 mL of methanol instead. The evaluation of antioxidant 

activity (%) of the essential oils in terms of the bleaching of the β-carotene was performed 

according to following equation: 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 % =  
(𝐴𝑡 − 𝐶𝑡)

(𝐶𝑜 − 𝐶𝑡)
× 100 

where At and Ct are the absorbance values of the test sample and control, respectively, 

after a certain time (t) of incubation and Co is the absorbance value for the control, measured at 

the beginning of the experiments. All tests were carried out in triplicate. 

3.3.2. Evaluation of antimicrobial activities of essential oils 

The essential oils were individually tested against a panel of microorganisms selected. 

Bacterial strains were cultured overnight at 37 ºC in nutrient agar (NA) while the fungal strains 

cultured overnight at 30 ºC using potato dextrose agar (PDA). Following antimicrobial assays 

were employed for the determination of antimicrobial potential of essential oils. 

3.3.2.1. Disc Diffusion Assay 

Antibacterial and antifungal activities of essential oils were evaluated by using 

selected fungal and bacterial microbial strains using microbiological assay of disc diffusion 

assay by following the methodology of National Committee for Clinical Laboratory Standards 

(NCCLS, 2001). 100 μL of tested microorganism suspension, containing 108 CFU/mL of 

bacteria cells and 104 CFU/mL spores of fungal strains were spread on NA and PDA medium, 

respectively. The essential oils (10 μL) were separately applied to filter discs (6 mm in 

diameter) and placed in the agar medium which had previously been inoculated with the 

tested microorganisms. Negative control was a disc without samples while Rifampicin 

(30μg/disc) and Terbinafine (30 μg/disc) applied discs were used as positive control for 

bacteria and fungi, respectively, to compare sensitivity of strain. The plates were incubated at 

37oC for 24 h for bacteria and at 30oC for 48 h for fungal strains. By measuring the diameter 

of the growth inhibition zones (mm) for the test organisms and comparing it with controls, 

antimicrobial activity was evaluated. 
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Figure 3.1. A typical agar plate showing the inhibition zones exhibited by essential  

   oils  

3.3.2.2.  Determination of minimum inhibitory concentration (MIC) by Resazurin      

microtitre-plate assay 

The minimum inhibitory concentration (MIC) was determined by following the 

methodology of Sarker et al. (2007). The medium used for all tests was Nutrient broth (NB) 

and Sabouraud dextrose broth (SDB) for bacteria and fungi, respectively. 100 μL of 10 

mg/mL test sample (using 10% Tween 80 in distilled sterile water) was taken in the first 

column of plate. To all other wells 50 μL of broth medium was added. Dilutions were 

performed serially, following the addition of 30 μL of 3.3× strength broth in each well. 

Finally, 10 μL of microbial suspension (5×106 cfu/mL) was added. Plates were wrapped into 

para film and incubated at 37oC for 24 h for bacteria, and at 30oC for 48 h for fungi.  

 

Figure 3.2. A typical plate in resazurin microtitre-plate assay showing the color  

   change due to antibacterial effect of essential oils 
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Each plate had a set of controls: a row with broad spectrum antibiotic (Rifampicin for 

bacteria and Terbinafine for fungi) as positive control, a row with all solutions except test 

compound and a row with all solutions except microbe. After incubation, the absorbance of 

plates was measured using an automatic ELISA micro plate reader (Bio-Tek-USA) adjusted 

to 620 nm. These absorbance values were used to detect an increase or decrease in microbial 

growth. The values were plotted against control and the lowest concentration of sample 

causing 50% inhibition in microbial growth was recorded as MIC.  

3.4. Essential oils as food preservatives: 

3.4.1. Stabilization of Edible Oil Samples 

The essential oils were added to RBD canola (70%) and Rapeseed (30%) oil blend. The 

mixtures were stirred for 30 min. at 40 °C for uniform dispersion. Control samples (without the 

addition of any antioxidant) were also prepared under the same conditions. 

3.4.2. Ambient Storage Test and Measurement of Oxidation 

Three replicates of edible oil treatments along with controls were carried out. In an 

ambient storage test the samples were stored for three months at 40 °C temperature. Analysis 

was done periodically after every 15 days. The oxidative deterioration level was followed by the 

measurement of peroxide value (PV), % FFA and p- anisidine value (Chatha et al., 2011).  

3.4.3. % FFA 

The %FFA was determined according to the IUPAC standard method (IUPAC, 1987). 

25mL of spirit was taken in a flask and heated slightly. Few drops of phenolphthalein were 

added and titrated against 0.1N NaOH until it became light pink. This flask was put on weighing 

balance and reading was made auto zero. 4-5 g of sample as added and reading was noted on 

balance. Mixture was shake well and was titrated against 0.1N NaOH and noted the volume 

used. % FFA was calculated as 

 

% FFA = 
𝑉𝑜𝑙 𝑈𝑠𝑒𝑑 ×𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 (0.1)×𝐸𝑞 .𝑤𝑒𝑖𝑔ℎ𝑡 (282) ×100

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 ×1000
 

3.4.4. Peroxide value (PV) 

The determination of PV was made according to the IUPAC standard method (IUPAC, 

1987). 2-5 g of sample was taken in iodine flask, to which 30 mL mixture of acetic acid and 

chloroform (3:2) was added. To this solution 1 mL of saturated solution of KI was added and 
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was covered with lid for 1 minute. Then 30 mL distilled water was added together with few 

drops of starch solution and was titrated against 0.01N sodium thiosulphate. Also reading of 

blank (without sample) was taken. 

𝑃𝑉 =  
𝑉𝑜𝑙 𝑈𝑠𝑒𝑑 (𝑆𝑎𝑚𝑝𝑙𝑒) × 𝑁 × 1000

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒
 

3.4.5. Para-Anisidine Value 

The p-anisidine value was calculated according to the IUPAC standard method (IUPAC, 

1987). In 2g sample, 25 mL iso-octane was added and absorbance wad taken at 350nm. 5mL was 

taken from this solution to which there was added 1mL of 0.25% para-Anisidine in acetic acid 

(w/v) and absorbance was taken at 350nm after 10 min. 

𝑃 − 𝐴𝑛𝑖𝑠𝑖𝑑𝑖𝑛𝑒 𝑉𝑎𝑙𝑢𝑒 =  
25 × (1.2𝐴𝑠𝑎𝑚  × Ablnk  )

𝑚
 

Asam  =   absorbance after reaction with p-anisidine 

Ablnk  =   absorbance of blank 

m      =   mass of oil sample 

3.5. Cytotoxicity: 

3.5.1. In vitro Hemolytic assay 

The hemolytic activity was investigated using the method given by Sharma and Sharma, 

2001. 5 mL of 2% (B-) RBC suspension was taken (Silva et al., 2008) to which was added 1 mL 

of essential oil at three different concentrations 0.5 mg/mL, 5 mg/mL and 50 mg/mL in DMSO. 

The mixture was kept in an incubator at 37°C for 30 minute. After that tubes were centrifuged at 

2500 rpm for 15 minute in centrifuge (eppendrof 5804), to allow broken membranes and 

unbroken cells to settle at the bottom. For 100% hemolysis or positive control, 1 mL of 0.2% 

Triton X-100 (in PBS) was added to 5 mL of 10% RBC suspension. The supernatant was 

removed and the liberated hemoglobin in the supernatant was measured spectrophotometrically 

as absorbance (ABS) at 541 nm in a double-beam Spectrophotometer (Lambda 25, Perkin Elmer, 

USA). The experiment was done in triplicate and mean±S.D. was calculated. 

% 𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 =  
𝐻𝑏𝐴𝑏𝑠

𝐻𝑏100%  𝐴𝑏𝑠

× 100 
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CHAPTER 4 

 

        RESULTS  

         & 

         DISCUSSION 

 

4.1. Parthenium hysterophorus 

 

Table 4.1.1 

 

Physical properties of Parthenium hysterophorus essential oil 

 

Parameter Parthenium 

hysterophorus 

Colour Orange 

Yield (%) 0.02±0.001 

Refractive Index 1.335±0.004 

Specific Gravity  

0.64±0.02 

 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 

analyzed individually in triplicate. 
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Table 4.1.2 

Antioxidant activity of Parthenium hysterophorus essential oil measured by DPPH assay 

and % inhibition in linoleic acid system 

DPPH 

Parameter P. hysterophorus BHT 

IC50 (μg/mL) 21.95±1.9 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

81.80±2.7 
 

65.23±2.1 
 

48.03±1.4 85.10±2.8 
 

Values are mean ± standard deviation of Parthenium hysterophorus, analyzed individually in 

triplicate. 

Fig. 4.1.1 

 

 

 

Antioxidant activity of Parthenium hysterophorus essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.1.3 

 

Antimicrobial activity of Parthenium hysterophorus essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Parthenium hysterophorus   

Inhibition zone (mm) 

B. subtilis 10.2±0.5 10.8±2.1 - 

L. rhamnosus 20.9±0.3 15.5±0.8 - 

S. aureus 9.4±0.4 15.1±1.0 - 

S. mutans 6.4±0.2 13.4±0.7 - 

E. coli 9.2±0.4 

 

9.6±1.3 
- 

P. multocida 9.7±0.5 

 

11.6±1.5 
- 

A. alternata 14.6±0.5 - 14.2±0.8 

A. flavus 12.3±0.5 

 

- 
11.4±1.4 

A. niger 20.7±2.2 

 

- 
21.7±1.2 
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G. lucidum 11.4±0.2 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 2.5±0.3 1.72±0.2 - 

L. rhamnosus 1.17±0.1 2.81±0.3 - 

S. aureus 2.81±0.2 2.19±0.2 - 

S. mutans 4.37±0.3 2.03±0.1 - 

E. coli 3.12±0.2 2.34±0.2 - 

P. multocida 2.5±0.2 2.03±0.1 - 

A. alternata 2.03±0.2 - 2.34±0.2 

A. flavus 2.19±0.1 - 2.81±0.2 

A. niger 1.25±0.1 - 0.94±0.1 

G. lucidum 2.81±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.1.4 

 FFA of edible oil stabilized by Parthenium hysterophorus essential oil 

IPD 
Induction Period 

in days 

% FFA 

P. hysterophorus 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.1±0.011 0.08±0.01 0.08±0.01 0.16±0.014 

30 0.13±0.014 0.1±0.02 0.09±0.015 0.22±0.016 

45 0.18±0.02 0.13±0.02 0.11±0.012 0.34±0.03 

60 0.25±0.021 0.16±0.016 0.14±0.014 0.48±0.02 

75 0.29±0.024 0.2±0.03 0.18±0.018 0.57±0.03 

90 0.33±0.027 0.24±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 
analyzed individually in triplicate. 

Table 4.1.5  PV of edible oil stabilized by Parthenium hysterophorus essential oil 

IPD 
Induction Period 

in days 

PV meq/kg 

P. hysterophorus 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.6±0.011 0.4±0.01 0.4±0.01 1.0±0.03 

30 1.2±0.02 0.7±0.03 0.6±0.16 1.81±0.12 

45 1.6±0.022 1.1±0.02 0.9±0.21 2.5±0.24 

60 2.2±0.11 1.7±0.16 1.4±0.29 3.4±0.36 

75 3.0±0.16 2.3±0.21 1.9±0.24 4.7±0.21 

90 3.4±0.21 2.7±0.24 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 

analyzed individually in triplicate. 

Table 4.1.6 

para-Anisidine Value of edible oil stabilized by Parthenium hysterophorus essential oil 

IPD 

Induction Period 
in days 

para-Anisidine Value 

P. hysterophorus 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 4.7±0.18 4.3±0.27 3.4±0.27 10.2±0.52 

30 8.3±0.23 6.9±0.36 5.8±0.36 17.5±0.74 

45 11.4±0.29 9.5±0.27 8.5±0.27 24.1±0.81 

60 15.6±0.51 13.1±0.31 10.9±0.55 29.6±0.63 

75 21.4±0.83 17.4±0.47 13.6±0.47 37.4±1.2 

90 25.6±1.2 22.2±0.55 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 

analyzed individually in triplicate. 
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Table 4.1.7 

Cytotoxicity (% hemolysis) of Parthenium hysterophorus essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.52% 0.73% 

5mg/mL 1.46% 2.31% 

10mg/mL 3.26% 4.42% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

 

Values are mean ± standard deviation of three samples of each Parthenium hysterophorus, 

analyzed individually in triplicate. 

 

 

Figure 4.1.2. Typical GC-MS chromatogram of essential oil from Parthenium hysterophorus  
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Table 4.1.8. Chemical composition of Parthenium hysterophorus essential oil 

Components1 RI2 % age Mode of Identification3 

2,3-Dimethyl-1,3-

butadiene 

672 0.21 RI, MS 

 Methacrylic acid 711 0.25 RT, RI, MS 

Octane, 2-methyl- 865 0.77 RI, MS 

α-Thujene 926 0.48 RT, RI, MS 

α-Fenchene 952 7.14 RT, RI, MS 

Camphene 955 0.29 RT, RI, MS 

Acetic acid, 2-
ethylbutyl ester 

957 0.39 RI, MS 

Benzaldehyde,  4-

methyl- 

960 0.17 RT, RI, MS 

1,9-Decadiene 965 0.20 RI,  MS 

Sabinene 972 0.36 RT, RI, MS 

 β-Pinene 978 3.73 RT, RI, MS 

beta Myrcene 994 0.42 RT, RI, MS 

Decane 999 0.49 RT, RI, MS 

α – phellandrene 1005 0.56 RI, MS 

cis-β-Ocimene 1044 0.46 RT, RI, MS 

γ-Terpinen 1072 0.55 RT, RI, MS 

 m-Cymene 1081 2.72 RT, RI, MS 

α-Terpinolene 1089 5.96 RT, RI, MS 

Bicyclo[7.1.0]decane 1110 0.18 RI, MS 

 l-Menthone 1126 0.28 RT, RI, MS 

1-Acetyl-2-
methylcyclopentene 

1137 0.23 RT, RI, MS 

5-hydroxyheptanoic 

acid lactone 

1145 0.32 RI, MS 

p-Cymen-8-ol 1184 0.32 RT, RI, MS 

Verbenone 1205 2.81 RI, MS 

Cuminal 1240 0.34 RT, RI, MS 

Methyl (Z)-3-hexenoate 1254 0.31 RI, MS 

Bornyl acetate 1285 5.16 RT, RI, MS 

3-Oxolene 1302 0.25 RI, MS 

Piperitone 1342 3.11 RT, RI, MS 

α-cubebene 1347 0.28 RT, RI, MS 

Copaene 1366 0.18 RT, RI, MS 

Patchoulane 1378 0.29 RT, RI, MS 

Isocaryophyllene 1413 3.69 RT, RI, MS 

Dihydro-β-ionone 1433 0.26 RI, MS 

trans-α-Farnesene 1509 0.37 RT, RI, MS 

7-epi-α-Cadinene 1522 0.32 RI, MS 

Spathulenol 1574 0.33 RT, RI, MS 
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α-Limonene diepoxide 1724 0.24 RT, MS 

Docosane 2200 0.41 RT, RI, MS 

11-Tricosene 2287 0.58 RT, RI, MS 

Tricosane 2300 17.24 RT, RI, MS 

Heptacosane 2700 0.89 RT, RI, MS 

Octacosane 2800 3.84 RI, MS 

Total (43)  67.43  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.1.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Parthenium hysterophorus is listed in 

Table 4.1.1. Yield was found to be 0.02% which was the minimum yield as compared to other 

plants taken in the present research work. The % yield shows that the plant is not enriched with 

essential oil which could be the reason that there is no reported work on essential oil of this 

plant. The color of oil was orange with strong aromatic smell and refractive index was 1.335. 

Essential oil was found to be less dense floating on the surface of water during the process of 

hydrodistillation with specific gravity 0.64. 

The essential oil of Parthenium hysterophorus was assessed for its antioxidant potential using 

various assays being in practice these days. Free radical scavenging ability was tested using 

DPPH assay and the potential was noted to be increased with the increase in concentration of 

essential oil. During the process, the examined essential oil transferred electron or hydrogen 

atoms towards DPPH• (purple color) which reduced to form DPPH-H (yellow color) and this 

ability of essential oil was investigated. The DPPH radical scavenging by P. hysterophorus 

essential oil is represented in terms of 50% scavenging (IC50) as shown in Table 4.1.2, which 

was found to be 21.95 μg/mL. The scavenging effect in case of synthetic antioxidant i.e. BHT 

was found to be 3.46 μg/mL. Linoleic acid is also being used to test the antioxidant capacity of 

essential oils. Due to unsaturation, it forms peroxides upon oxidation which have ability to 

oxidize Fe+2 to Fe+3 that forms complex with SCN¯ present in reaction media. The concentration 

of this complex was measured using spectrophotometer at 500 nm. Higher is the concentration of 

peroxides, higher will be value of absorbance and ultimately lower the antioxidant activity. Table 

4.1.2 shows the % inhibition in linoleic acid system by P. hysterophorus essential oil taken at 

three different concentrations. It is clear that maximum inhibition was 81.80% at concentration 

50μL/mL which decreased with the decrease in concentration. This decrease in inhibition could 

be attributed to decrease in concentration of bioactive compound with the decrease in 

concentration. The activity shown by essential oil was found to be much closer to that of 

synthetic antioxidant BHT (85.10% inhibition). β-carotene has ability to form a stable β-carotene 

radical with peroxyl radical (LOO•), formed by the lipids such as linoleic acid in result of their 

oxidation which causes in reduction of amount of β-carotene. However this reduction is inhibited 

if there is present some antioxidant in the reaction media that react with peroxyl radical 
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competitively to β-carotene. Thus antioxidant effect can easily be examined by depleting the 

colour of solution using spectrophotometer at 470 nm.  Bleaching of β-carotene as a function of 

antioxidant activity of the essential oil of P. hysterophorus is shown in Figure 4.1.1. The least 

antioxidant activity was exhibited by control with the maximum colour depletion. Whereas in 

samples, due to their antioxidant potential, there is less depletion of colour. P. hysterophorus was 

used at three different concentrations where minimum depletion was observed at 6 mg/mL. In 

case of BHT the depletion was the least showing the maximum antioxidant activity. Pandey et al. 

(2012) studied the scavenging activity of ethanolic extract of P. hysterophorus leaves collected 

from Meerut (India) and calculated IC50 value as 52.02 μg/mL. 

The antimicrobial activity of the essential oil of P. hysterophorus against various microbes 

including bacteria and fungi is shown in Table 4.1.3. It is clear that essential oil showed good 

activity against most of the fungi and some of the bacteria in comparison with the antibiotic. The 

results obtained from the disc diffusion method and MIC made it clear that P. hysterophorus 

showed potential as an antimicrobial agent with larger inhibition zones (6.4-20.9 and 11.4-20.7 

mm) and smaller MIC values (1.17-4.37 and 1.25-2.81 mg/mL) against various bacterial and 

fungal strains, respectively. In case of bacteria maximum activity was against L. rhamnosus 

(gram positive) with largest inhibition zone 20.9mm followed by minimum MIC value 1.17 

mg/mL. These results were found much better than that of antibiotic reference standard, 

Rifampicin, which showed the inhibition zone 15.5mm and MIC 2.81mg/mL. In case of fungi, A. 

niger showed to be most sensitive with largest inhibition zone 20.7mm followed by minimum 

MIC value 1.25 mg/mL which was comparable to that of antibiotic, Terbinafine, with inhibition 

zone 21.7mm and MIC 0.94mg/mL. Kumar et al. (2013) tested ethanolic extract of P. 

hysterophorus against various bacteria and fungi and found maximum inhibition zone against 

Saccharomyces cerevisiae with inhibition zone (15 mm) while minimum in case of Candida 

albicans (7 mm). Zaheer et al. (2012) also reported inhibitory potential of P. hysterophorus L. 

extracts against Fusarium solani. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids (FFAs) 

in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well checked by 

measuring the quantity of free fatty acids formed which has become an important parameter for 

industrialists. Table 4.1.4 shows the effect of P. hysterophorus essential oil on formation of 
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FFAs from where it is clear that their concentration continuously increased with the increase in 

storage period. Highest FFA was exhibited by control, while maximum stabilization was 

experienced in case of P. hysterophorus at 1000ppm which was 0.24% even after induction 

period of 90 days, while with control and BHT it was 0.64% and 0.22% respectively. Peroxide 

value (PV) is presented in table 4.1.5 and it shows that maximum stabilization was obtained at 

1000ppm with minimum PV i.e. 2.7meg/kg after induction period of 90 days, which was 2.3 and 

6.1meg/kg for BHT and control, respectively. p-anisidine value is an important parameter used to 

measure the secondary products in lipid oxidation process which is presented in Table 4.1.6 for 

P. hysterophorus. Control showed p-anisidine value 45.8 after 90 days which was much 

stabilized by P. hysterophorus essential oil sample of 1000ppm with value 22.2 while in case of 

BHT it was found to be 17.9.  

The effect of P. hysterophorus essential oil on the viability of human and bovine 

erythrocytes was evaluated to inspect the cytotoxicity of the essential oil. The effect was checked 

using three different concentrations of essential oils and % hemolysis was calculated which is 

presented in Table 4.1.7. It is clear from the results that sensitivity of both erythrocytes increased 

with the increase in concentration of essential oil. For bovine erythrocytes, P. hysterophorus 

exhibited the maximum hemolytic activity with 44.26% at 50 mg/mL concentration and the 

minimum hemolytic activity of 7.32% at 0.5 mg/mL concentration, while with human 

erythrocytes maximum hemolytic activity with 32.63% at 50 mg/mL concentration and the 

minimum hemolytic activity of 5.20% at 0.5 mg/mL. Gupta et al. (2013) studied heat induced 

hemolysis effects of ethanolic and aqueous extracts of P. hysterophorus and found that 

maximum inhibition in hemolysis was 78.82 and 76.65 % for both ethanolic and aqueous 

extracts, respectively. 

The data of chemical composition of the essential oil from P. hysterophorus is listed in Table 

4.1.8. Among a lot of unidentified compounds, 43 compounds were identified representing 

68.67% of the oil. The major constituents were determined to be tricosane (17.24%), α-fenchene 

(7.14%), α-terpinolene (5.96%), bornyl acetate (5.16%) and β-Pinene (3.73%). To our best 

knowledge there is no early work reported on chemical composition of essential oil of P. 

hysterophorus. Although there is some work reported on biological activities of different parts of 

extracts but no work is reported on essential oils.  



78 

 

4.2. Eucalyptus camaldulensis 

 

Table 4.2.1 

 

Physical properties of Eucalyptus camaldulensis essential oil 

 

Parameter Eucalyptus 

camaldulensis 

Colour Colourless 

Yield (%) 1.68±0.02 

Refractive Index 1.479±0.006 

Specific Gravity  

0.84±0.03 

 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 

analyzed individually in triplicate. 
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Table 4.2.2 

 

Antioxidant activity of Eucalyptus camaldulensis essential oil measured by DPPH assay and 

% inhibition in linoleic acid system 

DPPH 

Parameter E. camaldulensis BHT 

IC50 (μg/mL) 28.78±1.62 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

76.06±2.4 55.73±1.8 38.71±1.2 85.10±2.8 

 

Values are mean ± standard deviation of Eucalyptus camaldulensis, analyzed individually in 

triplicate. 

Fig. 4.2.1 

 

 

 

Antioxidant activity of Eucalyptus camaldulensis essential oil measured by bleaching of  
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Table 4.2.3 

Antimicrobial activity of Eucalyptus camaldulensis essential oil 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Eucalyptus camaldulensis 

 

  

Inhibition zone (mm) 

B. subtilis 7.3±0.2 

 

10.8±2.1 
- 

L. rhamnosus 16.2±0.2 

 

15.5±0.8 
- 

S. aureus 11.6±0.8 

 

15.1±1.0 
- 

S. mutans 13.5±0.3 13.4±0.7 - 

E. coli 14.0±0.4 

 

9.6±1.3 
- 

P. multocida 24.7±1.01 

 

11.6±1.5 
- 

A. alternata 7.6±0.4 - 14.2±0.8 

A. flavus 22.7±2.0 - 11.4±1.4 

A. niger 22.4±2.0 - 21.7±1.2 
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G. lucidum 5.3±0.5 - 9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 2.19±0.3 1.72±0.2 - 

L. rhamnosus 1.72±0.2 2.81±0.3 - 

S. aureus 2.81±0.1 2.19±0.2 - 

S. mutans 2.03± 0.2 2.03±0.1 - 

E. coli 1.25±0.2 2.34±0.2 - 

P. multocida 1.17±0.1 2.03±0.1 - 

A. alternata 2.34±0.2 - 2.34±0.2 

A. flavus 1.17±0.1 - 2.81±0.2 

A. niger 1.41±0.2 - 0.94±0.1 

G. lucidum 2.5±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

 

Table 4.2.4 FFA of edible oil stabilized by Eucalyptus camaldulensis essential oil 

IPD 
Induction Period 

in Days 

% FFA 

E. camaldulensis 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.1±0.01 0.09±0.015 0.08±0.01 0.16±0.014 

30 0.15±0.011 0.12±0.012 0.09±0.015 0.22±0.016 

45 0.23±0.02 0.15±0.014 0.11±0.012 0.34±0.03 

60 0.28±0.01 0.19±0.014 0.14±0.014 0.48±0.02 

75 0.34±0.02 0.22±0.03 0.18±0.018 0.57±0.03 

90 0.38±0.04 0.27±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 
analyzed individually in triplicate. 

Table 4.2.5 PV of edible oil stabilized by Eucalyptus camaldulensis essential oil 

IPD 
Induction Period 

in Days 

PV 

E. camaldulensis 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.9±0.016 0.6±0.03 0.4±0.01 1.0±0.03 

30 1.5±0.03 1±0.12 0.6±0.16 1.81±0.12 

45 2.2±0.15 1.7±0.21 0.9±0.21 2.5±0.24 

60 2.9±0.22 2.2±0.21 1.4±0.29 3.4±0.36 

75 3.3±0.31 2.8±0.24 1.9±0.24 4.7±0.21 

90 3.9±0.15 3.5±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 
analyzed individually in triplicate. 

Table 4.2.6 

para-Anisidine Value of edible oil stabilized by Eucalyptus camaldulensis  essential oil 

IPD 
Induction Period 

in Days 

para-Anisidine Value 

E. camaldulensis 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 5.4±0.25 4.8±0.31 3.4±0.27 10.2±0.52 

30 9.1±0.41 8.3±0.36 5.8±0.36 17.5±0.74 

45 12.3±0.33 11.2±0.31 8.5±0.27 24.1±0.81 

60 17.5±0.51 16.4±0.36 10.9±0.55 29.6±0.63 

75 20.8±0.38 21.6±0.55 13.6±0.47 37.4±1.2 

90 24.2±0.46 28.1±0.62 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 

analyzed individually in triplicate. 
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Table 4.2.7 

Cytotoxicity (% hemolysis) of Eucalyptus camaldulensis essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.27% 0.56% 

5mg/mL 1.38% 2.34% 

10mg/mL 8.92% 9.53% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Eucalyptus camaldulensis, 

analyzed individually in triplicate. 

