

SURFACE RECONSTRUCTION METHODS FOR
SEAFLOOR MODELLING

Ricard Campos Dausà

Dipòsit legal: Gi. 1110-2014
http://hdl.handle.net/10803/145380

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

http://hdl.handle.net/10803/145380

PhD Thesis

Surface Reconstruction Methods
for Seafloor Modelling

Ricard Campos Dausà

2014

PhD Thesis

Surface Reconstruction Methods
for Seafloor Modelling

Ricard Campos Dausà

2014

Doctoral Programme in Technology

Supervised by:

Rafael Garcia

Work submitted to the University of Girona in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

Dr. Rafael Garcia, from Universitat de Girona,

DECLARES

That the work entitled Surface Reconstruction Methods for Seafloor Modelling presented

by Ricard Campos Dausà to obtain the degree in Doctor of Philosophy has been developed

under my supervision and complies with the requirements needed to obtain the Interna-

tional Mention.

Therefore, in order to certify the aforesaid statement, I sign this document.

Girona, March 2014.

A l’Aı̈da i els meus pares...

Acknowledgements

I would like to start by expressing my gratitude to my supervisor, Dr. Rafael Garcia, for

his wise advises and for encouraging me through these years. I am especially thankful for

the patience you had with all the changes that this thesis has suffered...

Also, to my colleagues at the Underwater Vision Laboratory who had always been there

when I needed them. To the ones that are currently on the group, Tudor, Nuno, Quintana,

Ricard P., Mojdeh, Konstantin, Shihav, László, and also to the ones that left, Arman,

Olivier, Pio and Ramon (and many others I probably forget). Also to the colleagues at

CIRS, with whom I shared the pressure of many field experiments. Of course, I would like

to extend my gratitude to VICOROB as a whole, and particularly to Xavi Lladó and Jordi

Freixenet for introducing me into the group during the development of my final degree

project.

Obviously, I would like to especially thank Gerard, Pablo, Mariano, Albert Pla and

Albert Gubern, who started this journey with me from the very beginning, and with whom

I shared many unforgettable moments. I also thank the ones who appeared a bit after

that: Masi, a hard worker, and Enric, the only one concerned with providing me data to

use in this thesis!. Moreover, I thank as well the last incorporations, Eloy and Pepe, for

the fruitful discussions at coffee time.

Likewise, I am really grateful to Mariette Yvinec and Pierre Alliez, and in general to

all the people at Geometrica (INRIA), for their hospitality during my stay there. All the

ideas shared and the experience gained there with you have greatly contributed to the

development of this thesis.

Of course, I also want to thank both the reviewers and the jury of the thesis, for taking

some of your time in evaluating my work.

Moreover, regarding part of the datasets used in this thesis, I wish to thank the Stan-

ford 3D Scanning Repository (Stanford University Computer Graphics Laboratory), the

AIM@SHAPE consortium, H. Hoppe, Y. Furukawa, Y. Nagai and C. Strecha for making

their data publicly available, and also R. Keriven and J.-P. Pons for providing some models

used in this thesis. I would also like to express my gratitude to N. Amenta, F. Calakly, B.

Curless, T. K. Dey, G. Guennebaud, M. Kazhdan, V. Lempitsky, J. Manson, Y. Nagai, Y.

i

Ohtake and R. R. Paulsen (and their collaborators), along with the teams of the CGAL

libraries and the MeshLab software for making their code and/or executables available to

the community. Additionally, I thank the agencies that partially funded this work: the

Spanish Ministry of Science and Innovation under grant CTM2010-15216 (MuMap) and

the EU projects FP7-ICT-2009-248497 (Trident), FP7-ICT-2011-7-288704 (Morph) and

FP7-INF-2012-312762 (Eurofleets2).

Finalment, m’agradaria acabar aquests agräıments donant les gràcies a la meva famı́lia.

Especialment, als meus pares Carmen i Antonio, per fer-me com sóc, i per haver-me donat

sempre tot el suport i l’amor possible. També als meus germans, Xavi i Dani, per haver-me

aguantat tots aquests anys. Aix́ı mateix, als meus avis que, encara que la majoria ja no

hi siguin, sempre m’han animat a que segúıs amb els meus estudis. I també a la meva

famı́lia poĺıtica, la Montse, la Luci i en Llúıs, que sempre s’han preocupat perquè aquesta

tesi arribés a bon port.

Reservo l’últim agräıment per l’Aı̈da, la persona més important de la meva vida.

Gràcies per fer-me tant feliç, i per haver-me suportat i ajudat tant durant tots aquests

anys.

ii

Publications

The present thesis has led to the publication of the following technical articles:

• R. Campos, R. Garcia, P. Alliez, and M. Yvinec. “A surface reconstruction method

for in-detail underwater 3D optical mapping”. International Journal of Robotics

Research, Submitted, December 2013.

• R. Campos, R. Garcia, P. Alliez, and M. Yvinec. “Splat-based surface reconstruction

from defect-laden point sets”. Graphical Models, 75(6): 346-361, 2013.

• E. Galceran, R. Campos, M. Carreras and P. Ridao. “3D Coverage Path Planning

with Realtime Replanning for Inspection of Underwater Structures”. IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2014 (to appear).

• R. Campos, N. Gracias, R. Prados, and R. Garcia. “Merging bathymetric and

optical cues for in-detail inspection of an underwater shipwreck”. Instrumentation

Viewpoint, 2013.

• N. Gracias, P. Ridao, R. Garcia, J. Escart́ın, M. L’Hour, F. Cibecchini, R. Campos,

M. Carreras, D. Ribas, N. Palomeras, L. Magi, A. Palomer, T. Nicosevici, R. Prados,

R. Hegedus, L. Neumann, F. de Filippo, and A. Mallios. “Mapping the moon: Using

a lightweight AUV to survey the site of the 17th century ship ‘La Lune”’. MTS/IEEE

OCEANS conference, June 2013.

• P. Ridao, D. Ribas, N. Palomeras, M. Carreras, A. Mallios, N. Hurtós, N. Gracias, Ll.

Maǵı, R. Garcia, R. Campos, R. Prados, and J. Escart́ın. “Operational validation

of Girona500 AUV”. Instrumentation Viewpoint, 2013.

• M. Prats, D. Ribas, N. Palomeras, J. C. Garćıa, V. Nannen, S. Wirth, J. J. Fernández,

J. P. Beltrán, R. Campos, P. Ridao, P. J. Sanz, G. Oliver, M. Carreras, N. Gracias,

R. Maŕın, and A. Ortiz, “Reconfigurable AUV for intervention missions: a case study

on underwater object recovery”. Intelligent Service Robotics, 5(1):19-31, 2012.

iii

• P. Nomikou, J. Escart́ın, P. Ridao, D. Sakellariou, R. Camilli, V. Ballu, M. Moreira,

C. Mével, A. Mallios, C. Deplus, M. Andreani, O. Pot, R. Garcia, L. Rouzie, T.

Gabsi, R. Campos, N. Gracias, N. Hurtós, L. Magi, N. Palomeras, and D. Ribas.

“Preliminary submarine monitoring of Santorini caldera: Hydrothermal activity, and

seafloor deformation”. Volcanism of the Southern Aegean in the frame of the broader

Mediterranean area Conference (Poster), October 2012.

• J. Quintana, R. Campos, R. Garcia, J. Freixenet, N. Gracias, S. Puig, and J.

Malvehy. “A novel acquisition device for total body photography”. World Congress

of Dermoscopy (Abstract), 2012.

• R. Campos, R. Garcia, and T. Nicosevici. “Surface reconstruction methods for

the recovery of 3D models from underwater interest areas”. in IEEE OCEANS

Conference, Spain, pp. 1-10, 2011.

• J. Quintana, R. Campos, N. Gracias, J. Freixenet, and R. Garcia. “3D skin mapping

for melanoma detection”. Medical Image Computing Conference (MICCAT 2011),

2011.

• S. Zandara, P. Ridao, D. Ribas, R. Campos, and A. Mallios. “Kornati bathymetry

survey data-set for navigation and mapping”. in 19th Mediterranean Conference on,

Control Automation (MED), pp. 443-448, 2011.

• R. Garcia, R. Campos, and J. Escart́ın. “High-resolution 3D reconstruction of the

seafloor for environmental monitoring and modelling”. in IROS 2011, Workshop on

Robotics for Environmental Monitoring, September 2011.

• J. Escart́ın, R. Garcia, R. Prados, R. Campos, T. Barreyre, and Bathyluck09 Sci-

ence Party. “Image seafoor mosaics: Acquisition, processing, and role on deep-sea

observatory planning and implementation”. Geophysical Research Abstracts, vol. 12,

2010.

• R. Campos, J. Ferrer, M. Villanueva, L. Maǵı, and R. Garcia. “Trinocular system

for 3D motion and dense structure estimation”. Instrumentation Viewpoint, 2009.

iv

List of Acronyms

AABB Axis-Aligned Bounding Boxes

APSS Algebraic Point Set Surfaces

AUV Autonomous Underwater Vehicle

BA Bundle Adjustment

BBD Bounding Box Diagonal

CSG Constructive Solid Geometry

CSRBF Compactly Supported Radial Basis Function

DLT Direct Linear Transformation

DM Discrete Membrane

DoG Difference of Gaussians

DWT Discrete Wavelet Transform

FEM Finite Element Method

FFT Fast Fourier Transform

GCS Growing Cell Structure

GPU Graphics Processing Unit

LBQ Local Bivariate Quadric

LKS Least K-th Squares

LMedS Least Median of Squares

LoG Laplacian of Gaussian

v

MA Medial Axis

MAD Median Absolute Deviation

MAP Maximum a Posteriori

MLS Moving Least Squares

MPU Multilevel Partition of Unity

MRF Markov Random Field

MSER Maximally Stable Extremal Regions

MSSE Modified Selective Statistical Estimator

MST Minimum Spanning Tree

NCC Normalized Cross-Correlation

NN Neural Network

PCA Principal Components Analysis

PDE Partial Differential Equation

PDF Probability Density Function

PMVS Patch-based Multi-View Stereo

PSS Point Set Surfaces

RANSAC RANdom SAmple Consensus

RBF Radial Basis Function

RDT Restricted Delaunay Triangulation

RKHS Reproducing Kernel Hilbert Space

ROV Remotely Operated Vehicle

SDF Signed Distance Function

SFM Structure-from-Motion

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

vi

SOM Self-Organizing Map

SoS Simulation of Simplicity

SSD Sum of Squared Differences

SURF Speeded Up Robust Features

SVM Support Vector Machines

SVR Support Vector Regression

UDF Unsigned Distance Function

VRIP Volumetric Range Image Processing

vii

viii

List of Symbols

Sets

LoS(pi) Set of Lines-of-Sight associated with point pi.

KY
k (x) Set of k-nearest neighbors of x from the set Y . When Y not

specified, we assume the input point set P . Also, we omit k if it

is a parameter.

ONc,d(vi) Neighboring octree cell of vi assuming connectivity c and depth

d.

PX Points from the set X. When the set is not specified, the input

point set is assumed.

Q(P) Set of poles (positive and negative) of Vor(P).

S Ideal (unknown) surface.

S̄ Interpolated surface.

S̃ Approximated surface.

G Voxel grid.

GNc(vi) Neighboring voxel of vi inside G assuming connectivity c.