 

 

Figure 4.2.2. Typical GC-MS chromatogram of essential oil from Eucalyptus camaldulensis  
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Table 4.2.8. Chemical composition of Eucalyptus camaldulensis essential oil 

 

Components1 RI2 % age Mode of Identification3 

α-Thujene 926 0.38 RT, RI, MS 

α-pinene 934 2.23 RT, RI, MS 

Camphene 955 0.24 RI, MS 

Sabinene 972 0.21 RT, RI, MS 

β-Pinene 978 0.71 RT, RI, MS 

β-Myrcene 994 0.18 RT, RI, MS 

α-Phellandrene 1005 1.05 RI, MS 

3-Carene 1011 1.89 RT, RI, MS 

p-Cymene 1026 46.12 RT, RI, MS 

Limonene 1033 1.36 RT, RI, MS 

Eucalyptol 1037 20.1 RT, RI, MS 

β-cis-Ocimene 1043 0.93 RI, MS 

β-trans Ocimene 1051 0.17 RI, MS 

γ-Terpinen 1072 1.97 RT, RI, MS 

m-Cymene 1081 0.53 RT, RI, MS 

Linalool oxide 1084 0.71 RT, RI, MS 

α- Terpinolene 1089 0.27 RT, RI, MS 

Linalool 1096 0.19 RT, RI, MS 

Myrcenol 1117 0.08 RT, RI, MS 

Fenchyl alcohol 1119 0.16 RI, MS 

trans-Sabinol 1140 0.84 RT, RI, MS 

Pinocarveol 1148 0.73 RT, RI, MS 

Nerol oxide 1154 1.26 RT, RI, MS 

Borneol 
 

1169 0.43 RT, RI, MS 

L-terpinen-4-ol 

 

1178 1.04 RI, MS 

p-Cymen-8-ol 

 

1184 0.36 RT, RI, MS 

Myrtenol 
 

1196 0.31 RT, RI, MS 

Carveol 
 

1199 1.28 RT, RI, MS 

Piperitol 
 

1205 0.51 RT, RI, MS 

Cis-carveol 

 

1219 1.03 RT, RI, MS 

Nerol 1230 0.16 RT, RI, MS 

3-p-Menthene 1234 0.24 RI, MS 

Cuminal 
 

1240 0.37 RT, RI, MS 

Geraniol 1258 1.24 RT, RI, MS 

Cumic alcohol 1276 0.22 RT, RI, MS 

Thymol 1290 0.73 RT, RI, MS 

Terpinyl acetate 1350 0.95 RT, RI, MS 

Patchoulane  1378 0.73 RT, RI, MS 

Caryophyllene  1454 0.21 RT, RI, MS 
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Spathulenol  1574 2.54 RT, RI, MS 

Globulol 1576 0.58 RT, RI, MS 

Caryophyllene oxide 1578 3.55 RT, RI, MS 

Guaiol 1594 0.56 RI, MS 

α-Eudesmol  1664 0.27 RT, RI, MS 

Total (44)  99.34  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.2.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Eucalyptus camaldulensis was 

found to be 1.68 % as listed in Table 4.2.1 which shows that the plant is enriched with essential 

oil. The oil was colourless with strong aromatic smell and refractive index was 1.335. Essential 

oil was found to be less dense floating on the surface of water during the process of 

hydrodistillation with specific gravity 0.84. Ozel et al. (2008) collected five samples of E. 

camaldulensis from different places in Turkey and the maximum yield was obtained in case of 

Adrasan sample, 1.18 %. 

The essential oil of E. camaldulensis was assessed for its antioxidant potential using 

various assays being in practice these days. Free radical scavenging ability was tested using 

DPPH assay and the potential was noted to be increased with the increase in concentration of 

essential oil. The DPPH radical scavenging by E. camaldulensis essential oil was represented in 

terms of 50 % scavenging (IC50) as shown in Table 4.2.2, which was found to be 28.78 μg/mL. 

The scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. 

Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation 

in its structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 

that may form complex with SCN¯ present in reaction medium. The concentration of this 

complex was measured using spectrophotometer at 500 nm. Table 4.2.2 shows the % inhibition 

in linoleic acid system by E. camaldulensis essential oil taken at three different concentrations. It 

is clear that maximum inhibition was 76.06 % at concentration 50 μL/mL which decreased with 

the decrease in concentration. This decrease in inhibition could be attributed to decrease in 

concentration of bioactive compounds. The activity shown by essential oil was found to be closer 

to that of synthetic antioxidant BHT which showed 85.10 % inhibition. β-carotene has ability to 

form a stable β-carotene radical with peroxyl radical (LOO•), formed by the lipids such as 

linoleic acid in result of their oxidation which causes in reduction of amount of β-carotene. 

However this reduction would have been inhibited due to presence of some antioxidant in the 

reaction medium which could react with peroxyl radical competitively to β-carotene. Thus 

antioxidant effect can easily be examined by depleting the colour of solution using 

spectrophotometer at 470 nm.  Bleaching of β-carotene as a function of antioxidant activity of 

the essential oil of E. camaldulensis is shown in Figure 4.2.1. The least antioxidant activity was 
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exhibited by negative control with the maximum colour depletion. Whereas in samples, due to 

their antioxidant potential, there was less depletion of colour. E. camaldulensis was used at three 

different concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT 

the depletion was the least showing the maximum antioxidant activity. Our results are 

comparable to those of  Basak and Candan (2010), who found E. Camaldulensis to be a potent 

antioxidant capable of scavenging DPPH free radicals and thus suppressed peroxidation of lipids  

interceded by free radicals with IC50 value 4.096 μL/mL. The phenolic compounds could be 

responsible for the antioxidant activity of essential oils (Lu and Foo, 2000). Singh and 

Marimuthu (2006) evaluated that essential oils efficiently inhibited the formation of peroxides in 

linoleic acid system during incubation. There are very few reports present in the literature 

showing the response of essential oils in β-carotene assay (Anwar et al., 2009).  

The antimicrobial activity of the essential oil of E. camaldulensis against various 

microbes including bacteria and fungi is shown in Table 4.2.3. It is clear that essential oil 

showed good activity against most of the fungi and some of the bacteria in comparison with the 

antibiotic. The results obtained from the disc diffusion method and MIC made it clear that E. 

camaldulensis showed potential as an antimicrobial agent with larger inhibition zones (7.3-24.7 

and 5.3-22.7 mm) and smaller MIC values (1.17-2.81 and 1.17-2.50 mg/mL) against various 

bacterial and fungal strains, respectively. In case of bacteria maximum activity was against P. 

multocida (Gram negative) with largest inhibition zone 24.7 mm followed by minimum MIC 

value 1.17 mg/mL. These results are much better than that of antibiotic, Rifampicin, which 

showed the inhibition zone 11.6 mm and MIC 2.03 mg/mL. In case of fungi, A. flavus showed to 

be most sensitive with largest inhibition zone 22.7mm followed by minimum MIC value 1.17 

mg/mL which was much better than that of antibiotic, Terbinafine, with inhibition zone 11.4 mm 

and MIC 2.81 mg/mL. Barra et al. (2010) tested E. camaldulensis essential oil on different fungi  

and found Fusarium oxysporum to be the most sensitive one. 

Table 4.2.4 shows the effect of E. camaldulensis essential oil on formation of FFAs from 

where it is clear that their concentration continuously increased with the increase in storage 

period. Highest FFA was exhibited by control (0.64 %), while maximum stabilization was 

exhibited by E. camaldulensis essential oil at 1000ppm which was 0.24 % even after induction 

period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in table 4.2.5 



88 

 

and it showed that maximum stabilization was obtained at 1000 ppm with minimum PV i.e. 3.5 

meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and control, 

respectively. p-anisidine value was an important parameter used to measure the secondary 

products in lipid oxidation process which is presented in Table 4.2.6 for E. camaldulensis. 

Control showed p-anisidine value 45.8 after 90 days which was much stabilized by E. 

camaldulensis essential oil sample of 1000 ppm with value 28.1 while in case of BHT it was 

found to be 17.9.  

The effect of E. camaldulensis essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked using three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.2.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, E. 

camaldulensis exhibited the maximum hemolysis i.e. 9.53 % at 10 mg/mL concentration and the 

minimum of 0.56 % at 0.5 mg/mL concentration, while with human erythrocytes maximum 

hemolysis i.e. 8.92 % at 10 mg/mL concentration and the minimum of 0.27 % at 0.5 mg/mL. 

Agar et al. (1998) found hemolytic effect of monoterpenes and sesquiterpenes obtained from 

eucalyptus essential oil on human erythrocytes to be 14.2 and 23.2 %, respectively. 

The data of chemical composition of the essential oil from E. camaldulensis is listed in 

Table 4.2.8. 44 compounds were identified representing 99.34 % of the oil. The major 

constituents were found to be p-cymene (46.12 %), eucalyptol (20.10 %), caryophyllene oxide 

(3.55%), spathulenol (2.54 %) and α-pinene (2.23 %). Our results got very well matched with 

those of Barra et al. (2010) who collected E. camaldulensis species from different parts of 

Sardinia (Italy). From the specie, collected from central west part, the major chemical 

constituents were found to be; p-cymene (42.7 %), cryptone (10.2 %), eucalyptol (9.8 %) and 

spathulenol (8.1 %). In another study Basak and Candan (2010) analysed essential oil extracted 

from leaves of E. camaldulensis collected from Adana (Turkey). p-cymene (68.43 %), eucalyptol 

(13.92 %), α-pinene (3.45 %) and limonene (2.84 %) were found to be the major components. 

Ozel et al. (2008) collected fruits of E. camaldulensis from Kuyucak, Izmir (Turkey), which was 

subjected to essential oil extraction. The major components were found to be eucalyptol (12.61 

%), Terpinolene (8.39%), α-pinene (6.81 %) and p-cymene (68.43 %) 
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4.3. Eucalyptus citriodora 

 

 

Table 4.3.1 

Physical properties of Eucalyptus citriodora essential oil 

 

Parameter Eucalyptus citriodora 

Colour Colourless 

Yield (%) 1.91±0.01 

Refractive Index 1.453±0.004 

Specific Gravity  

0.85±0.02 

 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora, 

analyzed individually in triplicate. 
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Table 4.3.2 

Antioxidant activity of Eucalyptus citriodora essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter E. citriodora BHT 

IC50 (μg/mL) 15.95±1.10 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

68.63±1.6 58.50±1.5 27.38±1.6 85.10±2.8 

 

Values are mean ± standard deviation of Eucalyptus citriodora, analyzed individually in 

triplicate. 

Fig. 4.3.1 

 

 

Antioxidant activity of Eucalyptus citriodora essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.3.3  

Antimicrobial activity of Eucalyptus citriodora essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Eucalyptus citriodora    

Inhibition zone (mm) 

B. subtilis 4.9±0.6 

 

10.8±2.1 
- 

L. rhamnosus 21.4±0.1 

 

15.5±0.8 
- 

S. aureus 14.2±1.3 

 

15.1±1.0 
- 

S. mutans 15.7±0.6 

 

13.4±0.7 
- 

E. coli 8.1±0.3 

 

9.6±1.3 
- 

P. multocida 9.3±1.08 

 

11.6±1.5 
- 

A. alternata 16.3±0.6 

 

- 
14.2±0.8 

A. flavus 16.6±1.5 

 

- 
11.4±1.4 
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A. niger 25.3±1.5 

 

- 
21.7±1.2 

G. lucidum 8.7±0.3 - 9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 4.3±0.5 1.72±0.2 - 

L. rhamnosus 1.17±0.1 2.81±0.3 - 

S. aureus 1.25±0.2 2.19±0.2 - 

S. mutans 1.56±0.3 2.03±0.1 - 

E. coli 3.12±0.3 2.34±0.2 - 

P. multocida 2.19±0.2 2.03±0.1 - 

A. alternata 2.81±0.1 - 2.34±0.2 

A. flavus 1.72±0.2 - 2.81±0.2 

A. niger 1.09±0.2 - 0.94±0.1 

G. lucidum 2.03±0.1 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora,  

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.3.4  FFA of edible oil stabilized by Eucalyptus citriodora essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

E. citriodora 
ppm 

BHT 
200ppm 

Control 

500 1000   

00 0.08±0.01 0.08±0.010 0.08±0.010 0.08±0.010 

15 0.12±0.02 0.09±0.015 0.08±0.010 0.16±0.014 

30 0.15±0.01 0.11±0.012 0.09±0.015 0.22±0.016 

45 0.22±0.03 0.14±0.016 0.11±0.012 0.34±0.030 

60 0.27±0.022 0.19±0.018 0.14±0.014 0.48±0.020 

75 0.34±0.03 0.25±0.016 0.18±0.018 0.57±0.030 

90 0.39±0.03 0.29±0.020 0.22±0.018 0.64±0.020 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora,  
analyzed individually in triplicate. 

Table 4.3.5 PV of edible oil stabilized by Eucalyptus citriodora essential oil 

IPD 

Induction 
Period in 

Days 

PV 

E. citriodora 

ppm 

BHT 

200ppm 

Control 

500 1000   

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.8±0.02 0.6±0.02 0.4±0.01 1.0±0.03 

30 1.5±0.11 1.1±0.21 0.6±0.16 1.81±0.12 

45 2.1±0.21 1.6±0.24 0.9±0.21 2.5±0.24 

60 2.6±0.20 2.1±0.12 1.4±0.29 3.4±0.36 

75 3.2±0.23 2.9±0.24 1.9±0.24 4.7±0.21 

90 3.8±0.31 3.3±0.24 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora,  

analyzed individually in triplicate. 
Table 4.3.6 

para-Anisidine Value of edible oil stabilized by Eucalyptus citriodora  essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

E. citriodora 
ppm 

BHT 
200ppm 

Control 

500 1000   

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 5.3±0.25 4.5±0.36 3.4±0.27 10.2±0.52 

30 8.5±0.29 7.4±0.31 5.8±0.36 17.5±0.74 

45 11.0±0.35 9.7±0.47 8.5±0.27 24.1±0.81 

60 16.6±0.42 15.4±0.31 10.9±0.55 29.6±0.63 

75 20.4±0.21 18.6±0.47 13.6±0.47 37.4±1.2 

90 23.7±0.36 21.4±0.55 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora, 

analyzed individually in triplicate. 
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Table 4.3.7 

Cytotoxicity (% hemolysis) of Eucalyptus citriodora essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 2.01% 1.25% 

5mg/mL 3.47% 2.94% 

10mg/mL 9.27% 9.67% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Eucalyptus citriodora, analyzed 

individually in triplicate. 

 

 

Figure 4.3.2. Typical GC-MS chromatogram of essential oil from Eucalyptus citriodora  
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Table 4.3.8. Chemical composition of Eucalyptus citriodora essential oil 

 

Components1 RI2 % age Mode of Identification3 

α-Thujene 926 0.78 RT, RI, MS 

α-pinene 934 0.512 RT, RI, MS 

α-Fenchene 952 0.28 RI, MS 

Sabinene 972 0.49 RT, RI, MS 

β-Pinene 978 0.40 RT, RI, MS 

β-Myrcene 
 

994 0.64 RT, RI, MS 

p-Cymene 1026 6.48 RT, RI, MS 

Limonene 1033 0.69 RT, RI, MS 

Eucalyptol 1037 1.13 RT, RI, MS 

β-cis-Ocimene 1043 1.12 RI, MS 

p-Mentha-3,8-diene 1069 0.82 RT, RI, MS 

γ-Terpinen 1072 0.21 RT, RI, MS 

Linalool 1096 1.14 RT, RI, MS 

Isopulegol 1146 1.34 RI, MS 

β-Citronellal 1162 66.16 RT, RI, MS 

β-Citronellol 1228 4.40 RT, RI, MS 

Citral 1237 1.12 RT, RI, MS 

Geraniol 1258 0.96 RT, RI, MS 

Isopulegyl acetate 1268 0.48 RI, MS 

Eugenol 1356 0.46 RT, RI, MS 

Citronellyl acetate 1357 2.43 RI, MS 

Geranyl formate 1384 0.26 RT, RI, MS 

β-Elemene 1392 0.62 RT, RI, MS 

Aromadendrene 1440 0.72 RI, MS 

α-Humulene 1448 0.57 RT, RI, MS 

Caryophyllene 1454 0.46 RT, RI, MS 

α-Farnesene 1509 0.43 RT, RI, MS 

Germacrene B 1559 0.63 RI, MS 

Spathulenol 1574 0.74 RT, RI, MS 

Globulol 1576 0.57 RI, MS 

Caryophyllene oxide 1578 0.61 RT, RI, MS 

Guaiol 1594 0.36 RT, RI, MS 

β-Eudesmol 

 

1652 0.73 RT, RI, MS 

Total (34)  98.75  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS = identification based on comparison of mass spectra 
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4.3.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Eucalyptus citriodora was 

found to be 1.91 % as listed in Table 4.3.1 which shows that the plant is enriched with essential 

oil. The oil was colourless with strong aromatic smell and refractive index was 1.453. Essential 

oil was found to be less dense floating on the surface of water during the process of 

hydrodistillation with specific gravity 0.85. Singh et al. (2012) found the yield of pale yellow 

coloured essential oil obtained from leaves of E. citriodora to be 1.2 % v/w.  

Free radical scavenging ability was tested using DPPH assay and the potential was noted 

to be increased with the increase in concentration of essential oil. During the process, the 

examined essential oil transferred electron or hydrogen atoms towards DPPH• (purple colour) 

which was reduced to form DPPH-H (yellow colour) and this ability of essential oil was 

investigated. The DPPH radical scavenging by E. citriodora essential oil was represented in 

terms of 50 % scavenging (IC50) as shown in Table 4.3.2, which was found to be 15.95 μg/mL. 

The scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. 

Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation 

in its structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 

that may form complex with SCN¯ present in reaction medium. The concentration of this 

complex was measured using spectrophotometer at 500 nm. Table 4.3.2 shows the % inhibition 

in linoleic acid system by E. citriodora essential oil taken at three different concentrations. It is 

clear that maximum inhibition was 68.63 % at concentration 50 μL/mL which decreased linearly 

with the decrease in concentration and therefore could be attributed to decrease in concentration 

of bioactive compound accordingly. The activity shown by essential oil was found to be quite 

lesser than that of synthetic antioxidant BHT which showed 85.10 % inhibition. β-carotene has 

ability to form a stable β-carotene radical with peroxyl radical (LOO•), formed by the lipids such 

as linoleic acid in result of their oxidation which causes in reduction of amount of β-carotene. 

However this reduction is inhibited by some antioxidants if present in the reaction medium that 

react with peroxyl radical competitively to β-carotene. Thus antioxidant effect can easily be 

examined by depleting the colour of solution using spectrophotometer at 470 nm.  Bleaching of 

β-carotene as a function of antioxidant activity of the essential oil of E. citriodora is shown in 

Figure 4.3.1. The least antioxidant activity was exhibited by control with the maximum colour 
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depletion. Whereas in samples, due to their antioxidant potential, there was less depletion of 

colour. E. citriodora was used at three different concentrations where minimum depletion was 

observed at 6mg/mL. In case of BHT the depletion was the least showing the maximum 

antioxidant activity. There are very few reports present in the literature showing the response of 

essential oils in β-carotene assay (Anwar et al., 2009). Singh et al. (2012) evaluated the IC50 

value for E. citriodora to be 425.4 μg/mL. The antioxidant activity of essential oils may be 

attributed to the presence of phenolic compounds (Lu and Foo, 2000). Singh and Marimuthu 

(2006) found that essential oils effectively suppress the peroxide formation in linoleic acid 

system during incubation. 

The antimicrobial activity of the essential oil of E. citriodora against various microbes 

including bacteria and fungi is shown in Table 4.3.3. It is clear from the Table that essential oil 

showed good activity against most of the fungi and some of the bacteria in comparison with the 

antibiotic. The results obtained from the disc diffusion method and MIC made it clear that E. 

citriodora showed potential as an antimicrobial agent with larger inhibition zones (4.9-21.4 and 

8.7-25.3 mm) and smaller MIC values (1.17-4.3 and 1.09-2.81 mg/mL) against various bacterial 

and fungal strains, respectively. In case of bacteria maximum activity was found against L. 

rhamnosus (Gram positive) with largest inhibition zone 21.4mm followed by minimum MIC 

value 1.17 mg/mL. These results are much better than that of antibiotic, Rifampicin, which 

showed the inhibition zone 15.5 mm and MIC 2.81 mg/mL. In case of fungi, A. niger showed to 

be most sensitive with largest inhibition zone 25.3mm followed by minimum MIC value 1.09 

mg/mL which was much better to that of antibiotic, Terbinafine, with inhibition zone 21.7 mm 

and MIC 0.94 mg/mL. Hassine et al. (2012) tested extract and essential oil of Eucalyptus gilii 

against various bacterial and fungal strains and found the greatest inhibition in case of essential 

oil against Listeria monocytogenes (Gram positive bacteria) with MIC value 0.78 mg/mL. In 

another study antimicrobial activity of E. globulus essential oil was found to be (MIC = 0.9 

mg/mL) against E. coli whereas (MIC = 0.36 mg/mL) against Candida albicans (Damjanovic-

Vratnica et al., 2011) 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.3.4 shows the effect of E. citriodora essential oil on 
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formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by E. citriodora essential oil at 1000ppm which was 0.29 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.3.5 and it showed that maximum stabilization was obtained at 1000ppm with 

minimum PV i.e. 3.3 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg 

for BHT and control, respectively. p-anisidine value was an important parameter used to measure 

the secondary products in lipid oxidation process which is presented in Table 4.3.6 for E. 

citriodora. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by E. 

citriodora essential oil sample of 1000 ppm with value 21.4 while in case of BHT it was found to 

be 17.9.  

The effect of E. citriodora essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked using 

three different concentrations of essential oils and results and % hemolysis were calculated 

which is presented in table 4.3.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, E. 

citriodora exhibited the maximum hemolysis i.e. 9.67 % at 10 mg/mL concentration and the 

minimum of 1.25 % at 0.5 mg/mL concentration, while with human erythrocytes maximum 

hemolysis i.e. 9.27 % at 10 mg/mL concentration and the minimum of 2.01 % at 0.5 mg/mL. 

Agar et al. (1998) found hemolytic effect of monoterpenes and sesquiterpenes obtained from 

eucalyptus essential oil on human erythrocytes to be 14.2 and 23.2 %, respectively. 

The data of chemical composition of the essential oil from E. citriodora was listed in 

Table 4.3.8. 34 compounds were identified representing 98.75 % of the oil. The major 

constituents were found to be β-Citronellal (66.16 %), p-Cymene (6.48 %), β-Citronellol (4.40 

%) and Citronellyl acetate (2.43 %). Our results found to be well matched with those of Singh et 

al. (2012) who collected E. citriodora leaves from Punjab (India). The major chemical 

constituents were found to be; citronellal (60.66 %), β-Citronellol (12.58 %), isopulegol (8.19 

%), p-Menthane-3,8-diol (2.87 %)  and citronellyl acetate (2.38 %). In another study Batish 

(2006) analyzed essential oil extracted from leaves of E. citriodora collected from Chandigarh 

(India). citronellal (48.33 %), citronellol (21.87 %), isopulegol (12.69 %) and β-citronellene 

(4.81 %) were found to be the major components.  
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4.4. Eucalyptus tereticornis 

 

 

Table 4.4.1 

Physical properties of Eucalyptus tereticornis essential oil 

 

Parameter Eucalyptus tereticornis 

Colour Light green 

Yield (%) 2.67±0.2 

Refractive Index  

(30 °C) 

1.417±0.006 

Specific Gravity 0.84±0.01 

 

 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis, 

analyzed individually in triplicate. 
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Table 4.4.2 

Antioxidant activity of Eucalyptus tereticornis essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter E. tereticornis BHT 

IC50 (μg/mL) 42.71±2.37 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

57.90±1.9 

 

42.94±1.4 

 

32.94±2.1 

 

85.10±2.8 

 

Values are mean ± standard deviation of Eucalyptus tereticornis, analyzed individually in 

triplicate. 

Fig. 4.4.1 

 

 

Antioxidant activity of Eucalyptus tereticornis essential oil measured by bleaching of 

 β-carotene-linoleic acid emulsion 
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Table 4.4.3 

 

Antimicrobial activity of Eucalyptus tereticornis essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Eucalyptus tereticornis    

Inhibition zone (mm) 

B. subtilis 6.7±0.3 10.8±2.1 - 

L. rhamnosus 7.9±0.2 

 

15.5±0.8 
- 

S. aureus 7.4±0.5 15.1±1.0 - 

S. mutans 10.3±0.4 

 

13.4±0.7 
- 

E. coli 8.5±0.7 

 

9.6±1.3 
- 

P. multocida 13.4±0.7 

 

11.6±1.5 
- 

A. alternata 8.6±0.4 - 14.2±0.8 

A. flavus 9.3±1.5 

 

- 
11.4±1.4 
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A. niger 8.3±0.6 

 

- 
21.7±1.2 

G. lucidum 13.7±0.5 - 9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 4.37±0.3 1.72±0.2 - 

L. rhamnosus 3.44±0.2 2.81±0.3 - 

S. aureus 3.75±0.3 2.19±0.2 - 

S. mutans 2.5±0.2 2.03±0.1 - 

E. coli 3.12±0.2 2.34±0.2 - 

P. multocida 2.34±0.2 2.03±0.1 - 

A. alternata 3.12±0.2 - 2.34±0.2 

A. flavus 2.81±0.1 - 2.81±0.2 

A. niger 3.12±0.2 - 0.94±0.1 

G. lucidum 2.03±0.1 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis,  

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.4.4  FFA of edible oil stabilized by Eucalyptus tereticornis essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

E. tereticornis 
ppm 

BHT 
200ppm 

Control 

500 1000   

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.14±0.012 0.1±0.02 0.08±0.01 0.16±0.014 

30 0.18±0.011 0.13±0.012 0.09±0.015 0.22±0.016 

45 0.25±0.014 0.17±0.016 0.11±0.012 0.34±0.03 

60 0.29±0.013 0.22±0.014 0.14±0.014 0.48±0.02 

75 0.36±0.02 0.29±0.03 0.18±0.018 0.57±0.03 

90 0.41±0.022 0.35±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis,  
analyzed individually in triplicate. 

Table 4.4.5 

PV of edible oil stabilized by Eucalyptus tereticornis essential oil 

IPD 
Induction 

Period in 
Days 

PV 

E. tereticornis 
ppm 

BHT 
200ppm 

Control 

500 1000   

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 1.1±0.02 0.8±0.03 0.4±0.01 1±0.03 

30 1.9±0.10 1.5±0.12 0.6±0.16 1.81±0.12 

45 2.5±0.24 2.2±0.21 0.9±0.21 2.5±0.24 

60 3.2±0.25 2.8±0.16 1.4±0.29 3.4±0.36 

75 3.6±0.16 3.4±0.24 1.9±0.24 4.7±0.21 

90 4.2±0.28 3.9±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis,  
analyzed individually in triplicate. 

Table 4.4.6 

para-Anisidine Value of edible oil stabilized by Eucalyptus tereticornis essential oil 

IPD 
Induction 

Period in 
Days 

para-Anisidine Value 

E. tereticornis 

ppm 

BHT 

200ppm 

Control 

500 1000   

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 5.9±0.28 4.5±0.36 3.4±0.27 10.2±0.52 

30 8.8±0.33 7.4±0.31 5.8±0.36 17.5±0.74 

45 11.5±0.27 9.7±0.47 8.5±0.27 24.1±0.81 

60 16.1±0.43 15.4±0.31 10.9±0.55 29.6±0.63 

75 22.2±0.78 22.4±0.47 13.6±0.47 37.4±1.2 

90 33.3±0.93 27.6±0.55 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis, 

analyzed individually in triplicate. 
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Table 4.4.7 

Cytotoxicity (% hemolysis) of Eucalyptus tereticornis essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 3.18% 0.73% 

5mg/mL 8.05% 5.54% 

10mg/mL 9.09% 7.83% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Eucalyptus tereticornis,  
analyzed individually in triplicate. 

 
 

Figure 4.3.1. Typical GC-MS chromatogram of essential oil from Eucalyptus tereticornis  
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Table 4.4.8. Chemical composition of Eucalyptus tereticornis essential oil 

 

Components1 RI2 % age Mode of Identification3 

α-Thujene 926 0.54 RT, RI, MS 

α-Pinene 934 3.19 RT, RI, MS 

α-Fenchene 952 0.38 RI, MS 

Camphene 955 0.31 RT, RI, MS 

Verbenene 967 0.55 RT, RI, MS 

Sabinene 972 0.22 RI, MS 

β-Pinene 978 2.16 RT, RI, MS 

β -Myrcene 994 0.32 RT, RI, MS 

4-carene 1002 0.33 RT, RI, MS 

α-phellandrene 1005 0.26 RT, RI, MS 

α-Terpinene 1020 0.24 RT, RI, MS 

p-Cymene 1026 0.27 RT, RI, MS 

β-Phellandrene 1031 0.48 RI, MS 

Limonene 1033 19.97 RT, RI, MS 

Eucalyptol 1037 7.46 RT, RI, MS 

β-Elemene 1040 0.16 RI, MS 

β-cis-Ocimene 1043 0.61 RI, MS 

γ-Terpinene 1062 0.42 RT, RI, MS 

α-Terpinolene 1089 0.37 RT, RI, MS 

Fenchone 1096 0.38 RT, RI, MS 

trans.-Pinocarveol 1139 0.37 RI, MS 

Isopulegol 1146 0.23 RI, MS 

β-citronellal 1162 0.69 RT, RI, MS 

Borneol 1169 0.80 RI, MS 

Terpinen-4-ol 1178 0.19 RT, RI, MS 

α-Terpineol 1188 1.17 RT, RI, MS 

Myrtenol 1196 0.37 RI, MS 

Piperitol 1205 9.48 RI, MS 

Fenchyl acetate 1224 0.78 RI, MS 

β-Citronellol 1228 0.29 RT, RI, MS 

3-p-Menthene 1234 0.81 RT, RI, MS 

Carvone 1242 0.20 RT, RI, MS 

Geraniol 1258 0.24 RT, RI, MS 

Anethole 1283 0.28 RI, MS 

Bornyl acetate 1285 1.42 RT, RI, MS 

Piperitenone 1342 0.46 RI, MS 

α-Terpinyl acetate 1350 5.22 RT, RI, MS 

Eugenol 1356 0.23 RT, RI, MS 

 Patchoulane 1378 10.32 RI, MS 

β-Cubebene 1390 0.19 RT, RI, MS 
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trans-β-Caryophyllene 1418 0.35 RT, RI, MS 

β-Gurjunene 1432 0.31 RT, RI, MS 

Aromadendrene 1440 5.31 RI, MS 

α-Humulene 1448 0.40 RT, RI, MS 

α-Caryophyllene 1454 0.92 RT, RI, MS 

Spathulenol 1574 6.49 RT, RI, MS 

Globulol 1576 0.18 RT, RI, MS 

Guaiol 1594 0.27 RI, MS 

γ-Eudesmol 1623 0.21 RT, RI, MS 

β-Eudesmol 1652 9.98 RI, MS 

α-Eudesmol 1664 1.88 RT, RI, MS 

Total (51)  98.67  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.4.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Eucalyptus tereticornis was  

found to be 2.67 % as listed in Table 4.4.1. The oil was light green in colour with strong 

aromatic smell and refractive index 1.417. Essential oil was found to be less dense floating on 

the surface of water during the process of hydrodistillation with specific gravity 0.84. Kaur et al. 

(2011) found that hydrodistillation of leaves of E. tereticornis yielded yellow coloured oil (1.21 

% v/w on fresh weight basis).  

The essential oil of E. tereticornis was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and DPPH radical scavenging by E. tereticornis essential oil was represented in terms of 50 % 

scavenging (IC50) as shown in 4.4.2, which was found to be 42.71 μg/mL. The scavenging effect 

in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. Linoleic acid was also 

used to test the antioxidant capacity of essential oils. Due to unsaturation in its structure, it may 

form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that may form complex 

with SCN¯ present in reaction medium. The concentration of this complex was measured using 

spectrophotometer at 500 nm. Higher the concentration of peroxides higher will be the value of 

absorbance and ultimately lower will be the antioxidant activity.  Table 4.4.2 shows the % 

inhibition in linoleic acid system by E. tereticornis essential oil taken at three different 

concentrations. It is clear that maximum inhibition was 57.90% at concentration 50 μL/mL 

which decreased linearly with the decrease in concentration and therefore could be attributed to 

decrease in concentration of bioactive compound accordingly. The activity shown by essential 

oil was found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % 

inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl radical (LOO•), 

formed by the lipids such as linoleic acid in result of their oxidation which causes in reduction of 

amount of β-carotene. However this reduction would have been inhibited due to presence of 

some antioxidant in the reaction medium which could react with peroxyl radical competitively to 

β-carotene. Thus antioxidant effect can easily be examined by depleting the colour of solution 

using spectrophotometer at 470 nm.  Bleaching of β-carotene as a function of antioxidant activity 

of the essential oil of E. tereticornis is shown in Figure 4.4.1. The least antioxidant activity was 

exhibited by control with the maximum colour depletion. Whereas in samples, due to their 

antioxidant potential, there was less depletion in colour. E. tereticornis was used at three 
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different concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT 

the depletion was the least showing the maximum antioxidant activity. The phenolic compounds 

could be responsible for the antioxidant activity of essential oils (Lu and Foo, 2000). Kaur et al. 

(2011) evaluated the antioxidant activity of E. tereticornis by measuring its scavenging effect 

towards DPPH and H2O2. The essential oil showed an IC50 value of 146 and 270 μg/mL for 

DPPH and H2O2. DPPH scavenging activity of oil was parallel to that of BHT (163 μg/mL) 

thereby indicating a strong antioxidant activity. Singh et al. (2009) reported the antioxidant 

activity of essential oil from fresh and decaying leaves of E. tereticornis.  

The antimicrobial activity of the essential oil of E. tereticornis against various microbes 

including bacteria and fungi is shown in Table 4.4.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that E. tereticornis showed 

potential as an antimicrobial agent with larger inhibition zones (6.7-13.4 and 8.3-13.7 mm) and 

smaller MIC values (2.34-4.37 and 2.03-3.12 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against P. multocida (Gram 

positive) with largest inhibition zone 13.4mm followed by minimum MIC value 2.34 mg/mL. 

These results are much better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 11.6 mm and MIC 2.03 mg/mL. In case of fungi, G. lucidum showed to be most sensitive 

with largest inhibition zone 13.7 mm followed by minimum MIC value 2.03 mg/mL which was 

much better to that of antibiotic, Terbinafine, with inhibition zone 9.1mm and MIC 1.88 mg/mL. 

Hassine et al. (2012) tested extract and essential oil of Eucalyptus gilii against various bacterial 

and fungal strains and found the greatest inhibition in case of essential oil against Listeria 

monocytogenes (Gram positive bacteria) with MIC value 0.78 mg/mL. In another study 

antimicrobial activity of E. globulus essential oil was found to be (MIC = 0.9 mg/mL) against E. 

coli whereas (MIC = 0.36 mg/mL) against Candida albicans (Damjanovic-Vratnica et al., 2011). 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.4.4 shows the effect of E. tereticornis essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 
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stabilization was exhibited by E. tereticornis essential oil at 1000ppm which was 0.35 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.4.5 and it showed that maximum stabilization was obtained at 1000ppm with 

minimum PV i.e. 3.9 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg 

for BHT and control, respectively. p-anisidine value was an important parameter used to measure 

the secondary products in lipid oxidation process which is presented in Table 4.4.6 for E. 

tereticornis. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by 

E. tereticornis essential oil sample of 1000 ppm with value 27.6 while in case of BHT it was 

found to be 17.9.  

The effect of E. tereticornis essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked using three different concentrations of essential oils and results and % hemolysis were 

calculated which is presented in table 4.4.7. It is clear from the results that sensitivity of both 

erythrocytes increased with the increase in concentration of essential oil. For bovine 

erythrocytes, E. tereticornis exhibited the maximum hemolysis i.e. 7.83 % at 10 mg/mL 

concentration and the minimum of 0.73 % at 0.5 mg/mL concentration, while with human 

erythrocytes maximum hemolysis i.e. 9.09% at 10 mg/mL concentration and the minimum of 

3.18 % at 0.5 mg/mL. Agar et al. (1998) found hemolytic effect of monoterpenes and 

sesquiterpenes obtained from eucalyptus essential oil on human erythrocytes to be 14.2 and 23.2 

%, respectively. 

The data of chemical composition of the essential oil from E. tereticornis was listed in 

Table 4.4.8. Total 51 compounds were identified representing 98.67 % of the oil. The major 

constituents were found to be limonene (19.97 %), patchoulane (10.32 %), β-eudesmol (9.98 %), 

piperitol (9.48 %) and eucalyptol (7.46 %). Kaur et al. (2011) collected matured leaves of E. 

citriodora from Chandigarh (India). The major chemical constituents were found to be; α-pinene 

(30.10 %), eucalyptol (21.8 %), β-pinene (8.41 %), β-eudesmol (6.71 %)  and α-eudesmol (5.77 

%). In another study Yuan et al. (2006) analyzed essential oil extracted from leaves of E. 

citriodora. α-pinene (32.68 %), eucalyptol (13.64 %), limonene (8.31 %) and borneol (3.97 %) 

were found to be the major components.  
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4.5. Citrus reticulata 

 

Table 4.5.1 

Physical properties of Citrus reticulata essential oil 

 

Parameter Citrus reticulata 

Colour Colourless 

Yield (%) 0.91±0.03 

Refractive Index  

(30 °C) 

1.355±0.003 

Specific Gravity  

0.81±0.04 

 

Values are mean ± standard deviation of three samples of each Citrus reticulata, 

analyzed individually in triplicate. 
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Table 4.5.2 

Antioxidant activity of Citrus reticulata essential oil measured by DPPH assay and % 

inhibition in linoleic acid system 

DPPH 

Parameter C. reticulata BHT 

IC50 (μg/mL) 24.77±0.78 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

70.03±2.7 
 

60.63±2.4 
 

45.36±2.6 
 

85.10±2.8 
 

Values are mean ± standard deviation of Citrus reticulata, analyzed individually in triplicate. 

Fig. 4.5.1 

 

 

 

Antioxidant activity of Citrus reticulata essential oil measured by bleaching of  
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Table 4.5.3 

Antimicrobial activity of Citrus reticulata essential oil 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Citrus reticulata    

Inhibition zone (mm) 

B. subtilis 19.0±1.6 10.8±2.1 - 

L. rhamnosus 14.3±0.1 

 

15.5±0.8 
- 

S. aureus 6.1±1.0 15.1±1.0 - 

S. mutans 6.8±0.4 

 

13.4±0.7 
- 

E. coli 5.3±0.4 

 

9.6±1.3 
- 

P. multocida 7.4±0.1 

 

11.6±1.5 
- 

A. alternata 5.5±0.3 - 14.2±0.8 

A. flavus 20.1±1.4 

 

- 
11.4±1.4 

A. niger 19.6±2.1 

 

- 
21.7±1.2 
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G. lucidum 3.6±0.3 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 1.41±0.1 1.72±0.2 - 

L. rhamnosus 2.03±0.1 2.81±0.3 - 

S. aureus 3.75±0.3 2.19±0.2 - 

S. mutans 4.06±0.3 2.03±0.1 - 

E. coli 4.48±0.2 2.34±0.2 - 

P. multocida 5.62±0.3 2.03±0.1 - 

A. alternata 5.0±0.3 - 2.34±0.2 

A. flavus 1.17±0.1 - 2.81±0.2 

A. niger 1.25±0.1 - 0.94±0.1 

G. lucidum 5.62±0.4 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Citrus reticulata, analyzed 

individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.5.4  FFA of edible oil stabilized by Citrus reticulata essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Citrus reticulata  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.15±0.02 0.11±0.012 0.08±0.01 0.16±0.014 

30 0.18±0.013 0.13±0.014 0.09±0.015 0.22±0.016 

45 0.24±0.016 0.17±0.018 0.11±0.012 0.34±0.03 

60 0.29±0.02 0.2±0.02 0.14±0.014 0.48±0.02 

75 0.34±0.03 0.25±0.03 0.18±0.018 0.57±0.03 

90 0.39±0.025 0.29±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Citrus reticulata, 

 analyzed individually in triplicate. 

Table 4.5.5 PV of edible oil stabilized by Citrus reticulata essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Citrus reticulata 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.9±0.02 0.6±0.02 0.4±0.01 1±0.03 

30 1.4±0.02 0.9±0.02 0.6±0.16 1.81±0.12 

45 2.0±0.3 1.5±0.21 0.9±0.21 2.5±0.24 

60 2.8±0.2 2.3±0.21 1.4±0.29 3.4±0.36 

75 3.6±0.3 2.9±0.24 1.9±0.24 4.7±0.21 

90 4.8±0.27 3.4±0.21 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Citrus reticulata,  

analyzed individually in triplicate. 
Table 4.5.6 

para-Anisidine Value of edible oil stabilized by Citrus reticulata essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Citrus reticulata  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.15 2.7±0.12 2.7±0.12 2.7±0.12 

15 5.6±0.22 4.6±0.31 3.4±0.27 10.2±0.52 

30 8.2±0.34 6.8±0.55 5.8±0.36 17.5±0.74 

45 10.7±0.65 9.5±0.27 8.5±0.27 24.1±0.81 

60 14.9±0.81 13.6±0.31 10.9±0.55 29.6±0.63 

75 18.8±1.0 17.5±0.47 13.6±0.47 37.4±1.2 

90 26.6±1.2 21.4±0.55 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Citrus reticulata, 

analyzed individually in triplicate. 
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Table 4.5.7 

Cytotoxicity (% hemolysis) of Citrus reticulata essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 3.12% 2.33% 

5mg/mL 5.90% 5.22% 

10mg/mL 9.96% 8.84% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Citrus reticulata,  

analyzed individually in triplicate. 

 

 

Figure 4.5.2. Typical GC-MS chromatogram of essential oil from Citrus reticulata 



116 

 

Table 4.5.8. Chemical composition of Citrus reticulata essential oil 

Components1 RI2 % age Mode of Identification3 

α-Pinene 934 0.19 RT, RI, MS 

Sabinene 972 0.13 RT, RI, MS 

β-Pinene 978 0.15 RT, RI, MS 

β -Myrcene 994 0.69 RT, RI, MS 

3-Carene 1011 0.24 RT, RI, MS 

Limonene 1033 92.83 RT, RI, MS 

β-Ocimene 1044 0.22 RI, MS 

γ-Terpinen 1072 0.21 RT, RI, MS 

trans-Linalool oxide 1088 0.26 RT, MS 

Linalool 1096 0.31 RT, RI, MS 

α- Terpinolen 1187 0.14 RT, RI, MS 

Citronellol 1228 0.18 RT, RI, MS 

3-p-Menthene 1234 0.20 RI, MS 

Linalyl formate 1237 0.15 RT, MS 

Neryl acetate 1344 0.19 RT, RI, MS 

Eugenol 1356 0.21 RT, RI, MS 

Copaene 1366 0.19 RT, RI, MS 

 Patchoulane 1378 0.24 RI, MS 

α-Terpineol acetate 1407 0.17 RT, MS 

Isocaryophyllene 1413 0.17 RT, MS 

β-Gurjunene 1432 0.20 RT, MS 

Aromadendrene 1440 0.25 RI, MS 

Germacrene D 1451 0.22 RT, RI, MS 

α-caryophyllene 1454 0.19 RT, RI, MS 

α-Farnesene 1509 0.18 RT, RI, MS 

δ-Cadinene 1522 0.21 RT, MS 

γ-Eudesmol 1623 0.24 RT, RI, MS 

Total (27)  98.57  

1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.5.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Citrus reticulata was found to 

be 0.91 % as listed in Table 4.5.1. The oil was colourless with strong aromatic smell and 

refractive index 1.355. Essential oil was found to be less dense floating on the surface of water 

during the process of hydrodistillation with specific gravity 0.81. Hamdan et al. (2009) found 

that hydrodistillation of fruit rind of C. jambhiri and C. pyriformis resulted in colourless and pale 

yellow oils having strong aromatic odour with yields 4 and 1.2% (v/w), respectively. In another 

study Chutia et al. (2009) recorded the yield of C. reticulata (0.6 ml/100g peel). In another study 

Baik et al. (2008) examined essential oils extracted from peel of 14 citrus species collected from 

Jeju island (Korea). The yields varied between 0.6 % to 3.5 %. Vasudeva and Sharma (2012) 

found the essential oil of Citrus limettioides colourless to light greenish yellow having citrusy 

and pleasant odour. Its specific gravity, refractive index, optical rotation at 25 °C were 0.840 

g/mL, 1.470 and + 95.3°, respectively.  

The DPPH radical scavenging by C. reticulata essential oil was represented in terms of 

50% scavenging (IC50) as shown in Table 4.5.2, which was found to be 24.77 μg/mL. The 

scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. Linoleic 

acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation in its 

structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that 

may form complex with SCN¯ present in reaction medium. The concentration of this complex 

was measured using spectrophotometer at 500 nm. Higher the concentration of peroxides higher 

will be the value of absorbance and ultimately lower will be the antioxidant activity.  Table 4.5.2 

shows the % inhibition in linoleic acid system by C. reticulata essential oil taken at three 

different concentrations. It is clear that maximum inhibition was 70.03 % at concentration 

50μL/mL which decreased with the decrease in concentration and therefore could be attributed to 

decrease in concentration of bioactive compound accordingly. The activity shown by essential 

oil was found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % 

inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl radical (LOO•), 

formed by the lipids such as linoleic acid in result of their oxidation which causes in reduction of 

amount of β-carotene. However this reduction would have been inhibited due to presence of 

some antioxidant in the reaction medium which could react with peroxyl radical competitively to 

β-carotene. Thus antioxidant effect can easily be examined by depleting the colour of solution 
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using spectrophotometer at 470 nm.  Bleaching of β-carotene as a function of antioxidant activity 

of the essential oil of C. reticulata is shown in Figure 4.5.1. The least antioxidant activity was 

exhibited by control with the maximum colour depletion. Whereas in samples, due to their 

antioxidant potential, there was less depletion of colour. C. reticulata was used at three different 

concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT the 

depletion was the least showing the maximum antioxidant activity. Hamdan et al. (2009) 

evaluated the antioxidant activity of two citrus species using DPPH assay. He calculated IC50 

values for essential oils of C. pyriformis and C. jambhiri to be 28.91 and 37.69 mg/mL, 

respectively.  Baik et al. (2008) found the specie collected from Dongjunggyul (Korea) to be the 

most potential antioxidant among the 14 citrus species. 

The antimicrobial activity of the essential oil of C. reticulata against various microbes 

including bacteria and fungi is shown in Table 4.5.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that C. reticulata showed 

potential as an antimicrobial agent with larger inhibition zones (5.3-19.0 and 5.5-20.1 mm) and 

smaller MIC values (1.41-5.62 and 1.17-5.62 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against B. subtilis (Gram 

positive) with largest inhibition zone 19.0 mm followed by minimum MIC value 1.41 mg/mL. 

These results are much better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 10.8 mm and MIC 1.72 mg/mL. In case of fungi, A. flavus showed to be most sensitive with 

largest inhibition zone 20.1 mm followed by minimum MIC value 1.17 mg/mL which was much 

better to that of antibiotic, Terbinafine, with inhibition zone 11.4 mm and MIC 2.81 mg/mL. 

Vasudeva and Sharma (2012) tested essential oil of Citrus limettioides against various microbes 

and maximum activity in case of bacteria was found against Propionibacterium acnes with MIC 

value 3.12 μL/mL, while in case of fungal strains against Aspergillus niger with MIC 6.25  

μL/mL. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.5.4 shows the effect of C. reticulata essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 
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length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by C. reticulata essential oil at 1000ppm which was 0.29 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.5.5 and it showed that maximum stabilization was obtained at 1000ppm with 

minimum PV i.e. 3.4 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg 

for BHT and control, respectively. p-anisidine value was an important parameter used to measure 

the secondary products in lipid oxidation process which is presented in Table 4.5.6 for C. 

reticulata. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by C. 

reticulata essential oil sample of 1000ppm with value 21.4 while in case of BHT it was found to 

be 17.9.  

The effect of C. reticulata essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked using 

three different concentrations of essential oils and % hemolysis were calculated which is 

presented in table 4.5.7. It is clear from the results that sensitivity of both erythrocytes increased 

with the increase in concentration of essential oil. For bovine erythrocytes, C. reticulata 

exhibited the maximum hemolysis i.e. 8.84 % at 10 mg/mL concentration and the minimum of 

2.33 % at 0.5 mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 

9.96 % at 10 mg/mL concentration and the minimum of 3.12 % at 0.5 mg/mL.  

The data of chemical composition of the essential oil from C. reticulata was listed in 

Table 4.5.8. Total 27 compounds were identified representing 98.57 % of the oil. The starring 

component was found to be limonene (92.83 %). Chutia et al. (2009) collected fresh and matured 

fruit of C. reticulata Blanco from Jorhat, Assam (India). The peels were subjected to essential oil 

extraction with major chemical constituents; limonene (46.7 %), geranial (19.0 %), Neral (14.5 

%) and Geranyl acetate (3.9 %). In another study Baik et al. (2008) examined essential oils 

extracted from peel of 14 citrus species collected from Jeju island (Korea). Among them 

limonene (82.43 %), α-terpinene (6.83 %), β-myrcene (3.42 %) and α-pinene (1.32 %) were 

found to be the major components among others. Hamdan et al. (2009) evaluated fruit rind of 

two of citrus species; C. jambhiri and C. pyriformis collected from Egypt. Their essential oil was 

subjected to chemical characterization and biological activities. Limonene was found to be the 

starring compound 92.48 and 75.56 % from essential oils of C. jambhiri and C. pyriformis, 

respectively. 
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4.6. Syzygium aromaticum 

 

Table 4.6.1 

 

Physical properties of Syzygium aromaticum essential oil 

 

Parameter Syzygium aromaticum 

Colour Colourless 

Yield (%) 6.70±0.3 

Refractive Index  

(30 °C) 

1.364±0.004 

Specific Gravity 0.71±0.03 

 

 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum, 

analyzed individually in triplicate. 
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Table 4.6.2 

Antioxidant activity of Syzygium aromaticum essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter S. aromaticum BHT 

IC50 (μg/mL) 14.58±1.43 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

81.15±3.2 69.59±2.6 52.25±2.8 

 

85.10±3.2 

Values are mean ± standard deviation of Syzygium aromaticum, analyzed individually in 

triplicate. 

Fig. 4.6.1 

 

 

 

Antioxidant activity of Syzygium aromaticum essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.6.3 

 

Antimicrobial activity of Syzygium aromaticum essential oil 

 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Syzygium aromaticum   

Inhibition zone (mm) 

B. subtilis 27.0±1.0 10.8±2.1 - 

L. rhamnosus 8.3±0.7 

 

15.5±0.8 
- 

S. aureus 9.7±0.4 15.1±1.0 - 

S. mutans 17.3±0.5 

 

13.4±0.7 
- 

E. coli 7.2±0.6 

 

9.6±1.3 
- 

P. multocida 16.2±0.8 

 

11.6±1.5 
- 

A. alternata 19.3±1.0 

 

- 
14.2±0.8 

A. flavus 7.4±0.3 - 11.4±1.4 



123 

 

 

A. niger 10.0±1.0 

 

- 
21.7±1.2 

G. lucidum 20.1±1.2 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 1.25±0.12 1.72±0.2 - 

L. rhamnosus 3.12±0.2 2.81±0.3 - 

S. aureus 4.37±0.3 2.19±0.2 - 

S. mutans 1.56±0.1 2.03±0.1 - 

E. coli 3.75±0.2 2.34±0.2 - 

P. multocida 1.88±0.1 2.03±0.1 - 

A. alternata 1.41±0.1 - 2.34±0.2 

A. flavus 3.44±0.2 - 2.81±0.2 

A. niger 2.5±0.1 - 0.94±0.1 

G. lucidum 1.25±0.1 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum,  

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.6.4 FFA of edible oil stabilized by Syzygium aromaticum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Syzygium aromaticum  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.11±0.012 0.09±0.015 0.08±0.01 0.16±0.014 

30 0.15±0.02 0.1±0.02 0.09±0.015 0.22±0.016 

45 0.2±0.022 0.13±0.02 0.11±0.012 0.34±0.03 

60 0.24±0.025 0.16±0.014 0.14±0.014 0.48±0.02 

75 0.31±0.015 0.21±0.018 0.18±0.018 0.57±0.03 

90 0.39±0.03 0.25±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum,  
analyzed individually in triplicate. 

Table 4.6.5 PV of edible oil stabilized by Syzygium aromaticum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Syzygium aromaticum  

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.9±0.1 0.5±0.03 0.4±0.01 1±0.03 

30 1.5±0.14 0.7±0.02 0.6±0.16 1.81±0.12 

45 2.1±0.26 1.31±0.12 0.9±0.21 2.5±0.24 

60 2.7±0.21 1.9±0.16 1.4±0.29 3.4±0.36 

75 3.3±0.27 2.4±0.24 1.9±0.24 4.7±0.21 

90 4.0±0.3 3.1±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum, analyzed 

individually in triplicate. 
Table 4.6.6 

para-Anisidine value of edible oil stabilized by Syzygium aromaticum essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Syzygium aromaticum  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 4.8±0.24 3.9±0.36 3.4±0.27 10.2±0.52 

30 7.5±0.38 6.3±0.47 5.8±0.36 17.5±0.74 

45 11.2±0.64 9.8±0.31 8.5±0.27 24.1±0.81 

60 14.6±0.81 13.5±0.55 10.9±0.55 29.6±0.63 

75 19.6±0.72 18.2±0.31 13.6±0.47 37.4±1.2 

90 25.5±1.1 22.4±0.47 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum, 
 analyzed individually in triplicate. 
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Table 4.6.7 

Cytotoxicity (% hemolysis) of Syzygium aromaticum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.38% 0.14% 

5mg/mL 3.05% 1.79% 

10mg/mL 9.89% 6.24% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Syzygium aromaticum,  

analyzed individually in triplicate. 

 

 

Figure 4.6.2. Typical GC-MS chromatogram of essential oil from Syzygium aromaticum 
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Table 4.6.8. Chemical composition of Syzygium aromaticum essential oil 

Components1 RI2 % age Mode of Identification3 

Cumene 926 0.32 RT, RI, MS 

α-pinene 934 0.29 RT, RI, MS 

α-Fenchene 952 0.34 RI, MS 

β-Thujene 970 0.21 RT, RI, MS 

β -Myrcene 994 0.25 RT, RI, MS 

4-carene 1002 0.36 RT, RI, MS 

Limonene 1033 0.47 RT, RI, MS 

Eucalyptol 1037 0.41 RT, RI, MS 

γ-Terpinen 1072 0.22 RT, RI, MS 

 m-Cymene 1081 0.42 RI, MS 

β-Citronellal 1162 0.34 RT, RI, MS 

 L-terpinen-4-ol 1178 0.19 RI, MS 

Linalyl formate 1237 0.37 RT, MS 

Eugenol 1356 51.02 RT, RI, MS 

cis-Jasmone 1394 0.37 RI, MS 

α-Bergamotene 1436 0.23 RI, MS 

Caryophyllene 1454 13.97 RT, RI, MS 

α -Farnesene 1509 0.31 RT, RI, MS 

Eugenyl acetate 1524 13.09 RT, RI, MS 

Caryophyllene Oxide 1578 0.17 RT, RI, MS 

Isoeugenol acetate 1610 11.16 RI, MS 

Benzyl Benzoate 1764 0.24 RI, MS 

Total (23)  95.41  

1    Compounds are listed in order of elution from a ZB-5MS column. 
2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 
3    RT = identification based on retention time, RI = Identification based on retention index,  
    MS= identification based on comparison of mass spectra 
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4.6.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Syzygium aromaticum was 

found to be 6.70 % as listed in Table 4.6.1. This was the maximum yield obtained among all the  

plants taken in the following present study. The very high percentage showed that this plant was 

very much enriched with essential oil. The oil was colourless with strong aromatic smell and 

refractive index 1.364. Essential oil was found to be less dense floating on the surface of water 

during the process of hydrodistillation with specific gravity 0.71.  

The essential oil of S. aromaticum was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

During the process, the examined essential oil transferred electron or hydrogen atoms towards 

DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and this ability of 

essential oil was investigated. The DPPH radical scavenging by S. aromaticum essential oil was 

represented in terms of 50 % scavenging (IC50) as shown in Table 4.6.2, which was found to be 

14.58 μg/mL. The scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 

3.46 μg/mL. Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to 

unsaturation in its structure, it may form peroxides upon oxidation which have ability to oxidize 

Fe+2 to Fe+3 that may form complex with SCN¯ present in reaction medium. The concentration of 

this complex was measured using spectrophotometer at 500 nm. Higher the concentration of 

peroxides higher will be the value of absorbance and ultimately lower will be the antioxidant 

activity.  Table 4.6.2 shows the % inhibition in linoleic acid system by S. aromaticum essential 

oil taken at three different concentrations. It is clear that maximum inhibition was 81.15 % at 

concentration 50 μL/mL which decreased with the decrease in concentration and therefore could 

be attributed to decrease in concentration of bioactive compound accordingly. The activity 

shown by essential oil was found to be quite lesser than that of synthetic antioxidant BHT which 

showed 85.10 % inhibition. β-carotene has ability to form a stable β-carotene radical with 

peroxyl radical (LOO•), formed by the lipids such as linoleic acid in result of their oxidation 

which causes in reduction of amount of β-carotene. However this reduction would have been 

inhibited due to presence of some antioxidant in the reaction medium which could react with 

peroxyl radical competitively to β-carotene. Thus antioxidant effect can easily be examined by 

depleting the colour of solution using spectrophotometer at 470nm. Bleaching of β-carotene as a 
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function of antioxidant activity of the essential oil of S. aromaticum is shown in Figure 4.6.1. 

The least antioxidant activity was exhibited by control with the maximum colour depletion. 