Simplicial Complexes

CH(P) Convex hull of the set P .

Del(P) Delaunay triangulation of P .

GC(P) Gabriel Complex of P .

MA(P) Medial Axis of P .

MAT(P) Medial Axis Transform of P .

ix

MS(P) Medial Scaffold of P .

Vor(P) Voronoi diagram of P .

Primitives

B(x) Enclosing ball of entity x.

B(qi) Polar ball of qi.

ei Edge i.

ei,j Edge joining pi and pj .

ni Normal vector associated to entity i. When not stated otherwise,

ni refers to the normal at pi. In other cases, i may refer to the

normal of a plane or a triangle.

NR(Vpi , pj) Natural region: portion of the Voronoi cell defined by pi disap-

pearing upon insertion of pj .

odi Octree node i at depth d, with an associated scalar value.

RpXi Single point i from set or entity X. If set is not specified, the

input point set P is assumed. Also, it may have an associated

reference frame R.

q+
i Positive pole i generated by V pi.

q−i Negative pole i generated by V pi.

ti Triangle i.

teti Tetrahedron i.

~v Vector.

Vp Voronoi cell of Vor(P) corresponding to point p.

vi Voxel i, with an associated scalar value.

vi,j,k Voxel with index (i, j, k), with an associated scalar value.

Graphs

e(vi, vj) Edge of a graph joining the nodes vi and vj .

ei,j Edge of a graph joining the nodes vi and vj .

x

G Generic graph.

MST (P) Minimum Spanning Tree of P .

vi Vertex/node i of a graph.

w(e(vi, vj)) Weight of the edge joining vi and vj in a graph.

Functions

〈x, y〉 Inner/dot product between x and y.

χ(x) Indicator function of a volume.

φi(x) Radial Basis Function i.

φi(x, c) Radial Basis Function i applied at x with center c.

φi,r(x) Compactly supported RBF i, having a support radius r.

arclength(pi, pj) Length of the arc defined by pi, pj .

area(x) Area of, or associated to, x.

bbox(X) Axis-aligned bounding box enclosing all elements in set X.

center(x) Center of the enclosing ball of primitive x.

centroid(X) Centroid of X.

diam(x) Diameter of the enclosing ball of primitive x.

dihedral(x, y) Dihedral angle between two planes x and y. They may correspond

to triangles, i.e., x = ti, y = tj .

dist(x, y) Euclidean distance between entity x and y.

distd(x, y) Distance between entity x and y, following norm d.

distflow(x, y Flow distance between entity x and y.

distpow(x, y) Power distance between entity x and y.

distw(x, y) Wasserstein distance between entity x and y.

exp(x) Exponential function. Used in some cases instead of ex for read-

ability.

I(x) Implicit function.

xi

iangle(B(x), B(y)) Intersection angle between balls B(x) and B(y).

lfs(pi) Local Feature Size of point pi.

midpoint(ei) Midpoint of an edge ei.

min(x, y) Minimum value between x and y.

max(x, y) Maximum value between x and y.

odepth(pi) Depth of the node where pi lays in the octree.

rad(x) Radius of the enclosing ball of primitive x.

rad(qi) Radius of the polar ball corresponding to qi.

vol(x) Volume of entity x.

Other

E(x) Energy to minimize in a variational procedure.

P(x) Probability of x.