Whereas in samples, due to their antioxidant potential, there was less depletion of colour. S. 

aromaticum was used at three different concentrations where minimum depletion was observed 

at 6 mg/mL. In case of BHT the depletion was the least showing the maximum antioxidant 

activity. Nassar et al. (2007) tested various clove buds extracts for their antioxidant activity 

where ethanol extract showed the maximum scavenging ability towards DPPH free radical which 

was found comparable with BHT. Alitonou et al. (2012) evaluated essential oil of clove for 

scavenging ability of DPPH radical and IC50 value was calculated for both essential oil and its 

main component eugenol which was found to be 10.3 and 1.6 mg/L, respectively.  

The antimicrobial activity of the essential oil of S. aromaticum against various microbes 

including bacteria and fungi is shown in Table 4.6.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that S. aromaticum showed 

potential as an antimicrobial agent with larger inhibition zones (7.2-27.0 and 7.4-20.1 mm) and 

smaller MIC values (1.25-4.37 and 1.41-3.44 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against B. subtilis (gram 

positive) with largest inhibition zone 27.0 mm followed by minimum MIC value 1.25 mg/mL. 

These results are much better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 10.8mm and MIC 1.72 mg/mL. In case of fungi, G. lucidum showed to be most sensitive 

with largest inhibition zone 20.1 mm followed by minimum MIC value 1.25 mg/mL which was 

much better to that of antibiotic, Terbinafine, with inhibition zone 9.1mm and MIC 1.88 mg/mL. 

Alitonou et al. (2012) evaluated essential oil of clove against a panel of bacteria and fungi and 

maximum inhibition was found against Staphylococcus aureus MIC and MBC values, 0.025 and 

1.56 mg/mL, respectively. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.6.4 shows the effect of S. aromaticum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 
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stabilization was exhibited by S. aromaticum essential oil at 1000ppm which was 0.25 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.6.5 and it showed that maximum stabilization was obtained at 1000ppm with 

minimum PV i.e. 3.1 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg 

for BHT and control, respectively. p-anisidine value was an important parameter used to measure 

the secondary products in lipid oxidation process which is presented in Table 4.6.6 for S. 

aromaticum. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by 

S. aromaticum essential oil sample of 1000 ppm with value 22.4 while in case of BHT it was 

found to be 17.9.  

The effect of S. aromaticum essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked using three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.5.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, S. 

aromaticum exhibited the maximum hemolysis i.e. 6.24 % at 10 mg/mL concentration and the 

minimum of 0.14 % at 0.5 mg/mL concentration, while with human erythrocytes maximum 

hemolysis i.e. 9.89 % at 10 mg/mL concentration and the minimum of 0.38 % at 0.5 mg/mL. 

Marya et al. (2012) tested clove essential oil and its main components eugenol and eugenyl 

acetate for their cytotoxicity and hemolysis was found to be 48, 41 and 57 %, respectively.  

The data of chemical composition of the essential oil from S. aromaticum was listed in 

Table 4.6.8. Total 23 compounds were identified representing 95.41 % of the oil. The major 

components were found to be eugenol (51.02 %), caryophyllene (13.97 %), eugenyl acetate 

(13.09 %) and isoeugenol acetate (11.16 %). Nassar et al. (2007) collected the buds of S. 

aromaticum from local market of Cairo (Egypt) which were subjected to essential oil extraction 

and further for their chemical characterization. 16 components were identified with eugenol 

(71.56 %), eugenyl acetate (8.99 %), caryophyllene oxide (1.67 %) and nootkatin (1.05 %) as 

major components. In another study Alitonou et al. (2008) collected plant material from 

Abomey-Calavi (Benin) and examined essential oil using GC-MS. Eugenol (60.4%), trans-β-

caryophyllene (24.0 %) and eugenol acetate (10.0 %) were found to be the major components 

among others.  
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4.7. Myristica fragrans (Nutmeg) 

 

Table 4.7.1 

 

Physical properties of Myristica fragrans (N) essential oil 

 

Parameter Myristica fragrans (N) 

Colour Pale Yellow 

Yield (%) 1.70±0.2 

Refractive Index  

(30 °C) 

1.342±0.001 

Specific Gravity 0.70±0.02 

 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N), 

analyzed individually in triplicate. 
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Table 4.7.2 

Antioxidant activity of Myristica fragrans (N) essential oil measured by DPPH assay and % 

inhibition in linoleic acid system 

DPPH 

Parameter M. fragrans (N) BHT 

IC50 (μg/mL) 38.29±0.67 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

71.19±3.1 
 

67.13±2.1 
 

48.26±3.1 
 

85.10±3.2 

Values are mean ± standard deviation of Myristica fragrans (N), analyzed individually in 

triplicate. 

Fig. 4.7.1 

 

 

 

 

Antioxidant activity of Myristica fragrans (N) essential oil measured by bleaching of  
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Table 4.7.3 

Antimicrobial activity of Myristica fragrans (N) essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Myristica fragrans (N)   

Inhibition zone (mm) 

B. subtilis 4.3±0.2 10.8±2.1 - 

L. rhamnosus 6.4±0.3 

 

15.5±0.8 
- 

S. aureus 4.2±0.5 15.1±1.0 - 

S. mutans 9.6±0.1 

 

13.4±0.7 
- 

E. coli 4.9±0.3 

 

9.6±1.3 
- 

P. multocida 8.5±0.5 11.6±1.5 - 

A. alternata 13.4±0.3 - 14.2±0.8 

A. flavus 10.7±0.3 

 

- 
11.4±1.4 

A. niger 20.3±2.0 

 

- 
21.7±1.2 
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G. lucidum 8.6±0.2 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 4.48±0.3 1.72±0.2 - 

L. rhamnosus 4.06±0.3 2.81±0.3 - 

S. aureus 5.0±0.4 2.19±0.2 - 

S. mutans 2.81±0.2 2.03±0.1 - 

E. coli 4.37±0.3 2.34±0.2 - 

P. multocida 3.12±0.2 2.03±0.1 - 

A. alternata 2.03±0.1 - 2.34±0.2 

A. flavus 2.5±0.1 - 2.81±0.2 

A. niger 1.25±0.1 - 0.94±0.1 

G. lucidum 3.12±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N),  

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.7.4  FFA of edible oil stabilized by Myristica fragrans (N) essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Myristica fragrans (N) 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.15±0.012 0.11±0.02 0.08±0.01 0.16±0.014 

30 0.17±0.016 0.13±0.014 0.09±0.015 0.22±0.016 

45 0.23±0.02 0.16±0.016 0.11±0.012 0.34±0.03 

60 0.27±0.023 0.2±0.016 0.14±0.014 0.48±0.02 

75 0.31±0.027 0.25±0.018 0.18±0.018 0.57±0.03 

90 0.37±0.03 0.29±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Myristica fragrans,  
analyzed individually in triplicate. 

Table 4.7.5 PV of edible oil stabilized by Myristica fragrans (N)essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Myristica fragrans (N) 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 1.1±0.1 0.8±0.02 0.4±0.01 1±0.03 

30 1.7±0.3 1.31±0.12 0.6±0.16 1.81±0.12 

45 2.5±0.26 1.9±0.21 0.9±0.21 2.5±0.24 

60 3.1±0.31 2.4±0.29 1.4±0.29 3.4±0.36 

75 3.7±0.38 2.8±0.24 1.9±0.24 4.7±0.21 

90 4.3±0.4 3.4±0.29 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N),  

analyzed individually in triplicate. 
Table 4.7.6 

para-Anisidine Value of edible oil stabilized by Myristica fragrans (N) essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Myristica fragrans (N) 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 6.7±0.41 5.4±0.27 3.4±0.27 10.2±0.52 

30 10.4±0.73 8.7±0.62 5.8±0.36 17.5±0.74 

45 13.7±0.54 12.3±0.55 8.5±0.27 24.1±0.81 

60 18.5±0.61 16.6±0.36 10.9±0.55 29.6±0.63 

75 21.8±0.92 20.1±0.55 13.6±0.47 37.4±1.2 

90 27.8±1.3 22.2±0.62 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N), 
analyzed individually in triplicate. 
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Table 4.7.7 

Cytotoxicity (% hemolysis) of Myristica fragrans (N) essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 4.40% 2.74% 

5mg/mL 5.79% 3.96% 

10mg/mL 8.61% 6.62% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N),  

analyzed individually in triplicate. 

 

 

Figure 4.7.2. Typical GC-MS chromatogram of essential oil from Myristica fragrans (N) 
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Table 4.7.8. Chemical composition of Myristica fragrans (N) essential oil 

Components1 RI2 % age Mode of Identification3 

Cumene 926 5.73 RT, RI, MS 

α-Pinene 934 18.06 RT, RI, MS 

α-Fenchene 952 0.34 RI, MS 

Camphene 955 5.18 RT, RI, MS 

Sabinene 972 2.26 RT, RI, MS 

β -Myrcene 994 1.23 RT, RI, MS 

α -Phellandrene 1005 0.25 RT, RI, MS 

3-Carene 1011 0.45 RT, RI, MS 

α-Terpinene 1020 1.42 RT, RI, MS 

β-cis-Ocimene 1043 0.26 RI, MS 

γ-Terpinen 1072 1.96 RT, RI, MS 

 α- Terpinolene 1086 0.57 RI, MS 

L-Pinocarveol 1148 7.58 RI, MS 

α-Terpinol 1187 0.49 RT, RI, MS 

3-p-Menthene 1234 25.56 RI, MS 

Linalyl alcohol 1237 1.08 RT, MS 

cis-Geraniol 1258 0.34 RT, RI, MS 

(E)-p-Menth-2-en-1-ol 1262 0.41 RI, MS 

Bornyl acetate 1285 0.52 RT, RI, MS 

 Isopregol - 6.69 RT, MS 

α-Terpinyl acetate 1350 0.29 RI, MS 

Eugenol 1356 0.22 RT, RI, MS 

Myristicin 1521 14.68 RI, MS 

Nerolidol 1533 0.38 RT, RI, MS 

Elemicin 1555 0.37 RI, MS 

Isoeugenol acetate 1610 0.64 RT, RI, MS 

Isoeugenol 2250 0.40 RT, MS 

Total (27)  98.60  

1    Compounds are listed in order of elution from a ZB-5MS column. 
2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 
3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.7.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Myristica fragrans (Nutmeg) 

was found to be 1.70 % as listed in Table 4.7.1 which showed that this plant was enriched with 

essential oil. The oil was pale yellow in colour with strong aromatic smell and refractive index 

1.342. Essential oil was found to be less dense floating on the surface of water during the process 

of hydrodistillation with specific gravity 0.70.  Muchtaridi et al. (2010) found the yield of 

essential oil 6.85 % w/w isolated from nutmeg seeds. Piras et al. (2012) examined that yield of 

volatile oil extracted from nutmeg was 1.4% obtained by supercritical CO2 extraction. Kapoor et 

al. (2013) got 3.4 % of colourless volatile oil of nutmeg with characteristic odour and sharp taste.  

The essential oil of M. fragrans (N) was assessed for its antioxidant potential using 

various assays being in practice these days. Free radical scavenging ability was tested using 

DPPH assay and the potential was noted to be increased with the increase in concentration of 

essential oil. During the process, the examined essential oil transferred electron or hydrogen 

atoms towards DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and 

this ability of essential oil was investigated. The DPPH radical scavenging by M. fragrans (N) 

essential oil was represented in terms of 50 % scavenging (IC50) as shown in Table 4.7.2, which 

was found to be 38.29 μg/mL. The scavenging effect in case of synthetic antioxidant i.e. BHT 

was found to be 3.46 μg/mL. Linoleic acid was also used to test the antioxidant capacity of 

essential oils. Due to unsaturation in its structure, it may form peroxides upon oxidation which 

have ability to oxidize Fe+2 to Fe+3 that may form complex with SCN¯ present in reaction 

medium. The concentration of this complex was measured using spectrophotometer at 500 nm. 

Higher the concentration of peroxides higher will be the value of absorbance and ultimately 

lower will be the antioxidant activity.  Table 4.7.2 shows the % inhibition in linoleic acid system 

by M. fragrans (N) essential oil taken at three different concentrations. It is clear that maximum 

inhibition was 71.19 % at concentration 50 μL/mL which decreased with the decrease in 

concentration and therefore could be attributed to decrease in concentration of bioactive 

compound accordingly. The activity shown by essential oil was found to be quite lesser than that 

of synthetic antioxidant BHT which showed 85.10 % inhibition. Bleaching of β-carotene as a 

function of antioxidant activity of the essential oil of M. fragrans (N) is shown in Figure 4.7.1. 

The least antioxidant activity was exhibited by control with the maximum colour depletion. 
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Whereas in samples, due to their antioxidant potential, there was less depletion of colour. M. 

fragrans (N) was used at three different concentrations where minimum depletion was observed 

at 6 mg/mL. In case of BHT the depletion was the least showing the maximum antioxidant 

activity. Piaru et al. (2012) found that essential oil of nutmeg showed significant antioxidant 

activity with IC50 value 136 μg/mL. In another study Piaru et al. (2012) evaluated that nutmeg 

essential oil effectively inhibited the oxidation of linoleic acid by 88.68 %.  

The antimicrobial activity of the essential oil of M. fragrans (N) against various microbes 

including bacteria and fungi is shown in Table 4.7.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that M. fragrans (N) showed 

potential as an antimicrobial agent with larger inhibition zones (4.2-9.6 and 8.6-20.3 mm) and 

smaller MIC values (2.81-5.0 and 1.25-3.12 mg/mL) against various bacterial and fungal strains, 

respectively. In case of bacteria maximum activity was found against S. mutans (Gram positive) 

with largest inhibition zone 9.6 mm followed by minimum MIC value 2.81 mg/mL. These results 

are quite comparable to that of antibiotic, Rifampicin, which showed the inhibition zone 13.4 

mm and MIC 2.03 mg/mL. In case of fungi, A. niger showed to be most sensitive with largest 

inhibition zone 20.3mm followed by minimum MIC value 1.25mg/mL which was closer to that 

of antibiotic, Terbinafine, with inhibition zone 21.7mm and MIC 0.94 mg/mL. Pal et al. (2011) 

tested essential oil of nutmeg against various microbes and it was found that it showed activity 

against all microbes tested except Pseudomonas aeruginosa and Candida albicans. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.7.4 shows the effect of M. fragrans (N) essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by M. fragrans (N) essential oil at 1000ppm which was 0.29 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.7.5 and it showed that maximum stabilization was obtained at 1000 ppm 

with minimum PV i.e. 3.4 meq/kg after induction period of 90 days, which was 2.3 and 6.1 
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meq/kg for BHT and control, respectively. p-anisidine value was an important parameter used to 

measure the secondary products in lipid oxidation process which is presented in Table 4.7.6 for 

S. aromaticum. Control showed p-anisidine value 45.8 after 90 days which was much stabilized 

by M. fragrans (N) essential oil sample of 1000 ppm with value 22.2 while in case of BHT it was 

found to be 17.9.  

The effect of M. fragrans (N) essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked using three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.7.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, M. fragrans 

(N) exhibited the maximum hemolysis i.e. 6.62 % at 10 mg/mL concentration and the minimum 

of 2.74 % at 0.5 mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 

8.61 % at 10 mg/mL concentration and the minimum of 4.40 % at 0.5 mg/mL. In another study 

nutmeg essential oil was tested for its cytotoxicity against Vero cells using MTT assay and it was 

found that it showed minute cytotoxicity with IC50 at 24.83 μL/mL (Piaru, et al., 2012). Malti et 

al. (2008) tested the cytotoxicity of M. fragrans extract on mice and found that its extract was 

toxic at doses ≥3 mg/g. 

The data of chemical composition of the essential oil from M. fragrans (N) was listed in 

Table 4.7.8. Total 27 compounds were identified representing 98.60 % of the oil. The major 

components were found to be 3-p-menthene (25.56 %), α-pinene (18.06 %), myristicin (14.68 

%), L-pinocarveol (7.58 %), cumene (5.73 %) and camphene (5.18 %). Piaru et al. (2011) 

collected fresh fruits of M. fragrans from Balik Pulau, Penang (Malaysia) which was subjected 

to essential oil extraction and further for their chemical characterization. 37 components were 

identified with terpineol 4 (21.3 %), γ -Terpinene (9.9 %), α-Terpinene (9.8 %) and limonene 

(8.8 %). In another study Muchtaridi et al. (2010) obtained nutmeg seeds from Bogor (West 

Java) and examined essential oil using GC-MS. Sabinene (21.38 %), 4-terpineol (13.92 %), 

myristicin (13.57 %) and α-pinene (10.23 %) were found to be the major components among 

others. Kostic et al. (2013) collected nutmeg from Ovcarsko Kablarska Gorge (Serbia). Among 

24 identified components the major were found to be α-pinene (25.07 %), β-pinene (18.79 %), 

sabinene (18.73 %) and myristicin (5.12 %).  
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4.8. Myristica fragrans (Mace) 

 

 

Table 4.8.1 

 

Physical properties of Myristica fragrans (M) essential oil 

 

Parameter Myristica fragrans (M) 

Colour Light brown 

Yield (%) 1.75±0.04 

Refractive Index  

(30 °C) 

1.374±0.002 

Specific Gravity 0.95±0.02 

 

 

Values are mean ± standard deviation of three samples of each Myristica fragrans (M), 

analyzed individually in triplicate. 
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Table 4.8.2 

Antioxidant activity of Myristica fragrans (M) essential oil measured by DPPH assay and % 

inhibition in linoleic acid system 

DPPH 

Parameter M. fragrans (M) BHT 

IC50 (μg/mL) 21.95±2.14 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

62.13±1.6 
 

44.21±1.4 
 

19.01±1.1 
 

85.10±3.2 

Values are mean ± standard deviation of Myristica fragrans (M), analyzed individually in 

triplicate. 

Fig. 4.8.1 

 

 

 

Antioxidant activity of Myristica fragrans (M) essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140

A
b

so
rb

an
ce

 (
4

7
0

n
m

)

Time (min)

Ctrl 6mg/mL 4mg/mL 2mg/mL BHT (200ppm)



142 

 

Table 4.8.3 

 

Antimicrobial activity of Myristica fragrans (M) essential oil 

 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Myristica fragrans (M)   

Inhibition zone (mm) 

B. subtilis 6.7±1.5 10.8±2.1 - 

L. rhamnosus 12.6±0.4 

 

15.5±0.8 
- 

S. aureus 10.7±1.5 15.1±1.0 - 

S. mutans 14.3±0.7 

 

13.4±0.7 
- 

E. coli 10.3±1.1 

 

9.6±1.3 
- 

P. multocida 8.3±1.1 

 

11.6±1.5 
- 

A. alternata 11.7±0.6 

 

- 
14.2±0.8 

A. flavus 6.3±0.5 - 11.4±1.4 
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A. niger 21.6±1.5 

 

- 
21.7±1.2 

G. lucidum 8.7±0.7 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 3.44±0.3 1.72±0.2 - 

L. rhamnosus 2.19±0.2 2.81±0.3 - 

S. aureus 2.81±0.1 2.19±0.2 - 

S. mutans 1.72± 0.2 2.03±0.1 - 

E. coli 1.88±0.1 2.34±0.2 - 

P. multocida 2.5±0.1 2.03±0.1 - 

A. alternata 2.81±0.2 - 2.34±0.2 

A. flavus 3.75±0.1 - 2.81±0.2 

A. niger 1.01±0.2 - 0.94±0.1 

G. lucidum 2.03±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Myristica fragrans (M),  

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.8.4  FFA of edible oil stabilized by Myristica fragrans (M) essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Myristica fragrans (M) 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.14±0.011 0.11±0.012 0.08±0.01 0.16±0.014 

30 0.18±0.015 0.12±0.014 0.09±0.015 0.22±0.016 

45 0.21±0.014 0.15±0.02 0.11±0.012 0.34±0.03 

60 0.25±0.02 0.19±0.014 0.14±0.014 0.48±0.02 

75 0.29±0.017 0.22±0.018 0.18±0.018 0.57±0.03 

90 0.34±0.02 0.27±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Myristica fragrans,  
analyzed individually in triplicate. 

Table 4.8.5 PV of edible oil stabilized by Myristica fragrans (M) essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Myristica fragrans (M) 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 1.0±0.02 0.7±0.03 0.4±0.01 1±0.03 

30 1.6±0.1 1.2±0.21 0.6±0.16 1.81±0.12 

45 2.3±0.17 1.7±0.24 0.9±0.21 2.5±0.24 

60 3.0±0.2 2.4±0.16 1.4±0.29 3.4±0.36 

75 3.7±0.22 2.9±0.21 1.9±0.24 4.7±0.21 

90 4.4±0.25 3.5±0.24 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Myristica fragrans (N),  

analyzed individually in triplicate. 
Table 4.8.6 

para-Anisidine Value of edible oil stabilized by Myristica fragrans (M) essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Myristica fragrans (M) 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 6.1±0.24 5.1±0.31 3.4±0.27 10.2±0.52 

30 8.9±0.33 7.8±0.36 5.8±0.36 17.5±0.74 

45 12.7±0.37 10.9±0.27 8.5±0.27 24.1±0.81 

60 16.4±0.28 14.6±0.55 10.9±0.55 29.6±0.63 

75 21.4±0.83 18.8±0.47 13.6±0.47 37.4±1.2 

90 26.8±0.75 22.5±0.55 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Myristica fragrans (M), 
analyzed individually in triplicate. 
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Table 4.8.7 

Cytotoxicity (% hemolysis) of Myristica fragrans (M) essential oil 

Concentration Human erythrocytes  Bovine erythrocytes 

0.5mg/mL 0.52% 0.31% 

5mg/mL 8.95% 4.67% 

10mg/mL 9.93% 7.24% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Myristica fragrans (M),  

analyzed individually in triplicate. 

 

Figure 4.8.2. Typical GC-MS chromatogram of essential oil from Myristica fragrans (M) 
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Table 4.8.8. Chemical composition of Myristica fragrans (M) essential oil 

Components1 RI2 % age Mode of Identification3 

Cyclofenchene 896 0.28 RI, MS 

α-Thujene 926 1.21 RT, RI, MS 

α-pinene 934 1.19 RT, RI, MS 

Camphene 955 0.25 RT, RI, MS 

Sabinene 972 0.48 RI, MS 

β-Myrcene 994 0.62 RT, RI, MS 

α-Phellandrene 1005 0.49 RT, RI, MS 

3-Carene 1011 0.72 RT, RI, MS 

α-Terpinene 1020 0.75 RT, RI, MS 

1-Methyl-2-

propylcyclopentane 

1031 0.24 RI, MS 

β-Phellandrene 1032 18.27 RT, RI, MS 

Limonene 1034 0.83 RT, RI, MS 

α- Terpinolen 1089 0.36 RT, RI, MS 

Linalool 1096 0.31 RT, RI, MS 

L-Pinocarveol 1140 0.49 RI, MS 

dihydro α-terpineol 1162 0.46 RI, MS 

 L-Terpinen-4-ol 1178 3.35 RI, MS 

3-p-Menthene 1234 10.76 RT, RI, MS 

trans-p-Menth-2-en-
1,8-diol 

1266 0.56 RI, MS 

β-Methylallylbenzene 
 

1270 0.36 RI, MS 

Safrole 1287 49.09 RT, RI, MS 
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Geranyl formate 1300 0.29 RT, RI, MS 

Eugenol 1356 0.98 RT, RI, MS 

Patchoulane 1378 0.38 RI, MS 

α-Copaene 1396 0.56 RT, RI, MS 

Methyl Eugenol 1401 1.83 RT, RI, MS 

α-Caryophyllene 1454 0.49 RT, RI, MS 

α-Farnesene 1509 0.31 RT, RI, MS 

Myristicin 
 

1521 0.52 RI, MS 

Spathulenol 

 

1577 0.26 RT, RI, MS 

β-Eudesmol 
 

1652 0.64 RI, MS 

Myristic acid 

 

1720 0.83 RT, RI, MS 

Stearic acid 
 

2123 0.35 RT, RI, MS 

Total (33)  98.51 

 

 

1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.8.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Myristica fragrans (Mace) 

was found to be 1.75 % as listed in Table 4.8.1 which shows that plant was enriched with 

essential oil. The oil was light brown in colour with strong aromatic smell and refractive index 

1.374. Essential oil was found to be less dense floating on the surface of water during the process 

of hydrodistillation with specific gravity 0.95. Kapoor et al. (2013) got 3.4 % of colourless 

volatile oil of M. fragrans with characteristic odour and sharp taste.  

The essential oil of M. fragrans (M) was assessed for its antioxidant potential using 

various assays being in practice these days. Free radical scavenging ability was tested using 

DPPH assay and the potential was noted to be increased with the increase in concentration of 

essential oil. During the process, the examined essential oil transferred electron or hydrogen 

atoms towards DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and 

this ability of essential oil was investigated. The DPPH radical scavenging by M. fragrans (M) 

essential oil was represented in terms of 50 % scavenging (IC50) as shown in Table 4.8.2, which 

was found to be 21.95 μg/mL. The scavenging effect in case of synthetic antioxidant i.e. BHT 

was found to be 3.46 μg/mL. Linoleic acid was also used to test the antioxidant capacity of 

essential oils. Due to unsaturation in its structure, it may form peroxides upon oxidation which 

have ability to oxidize Fe+2 to Fe+3 that may form complex with SCN¯ present in reaction 

medium. The concentration of this complex was measured using spectrophotometer at 500 nm. 

Higher the concentration of peroxides higher will be the value of absorbance and ultimately 

lower will be the antioxidant activity.  Table 4.8.2 showed the % inhibition in linoleic acid 

system by M. fragrans (M) essential oil taken at three different concentrations. It is clear that 

maximum inhibition was 62.13 % at concentration 50 μL/mL which decreased with the decrease 

in concentration and therefore could be attributed to decrease in concentration of bioactive 

compound accordingly. The activity shown by essential oil was found to be quite lesser than that 

of synthetic antioxidant BHT which showed 85.10 % inhibition. β-carotene has ability to form a 

stable β-carotene radical with peroxyl radical (LOO•), formed by the lipids such as linoleic acid 

in result of their oxidation which causes in reduction of amount of β-carotene. However this 

reduction would have been inhibited due to presence of some antioxidant in the reaction medium 

which could react with peroxyl radical competitively to β-carotene. Thus antioxidant effect can 
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easily be examined by depleting the colour of solution using spectrophotometer at 470nm. 

Bleaching of β-carotene as a function of antioxidant activity of the essential oil of M. fragrans 

(M) is shown in Figure 4.8.1. The least antioxidant activity was exhibited by control with the 

maximum colour depletion. Whereas in samples, due to their antioxidant potential, there was less 

depletion of colour. M. fragrans (M) was used at three different concentrations where minimum 

depletion was observed at 6 mg/mL. In case of BHT the depletion was the least showing the 

maximum antioxidant activity. Chatterjee et al. (2007) evaluated that Mace acetone extract 

exhibited a higher antioxidant activity. Higher activity observed was attributed due to the 

presence of other components such as lycopene that contributes to the antioxidant activity of the 

total extract. 

The antimicrobial activity of the essential oil of M. fragrans (M) against various microbes 

including bacteria and fungi is shown in Table 4.8.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that M. fragrans (M) showed 

potential as an antimicrobial agent with larger inhibition zones (6.7-14.3 and 6.3-21.6 mm) and 

smaller MIC values (1.72-3.44 and 1.01-3.75 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against S. mutans (Gram 

positive) with largest inhibition zone 14.3mm followed by minimum MIC value 1.72 mg/mL. 

These results are quite better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 13.4 mm and MIC 2.03 mg/mL. In case of fungi, A. niger showed to be most sensitive with 

largest inhibition zone 21.6 mm followed by minimum MIC value 1.01 mg/mL which was closer 

to that of antibiotic, Terbinafine, with inhibition zone 21.7mm and MIC 0.94 mg/mL. Shafiei , et 

al. (2012) tested extracts flesh, mace and seed of Myristica fragrans against different pathogens. 

It is clear that extract of flesh showed better activity than that of extract of seed and mace. In 

another study the extract of mace was found effective against majority of tested bacteria; MIC 

ranged between 9.4 to 37.5 mg/mL (Malti et al., 2008). 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.8.4 shows the effect of M. fragrans (M) essential oil on 
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formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by M. fragrans (M) essential oil at 1000 ppm which was 0.27 % even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.8.5 and it showed that maximum stabilization was obtained at 1000ppm with 

minimum PV i.e. 3.5 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg 

for BHT and control, respectively. p-anisidine value was an important parameter used to measure 

the secondary products in lipid oxidation process which is presented in Table 4.8.6 for S. 

aromaticum. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by 

M. fragrans (M) essential oil sample of 1000 ppm with value 22.5 while in case of BHT it was 

found to be 17.9.  

The effect of M. fragrans (M) essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked using three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.8.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, M. fragrans 

(M) exhibited the maximum hemolysis i.e. 7.24 % at 10 mg/mL concentration and the minimum 

of 0.31 % at 0.5 mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 

9.93% at 10 mg/mL concentration and the minimum of 0.52 % at 0.5 mg/mL. Malti et al. (2008) 

tested the cytotoxicity of mace extract on mice and found that its extract was toxic at doses ≥ 3 

mg/g.  

The data of chemical composition of the essential oil from M. fragrans (M) was listed in 

Table 4.8.8. Total 33 compounds were identified representing 98.51 % of the oil. The major 

components were found to be safrole (49.09 %), β-Phellandrene (18.27%), 3-p-Menthene (10.76 

%) and L-terpinen-4-ol (3.35 %). Chatterjee et al. (2007) obtained mace from fresh fruits of M. 

fragrans collected from Kottakal, Kerala (India). The extract was prepared in 10% methanol and 

subjected for chemical characterization by GC-MS. Major compounds were found to be 

isoeugenol acetate (29.18 %), elemicin (13.63 %) and 6-methoxy-eugenol acetate (10.30 %). 
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4.9. Murraya koenigii 

 

Table 4.9.1 

Physical properties of Murraya koenigii essential oil 

 

Parameter Murraya koenigii 

Colour Greenish yellow 

Yield (%) 1.12±0.1 

Refractive Index  

(30 °C) 

1.357±0.002 

Specific Gravity  

0.95±0.01 

 

Values are mean ± standard deviation of three samples of each Murraya koenigii, 

analyzed individually in triplicate. 
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Table 4.9.2 

Antioxidant activity of Murraya koenigii essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter M. koenigii BHT 

IC50 (μg/mL) 26.68±2.72 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

82.78±2.7 

 

71.44±3.1 

 

49.26±1.2 

 

85.10±3.2 

Values are mean ± standard deviation of Murraya koenigii, analyzed individually in triplicate. 

Fig. 4.9.1 

 

 

 

Antioxidant activity of Murraya koenigii essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.9.3 

Antimicrobial activity of Murraya koenigii essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Murraya koenigii 

 

  

Inhibition zone (mm) 

B. subtilis 5.2±0.6 10.8±2.1 - 

L. rhamnosus 12.4±0.6 

 

15.5±0.8 
- 

S. aureus 14.3±0.7 15.1±1.0 - 

S. mutans 13.4±0.2 

 

13.4±0.7 
- 

E. coli 9.3±0.5 

 

9.6±1.3 
- 

P. multocida 10.4±0.5 

 

11.6±1.5 
- 

A. alternata 18.3±1.2 

 

- 
14.2±0.8 

A. flavus 11.6±0.5 

 

- 
11.4±1.4 



154 

 

A. niger 11.7±1.2 

 

- 
21.7±1.2 

G. lucidum 10.7±0.3 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 4.06±0.3 1.72±0.2 - 

L. rhamnosus 2.34±0.1 2.81±0.3 - 

S. aureus 2.03±0.1 2.19±0.2 - 

S. mutans 2.34±0.2 2.03±0.1 - 

E. coli 2.81±0.2 2.34±0.2 - 

P. multocida 2.5±0.1 2.03±0.1 - 

A. alternata 1.56±0.1 - 2.34±0.2 

A. flavus 2.34±0.2 - 2.81±0.2 

A. niger 2.34±0.1 - 0.94±0.1 

G. lucidum 2.5±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Murraya koenigii, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.9.4 FFA of edible oil stabilized by Murraya koenigii essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Murraya koenigii 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.1±0.011 0.08±0.01 0.08±0.01 0.16±0.014 

30 0.13±0.013 0.1±0.012 0.09±0.015 0.22±0.016 

45 0.18±0.016 0.13±0.016 0.11±0.012 0.34±0.03 

60 0.23±0.018 0.15±0.02 0.14±0.014 0.48±0.02 

75 0.27±0.02 0.19±0.018 0.18±0.018 0.57±0.03 

90 0.34±0.02 0.23±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Murraya koenigii,  
analyzed individually in triplicate. 

Table 4.9.5 PV of edible oil stabilized by Murraya koenigiiessential oil 

IPD 

Induction 
Period in 

Days 

PV 

Murraya koenigii 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.7±0.013 0.4±0.01 0.4±0.01 1±0.03 

30 1.1±0.15 0.71±0.12 0.6±0.16 1.81±0.12 

45 1.6±0.19 1.1±0.16 0.9±0.21 2.5±0.24 

60 2.1±0.18 1.6±0.21 1.4±0.29 3.4±0.36 

75 2.9±0.2 2.2±0.24 1.9±0.24 4.7±0.21 

90 3.6±0.2 2.6±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Murraya koenigii, 

analyzed individually in triplicate. 
Table 4.9.6 para-Anisidine Value of edible oil stabilized by Murraya koenigii essential oil 

IPD 

Induction 
Period in 

Days 

para-Anisidine Value 

Murraya koenigii 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 4.9±0.22 4.1±0.36 3.4±0.27 10.2±0.52 

30 7.6±0.35 6.5±0.31 5.8±0.36 17.5±0.74 

45 10.6±0.51 9.3±0.47 8.5±0.27 24.1±0.81 

60 15.4±0.83 13.7±0.36 10.9±0.55 29.6±0.63 

75 19.6±1.1 17.6±0.55 13.6±0.47 37.4±1.2 

90 25.3±1.4 22.1±0.62 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Murraya koenigii, 

analyzed individually in triplicate. 
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Table 4.9.7 

Cytotoxicity (% hemolysis) of Murraya koenigii essential oil 

Concentration Human erythrocytes  Bovine erythrocytes 

0.5mg/mL 0.08% 0.34% 

5mg/mL 1.80% 3.14% 

10mg/mL 8.26% 9.53% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Murraya koenigii, 

analyzed individually in triplicate. 

 

 

Figure 4.9.2. Typical GC-MS chromatogram of essential oil from Murraya koenigii 
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Table 4.9.8. Chemical composition of Murraya koenigii essential oil 

Components1 RI2 % age Mode of Identification3 

Cyclofenchene 896 0.41 RI, MS 

Cumene 926 0.22 RT, RI, MS 

Camphene 955 0.46 RT, RI, MS 

 β-Thujene 970 0.38 RT, RI, MS 

Sabinene 972 0.34 RI, MS 

α -Phallendrene 1005 0.28 RT, RI, MS 

α-Terpinene 1020 0.29 RT, RI, MS 

Limonene 1034 0.24 RT, MS 

γ-Terpinen 1072 0.43 RT, RI, MS 

2-phenylethyl alcohol 1116 0.26 RI, MS 

3-p-Menthene 1234 0.3 RT, RI, MS 

Linalyl formate 1237 0.65 RI, MS 

 Cumyl alcohol 1296 0.19 RT, MS 

Linalyl propanoate 1321 0.37 RT, MS 

α-Terpinyl acetate 1350 0.44 RT, RI, MS 

Eugenol 1356 81.61 RT, RI, MS 

Cinnamic acid 1387 0.52 RT, RI, MS 

Iso-caryophyllene 1442 0.18 RT, MS 

α –himachalene 1451 0.44 RI, MS 

Myristicin 1521 1.00 RI, MS 

Eugenyl acetate 1524 0.84 RT, RI, MS 

Geranyl butyrate 1562 0.33 RT, MS 

 1-tert-Butyl-1,5-
Cyclooctadiene 

1752 0.11 RT, MS 

Benzyl Benzoate 1764 7.13 RI, MS 

Isoeugenol 2250 0.9 RT, MS 

Total (25)  98.43  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 

http://www.flavornet.org/info/60-12-8.html
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4.9.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Murraya koenigii was found 

to be 1.12 % as listed in Table 4.9.1. The oil was greenish yellow in colour with strong aromatic 

smell and refractive index 1.357. Essential oil was found to be less dense floating on the surface 

of water during the process of hydrodistillation with specific gravity 0.95. Nagappan et al. 

(2011) found the yield of colourless oil (0.12 %) based on fresh weight of M. koenigii with 

characteristic odour and sharp taste.  

The essential oil of M. koenigii was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

During the process, the examined essential oil transferred electron or hydrogen atoms towards 

DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and this ability of 

essential oil was investigated. The DPPH radical scavenging by M. koenigii essential oil was 

represented in terms of 50 % scavenging (IC50) as shown in Table 4.9.2, which was found to be 

26.68 μg/mL. The scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 

3.46 μg/mL. Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to 

unsaturation in its structure, it may form peroxides upon oxidation which have ability to oxidize 

Fe+2 to Fe+3 that may form complex with SCN¯ present in reaction medium. The concentration of 

this complex was measured using spectrophotometer at 500 nm. Higher the concentration of 

peroxides higher will be the value of absorbance and ultimately lower will be the antioxidant 

activity.  Table 4.9.2 shows the % inhibition in linoleic acid system by M. koenigii essential oil 

taken at three different concentrations. It is clear that maximum inhibition was 82.78 % at 

concentration 50 μL/mL which decreased with the decrease in concentration and therefore could 

be attributed to decrease in concentration of bioactive compound accordingly. The activity 

shown by essential oil was found to be quite lesser than that of synthetic antioxidant BHT which 

showed 85.10% inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl 

radical (LOO•), formed by the lipids such as linoleic acid in result of their oxidation which 

causes in reduction of amount of β-carotene. However this reduction would have been inhibited 

due to presence of some antioxidant in the reaction medium which could react with peroxyl 

radical competitively to β-carotene. Thus antioxidant effect can easily be examined by depleting 
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the colour of solution using spectrophotometer at 470 nm. Bleaching of β-carotene as a function 

of antioxidant activity of the essential oil of M. Koenigii is shown in Figure 4.9.1. The least 

antioxidant activity was exhibited by control with the maximum colour depletion. Whereas in 

samples, due to their antioxidant potential, there was less depletion of colour. M. koenigii was 

used at three different concentrations where minimum depletion was observed at 6 mg/mL. In 

case of BHT the depletion was the least showing the maximum antioxidant activity. The 

antioxidant properties of the leaf extracts of M. Koenigii using different solvents were evaluated 

based on the oil stability index OSI together with their radical scavenging ability against DPPH 

(Kureel et al., 1969). Rao et al. (2006) extracted two carbazole alkaloids, Mahanimbine and 

koenigine, from the leaves of M. koenigii, showed antioxidant activity. Koenigine also showed a 

high degree of radical-scavenging properties 

The antimicrobial activity of the essential oil of M. koenigii against various microbes 

including bacteria and fungi is shown in Table 4.9.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that M. koenigii showed potential 

as an antimicrobial agent with larger inhibition zones (5.2-14.3 and 10.7-18.3 mm) and smaller 

MIC values (2.03-4.06 and 1.56-2.5 mg/mL) against various bacterial and fungal strians, 

respectively. In case of bacteria maximum activity was found against S. aureus (Gram positive) 

with largest inhibition zone 14.3 mm followed by minimum MIC value 2.03 mg/mL. These 

results are quite comparable to that of antibiotic, Rifampicin, which showed the inhibition zone 

15.1 mm and MIC 2.03 mg/mL. In case of fungi, A. alternata showed to be most sensitive with 

largest inhibition zone 18.3 mm followed by minimum MIC value 2.34 mg/mL which was much 

better to that of antibiotic, Terbinafine, with inhibition zone 14.2 mm and MIC 2.81 mg/mL. 

Nagappan et al. (2011) tested the essential oil of M. koenigii against various bacterial strains and 

found that the range of diameter of inhibition was between 10.00 mm to 18.50 mm, showing 

greater activity towards Streptococcus pneumoniae. The minimal value of inhibition (MIC) was 

25.00 μg/mL against Psedomonas aeruginosa and Klebsiella pneumoniae while 200.00 μg/mL 

was the minimal bactericidal concentration (MBC) against S. pneumoniae. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 
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checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.9.4 shows the effect of M. koenigii essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by M. koenigii essential oil at 1000ppm which was 0.23 % even after 

induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in 

table 4.9.5 and it showed that maximum stabilization was obtained at 1000 ppm with minimum 

PV i.e. 2.6 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and 

control, respectively. p-anisidine value is an important parameter used to measure the secondary 

products in lipid oxidation process which is presented in Table 4.9.6 for M. koenigii. Control 

showed p-anisidine value 45.8 after 90 days which was much stabilized by M. koenigii essential 

oil sample of 1000ppm with value 22.1 while in case of BHT it was found to be 17.9.  

The effect of M. koenigii essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked using 

three different concentrations of essential oils and % hemolysis were calculated which is 

presented in table 4.8.7. It is clear from the results that sensitivity of both erythrocytes increased 

with the increase in concentration of essential oil. For bovine erythrocytes, M. koenigii exhibited 

the maximum hemolysis i.e. 9.53% at 10 mg/mL concentration and the minimum of 0.34 % at 

0.5 mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 8.26 % at 10 

mg/mL concentration and the minimum of 0.08 % at 0.5 mg/mL. Manfred et al. (2008) evaluated 

that carbazole alkaloid extracted from M. koenigii showed significant cytotoxic effect.  

The data of chemical composition of the essential oil from M. koenigii is listed in Table 

4.9.8. Total 25 compounds were identified representing 98.43 % of the oil. The major 

components were found to be eugenol (81.61 %), benzyl benzoate (7.13 %) and myristicin (1.0 

%). Nagappan et al. (2011) obtained collected M. koenigii leaves from Kota Belud, Sabah 

(Malaysia), which were subjected to extraction of essential oil followed by chemical 

characterization. Major compounds were found to be β-caryophyllene (19.50 %), α-humulene 

(15.24 %), p-cymen-8-ol (10.31 %), phytol (10.07 %) and α-selinene (6.10 %). 
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4.10. Piper nigrum 

 

 

Table 4.10.1 

 

Physical properties of Piper nigrum essential oil 

 

Parameter Piper nigrum 

Colour Dark brown 

Yield (%) 3.75±0.3 

Refractive Index  

(30 °C) 

1.333±0.003 

Specific Gravity 0.72±0.03 

 

 

Values are mean ± standard deviation of three samples of each Piper nigrum, 

analyzed individually in triplicate. 
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Table 4.10.2 

Antioxidant activity of Piper nigrum essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter P. nigrum BHT 

IC50 (μg/mL) 47.43±1.86 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

61.03±1.5 

 

49.28±1.4 

 

42.96±0.9 

 

85.10±3.2 

Values are mean± standard deviation of Piper nigrum, analyzed individually in triplicate. 

Fig. 4.10.1 
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Table 4.10.3 

Antimicrobial activity of Piper nigrum essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Piper nigrum 

 

  

Inhibition zone (mm) 

B. subtilis 8.5±0.3 

 

10.8±2.1 
- 

L. rhamnosus 5.5±0.1 

 

15.5±0.8 
- 

S. aureus 5.1±0.4 15.1±1.0 - 

S. mutans 8.9±0.4 

 

13.4±0.7 
- 

E. coli 10.1±0.6 

 

9.6±1.3 
- 

P. multocida 13.2±0.6 11.6±1.5 - 

A. alternata 11.7±0.4 

 

- 
14.2±0.8 

A. flavus 19.3±1.2 - 11.4±1.4 



164 

 

A. niger 13.7±0.8 

 

- 
21.7±1.2 

G. lucidum 11.4±0.7 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 3.12±0.2 1.72±0.2 - 

L. rhamnosus 5.0±0.3 2.81±0.3 - 

S. aureus 4.06±0.3 2.19±0.2 - 

S. mutans 2.81±0.2 2.03±0.1 - 

E. coli 2.5±0.1 2.34±0.2 - 

P. multocida 2.34±0.2 2.03±0.1 - 

A. alternata 2.34±0.1 - 2.34±0.2 

A. flavus 1.25±0.1 - 2.81±0.2 

A. niger 2.03±0.1 - 0.94±0.1 

G. lucidum 2.34±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Piper nigrum, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.10.4  FFA of edible oil stabilized by Piper nigrum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Piper nigrum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.14±0.012 0.1±0.012 0.08±0.01 0.16±0.014 

30 0.19±0.015 0.12±0.012 0.09±0.015 0.22±0.016 

45 0.24±0.02 0.16±0.016 0.11±0.012 0.34±0.03 

60 0.28±0.018 0.19±0.018 0.14±0.014 0.48±0.02 

75 0.33±0.014 0.24±0.018 0.18±0.018 0.57±0.03 

90 0.39±0.02 0.28±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Piper nigrum,  
analyzed individually in triplicate. 

Table 4.10.5 PV of edible oil stabilized by Piper nigrum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Piper nigrum 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 1.0±0.1 0.7±0.03 0.4±0.01 1±0.03 

30 1.7±0.13 1.21±0.12 0.6±0.16 1.81±0.12 

45 2.3±0.17 1.7±0.16 0.9±0.21 2.5±0.24 

60 2.7±0.18 2.31±0.12 1.4±0.29 3.4±0.36 

75 3.7±0.2 3±0.21 1.9±0.24 4.7±0.21 

90 4.4±0.22 3.8±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Piper nigrum, 

analyzed individually in triplicate. 
Table 4.10.6 

para-Anisidine Value of edible oil stabilized by Piper nigrum essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Piper nigrum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 6.5±0.21 5.6±0.31 3.4±0.27 10.2±0.52 

30 9.6±0.43 8.4±0.36 5.8±0.36 17.5±0.74 

45 14.7±0.35 12.7±0.31 8.5±0.27 24.1±0.81 

60 17.5±0.62 16.2±0.36 10.9±0.55 29.6±0.63 

75 22.2±0.58 20.7±0.55 13.6±0.47 37.4±1.2 

90 27.4±0.96 24.4±0.62 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Piper nigrum,  
analyzed individually in triplicate. 
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Table 4.10.7 

Cytotoxicity (% hemolysis) of Piper nigrum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.27% 0.52% 

5mg/mL 1.44% 1.67% 

10mg/mL 9.65% 3.34% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Piper nigrum, 

analyzed individually in triplicate. 

 

 

Figure 4.10.2. Typical GC-MS chromatogram of essential oil of Piper nigrum 
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Table 4.10.8. Chemical composition of Piper nigrum essential oil 

Components1 RI2 % age Mode of Identification3 

Cyclofenchene 896 0.26 RI, MS 

α -Pinene 934 2.66 RT, RI, MS 

α-Fenchene 952 0.27 RI, MS 

 β-Thujene 970 1.27 RT, RI, MS 

Sabinene 972 0.31 RI, MS 

 β-Pinene 978 0.28 RT, RI, MS 

3-Carene 1011 18.22 RT, RI, MS 

Limonene 1033 14.51 RT, RI, MS 

γ-Terpinen 1072 0.41 RT, RI, MS 

L-Pinocarveol 1148 6.74 RI, MS 

β-Citronellal 1162 0.31 RT, RI, MS 

α- Terpinolen 1187 0.61 RT, RI, MS 

Cumaldehyde 1240 0.19 RT, RI, MS 

Piperitone 1282 0.67 RI, MS 

trans-Anethole 1283 0.18 RI, MS 

Linalyl propanoate 1321 0.20 RT, MS 

α -Cubebene 1347 0.25 RT, RI, MS 

Eugenol 1356 4.45 RT, RI, MS 

Copaene 1366 1.53 RI, MS 

β-Caryophyllene 1418 39.14 RT, RI, MS 

δ-EIemene 1434 2.41 RT, RI, MS 

α-Humulene 1448 0.22 RI, MS 

α -caryophyllene 1454 1.27 RT, RI, MS 

Cuparene 1503 0.66 RI, MS 

7-epi-α-Cadinene 1522 0.27 RT, RI, MS 

Eugenyl acetate 1524 0.99 RT, RI, MS 

Spathulenol 1574 0.62 RT, RI, MS 

Caryophyllene oxide 1578 0.24 RT, RI, MS 

Cedrol 1598 0.16 RI, MS 

α-cadinol 1653 0.28 RT, RI, MS 

Hexadecanoic acid 1984 0.19 RT, RI, MS 

Total (31)  98.88  
1    Compounds are listed in order of elution from a ZB-5MS column. 
2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 
3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.10.a. Discussion  

The yield (g/100g of dry plant materials) of essential oil of Piper nigrum was found to be 

3.75 % as listed in Table 4.10.1 which shows that plant was enriched with essential oil. The oil 

was dark brown in colour with strong aromatic smell and refractive index 1.333. Essential oil 

was found to be less dense floating on the surface of water during the process of hydrodistillation 

with specific gravity 0.72. Fan et al. (2011) extracted colourless essential oil rich in pungent 

fragrance with many volatile components from the fresh fruits of P. nigrum 0.8 % (v/w). 

Sasidharan and Menon (2010) obtained 2.2 % essential oil from fresh pepper berries, 2 % from 

dried pepper berries and 1.2 % from pepper leaves.  

Free radical scavenging ability was tested using DPPH assay and the potential was noted 

to be increased with the increase in concentration of essential oil. During the process, the 

examined essential oil transferred electron or hydrogen atoms towards DPPH• (purple colour) 

which was reduced to form DPPH-H (yellow colour) and this ability of essential oil was 

investigated. The DPPH radical scavenging by P. nigrum essential oil was represented in terms 

of 50 % scavenging (IC50) as shown in Table 4.10.2, which was found to be 47.43 μg/mL. The 

scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. Linoleic 

acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation in its 

structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that 

may form complex with SCN¯ present in reaction medium. The concentration of this complex 

was measured using spectrophotometer at 500 nm. Higher the concentration of peroxides higher 

will be the value of absorbance and ultimately lower will be the antioxidant activity.  Table 

4.10.2 shows the % inhibition in linoleic acid system by P. nigrum essential oil taken at three 

different concentrations. It is clear that maximum inhibition was 61.03 % at concentration 50 

μL/mL which decreased with the decrease in concentration and therefore could be attributed to 

decrease in concentration of bioactive compound accordingly. The activity shown by essential 

oil was found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % 

inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl radical (LOO•), 

formed by the lipids such as linoleic acid in result of their oxidation which causes in reduction of 

amount of β-carotene. However this reduction would have been inhibited due to presence of 

some antioxidant in the reaction medium which could react with peroxyl radical competitively to 
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β-carotene. Thus antioxidant effect can easily be examined by depleting the colour of solution 

using spectrophotometer at 470 nm. Bleaching of β-carotene as a function of antioxidant activity 

of the essential oil of P. nigrum is shown in Figure 4.10.1. The least antioxidant activity was 

exhibited by control with the maximum colour depletion. Whereas in samples, due to their 

antioxidant potential, there was less depletion of colour. P. nigrum was used at three different 

concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT the 

depletion was the least showing the maximum antioxidant activity. In another study P. nigrum 

inhibited lipid peroxidation by scavenging different radicals like hydroxyl and superoxide 

radicals (Muhtaseb et al. 2008; Neha and Mishra, 2011). 

The antimicrobial activity of the essential oil of P. nigrum against various microbes 

including bacteria and fungi is shown in Table 4.10.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that P. nigrum showed potential 

as an antimicrobial agent with larger inhibition zones (5.1-13.2 and 11.4-19.3 mm) and smaller 

MIC values (2.34-5.0 and 1.25-2.34 mg/mL) against various bacterial and fungal strains, 

respectively. In case of bacteria maximum activity was found against P. multocida (Gram 

negative) with largest inhibition zone 13.2mm followed by minimum MIC value 2.34 mg/mL. 

These results are quite better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 11.6mm and MIC 2.03 mg/mL. In case of fungi, A. flavus showed to be most sensitive with 

largest inhibition zone 19.3 mm followed by minimum MIC value 1.25 mg/mL which was much 

better to that of antibiotic, Terbinafine, with inhibition zone 11.4mm and MIC 2.81 mg/mL. Naz 

et al. (2009) tested different extracts of the roots of Piper chaba against various bacteria and 

fungi and found that activity of extracts was lower than that of the antibiotics i.e. Kanamycin in 

case of bacteria and Nystatin for fungi. Sasidharan and Menon (2010) evaluated that essential oil 

from fresh pepper berries, dry pepper berries and pepper leaves were more effective against 

Saccharomyces cerevisiae and Pseudomonas aeruginosa. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.10.4 shows the effect of P. nigrum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 
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length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by P. nigrum essential oil at 1000ppm which was 0.28% even after 

induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in 

table 4.10.5 and it showed that maximum stabilization was obtained at 1000 ppm with minimum 

PV i.e. 3.8 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and 

control, respectively. p-anisidine value was an important parameter used to measure the 

secondary products in lipid oxidation process which is presented in Table 4.10.6 for M. koenigii. 

Control showed p-anisidine value 45.8 after 90 days which was much stabilized by P. nigrum 

essential oil sample of 1000ppm with value 24.4 while in case of BHT it was found to be 17.9.  

The effect of P. nigrum essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked on three 

different concentrations of essential oils and % hemolysis were calculated which is presented in 

table 4.8.7. It is clear from the results that sensitivity of both erythrocytes increased with the 

increase in concentration of essential oil. For bovine erythrocytes, P. nigrum exhibited the 

maximum hemolysis i.e. 3.34 % at 10 mg/mL concentration and the minimum of 0.52 % at 0.5 

mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 9.65% at 10 

mg/mL concentration and the minimum of 0.27 % at 0.5 mg/mL. Naz et al. (2009) tested 

cytotoxicity of various root extracts of Piper chaba against Artemia salina nauplii and found that 

petroleum ether, chloroform and ethyl acetate extracts were very potent cytotoxic in comparison 

to gallic acid. 

The data of chemical composition of the essential oil from P. nigrum is listed in Table 

4.10.8. Total 31 compounds were identified representing 98.88% of the oil. The major 

components were found to be β-caryophyllene (39.14%), 3-carene (18.22%), limonene (14.51%), 

L-Pinocarveol (6.74 %) and eugenol (4.45 %). Fan et al. (2011) collected fresh and dried fruits 

of black pepper from Sibu, Sarawak (Malaysia), which was subjected to extraction of essential 

oil followed by chemical characterization. Major compounds were found to be limonene (35.06 

%), β-pinene (12.95 %), linalool (9.55 %), α-pinene (4.31 %) and caryophyllene (3.98 %).  In 

another study Sasidharan and Menon (2010) collected plant material from Trivandrum, Kerala 

(India) and examined essential oil using GC-MS. limonene (18.0 %), β-pinene (14.2 %), β-

caryophyllene (13.2 %), α-pinene (12.1 %) and 3-carene (3.2 %) were found to be the major 

components in fresh berries essential oil.  
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4.11. Elettaria cardamomum 

 

Table 4.11.1 

 

Physical properties of Elettaria cardamomum essential oil 

 

Parameter Elettaria cardamomum 

Colour Pale green 

Yield (%) 5.40±0.3 

Refractive Index  

(30 °C) 

1.392±0.012 

Specific Gravity 0.84±0.02 

 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum, 

analyzed individually in triplicate. 
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Table 4.11.2 

Antioxidant activity of Elettaria cardamomum essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter E. cardamomum BHT 

IC50 (μg/mL) 33.6±0.22 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

74.44±2.6 

 

62.94±1.8 

 

38.84±0.7 

 

85.10±3.2 

Values are mean ± standard deviation of Elettaria cardamomum, analyzed individually in 

triplicate. 

Fig. 4.11.1 

 

 

Antioxidant activity of Elettaria cardamomum essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140

A
b

so
rb

an
ce

 (
4

7
0

n
m

)

Time (min)

Ctrl 6 mg/mL 4 mg/mL 2 mg/mL BHT (200ppm)



173 

 

Table 4.11.3 

Antimicrobial activity of Elettaria cardamomum essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Elettaria cardamomum 

 

  

Inhibition zone (mm) 

B. subtilis 7.8±0.5 10.8±2.1 - 

L. rhamnosus 11.6±0.3 

 

15.5±0.8 
- 

S. aureus 4.3±0.5 15.1±1.0 - 

S. mutans 12.7±0.7 

 

13.4±0.7 
- 

E. coli 8.3±0.2 

 

9.6±1.3 
- 

P. multocida 8.7±0.5 

 

11.6±1.5 
- 

A. alternata 8.2±0.1 - 14.2±0.8 

A. flavus 6.3±0.7 - 11.4±1.4 

A. niger 21.7±2.0 - 21.7±1.2 
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G. lucidum 7.2±0.5 - 9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 3.44±0.3 1.72±0.2 - 

L. rhamnosus 2.34±0.2 2.81±0.3 - 

S. aureus 5.0±0.3 2.19±0.2 - 

S. mutans 2.34±0.2 2.03±0.1 - 

E. coli 3.12±0.2 2.34±0.2 - 

P. multocida 3.44±0.3 2.03±0.1 - 

A. alternata 3.12±0.2 - 2.34±0.2 

A. flavus 4.37±0.3 - 2.81±0.2 

A. niger 1.17±0.1 - 0.94±0.1 

G. lucidum 3.44±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.11.4  FFA of edible oil stabilized by Elettaria cardamomum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Elettaria cardamomum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.13±0.011 0.09±0.015 0.08±0.01 0.16±0.014 

30 0.17±0.014 0.11±0.014 0.09±0.015 0.22±0.016 

45 0.22±0.013 0.15±0.014 0.11±0.012 0.34±0.03 

60 0.26±0.017 0.19±0.016 0.14±0.014 0.48±0.02 

75 0.32±0.02 0.24±0.02 0.18±0.018 0.57±0.03 

90 0.4±0.022 0.27±0.018 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum,  
analyzed individually in triplicate. 