xii

List of Figures

1.1 The challenges of underwater imaging . 3

1.2 Example of the surface reconstruction problem being ill-posed 5

1.3 The visibility problem on point sets . 6

2.1 Projection of a 3D point onto a 2D image plane 11

2.2 Common image distortion types . 13

2.3 Stereo disambiguation of the 3D position of a point 15

2.4 Feature detection algorithms applied to an underwater image 16

2.5 Epipolar geometry . 19

2.6 Matching steps . 21

2.7 Stereo triangulation . 22

2.8 Scale ambiguity in SFM approaches. 23

2.9 Our Structure-from-Motion pipeline . 24

2.10 Depth map construction . 26

2.11 Greedy dense reconstruction . 26

2.12 Texture mapping . 28

2.13 Example of a general trajectory . 31

3.1 Implicit/Indicator functions in 2D . 35

3.2 Piecewise-explicit representations of a circle 37

3.3 Classification of surfaces . 38

3.4 Examples of a k-simplices . 40

3.5 Simplicial complex example . 40

3.6 Sample of the Delaunay/Voronoi decompositions in 3D/2D 43

3.7 Example of a surface Delaunay ball . 48

3.8 Sample of the behaviour of a surface mesher 50

4.1 Common challenges in real point based datasets 54

4.2 α-shapes method example . 62

4.3 Crust and Cocone methods example . 64

xiii

4.4 Gabriel triangles example . 66

4.5 Ball-Pivoting method example . 70

4.6 Smooth Greedy method example . 74

4.7 Zipper method example . 76

4.8 Power Crust and Robust Cocone methods example 80

4.9 Tight Cocone and Peel methods example 84

4.10 Graph Cuts Stereo method example . 88

4.11 Hoppe’s method example . 92

4.12 MRF method example . 95

4.13 MPU and MPU+RBF methods example . 104

4.14 Comparison between the original MPU and the smoothed version 105

4.15 MLS methods examples . 113

4.16 Touch-expand method example . 122

4.17 Gradient Enforcement methods example . 128

4.18 VRIP method example . 137

4.19 Lifted Constrained Delaunay method example 140

4.20 Spherical Cover method example . 142

5.1 Schematic overview of the on-line segment intersection query 149

5.2 Examples of query segments required by the RDT algorithm 149

5.3 Problematic segment-LBQ intersection configurations 157

5.4 Non-manifold structures . 158

5.5 Sphere dataset . 160

5.6 Torus dataset . 161

5.7 Torus dataset, corrupted with noise . 161

5.8 Max planck dataset . 162

5.9 Gargoyle dataset . 163

5.10 Elephant dataset . 163

5.11 Stanford Bunny dataset . 164

5.12 Stanford Bunny dataset, corrupted with outliers 164

5.13 Multibeam sonar dataset . 165

5.14 Shallow Water dataset . 166

5.15 Coral Reef dataset . 167

5.16 Three sample images of the Tour Eiffel sequence 168

5.17 Close-up on the point set of the Tour Eiffel dataset 169

5.18 Tour Eiffel dataset . 169

5.19 State-of-the-art methods applied to the Tour Eiffel dataset 170

xiv

5.20 Three sample images of the La Lune sequence 172

5.21 Close-up of the noisy point set of the La Lune dataset 172

5.22 La Lune dataset . 173

5.23 La Lune dataset, using the Poisson method 174

5.24 Pottery dataset . 175

6.1 Overview of our method . 181

6.2 Intersecting a splat with a line segment . 185

6.3 Robust intersection procedure . 187

6.4 Elephant dataset . 188

6.5 Stanford Bunny dataset . 189

6.6 Stanford Bunny dataset, different degree of splats 189

6.7 Stanford Bunny dataset, robustness to outliers 190

6.8 Synthetic unit sphere dataset . 192

6.9 Foot dataset . 192

6.10 Different resolutions of the Gargoyle dataset 193

6.11 Horse dataset . 194

6.12 State-of-the-art methods applied to the Stanford Bunny dataset 195

6.13 Farm dataset (PMVS) . 197

6.14 Fountain dataset (PMVS) . 198

6.15 Shallow Water dataset (PMVS) . 199

6.16 Coral Reef dataset (PMVS) . 200

6.17 Tour Eiffel dataset (PMVS) . 201

6.18 Column Capital dataset (plane sweeping) 202

6.19 Cluny dataset (plane sweeping) . 203

6.20 Various underwater datasets (plane sweeping) 204

6.21 Splat representation of the Tour Eiffel dataset (plane sweeping) 205

6.22 Best splat representation of La Lune dataset (plane sweeping) 206

6.23 Problems of the method . 207

7.1 The problem of orienting splats using the MST method 211

7.2 The problem of contouring a UDF . 212

7.3 2D depiction of the pipeline followed in this chapter 217

7.4 Extension of the S-T cut method to handle bounded surfaces 219

7.5 Relevance of the σ band size for the Normalized Cut method 223

7.6 Hallucinated triangles on the Normalized Cut method 226

7.7 Comparison between Marching cubes and RDT surface mesher 227

7.8 Comparison against splats mesher . 228

xv

7.9 Examples of range scans datasets . 229

7.10 Elephant dataset, using splats with d = 1 230

7.11 Underwater Mound (multibeam sonar), Normalized cut 230

7.12 Underwater Cave dataset (profiling sonar), Normalized cut 232

7.13 Column Capital dataset, Normalized cut . 233

7.14 Fountain dataset (plane sweeping), Normalized cut 233

7.15 Shallow Water dataset (plane sweeping), S-T and Normalized cut 234

7.16 Coral Reef dataset (plane sweeping), S-T and Normalized 235

7.17 Tour Eiffel dataset (plane sweeping), S-T and Normalized cut 236

7.18 First site of La Lune dataset (plane sweeping), Normalized cut 237

7.19 Second site of La Lune dataset (plane sweeping), Normalized cut 238

8.1 Real data tests, results for the Bunny dataset 248

8.2 Real data tests, results for the Amphora dataset 249

8.3 Real data tests, results for the Tour Eiffel dataset 250

8.4 Real data tests, results for the Shallow Water dataset 251

8.5 Results of the smooth surfaces test, Gargoyle dataset 256

8.6 Results of the smooth surfaces test, Dancing Children dataset 257

8.7 Results of the smooth surfaces test, Quasimoto dataset 258

8.8 Four sample point sets of the noisy Max Planck shape 260

8.9 Error distribution plots for the noise test . 262

8.10 Individual results for the noise test . 263

8.11 Individual results for the noise test (close-up) 264

8.12 Sample results for the outliers case . 268

8.13 Results for the outliers test . 270

8.14 Results for the outliers test, focusing on our methods 271

xvi

List of Tables

3.1 List of dualities between the Delaunay and Voronoi in 3D 42

4.1 Sources of the methods used . 58

4.1 Sources of the methods used (continued) . 59

4.2 Sources of the point sets used . 59

4.3 Classification of interpolation-based methods 145

4.4 Classification of approximation-based methods 146

5.1 Noise scale computation, synthetic example 155

5.2 Parameters . 176

5.3 Run times . 177

6.1 Enumeration of parameters . 188

6.2 Tests for robustness on the synthetic sphere point set 191

6.3 Parameters and run times . 207

7.1 Parameters and run times, S-T cut method 239

7.2 Parameters and run times, Normalized cut method 240

8.1 Additional information on the meshes, smooth surfaces tests 259

8.2 Additional information on the meshes, noise tests 266

8.3 Additional information on the meshes, outliers tests 272

xvii

xviii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 6

1.3 Contributions . 7

1.4 Organization of the Document . 7

2 3D Optical Modelling 9

2.1 Introduction . 9

2.2 Overview . 9

2.3 Camera Calibration . 11

2.4 Correspondence Search . 14

2.4.1 Detection . 14

2.4.2 Description and Matching . 16

2.4.2.1 Epipolar Constraints . 18

2.4.2.2 Robust Matching . 19

2.5 Structure from Motion . 20

2.6 Dense Reconstruction . 24

2.7 Post-processing . 27

2.8 Underwater 3D Modelling . 28

3 Related Concepts 33

3.1 Introduction . 33

3.2 Surfaces . 33

3.2.1 Surface Representation . 34

3.2.1.1 Implicit . 34

3.2.1.2 Explicit . 36

3.2.1.3 Representation Selection 37

3.2.2 Surface Classification . 37

3.3 Computational Geometry . 39

xix

3.3.1 Simplicial Complex . 39

3.3.2 Convex Hull . 40

3.3.3 Delaunay Triangulation . 40

3.3.4 Voronoi Diagram . 41

3.3.5 Delaunay/Voronoi Duality . 41

3.3.6 Delaunay/Voronoi Related Concepts 41

3.3.6.1 Poles . 41

3.3.6.2 Delaunay Subcomplexes . 41

3.3.6.3 Constrained Delaunay . 44

3.3.6.4 Power Diagram/Regular Triangulation 44

3.3.7 Medial Axis . 45

3.3.7.1 Local Feature Size and ε-Sampling 45

3.4 Surface Meshing . 45

3.4.1 Isosurface Extraction . 46

3.4.1.1 Marching Cubes . 47

3.4.1.2 Dual Contouring . 47

3.4.2 Restricted Delaunay Meshing . 48

4 State-of-the-Art Review 51

4.1 Introduction . 51

4.2 Challenges of Point Set Data . 53

4.3 Classification . 54

4.3.1 Proposed Classification . 55

4.4 Interpolation-based Methods . 59

4.4.1 Surface Oriented . 60

4.4.1.1 Delaunay Triangle Selection 61

4.4.1.2 Surface Growing . 68

4.4.1.3 Integration . 75

4.4.2 Volume Oriented . 77

4.4.2.1 In/Out Separation . 78

4.4.2.2 Sculpting . 80

4.4.2.3 Graph Partitioning . 84

4.5 Approximation-based Methods . 89

4.5.1 Tangent Planes . 90

4.5.2 Unsigned Distance . 96

4.5.3 Radial Basis Functions . 99

4.5.4 Moving Least Squares . 111

xx

4.5.5 Deformable Surfaces . 117

4.5.6 Gradient Enforcement . 127

4.5.7 Integration . 136

4.5.8 Local Primitives . 139

4.6 Conclusions . 142

5 Direct Point Set Surface Reconstruction 147

5.1 Introduction . 147

5.2 Overview and Contributions . 148

5.3 Online Intersection Computation . 150

5.3.1 Capsule Neighborhood . 151

5.3.2 Local Bivariate Quadric . 151

5.3.3 Outlier Rejection . 152

5.3.4 Locally Adjusted Noise Scale . 153

5.3.5 Local Bivariate Quadric - Segment Intersection 155

5.4 Post-processing . 157

5.5 Results . 159

5.5.1 Synthetic Dataset . 160

5.5.2 Range Scans . 160

5.5.3 Underwater Multi-view Stereo Datasets 165

5.6 Conclusions and Future Work . 174

6 Splat-based Surface Reconstruction 179

6.1 Introduction . 179

6.2 Overview and Contributions . 180

6.3 Creating the Splats . 181

6.3.1 Local Jet Surfaces . 181

6.3.2 Outlier Rejection . 183

6.3.3 Splat Sizing . 184

6.4 Meshing . 184

6.4.1 Merging Local Intersections . 185

6.4.2 Robust Intersection Query . 186

6.5 Results . 187

6.6 Conclusions and Future Work . 208

7 Surface Reconstruction through Minimum Cuts in Graphs 209

7.1 Introduction . 209

7.2 Overview and Contributions . 210

xxi

7.3 Unsigned Distance Function . 213

7.4 S-T Cut . 214

7.4.1 Theoretical Bases . 214

7.4.2 Our Approach . 216

7.4.3 Extension to Open Surfaces . 219

7.5 Normalized Cut . 220

7.5.1 Theoretical Bases . 220

7.5.2 Our Approach . 222

7.5.3 Removing Hallucinated Triangles . 224

7.6 Results . 225

7.7 Conclusions and Future Work . 237

8 Quantitative Evaluation 243

8.1 Introduction . 243

8.2 Tested Algorithms . 244

8.3 Real Data . 245

8.3.1 Results . 246

8.4 Surface Reconstruction Benchmark . 247

8.4.1 Parameter Tuning . 252

8.4.2 Smooth Surfaces . 253

8.4.2.1 Results . 254

8.4.3 Noise Test . 255

8.4.3.1 Results . 260

8.4.4 Outliers Test . 265

8.4.4.1 Results . 267

8.5 Conclusions . 269

9 Conclusions and Future Work 275

9.1 Summary of the Thesis . 275

9.2 Contributions . 278

9.3 Future Work . 280

xxii

Resum

Els mapes del fons del mar són una important font d’informació per la comunitat cient́ıfica,

donat que la cartografia del fons maŕı és el punt de partida per l’exploració dels oceans. Els

avenços en les metodologies d’escaneig, mitjançant tècniques tant acústiques com òptiques,

permet que la construcció de mapes del fons maŕı es realitzi cada cop a més altes resolu-

cions. Tot i això, totes aquestes tècniques mostregen la superf́ıcie de l’àrea d’interès en la

forma d’un núvol de punts. En el cas de les àrees que presenten un gran relleu 3D, acon-

seguir una representació cont́ınua a partir d’aquest mostreig discret és una tasca complexa.

Els mètodes de reconstrucció de superf́ıcies són els encarregats de tractar aquest pro-

blema per tal de recuperar una superf́ıcie continua que representi l’objecte en forma d’una

malla de triangles, que facilitarà l’aplicació de tècniques de visualització i el processat

posterior d’aquestes dades. Aquesta tesi proposa estratègies i solucions per tractar el

problema de la reconstrucció de superf́ıcies a partir d’un conjunt de punts.

La tesi comença per revisar l’estat de l’art dels mètodes de reconstrucció de superf́ıcies.

D’aquesta revisió, n’hem extret conclusions referents als defectes dels mètodes actuals,

especialment quan aquests s’apliquen a núvols de punts creats a partir d’imatges sub-

aquàtiques, ja que aquest tipus d’imatges presenten normalment soroll i outliers. Tenint

en compte aquests problemes, en aquesta tesi proposem un seguit de mètodes que tenen

en compte els errors comuns en aquests mostrejos, i promovem la creació de mètodes re-

sistents tant a soroll com a outliers. Tanmateix, els nostres mètodes permeten recuperar

superf́ıcies amb llindars, fenòmen que apareix normalment quan s’explora un escenari sub-

maŕı. A més, lluny de restringir la nostra àrea d’aplicació, assegurem que els algoritmes

presentats no requereixen de cap altre tipus d’informació addicional, com ara les normals

que necessiten molts dels mètodes de l’estat de l’art. Aix́ı, els mètodes proposats en aque-

sta tesi poden ser utilitzats amb qualsevol classe de dades basades en punts, sense tenir

en compte la font d’aquestes.

Aquest treball contribueix a l’àrea de reconstrucció de superf́ıcies amb quatre mètodes

diferents. El primer es basa en modificar un mètode de mallatge existent. Aquest algoritme

de mallatge de superf́ıcies requereix una aproximació de la superf́ıcie que sigui capaç de

proporcionar resposta a consultes d’intersecció entre un segment aleatori i la superf́ıcie

xxiii

en śı. La nostra contribució consisteix en respondre aquest test d’intersecció sense tenir

l’aproximació de l’objecte, és a dir, en respondre-la directament utilitzant el núvol de

punts. Aix́ı doncs, donat el segment pel qual s’ha de trobar la intersecció amb l’objecte,

es construeix una superf́ıcie local utilitzant els punts localitzats a una distància concreta

d’aquest segment, de manera que es pugui utilitzar per trobar la intersecció entre aquesta

superf́ıcie i el segment. A més, el mètode és capaç de construir aquestes superf́ıcies tenint

en compte els outliers i el soroll, d’escales variables, que poden estar presents en el conjunt

de punts.

El segon mètode, que també treballa de forma local, construeix una representació

intermitja de l’objecte anomenada representació de splats. Aquesta representació descriu

l’objecte mitjançant superf́ıcies locals d’extensió limitada generades a partir de cada punt.

Tanmateix, aquestes superf́ıcies locals es construeixen posant èmfasi en descartar outliers

i atenuar el soroll. Aquesta aproximació inicial de la superf́ıcie és mallada en un segon

pas, utilitzant una estratègia dissenyada espećıficament per aquesta nova abstracció. Això

permet que la fase de mallatge, la qual defineix la qualitat de la malla de triangles final,

s’executi amb diferents parametritzacions sobre la mateixa aproximació de l’objecte.

Els últims dos mètodes introdueixen una nova forma de fer, ja que canvien la visió local

dels mètodes previs per una estratègia volumètrica global. Aquests dos mètodes es basen

en construir una funció de distància sense signe, avaluada de forma discreta en una graella

de tetraedres adaptativa, i definida a partir de la nostra representació de splats. Per tal

d’extreure la superf́ıcie a partir d’un volum, l’espai s’ha de partir en dos, de manera que

la superf́ıcie d’interès sigui la que separa aquests dos volums. Bàsicament, els dos mètodes

proposats difereixen en com es realitza aquesta partició, tot i que ambdós es basen en

una definició en forma de graf similar derivada de la graella de tetraedres prèviament

mencionada. Per una banda, proposem un mètode que utilitza l’algorisme de talls S-T

(S-T cuts) per separar la part interior de la exterior de l’objecte. Per altra banda, l’altre

mètode utilitza l’algorisme de talls normalitzats (Normalized cuts) per partir el volum

només utilitzant els valors de la funció de distància sense signe. Aquests dos mètodes

aconsegueixen una millora en la resistència al soroll respecte els mètodes anteriors.

Els mètodes proposats són validats mitjançant la seva aplicació a conjunts de dades

provinents de fonts varies i amb una àmplia diversitat en les condicions de mostreig. A

més, els resultats obtinguts pels nostres algoritmes són avaluats i comparats tant qualita-

tivament com quantitativament contra altres mètodes de l’estat de l’art.

xxiv

Resumen

Los mapas del fondo marino son una fuente de información fundamental para la comunidad

cient́ıfica, dado que la cartograf́ıa del fondo marino es el punto de partida de la exploración

de los océanos. Los avances en las metodoloǵıas de escaneado, utilizando técnicas tanto

acústicas como ópticas, permiten que la construcción de mapas del fondo marino se realice

a resoluciones cada vez más altas. Aun aśı, todas estas técnicas muestrean la superficie

del área de interés obteniendo una nube de puntos. En el caso de áreas que presentan

un gran relieve en 3D, conseguir una representación continua a partir de este muestreo

discreto es una tarea compleja.

Los métodos de reconstrucción de superficies son los encargados de tratar este pro-

blema, recuperando una superficie continua que represente el objeto reconstruido en la

forma de una malla de triángulos, que facilitará la aplicación de técnicas de visualización

y el posterior procesado de estos datos. Esta tesis propone estrategias y soluciones para

tratar el problema de la reconstrucción de superficies a partir de un conjunto de puntos.

La tesis empieza revisando el estado del arte de los métodos de reconstrucción de su-

perficies. De esta revisión, hemos extráıdo conclusiones referentes a los defectos de los

métodos actuales, especialmente cuando éstos son aplicados a nubes de puntos prove-

nientes de imágenes subacuáticas, dado que éstas presentan normalmente ruido y outliers.