Table 4.11.5 PV of edible oil stabilized by Elettaria cardamomum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Elettaria cardamomum 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.8±0.015 0.6±0.02 0.4±0.01 1±0.03 

30 1.4±0.018 1±0.16 0.6±0.16 1.81±0.12 

45 2.0±0.02 1.6±0.21 0.9±0.21 2.5±0.24 

60 2.8±0.022 2.1±0.16 1.4±0.29 3.4±0.36 

75 3.7±0.026 2.8±0.24 1.9±0.24 4.7±0.21 

90 4.5±0.03 3.4±0.21 0.4±0.01 6.1±1.24 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum, 

analyzed individually in triplicate. 
Table 4.11.6 

para-Anisidine Value of edible oil stabilized by Elettaria cardamomumessential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Elettaria cardamomum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 0.4±0.01 2.7±0.12 

15 6.3±0.19 5.4±0.27 0.4±0.01 10.2±0.52 

30 9.4±0.33 8.3±0.47 0.6±0.16 17.5±0.74 

45 13.3±0.41 11.7±0.27 0.9±0.21 24.1±0.81 

60 16.8±0.39 15.4±0.55 1.4±0.29 29.6±0.63 

75 21.6±0.51 21.8±0.47 1.9±0.24 37.4±1.2 

90 33.4±1.4 26.1±0.55 2.3±0.16 45.8±1.8 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum, 
analyzed individually in triplicate. 
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Table 4.11.7 

Cytotoxicity (% hemolysis) of Elettaria cardamomum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 1.51% 1.74% 

5mg/mL 5.06% 6.13% 

10mg/mL 9.72% 9.26% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Elettaria cardamomum, 

analyzed individually in triplicate. 

 

 

Figure 4.11.2. Typical GC-MS chromatogram of essential oil of Elettaria cardamomum 
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Table 4.11.8. Chemical composition of Elettaria cardamomum essential oil 

Components1 RI2 % age Mode of Identification3 

Cyclofenchene 896 0.30 RI, MS 

α-Pinene 934 1.74 RT, RI, MS 

Camphene 955 0.28 RT, RI, MS 

 Sabinene 972 0.86 RI, MS 

β-Pinene 978 0.21 RT, RI, MS 

β -Myrcene 994 0.73 RT, RI, MS 

4-Carene 1002 0.18 RT, RI, MS 

3-carene 1011 0.24 RT, RI, MS 

α-Terpinene 1018 0.26 RT, RI, MS 

D-Limonene 1033 19.37 RT, RI, MS 

Eucalyptol 1037 14.88 RT, RI, MS 

γ-Terpinen 1072 0.23 RT, RI, MS 

Linaool 1096 3.19 RT, MS 

 L-terpinen-4-ol 1178 0.65 RI, MS 

 α- Terpinolen 1187 0.50 RT, RI, MS 

3-p-Menthene 1234 0.35 RI, MS 

Citral 1237 1.34 RT, RI, MS 

trans-p-Menth-2-en-1-
ol 

1268 0.19 RI, MS 

Geranial 1270 0.29 RT, RI, MS 

α-Terpineol acetate 1335 1.99 RI, MS 

Neryl acetate 1344 0.34 RT, RI, MS 

α-Terpinyl acetate 1350 48.32 RT, RI, MS 

 Patchoulane 1378 0.32 RI, MS 

α-Caryophyllene 1454 0.17 RT, RI, MS 

β-Farnesene 1458 0.31 RT, RI, MS 

γ-Gurjunene 1473 0.25 RI, MS 

α -Farnesene 1509 0.23 RT, RI, MS 

β-Bisabolene 1513 0.35 RI, MS 

trans-nerolidol 1564 0.20 RT, RI, MS 

Geranyl velerate 1625 0.24 RI, MS 

Total (30)  98.40  
1    Compounds are listed in order of elution from a ZB-5MS column. 
2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 
3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.11.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Elettaria cardamomum was 

found to be 5.40 % as listed in Table 4.11.1 which was the second most yield obtained among 

the plants taken in present study. The oil was pale green in colour with strong aromatic smell and 

refractive index 1.392. Essential oil was found to be less dense floating on the surface of water 

during the process of hydrodistillation with specific gravity 0.84. Marongiu et al. (2004) found 

the yield of E. cardamomum by hydrodistillation to be 5 %. Sereshti et al. (2011) found 

extraction yield of E. cardamomum was 3.1 % (w/w). 

The DPPH radical scavenging by E. cardamomum essential oil was represented in terms 

of 50 % scavenging (IC50) as shown in Table 4.11.2, which was found to be 33.60 μg/mL. The 

scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. Linoleic 

acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation in its 

structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that 

may form complex with SCN¯ present in reaction medium. The concentration of this complex 

was measured using spectrophotometer at 500 nm. Higher the concentration of peroxides higher 

will be the value of absorbance and ultimately lower will be the antioxidant activity.  Table 

4.11.2 shows the % inhibition in linoleic acid system by E. cardamomum essential oil taken at 

three different concentrations. It is clear that maximum inhibition was 74.44 % at concentration 

50 μL/mL which decreased with the decrease in concentration and therefore could be attributed 

to decrease in concentration of bioactive compound accordingly. The activity shown by essential 

oil was found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % 

inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl radical (LOO•), 

formed by the lipids such as linoleic acid in result of their oxidation which causes in reduction of 

amount of β-carotene. However this reduction would have been inhibited due to presence of 

some antioxidant in the reaction medium which could react with peroxyl radical competitively to 

β-carotene. Thus antioxidant effect can easily be examined by depleting the colour of solution 

using spectrophotometer at 470 nm. Bleaching of β-carotene as a function of antioxidant activity 

of the essential oil of E. cardamomum is shown in Figure 4.11.1. The least antioxidant activity 

was exhibited by control with the maximum colour depletion. Whereas in samples, due to their 
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antioxidant potential, there was less depletion of colour. E. cardamomum was used at three 

different concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT 

the depletion was the least showing the maximum antioxidant activity. Prakash et al. (2010) 

tested ethanol and water extracts of greater cardamom for their antioxidant potential and found 

the scavenging ability in terms of IC50 values to be 8.25 and 21.6 μg/mL, respectively. Both 

samples showed inhibition of oxidation of linoleic acid 41.2 and 35.96 %, respectively. 

The antimicrobial activity of the essential oil of E. cardamomum against various 

microbes including bacteria and fungi is shown in Table 4.11.3. It is clear that essential oil 

showed average activity against most of the fungi and bacteria in comparison with the antibiotic. 

The results obtained from the disc diffusion method and MIC made it clear that E. cardamomum 

showed potential as an antimicrobial agent with larger inhibition zones (4.3-12.7 and 6.3-21.7 

mm) and smaller MIC values (2.34-5.0 and 1.17-4.37 mg/mL) against various bacterial and 

fungal strains, respectively. In case of bacteria maximum activity was found against S. mutans 

(Gram positive) with largest inhibition zone 12.7 mm followed by minimum MIC value 2.34 

mg/mL. The activity was quite lesser than that of antibiotic, Rifampicin, which showed the 

inhibition zone 13.4 mm and MIC 2.03 mg/mL. In case of fungi, A. niger showed to be most 

sensitive with largest inhibition zone 21.7 mm followed by minimum MIC value 1.17mg/mL 

which was equal to that of antibiotic, Terbinafine, with inhibition zone 21.7mm and MIC 0.94 

mg/mL. Satyal et al. (2012) found that the seed and rind oils of black cardamom showed 

marginal activity against Gram-positive bacteria: Bacillus cereus (MIC = 625 and 313 μg/mL) 

and Staphylococcus aureus (MIC = 313 and 625 μg/mL), and antifungal activity against 

Aspergillus niger (MIC = 313 and 19.5 μg/mL, respectively). Agnihotri and Wakode (2010) 

found Escherichia coli and Aspergillus niger to be most sensitive microbes against essential oil 

of black cardamom. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.11.4 shows the effect of E. cardamomum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 
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stabilization was exhibited by E. cardamomum essential oil at 1000ppm which was 0.27% even 

after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.11.5 and it showed that maximum stabilization was obtained at 1000 ppm 

with minimum PV i.e. 3.4 meq/kg after induction period of 90 days, which was 2.3 and 6.1 

meq/kg for BHT and control, respectively. p-anisidine value was an important parameter used to 

measure the secondary products in lipid oxidation process which is presented in Table 4.11.6 for 

M. koenigii. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by 

E. cardamomum essential oil sample of 1000 ppm with value 26.1 while in case of BHT it was 

found to be 17.9.  

The effect of E. cardamomum essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked on three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.11.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, E. 

cardamomum exhibited the maximum hemolysis i.e. 9.26 % at 10 mg/mL concentration and the 

minimum of 1.74 % at 0.5 mg/mL concentration, while with human erythrocytes maximum 

hemolysis i.e. 9.72 % at 10 mg/mL concentration and the minimum of 1.51 % at 0.5 mg/mL. 

Satyal et al. (2012) evaluated that the seed and rind oil of black cardamomum also exhibited 

reasonable brine shrimp lethality (LC50=28.1 and 15.0 μg/mL, respectively). 

The data of chemical composition of the essential oil from E. cardamomum is listed in 

Table 4.11.8. Total 30 compounds were identified representing 98.40% of the oil. The major 

components were found to be α-terpinyl acetate (48.32 %), D-limonene (19.37 %), eucalyptol 

(14.88 %), linalyl alcohol (3.19 %) and α-terpineol acetate (1.99 %). Marongiu et al. (2004) 

obtained green cardamom seeds from Minardi (Italy), which were subjected to extraction of 

essential oil using different methods followed by their chemical characterization. Major 

compounds in hydrodistilled oil were found to be α-terpinyl acetate (37.7 %), eucalyptol (27.4 

%), linalool (6.6 %), α-terpineol (5.0 %) and limonene (3.5 %). In another study Sereshti et al. 

(2012) collected plant material from local market of Tehran (Iran) and examined essential oil 

using GC-MS. α-terpinyl acetate (46.01 %), eucalyptol (27.73 %), linalool (5.27 %), α-terpineol 

(4.0 %) and linalyl acetate (3.52 %) were found to be the major components.  



181 

 

4.12. Amomum subulatum 

 

 

Table 4.12.1 

 

Physical properties of Amomum subulatum essential oil 

 

Parameter Amomum subulatum 

Colour Reddish brown 

Yield (%) 1.47±0.1 

Refractive Index  

(30 °C) 

1.458±0.010 

Specific Gravity 0.87±0.04 

 

 

Values are mean ± standard deviation of three samples of each Amomum subulatum, 

analyzed individually in triplicate. 
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Table 4.12.2 

Antioxidant activity of Amomum subulatum essential oil measured by DPPH assay and % 

inhibition in linoleic acid system 

DPPH 

Parameter A. subulatum BHT 

IC50 (μg/mL) 46.57±2.81 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

69.40±2.3 
 

46.59±2.1 
 

32.05±1.1 
 

85.10±3.2 

Values are mean ± standard deviation of Amomum subulatum, analyzed individually in triplicate. 

Fig. 4.12.1 

 

 

 

 

Antioxidant activity of Amomum subulatum essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120 140

A
b

so
rb

an
ce

 (
4

7
0

n
m

)

Time (min)

Ctrl 6 mg/mL 4 mg/mL 2 mg/mL BHT (200ppm)



183 

 

Table 4.12.3 

Antimicrobial activity of Amomum subulatum essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Amomum subulatum 

 

  

Inhibition zone (mm) 

B. subtilis 5.4±0.3 10.8±2.1 - 

L. rhamnosus 6.7±0.3 

 

15.5±0.8 
- 

S. aureus 4.5±0.2 15.1±1.0 - 

S. mutans 8.7±0.5 

 

13.4±0.7 
- 

E. coli 6.2±0.5 

 

9.6±1.3 
- 

P. multocida 8.5±0.6 

 

11.6±1.5 
- 

A. alternata 6.5±0.2 

 

- 
14.2±0.8 

A. flavus 9.3±0.5 

 

- 
11.4±1.4 
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A. niger 14.2±1.2 

 

- 
21.7±1.2 

G. lucidum 8.3±0.8 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 3.75±0.2 1.72±0.2 - 

L. rhamnosus 4.48±0.3 2.81±0.3 - 

S. aureus 4.48±0.4 2.19±0.2 - 

S. mutans 3.12±0.2 2.03±0.1 - 

E. coli 3.75±0.2 2.34±0.2 - 

P. multocida 3.12±0.2 2.03±0.1 - 

A. alternata 4.37±0.3 - 2.34±0.2 

A. flavus 2.81±0.1 - 2.81±0.2 

A. niger 2.03±0.1 - 0.94±0.1 

G. lucidum 3.44±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Amomum subulatum, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70% : 30%) oil 

Table 4.12.3  FFA of edible oil stabilized by Amomum subulatum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Amomum subulatum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.14±0.011 0.1±0.02 0.08±0.01 0.16±0.014 

30 0.18±0.013 0.13±0.012 0.09±0.015 0.22±0.016 

45 0.25±0.017 0.15±0.016 0.11±0.012 0.34±0.03 

60 0.29±0.02 0.19±0.018 0.14±0.014 0.48±0.02 

75 0.35±0.022 0.24±0.018 0.18±0.018 0.57±0.03 

90 0.42±0.025 0.29±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Amomum subulatum,  
analyzed individually in triplicate. 

Table 4.12.4 PV of edible oil stabilized by Amomum subulatum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Amomum subulatum 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 1.0±0.1 0.8±0.03 0.4±0.01 1.0±0.03 

30 1.6±0.13 1.41±0.12 0.6±0.16 1.81±0.12 

45 2.4±0.31 1.8±0.24 0.9±0.21 2.5±0.24 

60 3.3±0.26 2.5±0.29 1.4±0.29 3.4±0.36 

75 4.0±0.33 3.1±0.16 1.9±0.24 4.7±0.21 

90 4.7±0.28 3.7±0.24 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Amomum subulatum, 

 analyzed individually in triplicate. 
Table 4.12.5 

para-Anisidine Value of edible oil stabilized by Amomum subulatum essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Amomum subulatum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 6.5±0.27 5.7±0.31 3.4±0.27 10.2±0.52 

30 10.1±0.35 9.1±0.36 5.8±0.36 17.5±0.74 

45 15.9±0.31 13.6±0.31 8.5±0.27 24.1±0.81 

60 19.4±0.73 18.2±0.62 10.9±0.55 29.6±0.63 

75 22.9±0.91 24.3±0.55 13.6±0.47 37.4±1.2 

90 34.7±1.4 29.1±0.47 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Amomum subulatum 
analyzed individually in triplicate. 
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Table 4.12.7 

Cytotoxicity (% hemolysis) of Amomum subulatum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 1.71% 1.37% 

5mg/mL 6.71% 4.86% 

10mg/mL 9.40% 9.23% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Amomum subulatum, 

analyzed individually in triplicate. 

 

Figure 4.12.2. Typical GC-MS chromatogram of essential oil of Amomum subulatum 
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Table 4.12.8. Chemical composition of Amomum subulatum essential oil 

Components1 RI2 % age Mode of Identification3 

α-Pinene 934 2.77 RT, RI, MS 

Camphene 955 3.27 RI, MS 

β -Myrcene 994 0.24 RT, RI, MS 

α-Phallendrene 1005 0.18 RI, MS 

α-Terpinene 1008 0.25 RT, RI, MS 

3-Carene 1011 0.17 RT, RI, MS 

Limonene 1033 0.62 RT, RI, MS 

Eucalyptol 1037 61.86 RT, RI, MS 

Linalool 1092 1.79 RI, MS 

Fenchone 1096 0.20 RT, RI, MS 

L-Pinocarveol 1148 0.19 RT, MS 

Borneol 1169 0.26 RT, RI, MS 

 L-terpinen-4-ol 1178 0.51 RT, RI, MS 

δ-Terpineol 1191 0.67 RT,RI, MS 

Myrtenol 1196 0.63 RI, MS 

trans-Piperitol 1208 0.23 RI, MS 

3-p-Menthene 1234 3.65 RT, RI, MS 

Citral 1237 1.41 RT, RI, MS 

Isogeraniol 1275 0.21 RT, RI, MS 

Bornyl acetate 1285 0.19 RI, MS 

Carvacrol 1299 3.33 RT, RI, MS 

Linalyl propanoate 1321 0.88 RT, MS 

α-Terpenyl acetate 1344 0.26 RT, RI, MS 

Eugenol 1356 0.19 RT, RI, MS 

Copaene 1366 1.8 RI, MS 

Patchoulane 1378 0.32 RI, MS 

β-Elemene 1392 0.22 RI, MS 

α-Humulene 1448 0.18 RT, RI, MS 

Germacrene D 1451 0.23 RT, RI, MS 

Caryophyllene 1454 7.94 RT, RI, MS 

Nerolidol 1533 0.28 RI, MS 

Spathulenol 1574 0.35 RT, RI, MS 

L-Menthol 1623 1.87 RT, MS 

α-Cadinol 1654 0.17 RI, MS 

Myristic acid 1768 1.63 RT, RI, MS 

Total (35)  98.91  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.12.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Amomum subulatum was 

found to be 1.47% as listed in Table 4.12.1. The oil was reddish brown in colour with strong 

aromatic smell and refractive index 1.458. Essential oil was found to be less dense floating on 

the surface of water during the process of hydrodistillation with specific gravity 0.87. Joshi et al. 

(2012) obtained pale-coloured oil extracted from cardamom seeds collected from various regions 

in Himachal Pradesh with yield 9.8 to 19.5 g/kg (w/w). Satyal et al. (2012) obtained 4.5 % (seed 

oil) and 1.0 % (rind oil) of A. subulatum. 

The essential oil of A. subulatum was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

The DPPH radical scavenging by A. subulatum essential oil was represented in terms of 50 % 

scavenging (IC50) as shown in Table 4.12.2, which was found to be 46.57 μg/mL. The 

scavenging effect in case of synthetic antioxidant i.e. BHT was found to be 3.46 μg/mL. Linoleic 

acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation in its 

structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that 

may form complex with SCN¯ present in reaction medium. The concentration of this complex 

was measured using spectrophotometer at 500 nm. Higher the concentration of peroxides higher 

will be the value of absorbance and ultimately lower will be the antioxidant activity.  Table 

4.12.2 shows the % inhibition in linoleic acid system by A. subulatum essential oil taken at three 

different concentrations. It is clear that maximum inhibition was 69.40 % at concentration 50 

μL/mL which decreased with the decrease in concentration and therefore could be attributed to 

decrease in concentration of bioactive compound accordingly. The activity shown by essential 

oil was found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % 

inhibition. β-carotene has ability to form a stable β-carotene radical with peroxyl radical (LOO•), 

formed by the lipids such as linoleic acid in result of their oxidation which causes in reduction of 

amount of β-carotene. However this reduction would have been inhibited due to presence of 

some antioxidant in the reaction medium which could react with peroxyl radical competitively to 

β-carotene. Thus antioxidant effect can easily be examined by depleting the colour of solution 

using spectrophotometer at 470nm. Bleaching of β-carotene as a function of antioxidant activity 

of the essential oil of A. subulatum is shown in Figure 4.12.1. The least antioxidant activity was 
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exhibited by control with the maximum colour depletion. Whereas in samples, due to their 

antioxidant potential, there was less depletion of colour. A. subulatum was used at three different 

concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT the 

depletion was the least showing the maximum antioxidant activity. Prakash et al. (2010) tested 

ethanol and water extracts of greater cardamom for their antioxidant potential and found the 

scavenging ability in terms of IC50 values to be 8.25 and 21.6 μg/mL, respectively. Both samples 

showed inhibition of oxidation of linoleic acid 41.2 and 35.96 %, respectively. 

The antimicrobial activity of the essential oil of A. subulatum against various microbes 

including bacteria and fungi is shown in Table 4.12.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that A. subulatum showed 

potential as an antimicrobial agent with larger inhibition zones (4.5-8.7 and 6.5-14.2 mm) and 

smaller MIC values (3.12-4.48 and 2.03-4.37 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against S. mutans (Gram 

positive) with largest inhibition zone 8.7mm followed by minimum MIC value 3.12 mg/mL. The 

activity was quite lesser than that of antibiotic, Rifampicin, which showed the inhibition zone 

13.4 mm and MIC 2.03 mg/mL. In case of fungi, A. niger showed to be most sensitive with 

largest inhibition zone 14.2mm followed by minimum MIC value 2.03mg/mL which was less 

effective than that of antibiotic, Terbinafine, with inhibition zone 21.7 mm and MIC 0.94 

mg/mL. Satyal et al. (2012) found that the seed and rind oils of A. subulatum showed marginal 

activity against Gram-positive bacteria : Bacillus cereus (MIC = 625 and 313 μg/mL) and 

Staphylococcus aureus (MIC = 313 and 625 μg/mL), and antifungal activity against Aspergillus 

niger (MIC = 313 and 19.5 μg/mL, respectively). Agnihotri and Wakode (2010) found 

Escherichia coli and Aspergillus niger to be most sensitive microbes against essential oil of A. 

subulatum.  

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.12.4 shows the effect of A. subulatum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 
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stabilization was exhibited by A. subulatum essential oil at 1000 ppm which was 0.29 % even 

after induction period of 90 days, while with BHT it was 0.22%. Peroxide value (PV) is 

presented in table 4.12.5 and it showed that maximum stabilization was obtained at 1000 ppm 

with minimum PV i.e. 3.7 meq/kg after induction period of 90 days, which was 2.3 and 6.1 

meq/kg for BHT and control, respectively. p-anisidine value was an important parameter used to 

measure the secondary products in lipid oxidation process which is presented in Table 4.12.6 for 

M. koenigii. Control showed p-anisidine value 45.8 after 90 days which was much stabilized by 

A. subulatum essential oil sample of 1000 ppm with value 29.1 while in case of BHT it was 

found to be 17.9.  

The effect of A. subulatum essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked on three 

different concentrations of essential oils and % hemolysis were calculated which is presented in 

table 4.12.7. It is clear from the results that sensitivity of both erythrocytes increased with the 

increase in concentration of essential oil. For bovine erythrocytes, A. subulatum exhibited the 

maximum hemolysis i.e. 9.23 % at 10 mg/mL concentration and the minimum of 1.37 % at 0.5 

mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 9.40 % at 10 

mg/mL concentration and the minimum of 1.71 % at 0.5 mg/mL. Satyal et al. (2012) evaluated 

that the seed and rind oil of black cardamomum also exhibited reasonable brine shrimp lethality 

(LC50=28.1 and 15.0 μg/mL, respectively). 

The data of chemical composition of the essential oil from A. subulatum is listed in Table 

4.12.8. Total 35 compounds were identified representing 98.91 % of the oil. The major 

components were found to be eucalyptol (61.86 %), caryophyllene (7.94 %), 3-p-menthene (3.65 

%), carvacrol (3.33 %), camphene (3.27 %) and α-Pinene (2.77 %). Joshi et al. (2012) obtained 

black cardamom capsules from different places of Himachal Pradesh (India), which were 

subjected to extraction of essential oil followed by chemical characterization. Major compounds 

found in sample obtained from Kullu were eucalyptol (57.31 %), α-terpineol (15.84 %), D-

limonene (11.76 %), 4-terpineol (4.89 %) and δ-terpineol (2.86 %). In another study Satyal et al. 

(2012) collected plant material from Terahthum district (Nepal) and examined essential oil using 

GC-MS. eucalyptol (60.8 %), α-terpineol (9.8 %), β-pinene (8.3 %) and α-pinene (6.4 %) were 

found to be the major components in seed essential oil.  
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4.13. Trachyspermum ammi 

 

Table 4.13.1 

 

Physical properties of Trachyspermum ammi essential oil 

 

Parameter Trachyspermum ammi 

Colour Brown 

Yield (%) 2.94±0.2 

Refractive Index  

(30 °C) 

1.327±0.006 

Specific Gravity  

0.87±0.03 

 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, 

analyzed individually in triplicate. 
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Table 4.13.2 

Antioxidant activity of Trachyspermum ammi essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter T. ammi BHT 

IC50 (μg/mL) 2.61±0.15 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

80.73±2.7 

 

65.38±1.6 

 

48.28±2.5 

 

85.10±3.2 

Values are mean ± standard deviation of Trachyspermum ammi, analyzed individually in 

triplicate. 

Fig. 4.13.1 

 

 

 

Antioxidant activity of Trachyspermum ammi essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.13.3 

Antimicrobial activity of Trachyspermum ammi essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Trachyspermum ammi 

 

  

Inhibition zone (mm) 

B. subtilis 14.6±0.6 10.8±2.1 - 

L. rhamnosus 18.3±1.1 

 

15.5±0.8 
- 

S. aureus 13.7±0.5 15.1±1.0 - 

S. mutans 19.7±1.2 

 

13.4±0.7 
- 

E. coli 13.7±0.4 

 

9.6±1.3 
- 

P. multocida 17.5±0.6 11.6±1.5 - 

A. alternata 10.3±0.5 

 

- 
14.2±0.8 

A. flavus 12.3±0.8 

 

- 
11.4±1.4 
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A. niger 15.7±1.5 

 

- 
21.7±1.2 

G. lucidum 17.0±0.5 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 1.72±0.1 1.72±0.2 - 

L. rhamnosus 1.56±0.1 2.81±0.3 - 

S. aureus 2.19±0.1 2.19±0.2 - 

S. mutans 1.41±0.1 2.03±0.1 - 

E. coli 2.19±0.1 2.34±0.2 - 

P. multocida 1.88±0.1 2.03±0.1 - 

A. alternata 2.5±0.2 - 2.34±0.2 

A. flavus 2.19±0.1 - 2.81±0.2 

A. niger 1.88±0.1 - 0.94±0.1 

G. lucidum 1.72±0.1 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.13.4  FFA of edible oil stabilized by Trachyspermum ammi essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Trachyspermum ammi 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.1±0.012 0.08±0.01 0.08±0.01 0.16±0.014 

30 0.13±0.014 0.09±0.015 0.09±0.015 0.22±0.016 

45 0.17±0.015 0.12±0.012 0.11±0.012 0.34±0.03 

60 0.2±0.019 0.15±0.014 0.14±0.014 0.48±0.02 

75 0.24±0.02 0.19±0.02 0.18±0.018 0.57±0.03 

90 0.3±0.022 0.22±0.03 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, analyzed 
individually in triplicate. 