Teniendo en cuenta estos problemas, en esta tesis presentamos un conjunto de métodos

que tienen en cuenta los errores comunes en estos muestreos, y promovemos la creación de

métodos resistentes tanto a ruido como a outliers. Aśı mismo, nuestros métodos permiten

recuperar superficies con bordes, fenómeno que aparece normalmente cuando se explora

un escenario submarino. Además, lejos de restringir nuestra área de aplicación, asegu-

ramos que los algoritmos presentados no requieren de ningún otro tipo de información

adicional, como las normales que necesitan muchos de los métodos del estado del arte. De

esta forma, los métodos propuestos en esta tesis pueden ser utilizados con cualquier clase

de datos basados en puntos, sin tener en cuenta la procedencia de los mismos.

Este trabajo contribuye al área de la reconstrucción de superficies con cuatro métodos

diferentes. El primero se basa en modificar un método de mallado existente. Este algo-

ritmo de mallado de superficies requiere una aproximación de la superficie que sea capaz

xxv

de responder a consultas de intersección entre un segmento aleatorio y la superficie en

si. Nuestra contribución consiste en responder a este test de intersección sin tener una

aproximación del objeto, es decir, en responderla directamente usando la nube de puntos.

Aśı pues, dado el segmento para el cual se requiere la intersección con el objeto, constru-

imos una superficie local utilizando los puntos que se hallan a una distancia concreta de

este segmento, de manera que esta pueda ser utilizada para encontrar la intersección entre

dicha superficie y el segmento. Además, el método es capaz de construir estas superficies

teniendo en cuenta los outliers y el ruido, de escalas variables, que puedan estar presentes

en el conjunto de puntos.

El segundo método, que trabaja también de forma local, construye una representación

intermedia del objeto llamada representación de splats. Esta representación describe el

objeto mediante superficies locales de extensión limitada generadas a partir de cada punto.

Aśı mismo, estas superficies locales se construyen priorizando el descarte de outliers y la

atenuación del ruido. Esta aproximación inicial de la superficie es mallada en un segundo

paso, utilizando una estrategia diseñada espećıficamente para esta nueva abstracción. Esto

permite que la fase de mallado, la cual define la calidad de la malla de triángulos final,

sea ejecutada con diferentes parametrizaciones sobre la misma aproximación del objeto.

Los últimos dos métodos introducen una nueva metodoloǵıa, ya que cambian la visión

local de los métodos previos por una estrategia volumétrica global. Estos dos métodos

se basan en construir una función de distancia sin signo, evaluada de forma discreta en

una malla de tetraedros adaptativa, y definida en base a nuestra representación de splats.

Para extraer la superficie a partir de un volumen, el espacio debe partirse en dos, de forma

que la superficie de interés sea la que separe estos dos volúmenes. Básicamente, los dos

métodos propuestos difieren en cómo se realiza esta partición, aunque los dos se basen en

una definición en forma de grafo similar, derivada de la malla de tetraedros previamente

mencionada. Por un lado, proponemos un método que utiliza el algoritmo de cortes S-

T (S-T cuts) para separar la parte interior de la exterior del objeto. Por otro lado, el

otro método utiliza el algoritmo de cortes normalizados (Normalized cuts) para partir el

volumen utilizando solamente los valores de la función de distancia sin signo. Estos dos

métodos consiguen una mayor resistencia al ruido que los métodos anteriores.

Los métodos propuestos son validados mediante su aplicación a conjuntos de datos

provenientes de fuentes varias y con una amplia diversidad en las condiciones de muestreo.

Además, los resultados obtenidos por nuestros algoritmos son evaluados y comparados,

tanto cualitativamente como cuantitativamente, contra otros métodos del estado del arte.

xxvi

Abstract

Underwater maps are an important source of information for the scientific community,

since mapping the seafloor is the starting point for underwater exploration. The advance

of range scanning methodologies, both using optical and acoustic techniques, enable the

mapping of the seabed to attain increasingly larger resolutions. However, all these tech-

niques sample the surface of an interest area in the form of a point cloud. For the case

of areas containing non-trivial 3D relief, achieving a continuous representation from this

discrete sampling is a complex task.

Surface reconstruction methods try to tackle this problem by recovering a continuous

surface representing the object in the form of a mesh of triangles, easing visualization and

further processing. This thesis proposes strategies and solutions to tackle the problem of

surface reconstruction from point sets.

We start by reviewing the state of the art on surface reconstruction methods. From

this survey, we extract some conclusions regarding the flaws in current methods, especially

when applied to point clouds coming from underwater imagery which often suffer from

noise and outliers. Taking these into account, in this thesis we devise a set of methods

where common errors in the scanned measurements are taken into account by promoting

methods resilient to both noise and outliers. Moreover, our methods allow the recovery

of bounded surfaces, that usually appear when exploring an underwater scenario. Addi-

tionally, and instead of restricting ourselves to our application area, we ensure that the

presented algorithms do not require any kind of additional information to work so they

can be used with any kind of point-based data regardless of its source.

This thesis contributes to the area of surface reconstruction with four different methods.

The first method is based on modifying an already existing surface meshing methodology.

This surface meshing algorithm requires an already existing approximation of the surface

able to provide segment-object intersection queries. Our contribution is to answer these

intersection queries not by having the approximation of the object, but directly from the

point set. Thus, given a required segment to be tested for intersection with the object, a

local surface is built using the points falling at a given distance from this segment, so that

it can be tested later for intersection with the segment. Furthermore, our method is able

xxvii

to build these surfaces by taking into account the outliers and variable noise scale that

may be contained in the point set.

The second method, also working in a local manner, constructs an intermediate rep-

resentation of the object, called the splat representation. This representation describes

the surface with small local patches of limited extent generated from each point. Again,

these local surfaces are built focusing on disregarding outliers and attenuating the noise.

This initial surface approximation is later meshed in a second step, using an approach

tailored to this new abstraction. This allows the meshing phase, defining the quality of

the final triangle mesh, to be executed with different parameterizations on a common

approximation of the object.

The last two methods introduce novel thinking by changing the local view of the previ-

ous approaches to a global volumetric approach. The two methods are based on building

an unsigned distance function, discretely evaluated on an adaptive tetrahedral grid, and

defined from our splat representation. In order to extract a surface from a volume, the

space should be partitioned into two, the surface of interest being at the interphase between

these two volumes. Basically, these two methods differ in this partitioning procedure, even

though both are based on a similar graph definition derived from the previously mentioned

grid. On the one hand, we propose a method using S-T cuts to separate the inside and

outside of the object. On the other hand, we use a Normalized cut approach to partition

the volume using only the values of the unsigned distance function. The advantage of

these two methods is that they achieve further noise resilience than the previous methods.

We validate the methods proposed through their application to datasets from various

sources with a wide range of sampling conditions. Additionally, the results obtained by

these algorithms are discussed and compared qualitatively and quantitatively with other

state-of-the-art approaches.

xxviii

Chapter 1

Introduction

1.1 Motivation

Despite the fact that almost every piece of land on earth has been explored, the conquest

of the oceans still poses one of the greatest challenges for mankind. More than 70% of the

surface of our planet is covered by water, and the hostile underwater environment prohibits

humans from exploring at depths beyond the limits of scuba diving. This means that we

know very little about a large part of our planet. Over the few last decades, advances

in underwater robotics have opened the door to deep underwater exploration. Remotely

Operated Vehicles (ROVs) as well as Autonomous Underwater Vehicles (AUVs), along

with the information they gather, have benefited a large number of disciplines, biology,

geology and archeology being some of the most relevant examples.

Shaping the otherwise unreachable underwater areas using the remote sensing provided

by these platforms is of great interest to the scientific community. Underwater vehicles

are equipped with a wide variety of sensors providing useful data for both navigation

and mapping. The navigation and mapping problems are intrinsically related to one

another: while navigation deals with the problem of knowing where the vehicle is at each

step, the mapping process gathers all the local data collected by the sensors into a global

representation that eases its interpretation. Mapping techniques are consequently divided

according to the type of global representation they use, i.e., their mapping modality. These

modalities can be broadly divided as follows:

• 2D maps, which present the scene as being flat, useful in describing large areas

compactly. From ancient times, cartography has used this representation in order to

shape the world. Thus, having the collected data in a georeferenced 2D map allows

correlating the retrieved data with many other maps made in the past. Of course,

the main limitation of this kind of map is its inability to represent 3D relief.

1

2 CHAPTER 1. INTRODUCTION

• 2.5D maps, also known as heightmaps/heightfields, represent the scene as a bivari-

ate function so that, for each coordinate (x, y) in the plane, a given value of height

z is provided, thus defining the injective function f(x, y) = z. When mapping the

seabed, this representation is called a bathymetry. Of course, this kind of map can

be represented as a 2D map just by giving a color to each of the z in f(x, y). How-

ever, we refer to the 2.5D maps when height can be imaged in 3D using common

visualization techniques. Despite being more informative than a pure 2D represen-

tation, this mapping modality is not able to represent arbitrary 3D geometry and,

for instance, complex structures containing concavities cannot be represented.

• 3D maps, the most versatile mapping representation, as it assumes no restriction

on the shape of the object. In this case, the surface is normally modelled using a

triangle mesh, allowing its visualization in modern graphics hardware, as well as

easing its further manipulation using mesh processing techniques.

From the large sensor set the underwater vehicles are equipped with, optical cameras

are one of the most versatile tools for mapping. It is widely known that the underwater

environment poses some specific challenges to optical imaging. First, there is a rapid

attenuation of the light in water, which causes the visibility to be restricted to a short

range from the camera. Second, the reflection of light against suspended particles in

the media may induce blurring and high frequency noise caused by the phenomenons of

forward and backward scatter. Finally, the illumination of the images might be non-

uniform because of the use of artificial lighting in deep water, or the sun flickering effect

in shallow water. Some examples of the presented problems can be seen in Figure 1.1.

In spite of these challenges, the straightforward interpretation of the visual information

collected using optical sensors posed them as a relevant tool in underwater surveying. In

order to alleviate some of these challenges, the data collection must be carried out at a very

short range to the surveyed scene, which translates in having a very local portion of the

scene mapped in a single image. In order to get a comprehensive view of the entire scene,

these local contributions have to be merged in a global representation, i.e, the map. Not-

ing again the correlation between navigation and mapping, it is possible to build a global

map as long as some knowledge of the global or relative camera positioning/trajectory

exist. The motion followed by the camera from frame to frame may be computed using

computer vision techniques, which may additionally be helped by other sources of naviga-

tion information provided by further sensors. Finally, the process of transforming the set

of images into a common representation is called the reconstruction process. Most of the

reconstruction techniques are feature-based, meaning that they use in their computations

only one relevant subset of points in each image to compute both the motion and the

1.1. MOTIVATION 3

(a) (b)

(c) (d)

Figure 1.1: The challenges of underwater imaging: forward scattering on (a) causes the image to be

blurred, while backward scattering on (b) causes the image to be noisy, presenting these white dots

corresponding to suspended particles in the water. Additionally, the uneven illumination caused

by using an artificial light source in deep water surveys is shown in (c), while in (d) one can see

the illumination pattern caused by sun flickering in shallow water. Note that (a) also presents the

effect of light attenuation with distance, as objects closer to the viewer preserve their colors better

than those at the back.

4 CHAPTER 1. INTRODUCTION

desired structure of the scene. These feature points are basically distinctive 2D points in

the image, according to their surrounding texture. These feature points are also matched

across images, so that knowing the one-to-one relationships between the points in the

image pairs in the sequence allows the computation of the camera’s motion.

For the 2D case, also known as photomosaicking, the estimated camera trajectory is

used to map the original images onto a common plane (the final map). The planarity

assumption of the scene allows the transformations between frames to be represented by

homographies, and pose the problem with fewer unknowns [78]. In the 2.5D/3D case, the

motion model has to be more general, and the complete motion (rotation and translation)

is computed for each frame in the sequence of images. It is worth noticing that photomo-

saics are widely used in underwater applications for monitoring areas ranging from small

(Gracias et al. [93]) to large (Barreyre et al. [19]) scale.

In the 2D case, there is a base plane onto which the images can be projected, i.e., once

the motion is extracted, thus building the map mainly consists of warping and deforming

the images onto this common plane. However, in the 3D case, the problem becomes more

complex, as this base representation is missing. Once the trajectory of the camera has been

recovered, the 3D positions of the points can be extracted by triangulating in 3D the line-

of-sight rays emerging from each camera-feature pair. This process results in a point set

representation of the object. For the 2.5D, the problem of finding a base representation

is solved by assuming that our scene can be modelled using a heightmap, that is, the

mapping is simplified at the expense of loosing the ability to represent complex details.

The common technique is to find a common plane, as in the 2D case, and project all the

3D points onto it. Then, these points in 2D are triangulated using some technique and the

texture can be projected into these triangles by using some heuristics. This triangulation

is then lifted back to 3D by adding the points’ z coordinate, resulting in a pseudo-3D

representation.

As previously stated, the method above cannot capture fine details in complex 3D

structures. For this purpose, a more detailed representation of the surface of the surveyed

object/scene is needed. The problem is then to find a piecewise linear approximation of

the shape of the object given the sample points. As for the 2.5D case, the most used

representation is a mesh of triangles. This problem is known as the surface reconstruction

problem from an unorganized set of points (in the following referred to as the surface

reconstruction problem), since this point set does not follow any regular lattice, and the

result is a triangle mesh following the surface defined by the points. Note however, that the

surface reconstruction problem is ill-posed, as illustrated in Figure 1.2: for a given set of

points, one can define several surfaces that might have generated the sampling. Moreover,

the problem can be solved in two ways basically. One may adopt an interpolation strategy,

1.1. MOTIVATION 5

(a) (b) (c)

Figure 1.2: Illustrative example of the surface reconstruction problem being ill-posed. For easiness

of depiction, the example is a curve reconstruction, the equivalent problem in 2D. Note how, given

the set of points shown in black, one may define several curves passing on or near the points that

might have generated this sampling.

which can be seen as a connect-the-dots game. That is, the neighborhood relationships

in 3D have to be found in order to build triplets of points forming the triangles of the

surface. This approach works well when the data is not corrupted by noise, that is, the

points are considered to be measures taken exactly on the surface of the object. In the

case of noisy input, the points might be seen as a notion of where the surface should be,

but knowing that the points may not be exactly on the surface. The problem is then to

get a triangle mesh that approximates the shape of the object from the points, without

these points forming part of the final set of vertices on the mesh.

As a matter of fact, most present-day scanning devices (being optical or not) provide

the scanned object in the form of a point cloud. These scanning technologies may include,

among others, range scans, widely used in land robotics, or (multibeam) sonar systems,

used underwater. However, the point set representation has two main drawbacks. On

the one hand, it is difficult to interpret and visualize. When these points are shown on

screen, it is almost impossible to tell which points are on the front, and which are at the

back (see Figure 1.3), in other words, since the points are infinitesimally small, from any

given viewpoint we cannot tell which part of the object should be visible and which should

be occluded. On the other hand, working with points alone makes further computations

complex to apply to the point set directly. Many processing techniques rely on knowing

the relationships between those points. Simply stated, we are not able to tell the area of

the surveyed object from the points alone. Even if some approximations may be used to

work directly on point set data, the computations are far simpler when the continuous

surface of the object is known.

Thus, given its wide application, and the lack of solutions in the literature regarding

robust methods handling this issue, in this thesis we focus on proposing methods to solve

the surface reconstruction problem.

6 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.3: The visibility problem on point sets. Given a set of 3D points projected on a screen

(a), one is not able to distinguish at a first sight, which of the points are on the front part and

which at the back, precluding like this the interpretation of the 3D shape of the object. On the

other hand, if we have a representation of the surface as we do in (b), the shape of the object is

clearly distinguishable.

1.2 Objectives

The goal of this thesis is to develop methods to solve the surface reconstruction prob-

lem to help in filling the existing gap in present-day 3D optical mapping techniques. More

specifically, given a possibly noisy set of points sampled at the surface of an object, we

aim at recovering its shape as a surface mesh of triangles. This representation of the object

allows the development of virtual environments useful for applying remote processing and

calculations of the scene after surveying.

Despite the main focus of this thesis being the exploration of the oceans, the presented

methods are generic enough to work on raw point sets, thus being applicable to a wide

variety of input data. The only requirement is knowing the surface through a set of points

sampled on (or near) the surface of the surveyed object, without any additional information

assumed. This loose requirement allows using data coming from sources other than optical.

We have successfully proven this versatility by applying the methods in datasets ranging

from in-lab object reconstruction to out-door natural and urban scenes.

Furthermore, we focus on developing robust methods that allow the input data to

be corrupted with both noise and outliers. In our precise scenario, noise refers

to the repeatability of the sensor (i.e., how accurate the measures are), while outliers

are erroneous measurements that should be ignored when building the surface. These

phenomenons appear with more or less importance in all real-world datasets, but very few

methods in the state of the art try to deal with both problems simultaneously.

Additionally, the mapping of the seabed gives rise to open surfaces. State-of-the-

1.3. CONTRIBUTIONS 7

art approaches have mainly focused on recovering closed surfaces, as this imposes some

restrictions that eases the reconstruction problem when cast to a volumetric view. In our

case, we recover bounded surfaces by not reconstructing parts of the surface away

from the samples.

1.3 Contributions

The main contributions of the present thesis can be summarized as follows:

• A novel method which meshes the surface by locally building small surfaces to answer

the queries required by a Delaunay refinement-based surface meshing algorithm.

• A two-step method where an intermediate splat representation is created as an ap-

proximation of the shape, which is then meshed to obtain the final surface.

• Two volumetric methods extracting the surface at the interphase of two volumes,

where these volumes are the result of partitioning an unsigned distance function

using graph-based techniques.

When compared to the state of the art, our methods achieve the following improve-

ments:

• Raw input, i.e., just 3D points are required in order to extract the surface, without

any additional information.

• Work on corrupted datasets, dealing with both noise and outliers in the data, by

means of using techniques from the robust statistics literature.

• Recovery of bounded surfaces.

• Coarse-to-fine approach, allowing the user to define the stopping criterion based on

the quality assessment of the final surface in terms of approximation error, size and

shape of its triangles.

We thoroughly develop the contributions of each of the proposed methods in their

corresponding chapters, and summarize them again in Chapter 9.

1.4 Organization of the Document

This thesis is organized as follows:

• Chapter 2: Covers the optical 3D reconstruction pipeline, explaining how the

datasets used in subsequent sections are obtained.

8 CHAPTER 1. INTRODUCTION

• Chapter 3: Describes some geometrical concepts and data structures that help in

understanding the foundations of the methods presented in Chapter 4.

• Chapter 4: Contains a thorough review of the state of the art in surface recon-

struction, allowing the detection of flaws and strengths in present-day approaches

which motivate the creation of the methods presented in Chapters 5, 6 and 7.

• Chapter 5: Presents our first proposal for surface reconstruction working on raw

point sets. Local surfaces are built on demand in order to answer the intersection

query required by a Delaunay refinement surface mesher algorithm. We include a

description of the method and validate its application to different kinds of data.

• Chapter 6: We extend the previous proposal to add an intermediate step con-

sisting of a splat-based representation of the object. At a second step, this splat

representation is meshed by adapting a Delaunay refinement step. As for the previ-

ous approach, this section contains a description of the method, its insights, and its

evaluation with various datasets.

• Chapter 7: The local contributions provided by the splat representation are merged

into a global unsigned distance function. In order to extract the surface from the

volumetric representation, the distance function is signed following two proposals

using minimum cuts in graphs induced from the space partition defining the distance

function. Again, we test the methods on a wide variety of input point sets.

• Chapter 8: We provide a benchmark evaluation that quantitatively puts all the

algorithms presented in the thesis in context with the state of the art. Furthermore,

the comparison in the original article is extended with even more methods.

• Chapter 9: Finally, this document ends with a dissertation on the contributions

and further works that can derive from the present thesis.

Chapter 2

3D Optical Modelling

2.1 Introduction

Recovering the shape of an object from a set of images has been one of the earliest

and fundamental problems in computer vision. This chapter presents an overview of the

3D optical reconstruction process, with special emphasis on feature-based approaches.

The results obtained by these methods normally present the reconstructed model as an

unstructured point set, where each point is a discrete sample of the surface of the object

of interest. This information is used in further steps of the present thesis to recover this

surface. This chapter is thus intended to give an overview of the creation of 3D models from

images as a whole, clearly spotting our work inside the processing pipeline. Additionally,

at the end of this chapter, we also present how 3D modelling has been used in underwater

applications in recent years, and how our contribution can help in developing new ways

for highly detailed seabed exploration.

2.2 Overview

There have been many variate approaches by the computer vision community dealing with

the automatic reconstruction of an object or a scene in 3 dimensions. Nevertheless, we

do not aim to present a review of the state of the art in 3D modelling. On the contrary,

this chapter is tailored to understand the basis of the approach applied to obtain the

datasets used in our experiments. Consequently, we omit many other existing approaches

that are equally valid, but not used on our work. For example, volumetric reconstruction

approaches (voxel coloring [187] and similar approaches [130, 179, 24, 195, 213]) have also

shown to perform well in controlled environments, but they will not be covered here as

they go beyond the scope of this thesis.

Looking at the pipeline as a whole, the reconstruction process can be divided into

9

10 CHAPTER 2. 3D OPTICAL MODELLING

sequential stages, where the output information of one is used as input for the following.

Even though several variants have been proposed in the literature, we pose the modelling

pipeline as follows:

1. Camera calibration: Consists of obtaining the intrinsic parameters ruling the

internal geometry of the camera, i.e., how a point from the world is projected onto

the image plane.

2. Correspondence search: Extracts a subset of points from the images and finds the

correspondences between them over different views. The correspondence between

points is obtained by the detection of features, which are those points having a

relevant variation in their surrounding texture. The description of this texture, is

then used to compare the similarity between features.

3. Structure from motion: In order to recover a 3D object, it is important to re-

cover the position from which each image was taken. The motion of the camera

and the shape of the object are intrinsically related. On monocular camera systems,

the algorithms responsible for getting this kind of information are referred to as

structure-from-motion methods. In addition to the camera’s trajectory, these meth-

ods recover a sparse point set representing the object. These points are relevant

image features which are then matched and tracked through the process.

4. Dense reconstruction: Despite the fact that methods from the previous step

already provide reconstruction of the feature points, this representation does not

sample the object densely enough. For this reason, the dense reconstruction step

tries to increase the number of points describing the object by using a further cor-

respondence search.