Table 4.13.5 PV of edible oil stabilized by Trachyspermum ammi essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Trachyspermum ammi 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.6±0.02 0.4±0.01 0.4±0.01 1±0.03 

30 1.1±0.10 0.7±0.02 0.6±0.16 1.81±0.12 

45 1.6±0.15 1.1±0.21 0.9±0.21 2.5±0.24 

60 2.1±0.18 1.61±0.12 1.4±0.29 3.4±0.36 

75 2.8±0.28 2.2±0.29 1.9±0.24 4.7±0.21 

90 3.6±0.33 2.6±0.21 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, 

analyzed individually in triplicate. 
Table 4.13.6 

para-Anisidine Value of edible oil stabilized by Trachyspermum ammiessential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Trachyspermum ammi 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 4.6±0.22 3.8±0.27 3.4±0.27 10.2±0.52 

30 7.3±0.28 6.4±0.31 5.8±0.36 17.5±0.74 

45 9.8±0.31 8.7±0.36 8.5±0.27 24.1±0.81 

60 12.7±0.38 11.4±0.55 10.9±0.55 29.6±0.63 

75 16.8±0.81 14.7±0.47 13.6±0.47 37.4±1.2 

90 21.3±1.1 18.6±0.62 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, 
analyzed individually in triplicate. 
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Table 4.13.7 

Cytotoxicity (% hemolysis) of Trachyspermum ammi essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.79% 0.23% 

5mg/mL 7.11% 4.25% 

10mg/mL 9.82% 7.64% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Trachyspermum ammi, 

analyzed individually in triplicate. 
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Table 4.13.8. Chemical composition of Trachyspermum ammi essential oil 

Components1 RI2 % age Mode of Identification3 

Cyclofenchene 896 0.42 RI, MS 

α-Thujene 926 0.18 RT, RI, MS 

Cumene 928 18.57 RT, RI, MS 

α-Pinene 934 1.36 RT, RI, MS 

Camphene 955 0.33 RT, RI, MS 

Sabinene 972 0.31 RI, MS 

β -pinene 978 2.14 RT, RI, MS 

β -Myrcene 994 0.20 RT, RI, MS 

3-carene 1011 22.33 RT, RI, MS 

α-Terpinen 1020 4.45 RT, RI, MS 

p-Cymene 1026 0.22 RT, RI, MS 

1,8-cineole 1029 0.67 RI, MS 

Limonene 1040 5.16 RT, RI, MS 

β-Ocimene 1044 0.18 RI, MS 

γ-Terpinene 1062 0.25 RT, RI, MS 

L-Pinocarveol 1148 0.86 RI, MS 

terpinen-4-ol 1178 0.83 RI, MS 

α- Terpinolen 1187 0.29 RT, RI, MS 

3-p-Menthene 1234 0.37 RI, MS 

Cumaldehyde 1240 0.56 RT, RI, MS 

Thymol 1290 37.75 RT, RI, MS 

Carvacrol 1298 0.18 RI, MS 

Grenyl formate 1300 0.21 RI, MS 

Neryl acetate 1344 0.17 RT, RI, MS 

Vanillin 1391 0.24 RI, MS 

Piperitone 1342 0.23 RI, MS 

trans-nerolidol 1564 0.19 RT, RI, MS 

L-Menthol 1624 0.26 RT, MS 

Total (28)  98.73  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.13.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Trachyspermum ammi was 

found to be 2.94 % as listed in Table 4.13.1. The oil was brown in colour with strong aromatic 

smell and refractive index 1.327. Essential oil was found to be less dense floating on the surface 

of water during the process of hydrodistillation with specific gravity 0.87. Joshi et al. (2012) 

obtained the yield of pale-coloured oil extracted from cardamom seeds collected from different 

regions of Himachal Pradesh ranged from 9.8 to 19.5 g/kg (w/w). Ishikawah et al. (2001) found 

that T. ammi fruit yield 2-4 % brownish coloured essential oil. 

The essential oil of T. ammi was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

During the process, the examined essential oil transferred electron or hydrogen atoms towards 

DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and this ability of 

essential oil was investigated. The DPPH radical scavenging by T. ammi essential oil was 

represented in terms of 50 % scavenging (IC50) as shown in Table 4.13.2, which was found to be 

2.61 μg/mL, which was much better than scavenging effect of synthetic antioxidant i.e. BHT i.e. 

3.46 μg/mL. Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to 

unsaturation in its structure, it may form peroxides upon oxidation which have ability to oxidize 

Fe+2 to Fe+3 that may form complex with SCN¯ present in reaction medium. The concentration of 

this complex was measured using spectrophotometer at 500 nm. Higher the concentration of 

peroxides higher will be the value of absorbance and ultimately lower will be the antioxidant 

activity.  Table 4.13.2 shows the % inhibition in linoleic acid system by T. ammi essential oil 

taken at three different concentrations. It is clear that maximum inhibition was 80.73 % at 

concentration 50 μL/mL which decreased with the decrease in concentration and therefore could 

be attributed to decrease in concentration of bioactive compound accordingly. The activity 

shown by essential oil was found to be quite lesser than that of synthetic antioxidant BHT which 

showed 85.10 % inhibition. β-carotene has ability to form a stable β-carotene radical with 

peroxyl radical (LOO•), formed by the lipids such as linoleic acid in result of their oxidation 

which causes in reduction of amount of β-carotene. However this reduction would have been 

inhibited due to presence of some antioxidant in the reaction medium which could react with 



199 

 

peroxyl radical competitively to β-carotene. Thus antioxidant effect can easily be examined by 

depleting the colour of solution using spectrophotometer at 470nm. Bleaching of β-carotene as a 

function of antioxidant activity of the essential oil of T. ammi is shown in Figure 4.13.1. The 

least antioxidant activity was exhibited by control with the maximum colour depletion. Whereas 

in samples, due to their antioxidant potential, there was less depletion of colour. T. ammi was 

used at three different concentrations where minimum depletion was observed at 6mg/mL. In 

case of BHT the depletion was the least showing the maximum antioxidant activity. In another 

study it was evaluated that essential oil of T. ammi also exhibited antioxidant activity assessed by 

DPPH assay, with IC50 of 34 μg/mL (Gandomi et al., 2013). Similarly, in β-carotene/linoleic 

acid assay, the EO was effectively able to inhibit the linoleic acid oxidation, exhibiting 82.16 % 

inhibition (Gandomi et al., 2013). 

The antimicrobial activity of the essential oil of T. ammi against various microbes 

including bacteria and fungi is shown in Table 4.13.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that T. ammi showed potential as 

an antimicrobial agent with larger inhibition zones (13.7-18.3 and 10.3-17.0 mm) and smaller 

MIC values (1.41-2.19 and 1.72-2.5 mg/mL) against various bacterial and fungal strains, 

respectively. In case of bacteria maximum activity was found against L. rhamnosus (Gram 

positive) with largest inhibition zone 18.3mm followed by minimum MIC value 1.56 mg/mL. 

The activity was much better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 15.5 mm and MIC 2.81 mg/mL. In case of fungi, G. lucidum showed to be most sensitive 

with largest inhibition zone 17.0 mm followed by minimum MIC value 1.72 mg/mL which was 

less effective than that of antibiotic, Terbinafine, with inhibition zone 9.1 mm and MIC 1.88 

mg/mL. In another study it was revealed that the essential oil of T. ammi exhibited strong activity 

against both bacteria and fungi, with greater inhibition of bacterial growth compared with fungi 

(Gandomi et al., 2013). 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.13.4 shows the effect of T. ammi essential oil on formation 
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of FFAs from where it is clear that their concentration continuously increased with the length of 

storage period. Highest FFA was exhibited by control (0.64 %), while maximum stabilization 

was exhibited by T. ammi essential oil at 1000ppm which was 0.22 % even after induction period 

of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in table 4.13.5 and it 

showed that maximum stabilization was obtained at 1000 ppm with minimum PV i.e. 2.6 meq/kg 

after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and control, 

respectively. p-anisidine value was an important parameter used to measure the secondary 

products in lipid oxidation process which is presented in Table 4.13.6 for M. koenigii. Control 

showed p-anisidine value 45.8 after 90 days which was much stabilized by T. ammi essential oil 

sample of 1000ppm with value 18.6 while in case of BHT it was found to be 17.9.  

The effect of T. ammi essential oil on the viability of human and bovine erythrocytes was 

evaluated to investigate the cytotoxicity of the essential oil. The effect was checked on three 

different concentrations of essential oils and % hemolysis were calculated which is presented in 

table 4.13.7. It is clear from the results that sensitivity of both erythrocytes increased with the 

increase in concentration of essential oil. For bovine erythrocytes, T. ammi exhibited the 

maximum hemolysis i.e. 7.64 % at 10 mg/mL concentration and the minimum of 0.23 % at 0.5 

mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 9.82 % at 10 

mg/mL concentration and the minimum of 0.79 % at 0.5 mg/mL. 

The data of chemical composition of the essential oil from T. ammi is listed in Table 

4.13.8. Total 28 compounds were identified representing 98.73 % of the oil. The major 

components were found to be thymol (37.75 %), 3-carene (22.33 %), cumene (18.57 %), 

limonene (5.16 %), α-terpinen (4.45 %) and α-pinene (1.36 %). Gandomi et al. (2013) obtained 

T. ammi seeds from Isfahan (Iran), which were subjected to extraction of essential oil followed 

by chemical characterization. Major components were found to be thymol (63.42 %), p-cymene 

(19.01 %) and γ-terpinene (16.89 %). In another study it has been reported that thymol was the 

most abundant compound of this oil and make 39 % of the whole oil contents (Saei-Dehkordi et 

al., 2010). 
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4.14. Foeniculum vulgare 

 

 

Table 4.14.1 

 

Physical properties of Foeniculum vulgare essential oil 

 

Parameter Foeniculum vulgare 

Colour Light brown 

Yield (%) 1.08±0.04 

Refractive Index  

(30 °C) 

1.345±0.002 

Specific Gravity  

0.81±0.02 

 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare, 

analyzed individually in triplicate. 
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Table 4.14.2 

Antioxidant activity of Foeniculum vulgare essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter F. vulgare BHT 

IC50 (μg/mL) 64.75±2.56 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

57.67±1.3 

 

34.53±1.4 

 

28.71±1.1 

 

85.10±3.2 

Values are mean ± standard deviation of Foeniculum vulgare, analyzed individually in triplicate. 

Fig. 4.14.1 

 

 

 

 

Antioxidant activity of Foeniculum vulgare essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.14.3 

Antimicrobial activity of Foeniculum vulgare essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Foeniculum vulgare 

 

  

Inhibition zone (mm) 

B. subtilis 8.0±0.3 10.8±2.1 - 

L. rhamnosus 10.6±0.2 

 

15.5±0.8 
- 

S. aureus 4.7±0.1 15.1±1.0 - 

S. mutans 16.7±0.1 

 

13.4±0.7 
- 

E. coli 3.8±0.1 

 

9.6±1.3 
- 

P. multocida 20.3±1.1 

 

11.6±1.5 
- 

A. alternata 7.9±0.4 

 

- 
14.2±0.8 

A. flavus 19.3±2.3 

 

- 
11.4±1.4 
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A. niger 19.0±1.5 

 

- 
21.7±1.2 

G. lucidum 7.6±0.4 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 3.12±0.2 1.72±0.2 - 

L. rhamnosus 2.34±0.2 2.81±0.3 - 

S. aureus 4.37±0.3 2.19±0.2 - 

S. mutans 1.88±0.1 2.03±0.1 - 

E. coli 5.62±0.4 2.34±0.2 - 

P. multocida 1.25±0.1 2.03±0.1 - 

A. alternata 3.44±0.2 - 2.34±0.2 

A. flavus 1.25±0.1 - 2.81±0.2 

A. niger 1.41±0.1 - 0.94±0.1 

G. lucidum 3.75±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.14.4  FFA of edible oil stabilized by Foeniculum vulgare essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Foeniculum vulgare 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.15±0.013 0.11±0.012 0.08±0.01 0.16±0.014 

30 0.19±0.012 0.13±0.012 0.09±0.015 0.22±0.016 

45 0.23±0.018 0.17±0.016 0.11±0.012 0.34±0.03 

60 0.28±0.017 0.2±0.016 0.14±0.014 0.48±0.02 

75 0.34±0.02 0.25±0.018 0.18±0.018 0.57±0.03 

90 0.41±0.022 0.29±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare,  
analyzed individually in triplicate. 

Table 4.14.5 PV of edible oil stabilized by Foeniculum vulgare essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Foeniculum vulgare 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.9±0.11 0.6±0.03 0.4±0.01 1.0±0.03 

30 1.6±0.15 1.2±0.16 0.6±0.16 1.81±0.12 

45 2.3±0.17 1.8±0.24 0.9±0.21 2.5±0.24 

60 2.8±0.12 2.3±0.21 1.4±0.29 3.4±0.36 

75 3.7±0.2 2.9±0.29 1.9±0.24 4.7±0.21 

90 4.4±0.24 3.4±0.16 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare, 

analyzed individually in triplicate. 
Table 4.14.6 

para-Anisidine Value of edible oil stabilized by Foeniculum vulgareessential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Foeniculum vulgare 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 5.8±0.32 4.8±0.31 3.4±0.27 10.2±0.52 

30 8.7±0.38 7.3±0.47 5.8±0.36 17.5±0.74 

45 11.6±0.61 9.8±0.27 8.5±0.27 24.1±0.81 

60 15.3±0.82 13.4±0.62 10.9±0.55 29.6±0.63 

75 19.6±1.0 19.2±0.55 13.6±0.47 37.4±1.2 

90 32.1±1.4 25.8±0.47 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare, 
analyzed individually in triplicate. 
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Table 4.14.7 

Cytotoxicity (% hemolysis) of Foeniculum vulgare essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.52% 0.23% 

5mg/mL 7.53% 4.13% 

10mg/mL 8.85% 6.72% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Foeniculum vulgare, 

analyzed individually in triplicate. 

 

Figure 4.14.2. Typical GC-MS chromatogram of essential oil of Foeniculum vulgare 
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Table 4.14.8. Chemical composition of Foeniculum vulgare essential oil 

Components1 RI2 % age Mode of Identification3 

α-pinene 934 1.53 RT, RI, MS 

 Sabinene 972 0.32 RI, MS 

β -Pinene 978 0.17 RT, RI, MS 

β -Myrcene 994 0.18 RT, RI, MS 

α-Phellandrene 1005 0.18 RT, RI, MS 

3-carene 1011 1.24 RT, RI, MS 

α-Terpinene 1020 0.67 RT, RI, MS 

Limonene 1033 11.01 RT, RI, MS 

Eucalyptol 1037 0.41 RT, RI, MS 

γ-terpinene 1062 0.17 RT, RI, MS 

m-cymene 1082 0.22 RT, RI, MS 

Fenchone 1096 6.17 RI, MS 

 3-Thujanone 1116 1.06 RI, MS 

trans-verbenol 1141 0.24 RI, MS 

L-camphor 1143 0.19 RT, RI, MS 

L-Pinocarveol 1148 3.29 RI, MS 

Estragole 1195 0.20 RI, MS 

Fenchyl acetate 1224 0.25 RI, MS 

3-p-Menthene 1234 1.44 RT, RI, MS 

Anisaldehyde 1252 0.17 RI, MS 

Chavicol 1255 8.22 RT, RI, MS 

Anethole 1283 55.78 RT, RI, MS 

Thymol 1290 0.54 RT, RI, MS 

Geranyl formate 1300 0.16 RI, MS 

Isocaryophyllene 1413 0.32 RT, RI, MS 

β-trans-Ocimene 1451 0.27 RI, MS 

Caryophyllene 1454 2.84 RT, RI, MS 

β-bisabolene 1513 0.17 RI, MS 

Myristicin 1521 0.32 RI, MS 

Germacrene B 1559 0.21 RT, RI, MS 

Apiol 1680 0.53 RT, RI, MS 

Total (31)  98.57  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.14.a. Discussion  

The yield (g/100g of dry plant materials) of essential oil of Foeniculum vulgare was 

found to be 1.08 % as listed in Table 4.14.1. The oil was light brown in colour with strong 

aromatic smell and refractive index 1.345. Essential oil was found to be less dense floating on 

the surface of water during the process of hydrodistillation with specific gravity 0.81. Roby et al. 

(2013) obtained 1.95 % yield of hydrodistilled fennel seed essential oil.  

The essential oil of F. vulgare was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

During the process, the examined essential oil transferred electron or hydrogen atoms towards 

DPPH• (purple colour) which was reduced to form DPPH-H (yellow colour) and this ability of 

essential oil was investigated. The DPPH radical scavenging by F. vulgare essential oil was 

represented in terms of 50 % scavenging (IC50) as shown in Table 4.14.2, which was found to be 

64.75 μg/mL. Whereas the scavenging effect of synthetic antioxidant i.e. BHT was 3.46 μg/mL. 

Linoleic acid was also used to test the antioxidant capacity of essential oils. Due to unsaturation 

in its structure, it may form peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 

that may form complex with SCN¯ present in reaction medium. The concentration of this 

complex was measured using spectrophotometer at 500 nm. Higher the concentration of 

peroxides higher will be the value of absorbance and ultimately lower will be the antioxidant 

activity.  Table 4.14.2 shows the % inhibition in linoleic acid system by F. vulgare essential oil 

taken at three different concentrations. It is clear that maximum inhibition was 57.67 % at 

concentration 50 μL/mL which decreased with the decrease in concentration and therefore could 

be attributed to decrease in concentration of bioactive compound accordingly. The activity 

shown by essential oil was found to be quite lesser than that of synthetic antioxidant BHT which 

showed 85.10 % inhibition. β-carotene has ability to form a stable β-carotene radical with 

peroxyl radical (LOO•), formed by the lipids such as linoleic acid in result of their oxidation 

which causes in reduction of amount of β-carotene. However this reduction would have been 

inhibited due to presence of some antioxidant in the reaction medium which could react with 

peroxyl radical competitively to β-carotene. Thus antioxidant effect can easily be examined by 

depleting the colour of solution using spectrophotometer at 470 nm. Bleaching of β-carotene as a 

function of antioxidant activity of the essential oil of F. vulgare is shown in Figure 4.14.1. The 
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least antioxidant activity was exhibited by control with the maximum colour depletion. Whereas 

in samples, due to their antioxidant potential, there was less depletion of colour. F. vulgare was 

used at three different concentrations where minimum depletion was observed at 6 mg/mL. In 

case of BHT the depletion was the least showing the maximum antioxidant activity. In another 

study it was evaluated that fennel extracts showed excellent radical scavenging activity, with 

IC50 values ranging from 0.0031 to 0.0047 μg/mL (Roby et al., 2013). Foeniculum vulgare var. 

azoricum showed the highest activity in scavenging of DPPH radical, even higher than either 

ascorbic acid or BHT (Shahat et al., 2011).  

The antimicrobial activity of the essential oil of F. vulgare against various microbes 

including bacteria and fungi is shown in Table 4.14.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that F. vulgare showed potential 

as an antimicrobial agent with larger inhibition zones (3.8-20.3 and 7.6-19.3 mm) and smaller 

MIC values (1.25-5.62 and 1.25-3.75 mg/mL) against various bacterial and fungal strains, 

respectively. In case of bacteria maximum activity was found against P. multocida (Gram 

negative) with largest inhibition zone 20.3 mm followed by minimum MIC value 1.25 mg/mL. 

The activity was much better than that of antibiotic, Rifampicin, which showed the inhibition 

zone 11.6 mm and MIC 2.3 mg/mL. In case of fungi, A. flavus showed to be most sensitive with 

largest inhibition zone 19.3 mm followed by minimum MIC value 1.25 mg/mL which showed 

much effectiveness even than that of antibiotic, Terbinafine, with inhibition zone 11.4 mm and 

MIC 2.81 mg/mL. Shahat, et al. (2011) tested essential oils of F. vulgare from three different 

cultivars for their antimicrobial potential. F. vulgare azoricum proved to be most effective oil 

against Gram negative bacteria while F. vulgare vulgare was effective against Gram positive 

bacteria even than the antibiotic, ampicillin. Roby et al. (2013) tested potential of essential oil of 

F. vulgare against panel of microbes like Aspergillus flavus, Candida albicans, Bacillus cereus, 

and Staphylococcus aureus. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.14.4 showed the effect of F. vulgare essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 
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length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by F. vulgare essential oil at 1000ppm which was 0.29 % even after 

induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in 

table 4.14.5 and it showed that maximum stabilization was obtained at 1000ppm with minimum 

PV i.e. 3.4 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and 

control, respectively. p-anisidine value was an important parameter used to measure the 

secondary products in lipid oxidation process which is presented in Table 4.14.6 for F. vulgare. 

Control showed p-anisidine value 45.8 after 90 days which was much stabilized by F. vulgare 

essential oil sample of 1000 ppm with value 25.8 while in case of BHT it was found to be 17.9.  

The effect of F. vulgare essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked on three 

different concentrations of essential oils and % hemolysis were calculated which is presented in 

table 4.14.7. It is clear from the results that sensitivity of both erythrocytes increased with the 

increase in concentration of essential oil. For bovine erythrocytes, F. vulgare exhibited the 

maximum hemolysis i.e. 6.72 % at 10 mg/mL concentration and the minimum of 0.23 % at 0.5 

mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 8.85 % at 10 

mg/mL concentration and the minimum of 0.52 % at 0.5 mg/mL. 

The data of chemical composition of the essential oil from F. vulgare was listed in Table 

4.14.8. Total 31 compounds were identified representing 98.57 % of the oil. The major 

components were found to be anethole (55.78 %), limonene (11.01 %), chavicol (8.22 %), 

fenchone (6.17 %), L-Pinocarveol (3.29 %) and caryophyllene (2.84 %). Yu et al. (2012) 

obtained F. vulgare from Changchun, Jilin Province (China), which was subjected to extraction 

of essential oil followed by chemical characterization. Major components were found to be 

trans-anethole (75.67 %), limonene (5.82 %), fenchone (4.58 %) and estragole (2.87 %). Qiu et 

al. (2012) collected F. vulgare from Guangxi Province (China). The major components were 

found to be trans-anethole (88.91 %), anisole (2.89 %), anisaldehyde (2.54 %) and D-limonene 

(1.64%). Chowdhary et al. (2009) collected fennel seeds from Chittagong (Bangladesh) and 

examined essential oil using GC-MS. anethole (58.54 %), limonene (19.63 %), fenchone (7.72 

%) and β-pinene (1.80 %) were found to be the major components in seed essential oil.  
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4.15. Cuminum cyminum 

 

Table 4.15.1 

 

Physical properties of Cuminum cyminum essential oil 

 

Parameter Cuminum cyminum 

Colour Colourless 

Yield (%) 2.25±0.1 

Refractive Index  

(30 °C) 

1.351±0.004 

Specific Gravity 0.78±0.02 

 

 

Values are mean ± standard deviation of three samples of each Cuminum cyminum, 

analyzed individually in triplicate. 
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Table 4.15.2 

Antioxidant activity of Cuminum cyminum essential oil measured by DPPH assay and  

% inhibition in linoleic acid system 

DPPH 

Parameter C. cyminum BHT 

IC50 (μg/mL) 16.86±0.85 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 

linoleic acid 
peroxidation (%) 

79.36±2.5 67.52±2.4 53.00±2.6 

 

85.10±3.2 

Values are mean ± standard deviation of Cuminum cyminum, analyzed individually in triplicate. 

Fig. 4.15.1 

 

 

 

Antioxidant activity of Cuminum cyminum essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.15.3 

Antimicrobial activity of Cuminum cyminum essential oil 

 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Cuminum cyminum 

 

  

Inhibition zone (mm) 

B. subtilis 27.3±2.3 10.8±2.1 - 

L. rhamnosus 8.0±0.5 15.5±0.8 - 

S. aureus 18.0±1.0 15.1±1.0 - 

S. mutans 9.7±0.5 13.4±0.7 - 

E. coli 15.3±0.5 9.6±1.3 - 

P. multocida 21.7±0.5 11.6±1.5 - 

A. alternata 16.7±0.5 - 14.2±0.8 

A. flavus 8.3±0.57 - 11.4±1.4 

A. niger 19.3±2.09 - 21.7±1.2 
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G. lucidum 27.0±1.6 - 9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 1.1±0.2 1.72±0.2 - 

L. rhamnosus 4.2±0.1 2.81±0.3 - 

S. aureus 2.1±0.1 2.19±0.2 - 

S. mutans 2.1± 0.3 2.03±0.1 - 

E. coli 3.2±0.1 2.34±0.2 - 

P. multocida 1.4±0.2 2.03±0.1 - 

A. alternata 2.3±0.2 - 2.34±0.2 

A. flavus 3.9±0.3 - 2.81±0.2 

A. niger 2.3±0.2 - 0.94±0.1 

G. lucidum 1.4±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Cuminum Cyminum, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.15.4  FFA of edible oil stabilized by Cuminum cyminum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Cuminum cyminum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.09±0.012 0.08±0.01 0.08±0.01 0.16±0.014 

30 0.13±0.011 0.09±0.015 0.09±0.015 0.22±0.016 

45 0.18±0.016 0.11±0.012 0.11±0.012 0.34±0.03 

60 0.22±0.017 0.14±0.014 0.14±0.014 0.48±0.02 

75 0.27±0.02 0.18±0.018 0.18±0.018 0.57±0.03 

90 0.31±0.014 0.21±0.018 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Cuminum cyminum,  
analyzed individually in triplicate. 

Table 4.15.5 PV of edible oil stabilized by Cuminum cyminum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Cuminum cyminum 

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.5±0.015 0.4±0.01 0.4±0.01 1±0.03 

30 0.9±0.019 0.6±0.02 0.6±0.16 1.81±0.12 

45 1.6±0.1 1.2±0.21 0.9±0.21 2.5±0.24 

60 2.0±0.13 1.6±0.16 1.4±0.29 3.4±0.36 

75 2.8±0.17 2.1±0.29 1.9±0.24 4.7±0.21 

90 3.5±0.2 2.6±0.21 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Cuminum cyminum, 

analyzed individually in triplicate. 
Table 4.15.6 

para-Anisidine Value of edible oil stabilized by Cuminum cyminum essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Cuminum cyminum 
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 4.1±0.21 3.6±0.27 3.4±0.27 10.2±0.52 

30 7.3±0.65 6.1±0.36 5.8±0.36 17.5±0.74 

45 10.5±0.81 8.9±0.47 8.5±0.27 24.1±0.81 

60 12.8±1.0 11.5±0.55 10.9±0.55 29.6±0.63 

75 16.7±0.9 13.9±0.47 13.6±0.47 37.4±1.2 

90 22.4±1.4 17.8±0.62 17.9±0.62 45.8±1.8 

 
Values are mean ± standard deviation of three samples of each Cuminum cyminum, 

analyzed individually in triplicate. 
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Table 4.15.7 

Cytotoxicity (% hemolysis) of Cuminum cyminum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.45% 0.21% 

5mg/mL 8.33% 3.32% 

10mg/mL 8.54% 6.89% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Cuminum Cyminum, 

analyzed individually in triplicate. 

 

Figure 4.15.2. Typical GC-MS chromatogram of essential oil of Cuminum cyminum 
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Table 4.15.8. Chemical composition of Cuminum cyminum essential oil 

 

Components1 RI2 % age Mode of Identification3 

Isobutyl isobutyrate 892 0.23 RI, MS 

Bornylene 898 0.19 RT, RI, MS 

α-Tricyclene 925 0.57 RT, RI, MS 

Cumene 927 0.4 RT, RI, MS 

Camphene 955 0.27 RT, RI, MS 

p-Menthene 977 0.33 RT, RI, MS 

β-Pinene 982 12.57 RT, RI, MS 

α-phellandrene 1005 0.25 RT, RI, MS 

3-carene 1011 0.20 RT, RI, MS 

p-Cymene 1026 1.39 RT, RI, MS 

1,8-Cineole 1029 2.95 RT, RI, MS 

Limonene 1033 12.02 RT, RI, MS 

 β-trans-Ocimene 1051 0.37 RT, RI, MS 

γ-Terpinene 1060 7.24 RT, RI, MS 

α-Terpinolene 1089 0.42 RT, RI, MS 

L-fenchone 1094 0.38 RI, MS 

Linalool 1096 0.26 RT, RI, MS 

trans-Pinocarveol 

 

1140 0.24 RI, MS 

Terpinene-4-ol 1178 0.34 RI, MS 

 3,4-Xylenol 1187 0.28 RI, MS 

Myrtenol 1196 0.46 RI, MS 

Safranol 1201 0.32 RT, RI, MS 

Trans carveole 1219 0.22 RT, RI, MS 

3-p-Menthene 1233 0.19 RI, MS 

Trans Anethole 1238 1.83 RT, RI, MS 

Cumaldehyde 1240 24.10 RT, RI, MS 

Linalyl Acetate 1248 0.89 RT, RI, MS 

Geraniol 1254 0.27 RT, RI, MS 

2-Caren-10-al 1291 20.03 RI, MS 

Eugenol 1356 0.21 RT, RI, MS 

cis-Carvyl acetate 1364 0.30 RI, MS 

Isocaryophyllene 1410 0.18 RT, RI, MS 

thujopsene 1429 0.27 RI, MS 

β-Caryophyllene 1431 0.23 RT, RI, MS 

γ-elemene 1434 0.32 RT, RI, MS 

α-Caryophyllene 1454 0.18 RT, RI, MS 

α-Humulene 1467 0.21 RT, RI, MS 

Valencene 1490 0.32 RI, MS 

α- Farnesene 1509 4.22 RT, RI, MS 

Trans-Nerolidol 1563 0.25 RI, MS 
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Spathulenol 1577 0.32 RT, RI, MS 

Isoaromadendrene 

epoxide 

1578 0.75 

 

RI, MS 

Caryophyllene Oxide 1583 0.19 RT, RI, MS 

Carotol 1595 0.18 RI, MS 

Phellandral 1601 0.22 RT, RI, MS 

α-Humulene epoxide 

II 

1606 0.24 RT, RI, MS 

α-Eudesmol 1651 0.17 RT, RI, MS 

Total (47)  97.97  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index, MS       

= identification based on comparison of mass spectra 
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4.15.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Cuminum cyminum was found 

to be 2.25 % as listed in Table 4.15.1. The oil was colourless with strong aromatic smell and 

refractive index 1.351. Essential oil was found to be less dense floating on the surface of water 

during the process of hydrodistillation with specific gravity 0.78. The extraction yield of Iranian 

variety of C. cyminum was 1.45 % (Mehdi et al., 2007) whereas the essential oil yield of the C. 

cyminum seeds from the local market of India was 2.33 % (Sowbhagya et al., 2008). 

The essential oil of C. cyminum was assessed for its antioxidant potential using various 

assays being in practice these days. Free radical scavenging ability was tested using DPPH assay 

and the potential was noted to be increased with the increase in concentration of essential oil. 

The DPPH radical scavenging by C. cyminum essential oil was represented in terms of 50 % 

scavenging (IC50) as shown in Table 4.15.2, which was found to be 16.86 μg/mL. Whereas the 

scavenging effect of synthetic antioxidant i.e. BHT was 3.46 μg/mL. Linoleic acid was also used 

to test the antioxidant capacity of essential oils. Due to unsaturation in its structure, it may form 

peroxides upon oxidation which have ability to oxidize Fe+2 to Fe+3 that may form complex with 

SCN¯ present in reaction medium. The concentration of this complex was measured using 

spectrophotometer at 500 nm. Higher the concentration of peroxides higher will be the value of 

absorbance and ultimately lower will be the antioxidant activity.  Table 4.15.2 shows the % 

inhibition in linoleic acid system by C. cyminum essential oil taken at three different 

concentrations. It is clear that maximum inhibition was 79.36 % at concentration 50μL/mL 

which decreased with the decrease in concentration and therefore could be attributed to decrease 

in concentration of bioactive compound accordingly. The activity shown by essential oil was 

found to be quite lesser than that of synthetic antioxidant BHT which showed 85.10 % inhibition. 

Bleaching of β-carotene as a function of antioxidant activity of the essential oil of C. cyminum is 

shown in Figure 4.15.1. The least antioxidant activity was exhibited by control with the 

maximum colour depletion. Whereas in samples, due to their antioxidant potential, there was less 

depletion of colour. C. cyminum was used at three different concentrations where minimum 

depletion was observed at 6 mg/mL. In case of BHT the depletion was the least showing the 

maximum antioxidant activity. Our results have compatibility with that of found by Damasius et 

al. (2007) and Thippeswamy and Naidu (2005) who showed that C. cyminum was a potent 
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antioxidant capable of scavenging DPPH free radicals and thus suppresses peroxidation of lipids  

interceded by free radicals. Hajlaoui et al. (2010) found that scavenging potential of essential oil 

of C. cyminum and standard (BHT) on the DPPH radical as IC50 values was 31 μg/mL and 11.5 

μg/mL respectively. Gachkar et al. (2007) compared the lipid peroxidation inhibitory activities 

of the C. cyminum and rosemary essential oils using the β-carotene in linoleic acid system.  

The antimicrobial activity of the essential oil of C. cyminum against various microbes 

including bacteria and fungi is shown in Table 4.15.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that C. cyminum showed 

potential as an antimicrobial agent with larger inhibition zones (8.0-27.3 and 8.3-27.0 mm) and 

smaller MIC values (1.1-4.2 and 1.4-3.9 mg/mL) against various bacterial and fungal strains, 

respectively. In case of bacteria maximum activity was found against B. subtilis (Gram positive) 

with largest inhibition zone 27.3 mm followed by minimum MIC value 1.10 mg/mL. The 

activity was much better than that of antibiotic, Rifampicin, which showed the inhibition zone 

10.8 mm and MIC 1.72 mg/mL. In case of fungi, G. lucidum showed to be most sensitive with 

largest inhibition zone 27.0 mm followed by minimum MIC value 1.40 mg/mL which showed 

much effectiveness even than that of antibiotic, Terbinafine, with inhibition zone 9.1mm and 

MIC 1.88 mg/mL. In another study in vitro antibacterial activities of different essential oils were 

performed against various microorganisms and it was found that C. cyminum essential oil was 

the most effective essential oil after the oregano one, which showed inhibition zones between 

31.23 mm on Lactobacillus sakei and 38.17 mm (Viuda-Martos et al., 2008). Hajlaoui et al. 

(2010) found that C. cyminum oil exhibited higher potential as an antibacterial and antifungal 

agent with a maximum effectiveness against Vibrio spp. strains with a diameter of inhibition 

zones growth ranging from 11 to 23 mm and MIC and MBC values (0.078–0.31 mg/ml) to 

(0.31–1.25 mg/ml), respectively. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.15.4 shows the effect of C. cyminum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 
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length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by C. cyminum essential oil at 1000ppm which was 0.21 % even after 

induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is presented in 

table 4.15.5 and it showed that maximum stabilization was obtained at 1000 ppm with minimum 

PV i.e. 2.6 meq/kg after induction period of 90 days, which was 2.3 and 6.1 meq/kg for BHT and 

control, respectively. p-anisidine value was an important parameter used to measure the 

secondary products in lipid oxidation process which is presented in Table 4.15.6 for C. cyminum. 

Control showed p-anisidine value 45.8 after 90 days which was much stabilized by C. cyminum 

essential oil sample of 1000 ppm with value 17.8 while in case of BHT it was found to be 17.9.  

The effect of C. cyminum essential oil on the viability of human and bovine erythrocytes 

was evaluated to investigate the cytotoxicity of the essential oil. The effect was checked on three 

different concentrations of essential oils and % hemolysis were calculated which is presented in 

table 4.15.7. It is clear from the results that sensitivity of both erythrocytes increased with the 

increase in concentration of essential oil. For bovine erythrocytes, C. cyminum exhibited the 

maximum hemolysis i.e. 6.89% at 10 mg/mL concentration and the minimum of 0.21 % at 0.5 

mg/mL concentration, while with human erythrocytes maximum hemolysis i.e. 8.54% at 10 

mg/mL concentration and the minimum of 0.45 % at 0.5 mg/mL. Allahghadri et al. (2010) 

conducted a 30 days oral toxicity study in Wistar rats to conclude the potential of cumin essential 

oil in producing toxic effects.  

The data of chemical composition of the essential oil from C. cyminum is listed in Table 

4.15.8. Total 47 compounds were identified representing 97.97 % of the oil. The major 

components were found to be cumaldehyde (24.10 %), 2-caren-10-al (20.03 %), β-pinene (12.57 

%), limonene (12.02 %), γ-terpinene (7.24 %) and α- farnesene (4.22 %). Gachkar et al. (2007) 

obtained C. cyminum from national botanical garden (Iran), which was subjected to extraction of 

essential oil followed by chemical characterization. Major components were found to be α-

pinene (29.1 %), limonene (21.5 %), eucalyptol (17.9 %) and linalool (10.4 %). Hajlaoui et al. 

(2010) collected cumin seeds from Swassi (Tunisia). The major components were found to be 

cinnamaldehyde (39.48 %), γ-terpinene (15.21 %), O-cymene (11.82 %) and β-pinene (11.13 %). 
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4.16. Cinnamomum zeylanicum 

 

Table 4.16.1 

 

Physical properties of Cinnamomum zeylanicum essential oil 

 

Parameter Cinnamomum 

zeylanicum 

Colour Light brown 

Yield (%) 0.78±0.02 

Refractive Index  

(30 °C) 

1.342±0.005 

Specific Gravity 1.00±0.01 

 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 

analyzed individually in triplicate. 
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Table 4.16.2 

Antioxidant activity of Cinnamomum zeylanicum essential oil measured by DPPH assay and 

% inhibition in linoleic acid system 

DPPH 

Parameter C. zeylanicum BHT 

IC50 (μg/mL) 54.77±2.87 3.46±0.3 

% Inhibition in linoleic acid system 

Concentrations 50μL/mL 30μL/mL 10μL/mL BHT (200ppm) 

Inhibition of 
linoleic acid 

peroxidation (%) 

73.19±1.7 
 

52.90±2.3 
 

42.09±2.3 
 

85.10±3.2 

Values are mean ± standard deviation of Cinnamomum zeylanicum, analyzed individually in 

triplicate. 

Fig. 4.16.1 

 

 

 

Antioxidant activity of Cinnamomum zeylanicum essential oil measured by bleaching of  

β-carotene-linoleic acid emulsion 
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Table 4.16.3 

Antimicrobial activity of Cinnamomum zeylanicum essential oil 

 

Tested 

organism 

Essential oils  Rifampicin Terbinafine 

 Cinnamomum zeylanicum    

Inhibition zone (mm) 

B. subtilis 8.2±0.4 10.8±2.1 - 

L. rhamnosus 22.5±0.9 

 

15.5±0.8 
- 

S. aureus 10.7±1.5 

 

15.1±1.0 
- 

S. mutans 18.1±0.8 

 

13.4±0.7 
- 

E. coli 11.3±0.6 

 

9.6±1.3 
- 

P. multocida 14.3±1.1 

 

11.6±1.5 
- 

A. alternata 6.7±0.4 

 

- 
14.2±0.8 

A. flavus 19.3±2.5 

 

- 
11.4±1.4 
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A. niger 13.7±0.5 

 

- 
21.7±1.2 

G. lucidum 10.7±0.2 

 

- 
9.1±0.4 

Minimum inhibitory concentration (MIC) mg/mL 

B. subtilis 2.81±0.2 1.72±0.2 - 

L. rhamnosus 1.09±0.1 2.81±0.3 - 

S. aureus 2.5±0.2 2.19±0.2 - 

S. mutans 1.56±0.1 2.03±0.1 - 

E. coli 2.34±0.2 2.34±0.2 - 

P. multocida 2.81±0.2 2.03±0.1 - 

A. alternata 4.37±0.3 - 2.34±0.2 

A. flavus 1.41±0.1 - 2.81±0.2 

A. niger 2.03±0.1 - 0.94±0.1 

G. lucidum 2.5±0.2 - 1.88±0.1 

 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 

analyzed individually in triplicate. 
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Stabilization of Canola + Rapeseed (70%:30%) oil 

Table 4.16.4  FFA of edible oil stabilized by Cinnamomum zeylanicum essential oil 

IPD 

Induction 
Period in 

Days 

% FFA 

Cinnamomum zeylanicum  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 0.08±0.01 0.08±0.01 0.08±0.01 0.08±0.01 

15 0.13±0.012 0.09±0.015 0.08±0.01 0.16±0.014 

30 0.14±0.011 0.11±0.012 0.09±0.015 0.22±0.016 

45 0.2±0.013 0.14±0.014 0.11±0.012 0.34±0.03 

60 0.25±0.02 0.18±0.02 0.14±0.014 0.48±0.02 

75 0.31±0.023 0.23±0.018 0.18±0.018 0.57±0.03 

90 0.37±0.027 0.27±0.02 0.22±0.018 0.64±0.02 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 
analyzed individually in triplicate. 

Table 4.16.5 PV of edible oil stabilized by Cinnamomum zeylanicum essential oil 

IPD 

Induction 
Period in 

Days 

PV 

Cinnamomum zeylanicum  

ppm 

BHT 

 
200ppm 

Control 

500 1000 

00 0.4±0.01 0.4±0.01 0.4±0.01 0.4±0.01 

15 0.9±0.1 0.7±0.03 0.4±0.01 1±0.03 

30 1.7±0.15 1.21±0.12 0.6±0.16 1.81±0.12 

45 2.3±0.18 1.7±0.24 0.9±0.21 2.5±0.24 

60 3.0±0.2 2.2±0.29 1.4±0.29 3.4±0.36 

75 3.7±0.23 2.8±0.21 1.9±0.24 4.7±0.21 

90 4.5±0.28 3.4±0.24 2.3±0.16 6.1±1.24 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 

analyzed individually in triplicate. 
Table 4.16.6 

para-Anisidine Value of edible oil stabilized by Cinnamomum zeylanicum essential oil 

IPD 
Induction 
Period in 

Days 

para-Anisidine Value 

Cinnamomum zeylanicum  
ppm 

BHT 
 

200ppm 

Control 

500 1000 

00 2.7±0.12 2.7±0.12 2.7±0.12 2.7±0.12 

15 6.2±0.32 4.9±0.36 3.4±0.27 10.2±0.52 

30 8.8±0.51 7.5±0.47 5.8±0.36 17.5±0.74 

45 12.5±0.83 10.6±0.31 8.5±0.27 24.1±0.81 

60 15.8±0.64 14.3±0.62 10.9±0.55 29.6±0.63 

75 19.7±1.1 17.4±0.55 13.6±0.47 37.4±1.2 

90 24.6±1.3 21.7±0.47 17.9±0.62 45.8±1.8 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 
analyzed individually in triplicate. 
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Table 4.16.7 

Cytotoxicity (% hemolysis) of Cinnamomum zeylanicum essential oil 

Concentration Human erythrocytes Bovine erythrocytes 

0.5mg/mL 0.95% 0.31% 

5mg/mL 1.77% 1.26% 

10mg/mL 8.78% 7.21% 

PBS 0.00% 0.00% 

Triton X-100 100% 100% 

Values are mean ± standard deviation of three samples of each Cinnamomum zeylanicum, 

analyzed individually in triplicate. 

 

 

Figure 4.16.2. Typical GC-MS chromatogram of essential oil of Cinnamomum zeylanicum 
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Table 4.16.8. Chemical composition of Cinnamomum zeylanicum essential oil 

Components1 RI2 % age Mode of Identification3 

α -Pinene 934 0.46 RT, RI, MS 

Sabinene 972 0.34 RI, MS 

β -Pinene 978 0.35 RT, RI, MS 

3-Carene 1011 0.27 RT, RI, MS 

p-Cymene 1026 0.23 RT, RI, MS 

1,8-Cineole 1029 0.30 RI, MS 

Limonene 1033 0.71 RT, RI, MS 

Eucalyptol 1037 0.19 RT, RI, MS 

γ-Terpinen 1072 0.18 RT, RI, MS 

β-Citronellal 1161 0.45 RT, RI, MS 

Borneol 1169 0.21 RI, MS 

 L-terpinen-4-ol 1178 0.23 RI, MS 

α- Terpinolen 1187 0.51 RT, RI, MS 

Cinnamaldehyde 1233 77.86 RT, RI, MS 

3-p-Menthene 1234 0.17 RI, MS 

 p-Cumic aldehyde 1246 0.50 RI, MS 

Chavicol 1255 0.19 RT, RI, MS 

trans.-Anethole 1283 1.74 RT, RI, MS 

Azulene 1300 0.45 RI, MS 

α -Cubebene 1347 0.91 RT, RI, MS 

Eugenol 1356 0.89 RT, RI, MS 

Copaene 1366 2.15 RI, MS 

 Isolongifolene 1387 0.14 RI, MS 

Isocaryophyllene 1413 0.20 RT, RI, MS 

β-Caryophyllene 1418 0.32 RT, RI, MS 

Aromadendrene 1440 0.19 RI, MS 

Germacrene-D 1451 0.18 RI, MS 

α -Caryophyllene 1454 0.28 RT, RI, MS 

α-Ylangene 1471 0.33 RI, MS 

α-Amorphene 1485 0.44 RI, MS 

α -Farnesene 1509 0.22 RT, RI, MS 

Calamenene 1520 0.25 RI, MS 

7-epi-α-Cadinene 1522 2.26 RT, RI, MS 

δ-Cadinene 1524 3.02 RT, RI, MS 

Nerolidol 1533 0.26 RT, RI, MS 

Spathulenol 1574 0.32 RT, RI, MS 

Viridiflorol 1590 0.16 RI, MS 

Hexadecanoic acid 1984 0.20 RT, RI, MS 
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Total (38)  98.17  
1    Compounds are listed in order of elution from a ZB-5MS column. 

2    Retention indices relative to C9-C28 n-alkanes on the ZB-5MS column. 

3    RT = identification based on retention time, RI = Identification based on retention index,  

    MS= identification based on comparison of mass spectra 
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4.16.a. Discussion 

The yield (g/100g of dry plant materials) of essential oil of Cinnamomum zeylanicum was 

found to be 0.78 % as listed in Table 4.16.1. The oil was light brown in colour with strong 

aromatic smell and refractive index 1.342. Essential oil was found to be less dense floating on 

the surface of water during the process of hydrodistillation with specific gravity 1.0. Mallavarapu 

et al. (1995) obtained the yield of volatile oil content of the Hyderabad sample (4.7 %) was 

higher than the Bangalore sample (1.8 %) of C. zeylanicum. Singh et al. (2007) subjected 

cinnamon leaves and bark to hydrodistillation to get yield of essential oils (3.1 % and 2.5 %, 

respectively). 

The DPPH radical scavenging by C. zeylanicum essential oil was represented in terms of 

50 % scavenging (IC50) as shown in Table 4.16.2, which was found to be 54.77μg/mL. Whereas 

the scavenging effect of synthetic antioxidant i.e. BHT was 3.46 μg/mL. Linoleic acid was also 

used to test the antioxidant capacity of essential oils. Table 4.16.2 shows the % inhibition in 

linoleic acid system by C. zeylanicum essential oil taken at three different concentrations. It is 

clear that maximum inhibition was 73.19 % at concentration 50 μL/mL which decreased with the 

decrease in concentration and therefore could be attributed to decrease in concentration of 

bioactive compound accordingly. The activity shown by essential oil was found to be quite lesser 

than that of synthetic antioxidant BHT which showed 85.10 % inhibition. β-carotene has ability 

to form a stable β-carotene radical with peroxyl radical (LOO•), formed by the lipids such as 

linoleic acid in result of their oxidation which causes in reduction of amount of β-carotene. 

However this reduction would have been inhibited due to presence of some antioxidant in the 

reaction medium which could react with peroxyl radical competitively to β-carotene. Thus 

antioxidant effect can easily be examined by depleting the colour of solution using 

spectrophotometer at 470 nm. Bleaching of β-carotene as a function of antioxidant activity of the 

essential oil of C. zeylanicum is shown in Figure 4.16.1. The least antioxidant activity was 

exhibited by control with the maximum colour depletion. Whereas in samples, due to their 

antioxidant potential, there was less depletion of colour. C. zeylanicum was used at three 

different concentrations where minimum depletion was observed at 6 mg/mL. In case of BHT 

the depletion was the least showing the maximum antioxidant activity.  Singh et al. (2007) 

evaluated the radical scavenging activity of leaf and bark volatile oils and oleoresins of 
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Cinnamomum zeylanicum. Bark oleoresin showed the best result through all concentrations for 

DPPH assay. In the same study lipid inhibitory activities of leaf and bark volatile oils and 

oleoresins of C. zeylanicum were also tested using ferric thiocyanate method of measuring the 

amounts of peroxides formed in emulsion. Bark oleoresin was found to be most effective among 

others. Schmidt et al. (2006) found that antioxidant activity showed by essential oil from C. 

zeylanicum was much better than BHT and BHA. 

The antimicrobial activity of the essential oil of C. zeylanicum against various microbes 

including bacteria and fungi is shown in Table 4.16.3. It is clear that essential oil showed average 

activity against most of the fungi and bacteria in comparison with the antibiotic. The results 

obtained from the disc diffusion method and MIC made it clear that C. zeylanicum showed 

potential as an antimicrobial agent with larger inhibition zones (10.7-22.5 and 6.7-19.3 mm) and 

smaller MIC values (1.56-2.81 and 1.41-4.37 mg/mL) against various bacterial and fungal 

strains, respectively. In case of bacteria maximum activity was found against L. rhamnosus 

(Gram positive) with largest inhibition zone 22.5 mm followed by minimum MIC value 1.09 

mg/mL. The activity was much better than that of antibiotic, Rifampicin, which showed the 

inhibition zone 15.5 mm and MIC 2.81 mg/mL. In case of fungi, A. flavus showed to be most 

sensitive with largest inhibition zone 19.3mm followed by minimum MIC value 1.41mg/mL 

which showed much effectiveness even than that of antibiotic, Terbinafine, with inhibition zone 

11.4 mm and MIC 2.81 mg/mL. Singh et al. (2007) tested leaf and bark volatile oils of C. 

zeylanicum against various microbes like Aspergillus ochraceus, Penicillium citrinum, 

Aspergillus flavus, A. ochraceus, Aspergillus niger, Aspergillus terreus, P. citrinum and 

Penicillium viridicatum. Gupta et al. (2008) found oil of C. zeylanicum to be very effective 

against Bacillus sp., Listeria monocytogenes, E. coli and Klebsiella sp. 

Oils and fats become rancid upon hydrolysis of triglycerides to give rise free fatty acids 

(FFAs) in presence of oxygen, moisture or enzymes. Rancidity of fatty foods can be well 

checked by measuring the quantity of free fatty acids formed which has become an important 

parameter for manufacturers. Table 4.16.4 shows the effect of C. zeylanicum essential oil on 

formation of FFAs from where it is clear that their concentration continuously increased with the 

length of storage period. Highest FFA was exhibited by control (0.64 %), while maximum 

stabilization was exhibited by C. zeylanicum essential oil at 1000ppm which was 0.27 % even 
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after induction period of 90 days, while with BHT it was 0.22 %. Peroxide value (PV) is 

presented in table 4.16.5 and it showed that maximum stabilization was obtained at 1000ppm 

with minimum PV i.e. 3.4 meq/kg after induction period of 90 days, which was 2.3 and 6.1 

meq/kg for BHT and control, respectively. p-anisidine value was an important parameter used to 

measure the secondary products in lipid oxidation process which is presented in Table 4.15.6 for 

C. zeylanicum. Control showed p-anisidine value 45.8 after 90 days which was much stabilized 

by C. zeylanicum essential oil sample of 1000ppm with value 21.7 while in case of BHT it was 

found to be 17.9. In another study oxidative deterioration of mustered oil was evaluated by 

measuring the antioxidant parameters like PV, TBA, p-An and TC values while C. zeylanicum 

essential oil and oleoresins were used for its stabilization (Singh et al., 2007). 

The effect of C. zeylanicum essential oil on the viability of human and bovine 

erythrocytes was evaluated to investigate the cytotoxicity of the essential oil. The effect was 

checked on three different concentrations of essential oils and % hemolysis were calculated 

which is presented in table 4.16.7. It is clear from the results that sensitivity of both erythrocytes 

increased with the increase in concentration of essential oil. For bovine erythrocytes, C. 

zeylanicum exhibited the maximum hemolysis i.e. 7.21% at 10 mg/mL concentration and the 

minimum of 0.31 % at 0.5 mg/mL concentration, while with human erythrocytes maximum 

hemolysis i.e. 8.78 % at 10 mg/mL concentration and the minimum of 0.95 % at 0.5 mg/mL. 

Budavari et al. (1989) have reported Cinnamon to show minute toxicity in the animals.  

The data of chemical composition of the essential oil from C. zeylanicum is listed in 

Table 4.16.8. Total 38 compounds were identified representing 98.17 % of the oil. The major 

components were found to be Cinnamaldehyde (77.86 %), δ-Cadinene (3.02 %), 7-epi-α-

Cadinene (2.26 %), Copaene (2.15 %) and trans.-Anethole (1.74 %). Singh et al. (2007) obtained 

cinnamon leaves and bark from local market of Gorakhpur, Utter pradesh (India), which was 

subjected to extraction of essential oil followed by chemical characterization. Major components 

were found to be eugenol (87.3 %), β-caryophyllene (1.9 %), α-phellandrene (1.9 %) and 

amorphene (1.1 %). Ooi et al. (2006) analyzed essential oil of C. cassia. The major components 

were found to be trans-cinnamaldehyde (85.06 %), o-methoxy-cinnamaldehyde (8.79 %) and 

cis-cinnamaldehyde (1.33 %).  
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Chapter 5 

 

SUMMARY 

 

 

The research work presented in this dissertation was conducted in the Central Hi-tech 

Lab, University of Agriculture, Faisalabad; Protein and Molecular Biology Lab, Department of 

Biochemistry, University of Agriculture, Faisalabad, Pakistan and Lab of Medicinal and 

Aromatic Plants, Stockbridge School of Agriculture, University of Massachusetts, Amherst, 

USA. Total 16 plants including a weed, some spices and eucalyptus species were collected from 

Pothohar region, which is the northern eastern part of Pakistan with its specific weather. 

Experiments were conducted to study different parameters like % yield, chemical composition 

and biological activities including antioxidant, antimicrobial activities and cytotoxicity of 

essential oils of collected plants including Parthenium hysterophorus. To the best of our 

knowledge the essential oil of Parthenium hysterophorus has never been reported with regard to 

its composition as well as biological activities before present study. 

Among all the plants tested maximum essential oil yield was obtained in case of 

Syzygium aromaticum (6.70 g/100g) while minimum in case of Parthenium hysterophorus (0.02 

g/100g). The essential oils were evaluated for antioxidant potential using DPPH assay where 

maximum scavenging capability was shown by Trachyspermum ammi (IC50=2.61μg/mL) which 

was even better than that of BHT, the synthetic antioxidant (IC50=3.46 μg/mL). % inhibition in 

linoleic acid system was another assay to test the antioxidant activity of essential oils. The 

inhibition was tested on three different concentrations and all samples showed maximum 

inhibition at maximum concentration i.e. 50 μL/mL. Trachyspermum ammi, Murraya koenigii, 

Syzygium aromaticum and Parthenium hysterophorus inhibited linoleic acid oxidation more than 

80% which was found comparable to BHT with 85% inhibition. Antioxidant activity of all the 

samples were also tested using bleachability of β-carotene in linoleic acid system and again the 
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above mentioned plants inhibited the bleachability of β-carotene, showing the greater antioxidant 

potential. 

Stabilization studies of edible oil by essential oils were performed using a blend of oils 

i.e. canola and rapeseed (70:30). Three different parameters like % FFA, PV and p-Anisidine 

value were used to evaluate the stabilization capability of essential oils. Minimum FFA were 

found in case of Cuminum cyminum treated oils, 0.21% which was even much better than that of 

BHT 0.22%. Minimum PV was again found in case of Cuminum cyminum, 2.6 meq/kg while that 

of BHT it was 2.3 meq/kg. Cuminum cyminum showed minimum p-Anisidine value of 17.8. In 

this way Cuminum cyminum  stabilized the edible oil more effectively as compared to others. 

Antimicrobial activity of essential oils tested against various bacteria and fungi revealed 

that Cuminum cyminum  and Trachyspermum ammi both showed good antibacterial activity 

which is evident from their largest inhibition zones (13.3-27.0mm) for Cuminum cyminum  and 

(13.7-19.7mm) for Trachyspermum ammi with lowest MIC values (1.1-4.2 mg/mL) for 

Cuminum cyminum  and (1.41-2.19 mg/mL) for Trachyspermum ammi. The activity could be 

attributed to the presence of cumaldehyde and thymol. Against fungal strains best activity was 

shown by Eucalyptus camaldulensis with largest zones of inhibition (5.3-22.7mm) and lowest 

MIC values (1.17-2.5 mg/mL). 

Cytotoxicity study was performed using hemolytic assay which was performed at three 

different concentrations of essential oils. It was noted that all the samples showed maximum 

cytotoxicity at highest concentration i.e. 10 mg/mL and minimum at lowest concentration i.e. 0.5 

mg/mL. Maximum cytotoxicity at minimum concentration was shown by Myristica fragrans (N), 

44.09% while minimum cytotoxicity at minimum concentration was shown by Murraya koenigii, 

0.79%. Maximum cytotoxicity at maximum concentration was exhibited by Citrus reticulata, 

99.65 while minimum cytotoxicity at maximum concentration was exhibited by Parthenium 

hysterophorus, 32.63% which shows that it can also be used at higher concentrations. 

To see that which components were responsible for the activity of essential oils, GC-MS 

analysis was performed. The samples which showed best potential for various biological 

activities include Trachyspermum ammi (Thymol, 37.75%), Cuminum cyminum (cumaldehyde, 

24.10%), Murraya koenigii (eugenol, 81.61%), Syzygium aromaticum (eugenol, 51.02%), and 

Eucalyptus camaldulensis (p-cymene, 46.12%).   
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