5. Surface reconstruction: The points found in the previous step represent samples

taken from the surface of the object to be reconstructed. Despite not being the

only available surface representation, we aim at obtaining a triangle mesh. The

advantages of this representation compared with others will be discussed in Chapter

4.

6. Post-processing: Given the reconstructed surface mesh, this structure can be ma-

nipulated using any of the mesh processing techniques in the literature. Furthermore,

more related to the optical origin of the source data, texture mapping processes are

desirable in order to provide realistic models.

In the following we develop each of the steps in more detail, with the exception of the

2.3. CAMERA CALIBRATION 11

{W}

{C}

{i}

W
p=(x,y,z)

i
p=(u,v)

C
R , TW

C

W

f

u0

v0

Figure 2.1: Depiction of the projection of a 3D point onto a 2D image plane. Regarding the axis

colors: Red/Green/Blue denote the X/Y/Z axis respectively.

surface reconstruction issue, which will be thoroughly detailed in further chapters of this

thesis.

2.3 Camera Calibration

In order to recover the original 3D position of a point, the first requirement is to know

how the projection onto the 2D plane takes place. For the sake of dealing with simple

transformations, the pinhole model is assumed, where the projection onto the image plane

is greatly simplified by assuming that all the light rays pass through the center of the cam-

era and are projected onto the image plane at a distance restricted by the focal length f .

Despite the simplicity of this model, it is the most widely used nowadays [103]. Figure 2.1

shows the projection geometry: given a point W p = (x, y, z) in world coordinates, its 2D

projection onto the image plane ip = (u, v) of the camera located at C is given by the

following expression:

δ

u

v

1

 =i ΠW

x

y

z

1

 , (2.1)

where iΠW is the 3× 4 projection matrix, passing from the {W} coordinate frame to the

image one {i}, and δ is a scaling factor. The projection matrix contains both the extrinsic

12 CHAPTER 2. 3D OPTICAL MODELLING

and intrinsic parameters:

iΠW = K
[
CRW

CTW

]
. (2.2)

On the one hand, the extrinsic parameters refer to the pose of the camera, i.e. rotation

CRW and translation CTW with respect to the world reference frame {W}. On the other

hand, the intrinsic parameters model the transformation K between the camera reference

frame {C} and the projection into the image frame {i}:

K =

f · su f · ss uo

0 f · sv vo

0 0 1

 . (2.3)

The K matrix is the calibration matrix, where f represents the focal length, which is

the orthogonal distance from the center of the camera to the image plane, and (u0, v0)

represent the principal point, which is the point located at the intersection of the focal axis

and the image plane. Additionally, the parameters su and sv represent the relationships

between world units and pixels (pix/mm) along the x and y axis of the image respectively.

Finally, ss describes a skew parameter, only used in cases where the axes of the images

are not fully orthogonal.

Note that the pinhole model is not able to represent fully the distortions induced by

optical systems in real cameras. Figure 2.2 presents the two common distortions that are

present on real optical systems. Obviously, this distortion is non-linear, and has to be

corrected in order to apply the linear geometry posed by the pin-hole model. Given a 3D

point Cp in the camera reference frame, the normalized projection is as follows:

pd =

(
Cx
Cz
Cy
Cz

)
=

(
xd

yd

)
. (2.4)

Using the distortion model of Brown [38], this distorted position of the point in the real

image is related with its undistorted version through radial and tangential terms. In fact,

each of these distortion types theoretically requires an infinite series of correction terms.

On the practical side, most applications work with just the first two terms of the radial

correction, omitting the tangential one. A common model adopted by many authors is to

correct up to the third term for radial distortion and up to the second term for tangential

distortion:

pu =

(
xu

yu

)
=
(
1 + kr1 · r2 + kr2 · r4 + kr3 · r6

)
· pd + dt, (2.5)

where r2 = x2
d + y2

d and dt mark the tangential distortion vector defined as:

2.3. CAMERA CALIBRATION 13

Figure 2.2: Common image distortion types introduced by optics on real-world cameras. On the

left, pincushion distortion, on the right, barrel distortion. Note how the straight edges of a regular

grid in the real world are imaged under both types of distortion.

dt =

(
2 · kt1 · xd · yd + kt2 · (r2 + 2 · x2

d)

kt1(r2 + 2 · y2
d) + 2 · kt2 · xd · yd

)
. (2.6)

Once the radial distortion coefficients kr1, kr2, kr3 and the tangential ones kt1, kt2 are

known, the coordinates of the undistorted point pu finally allow the application of the

linear relations induced by the camera matrix K, so that the image pixel coordinates of

the point can be computed:
u

v

1

 = K ·

xu

yu

1

 . (2.7)

The procedure to obtain the internal parameters is called the calibration of the camera.

This calibration is usually performed using a calibration pattern, from which some points

belonging to a common known plane can be extracted. There are many software tools

available for this task, but the most commonly used is the one presented by Bouguet [35].

By means of a known planar pattern, and some user intervention, the 3D-2D relations

can be established. Then, by means of the Direct Linear Transformation (DLT) [103]

algorithm and a non-linear optimization procedure, the parameters of the camera are

recovered. Given the tedious process of finding the 2D-3D correspondences, in the last few

years there has been an increasing interest towards automatizing the calibration process

as much as possible. These approaches are called self-calibration methods, and some

examples can be found in Zhang [214] and Svoboda et al. [202].

Note that the camera calibration can be included inside the camera trajectory estima-

tion (i.e., the calculations of the extrinsic parameters). The intrinsic parameters are then

computed inside the pose estimation method, by making some assumptions about them.

For example, in Snavely et al. [197] they assume the principal point as being the exact

center of the image, ku = kv = 1 and ks = 0, so that the problem is reduced to finding the

focal length and the distortion parameters (which they compute to the second coefficient).

14 CHAPTER 2. 3D OPTICAL MODELLING

However, in order to alleviate the complexity of the problem, it is strongly advised to com-

pute the intrinsic parameters using a calibration procedure before advancing to further

steps in the reconstruction pipeline.

2.4 Correspondence Search

In the previous section, we have seen how a point can be projected into the image frame.

However, our problem is posed in the reverse configuration: we have a 2D point in the

image and we want to recover the 3D point that generated it. By taking a further look

at Figure 2.1, it is obvious that the problem is not solvable using a single camera, since

any point on the ray joining the center of the camera and the 3D point would project to

the same position in the image. It is thus required to have two or more views of the same

point in order to disambiguate the problem, as presented in Figure 2.3.

Basically, when the positions of the cameras are known, the 3D position of the points

can also be recovered. Otherwise, when no camera pose information is available, the

difference in location of one point when seen from distinct views gives us information

about the motion the cameras have followed. Consequently, it is of great importance to

be able to match the same point reliably over different images. This problem is called the

correspondence search (or matching) problem, and is the base tool to recover both the

trajectory of the camera and the shape of the object.

In this section, we overview the matching process, which can be divided into 3 main

steps: detection, description and matching.

2.4.1 Detection

Trying to find a correspondence for each pixel in the image is, on the one hand, computa-

tionally expensive, and on the other, a very ambiguous problem, since depending on the

characteristics of the texture in the images, some points may look very similar without

being the same. Thus, the detection process aims at getting a subset of salient points in

the image so that they are relevant according to their surrounding texture. In order to

be able to match them correctly across images, they need to be repeatable, so they can

be found again, and discriminative, so they can be correctly identified. From the huge

amount of proposals available, we here give a brief overview of some of the most relevant

feature detector methods, exemplifying their behaviour in Figure 2.4:

• Harris corner detector: Presented by Harris and Stephens [102], this is one of the

most used feature detection methods. It detects corner points with a high gradient

on both X and Y directions through an eigen analysis of the so-called autocorrelation

2.4. CORRESPONDENCE SEARCH 15

{C }1

{i }1

W
p=(x,y,z)

{C }2

{i }2

(u ,v)1 1 (u ,v)2 2

Figure 2.3: Stereo setup: two (or more) views disambiguate the 3D position of the point along

the line-of-sight emanating from the camera’s optical center and passing through the 2D point

projection.

matrix for every pixel in the image.

• SIFT: The Scale-Invariant Feature Transform (SIFT) method presented by Lowe

[147] extracts distinctive regions using an approximation of the Laplacian of Gaus-

sian (LoG) by using the Difference of Gaussians (DoG). The image is convolved

with different Gaussian kernels at increasing scales (the standard deviation of the

Gaussian), and then the convolved images are grouped in octaves. These octaves

correspond to doubling the value of the scale, and finally the DoG is obtained by

subtracting two adjacent convolved images. The whole stack of DoG images form a

scale space, from which keypoints are extracted as local extrema.

• SURF: Stands for Speeded Up Robust Features (SURF), presented by Bay et al.

[20]. This method presents a pipeline similar to the one in SIFT, but decreasing its

computational effort. In this case, the determinant of the Hessian matrix, applied

in a scale space, is used to detect the features. Thus, the idea of a scale space is

also applied, but modified to optimize the computational cost. This optimization

starts by using box filters as an approximation of the second order derivatives of the

Gaussian filter. These box filters, in conjunction with the use of integral images,

provide fast evaluations. On the other hand, the scale space is created by modifying

the size of the filter, thus avoiding the computational burden of scaling the size of

16 CHAPTER 2. 3D OPTICAL MODELLING

(a) Harris (b) SIFT

(c) SURF (d) MSER

Figure 2.4: Examples of feature detection algorithms applied to an underwater image. The methods

tested are those commented on the text: (a) Harris, (b) SIFT, (c) SURF, and (d) MSER. The

number of features has been deliberately reduced to promote illustration clarity.

the images, as required by SIFT.

• MSER: The Maximally Stable Extremal Regions (MSER) is a blob detection al-

gorithm presented by Matas et al. [155]. It extracts regions having higher or lower

intensity values than all their surrounding pixels. This is done using a series of bi-

narizations, where the threshold used is gradually increased. The regions of pixels

that have a low variance over a large range of these thresholds are the ones selected.

2.4.2 Description and Matching

Given two images, and using the methods presented above, we have two sets of relevant

feature points. The matching phase consists of finding correspondences between points in

these two sets. For this purpose, a description for each feature has to be provided. Thus,

2.4. CORRESPONDENCE SEARCH 17

feature points need to be characterized, based on their surrounding texture, in a way that

allows easy recognition in other images.

Again, there are many variants for this task, but the most commonly used work with

template matching techniques or characterize texture using the surrounding gradients.

Template matching consists of using the texture around a point as the information to

describe it. Thus, some statistics like the Sum of Squared Differences (SSD) or the

Normalized Cross-Correlation (NCC) are used on windows of fixed size around the points.

The similarity values of these statistical measures are used in order to rank the goodness

of a given match. These approaches tend to offer only invariance to translation and slight

tolerance to a small rotation (< 5-10◦) if circular patches are considered.

On the other hand, instead of computing the similarity at the intensity level directly,

the gradients of this texture can be used to describe a feature. SIFT and SURF algorithms

use this methodology in similar ways. We now summarize the histograms of gradients

method used by SIFT. Inside its scale space, the descriptor is constructed at the scale

where the feature was detected. The texture surrounding the point is divided into sub-

windows of n× n pixels. In each of these sub-windows, the gradients are computed and a

histogram of magnitudes is constructed by binning the gradients into 8 buckets covering

the 360 degrees, and a dominant orientation is computed from it. The final description

vector is a stack of 4×4 histograms of 8 bins each, composing a total of 128 elements. The

procedure used in SURF uses a similar method, but the gradients are approximated using

responses to Haar wavelets, and the final vector contains 64 elements. This algorithm,

combined with the use of a scale space in SIFT/SURF detection, provides translation,

rotation and scale invariance to the features.

Once a description vector is obtained for each point, their similarity can be computed as

the Euclidean distance between them. However, in order to improve this simple check, the

similarity with the second nearest neighbour can be also taken into account. In this case,

a match is considered as good if the ratio between the distances to the first and second

nearest neighbour is above some threshold, i.e., the first neighbour can be considered

distinctive enough from the second.

Despite the efforts of the methods presented so far, the one-to-one matching process

is still error prone, and many outlier matches (i.e., wrong matches) might be found by

relying only on similarity measures. In order to improve the results, we have two options

depending on the available data. On the one hand, when known extrinsic parameters

are available (e.g., when using a stereo rig, or additional motion sensors in monocular

sequences), they can be used to further restrict the search for correspondences. On the

other hand, when no information about the motion between images is available, the a-

priori assumption of the scene being rigid can be exploited to alleviate the number of false

18 CHAPTER 2. 3D OPTICAL MODELLING

matchings.

2.4.2.1 Epipolar Constraints

When the extrinsic parameters of the camera are known, the geometry between cameras

directly poses a set of restrictions that might be used to consequently discard some of the

point associations found in the matching step. These restrictions are driven by epipolar

geometry.

When a scene is seen from two different viewpoints, there are a series of relationships

and restrictions between the 3D points and their 2D projections. These restrictions in

the stereo case are called epipolar constraints. By using them, the search space at the

time of matching is greatly reduced. These relations are easily interpretable by looking at

Figure 2.5. The basis of epipolar geometry is the observation that any 3D point W p and

its 2 projections on 2 images p1 and p2 are coplanar. Furthermore, this plane (named ∆

in Figure 2.5) also contains the optical centers of the cameras c1 and c2. Suppose we have

detected the point p1 in the first image and we want to obtain its correspondence in the

second one. Given the known extrinsic parameters, we know c1 and c2, which along with

p1 generate the plane ∆. Thus, it is obvious that the correspondence for p1 in image 2 can

only be found along the line generated by the intersection between ∆ and the image plane.

It is worth noticing that points e1 and e2, which are the so called epipoles, also represent

the projection of the center of an image into the other (e1 is the projection of c2 into the

first image and viceversa). Restricting the correspondence search along the epipolar line

reduces the search space from bidimensional (the match could be anywhere on the image)

to one dimension (the match is along the line). Of course, given the uncertainty of the

calibrated extrinsic parameters, this search space might have to be constrained to a few

pixels above or below the line.

In fact, all these relations can be encapsulated in a 3× 3 matrix, called the Essential

matrix in case of known intrinsics, or the Fundamental matrix otherwise. In the calibrated

case, i.e., when the coordinates of p1 and p2 are described with respect to the camera

frames, one can represent the coplanarity relationship between the camera centers and the

matches p1 and p2 in this matrix form:

p1(t×R · p2) = 0. (2.8)

The Essential matrix E then contains the cross product between rotation and trans-

lation in its matrix representation, using a skew symmetric matrix for the translation

2.4. CORRESPONDENCE SEARCH 19

c1

{i }1

c2

{i }2p1
p2

e1 e2

Δ

W
p

Figure 2.5: Epipolar geometry. The plane joining the 3D point W p with c1 (resp. p1) and c2

(resp. p2) defines the epipolar constraints. Basically, the match for p1 can only be found along the

epipolar line (pink segment in the image) in image 2 and viceversa.

part:

E =

0 −tz ty

tz 0 −tx
−ty tx 0

 ·R. (2.9)

In the case of unknown intrinsics, the Essential matrix has to contain also the camera

parameters, which gives rise to the Fundamental matrix:

F = K−T2 · E ·K−1
1 . (2.10)

Obviously, if the geometry is known, the E/F matrixes help in restricting the search

space. However, in the case of unknown extrinsics, the E/F matrices can be used as the

unknowns of our problem, as the 9 parameters forming them (8 when forcing F/E(3, 3) =

1) encapsulate all the geometry between frames.

2.4.2.2 Robust Matching

When no information other than the images is given, the knowledge of the observed scene

being static is the only cue to exploit in order to alleviate false matchings (see Figure 2.6).

Since the scene does not move, all the matches are restricted to following the same motion.

In order to force this restriction, a motion model is assumed, and robust statistical

methods such as Least Median of Squares (LMedS) [177] or RANdom SAmple Consen-

20 CHAPTER 2. 3D OPTICAL MODELLING

sus (RANSAC) [79] are used in order to ensure that all the selected matches follow the

same motion. In fact, LMedS and RANSAC aim at obtaining a set of correspondences

which is free of outliers according to the selected model. This model encodes the motion

information. In this way, the matching and motion estimation processes are linked.

Both LMedS and RANSAC methods rely on stochastic sampling. At each iteration, a

model is constructed using the minimum number of points possible. This model can be, for

example, a homography or an essential/fundamental matrix. Then, from this candidate

model, a measure of goodness is extracted. In the case of LMedS, the validity of the

model is computed as the median of the residuals from all the matchings to this model.

However, in the case of RANSAC, a number of votes is given to the points falling closer

than a given distance from the model, in a way that models close to the ideal obtain more

votes. Many candidates are selected iteratively, and after several steps the one obtaining

the best consensus is retained as the final model.

In the end, both epipolar geometry and robust matching aim at obtaining matches

between image pairs. In the next section, we overview how to gather the pairwise infor-

mation together in order to obtain the final reconstruction of the shape of the object as a

point cloud.

2.5 Structure from Motion

In calibrated environments, where both intrinsic and extrinsic parameters of the cameras

used to capture the scene are known, the problem of computing the structure of the

object is reduced to using lines-of-sight. Lines-of-sight are the rays that emanate from

each camera center and pass through the image points. The 3D position of the point can

be obtained by the process of triangulation, consisting of finding the intersection between

the lines-of-sight generated from the projection of the same point in different views. As

shown in Figure 2.7, due to errors in the camera’s positioning, the lines-of-sight are not

likely to intersect exactly. For this reason, the final intersection point is evaluated as the

solution to the linear system of equations defined by the following restrictions:

p1 ×Π1 · W p = 0

p2 ×Π2 · W p = 0

...

pn ×Πn · W p = 0,

(2.11)

2.5. STRUCTURE FROM MOTION 21

(a) Initial Matches

(b) Accepted Matches

(c) Rejected Matches

(d) Motion

Figure 2.6: Matching steps: (a) shows the result after the nearest neighbor search. Using

RANSAC, and the fundamental matrix as the motion model, the accepted matches following

the same motion are shown in (b), while the rejected ones are presented in (c). Finally, (d)

shows the disparity of these features, i.e., the difference in position from one image to the other

(green=accepted/red=rejected).

22 CHAPTER 2. 3D OPTICAL MODELLING

c1 c2

p1
p2

W
p

Figure 2.7: Stereo triangulation procedure. In this case, since the two lines-of-sight do not intersect,

the final reconstructed point W p is computed as the midpoint of the smallest segment joining the

rays (i.e., the one orthogonal to both).

where Πx is the projection matrix of view x, and px the projection of W p in the camera x.

Consequently, this leads to each view generating three equations constraining the system:

u(πT3 · W p)− (πT1 · W p) = 0

v(πT3 · W p)− (πT2 · W p) = 0

u(πT2 · W p)− v(πT1 · W p) = 0,

(2.12)

where πj denotes the row j of matrix Π, and recall that a 2D point p = (u, v).

However, we often deal with a more open problem, where camera positions are un-

known, and have to be estimated together with the structure. It has been pointed out in

the last section that the motion and the shape of the object are intrinsically related, and

the Structure-from-Motion (SFM) problem tries to find both unknowns at the same time.

The main advantages of SFM approaches is that they allow the use of a single camera,

thus providing a flexible and accessible image acquisition system.

Starting from the corresponding points between images, these methods extract the

camera’s movement as well as a 3D reconstruction of those same points. In order to

compute the motion the points describe, robust estimation methods like the ones presented

in 2.4.2.2 are used. Once the motion is obtained, the 3D positions of the points are

computed by triangulation. Note however, that having no other clue than image matches

makes the results to be up to an unknown scale factor. This scale ambiguity, which is

depicted in Figure 2.8, can be resolved to a posteriori by the use of additional information,

such as knowing the size of any object in the scene.

2.5. STRUCTURE FROM MOTION 23

{C1}

p1

{C'1}

p'1 p'2

p2

{C'2}

{C2}

R ,T' '

R,T

W
p

Figure 2.8: Scale ambiguity in SFM approaches. The same 3D point can be generated indistinctly

by either C1-C2 or C ′
1-C ′

2, where the two stereo systems differ by a scale factor.

The relative pair-wise motion between frames has to be accumulated in order to get

the global motion of each camera with respect to the same reference frame. Obviously,

the error accumulates quickly when adding the relative estimations. This is normally

alleviated by the use of a Bundle Adjustment (BA) method, like that described in Lourakis

and Argyros [146], which minimizes the global reprojection error.

Early approaches were based on applying the Fundamental matrix F (Beardsley et al.

[21]) or the trifocal tensor (Fitzgibbon and Zisserman [80]) to compute relative motion

between frames. Even in conjunction with BA, these methods suffer the problem of the F

matrix being ill-conditioned to small motions, promoting a poor motion estimation in these

cases (see Hartley and Zisserman [103]). A more general view is to recover the camera’s

pose directly by associating 3D points to its 2D projections in new images. Having this

3D-2D relationship, the DLT [103] is used as the model for a robust estimation method

to compute the camera pose. Some examples of these techniques can be found in Brown

and Lowe [39], Snavely et al. [197] and Nicosevici et al. [162].

It is worth noticing that the method we use to create the datasets presented in this

thesis is a modification of the method in Nicosevici et al. [162]. In the original method, a

sequential approach was presented. In our case, the sequential nature has been modified to

follow the unordered approach, that is, we do not assume the images to come in a sequence,

in this way making the method more generic. The pipeline followed in the method, closer

now to the one shown by Snavely et al. [197], can be seen in Figure 2.9.

24 CHAPTER 2. 3D OPTICAL MODELLING

Figure 2.9: Pipeline followed by the incremental Structure-from-Motion approach used in this

thesis.

2.6 Dense Reconstruction

Dense reconstruction methods aim at finding the correspondence between points, as done

in a previous step, but trying to maximize the number of matches. This is done by

relaxing the distinctiveness requirement. In the previous correspondence search, we aimed

at finding strong points that could be correctly matched across images, since they would

be used to recover the motion parameters between frames, and their correctness would

guide the accuracy of further steps. On the contrary, at this point we already have the

cameras positioned, and we want to recover as many points as possible representing the

object. Thus, not just feature points have to be recovered, but all the points/pixels in

the image need to be candidates for matching. When reconstructing the surface, the main

aim of this thesis, we need a consistent amount of points describing it, as having more

samples of the object helps in disambiguating this ill-posed problem.

Several techniques have been proposed in this field, and relevant reviews and evalua-

tions have been presented by Seitz et al. in [188] and Strecha et al. in [201]. However, there

are two types of approaches that have proven valid in various scenarios, thus becoming

popular with the research community.

The first, shown schematically in Figure 2.10, builds a depth map for each image using

two or more images to validate the matches. Once the depth map is constructed for each

image, and given the known poses of the cameras, these are registered into a common

reference frame to provide a global representation of the object as a dense point set.

Obviously, this intensive matching approach is very likely to generate a huge number

2.6. DENSE RECONSTRUCTION 25

of outlier points, given that wrong or poor matches translate into wrong 3D locations that

corrupt the final point set. Redundancy between different depth maps helps in eliminating

some of these wrong points, but not all of them. Furthermore, some regularization steps

may be used at image level to enforce coherence between neighboring matches (e.g., if the

scene is supposed to be smooth, abrupt transitions between neighboring matches should

be penalized). Despite the defects in the resulting point sets, these methods recover lots

of 3D points, resulting in a dense sampling rate.

A popular approach in this direction is the plane sweeping method. Given a fixed

reference view, and a set of compatible views, a set of candidate depths are tested for

similarity. Thus, for each pixel in the image, there is a set of candidate 3D points (and

consequently matches) that are scored by the similarity measure. The problem is then

to select the best one. Naive strategies pick the best one as that obtaining a better sim-

ilarity score, while others also include some regularity constraints and cast the problem

as an energy minimization. Given each pixel being tested for correspondences in a fine-

grained range of depth values, the method is mostly a brute-force approach. Nevertheless,

its popularity has grown over the past few years for its ease of implementation with pro-

grammable graphics hardware. Proposals like Yang and Pollefeys [209] allow the execution

of the many comparisons required to be performed in parallel with a common Graphics

Processing Unit (GPU).

The other principal methodology consists of incrementally building the 3D point set

using a greedy process. This type of methods starts with a set of seed points, and iteratively

generates new points in the vicinity of the existing ones. In this case, the points are seen as

small patches in 3D with a given orientation. The position and orientation of these patches

is computed by optimizing their photoconsistency across images. In this way, the object

grows incrementally, by making local decisions on which parts to generate next. This is

opposed to the behaviour of processes based on depth maps, since the spatial coherence

between them is not taken into account. This causes some parts to be overrepresented, as

many depth maps may contribute to the same area. Also, because of this lack of coherence

checks between depth maps, the resulting point sets provided by greedy methods tend to

be smoother representations of the object. However, it is also worth noting that the

number of points reconstructed is smaller in the greedy case. Two good examples of this

category are Habbecke and Kobbelt [100] and Furukawa and Ponce [84], the last one being

very popular because of its available open source implementation. A representation of the

procedure followed in Furukawa and Ponce [84] can be found in Figure 2.11.

It is worth noting that this is the starting point of the present thesis. The lack of

continuity in the most likely corrupted dense point set retrieved by the techniques pre-

sented above burdens further computations and proper visualization performed using this

26 CHAPTER 2. 3D OPTICAL MODELLING

Figure 2.10: Depth map construction. Several candidate depths (blue rectangles) are tested, while

each possible patch (red square) is given a similarity score based on its projection onto neighboring

images.

(a) Initialization (b) Optimization (c) Expansion

Figure 2.11: Greedy dense reconstruction process. At first (a), the initialization starts by tri-

angulating the feature points. Then (b), a 3D patch position and orientation is optimized for

photoconsistency across images. Finally (c), new patches are generated near the initial point on

the tangent plane defined by the patch. New points/patches are optimized again and steps (b)

and (c) are repeated iteratively, in this way, growing the points which form the reconstruction.

2.7. POST-PROCESSING 27

data. Thus, we aim at obtaining a smooth continuous surface representation in the form

of a triangle mesh. This mesh fills the gap in the optical object modelling pipeline, as it

provides a virtual model suitable for processing using some of the mesh-based techniques

available in the computer graphics or computational geometry literature. While being

beyond the scope of this thesis, we present some of these methods in the next section for

completeness.

2.7 Post-processing

Due to the ability of GPUs to render triangle primitives, this representation has been the

most used to describe 3D objects since the beginning of computer graphics. After the

recovery of the surface in the form of a mesh of triangles, one can benefit from the vast

amount of available literature in mesh processing (see [34] for a broad overview of these

techniques). Some of the processing that can be applied include:

• Simplification: Changes the complexity of the mesh. Real-time visualization of com-

plex meshes often require the object to be represented at a resolution proportional

to the position of the viewer: objects farther away from the viewer need fewer tri-

angles to be perceived than closer objects. Multi-resolution structures can be built

using simplification techniques in order to be able to dynamically change resolution

depending on the needs.

• (Re)Meshing: Changes the quality/shape of triangles. Some computations, like

the Finite Element Method (FEM), require the shape of the triangles to be close

to regular, or adaptive to the complexity or curvature of the object. Meshing (or

Remeshing) methods allow tuning the quality of the triangulation according to some

user-defined parametrization on the shape of the triangles.

• Smoothing: Alleviates the roughness of the surface. Smoothing techniques can be

applied to achieve a more visually pleasant representation of the object in areas of

small high-frequency changes produced by errors in either the registering, measure-

ment or reconstruction processes.

However, given the photogrammetric origin of the models generated, and in order to

provide more realism to the models, the texture mapping approach is a post processing

of great interest for modelling applications. In fact, given the known 3D positions of the

cameras, the texture mapping process is quite straightforward: as shown in Figure 2.12,

each triangle is projected in one of its compatible views, and its texture is extracted from

there. The problem resides in selecting the most appropriate image to extract the texture

28 CHAPTER 2. 3D OPTICAL MODELLING

Figure 2.12: Texture mapping process, the texture filling a triangle in the 3D model is extracted

from the original images.

from. This is done using heuristics that depend on the distance, since closer views of the

object contain more texture information, and the orthogonality between the direction of

the view and the normal of the triangle, since more orthogonal views provide a texture

less influenced by projective deformations. However, blending methods might be needed

to alleviate the differences in illumination on parts of the texture obtained from different

images, as well as to alleviate possible camera registration errors. Some relevant methods

in the literature are presented by Lempitsky and Ivanov [136] and Gal et al. [85].

2.8 Underwater 3D Modelling

In this chapter we reviewed a common 3D modelling pipeline. However, keep in mind that

the present thesis is concerned with the problem of 3D underwater mapping. It is thus also

important to know how the problem of 3D mapping has been tackled in the latter years

in this hostile environment. In this section we review the methodology used nowadays in

marine mapping, with a wider view that does not just include optical sensors, but other

common techniques as well.

As pointed out in Chapter 1, underwater mapping relies primarily on assuming an

underlying planar structure, common throughout the survey, where a 2.5D representation

of the shape can be built. The problem of large area mapping is often tackled by using

downward-looking cameras/sensors, since their overview capabilities provide an overall

notion of the shape of the scene. The use of this approximation has motivated the wide

spread use of scanning sensors located on the bottom of underwater vehicles, with their

optical axis orthogonal to the seafloor.

There is a great deal of literature on the different uses of this scanning configuration for

2.8. UNDERWATER 3D MODELLING 29

sonar mapping, and automatic methods to build these maps out of raw sonar readings has

been a hot research topic in recent years [174, 17]. The application of these techniques has

proven to provide key benefits for other research areas such as archeology [25] or geology

[210], to name a couple. Given the depth readings, retrieving a surface representation is

straightforward. By defining a common plane, all the measures can be projected in 2D.

Then, an irregular triangulation like Delaunay or a gridding technique can be applied to

the projections on the plane and the 3rd coordinate is used to lift the surface in a 2.5D

representation. These mappings can be enhanced by using photomosaics for texture, thus

producing a multimodal representation of the area [114, 42].

On the other hand, although not that extensive, cameras are also used for heightmap

reconstruction. Regarding full 3D reconstruction, the methods in the literature are more

concerned with recovering the point set, obviating the surface reconstruction part. Thus,

the focus is normally put on the registration of multiple camera positions, using ei-

ther structure-from-motion systems [162, 40] or Simultaneous Localization and Map-

ping (SLAM) approaches [115] as well as monocular or stereo cameras [148]. The pro-

cessing pipeline of these methods closely follows the one presented in the previous sections

of this chapter. However, the application of these methods in the underwater domain

has to face the added complexity of dealing with noisy images, in the sense of the previ-

ously commented aberrations introduced by the rapid attenuation of light on the water

medium, the non-uniform lighting on the image, and forward/backward scattering. This

translates in the methods requiring further preprocessing of the images to alleviate these

issues, and having to deal with larger errors in the reconstructions than their less noisier

on-land counterparts. Furthermore, as previously stated, the common configuration of

downward-looking cameras makes methods tend to represent the shape underlying these

points as a heightmap in a common reference plane, which may be easily extracted using

PCA [194, 162].

There are very few proposals on underwater mapping using some of the existing surface

reconstruction techniques. In Johnson-Roberson et al. [115], the authors do use a volu-

metric method from Curless and Levoy [60], originally devised to full 3D reconstruction.

Nevertheless, the camera is still observing the scene in a downward-looking configura-

tion, and the added value of applying this method in front of a 2.5D approximation is

not discussed. Nonetheless, they establish an approach to parallelize the reconstruction

using this method on small chunks of data at a time and then merging the results. An-

other proposal, this time using a forward-looking camera and working on a more complex

structure, is that presented in Garcia et al. [87], where an underwater hydrothermal vent

is reconstructed using dense 3D point cloud retrieval techniques and the Poisson surface

reconstruction method [118].

30 CHAPTER 2. 3D OPTICAL MODELLING

The review of the state of the art on underwater 3D modelling has revealed that most

of the proposals retrieve the surface in a 2.5D representation. Furthermore, given the

straightforwardness of changing from depth readings to this representation, the creation

of a triangulated elevation map is usually considered a side result. However, in this

thesis we go for a more general scenario, where the sensor can be mounted in a general

configuration; that is, located anywhere on the robot and with any orientation. With this

new configuration, objects can be observed from new viewpoints, so that the retrieved

ranges are no longer suitable for projection onto a plane (and hence, a 2.5D map cannot

be built). Viewing the object from arbitrary positions allows a better understanding of

the global shape of the object since its features can be observed from angles that are more

suitable to their exploration. Take as example the trajectory in Figure 2.13, corresponding

to a survey of an underwater hydrothermal vent (further results with this dataset are

illustrated in Section 5.5). It is impossible to recover the intricate structure of this area

with just a downward-looking camera. In this case, the camera was located on the front of

the robot looking approximately at a 45o angle. This configuration allowed the recovery of

the many concavities this object contains. The difference in resolution and complexity of

this same area when mapped using multibeam sonar technologies in a 2.5D representation

are evident.

In comparison with current approaches for 3D mapping, we aim to deal directly with

the problem of surface reconstruction by giving it the relevance it deserves. The contri-

bution of the present thesis is to be able to represent complex 3D structures that are not

representable using heightmap representations, while also providing noise correction and

outlier removal.

2.8. UNDERWATER 3D MODELLING 31

(a)

(b)

Figure 2.13: (a) Example of a more general trajectory, with a frame representing each camera

(Red/Green/Blue corresponding to the X/Y/Z axis). This is the trajectory used for mapping the

Tour Eiffel hydrothermal chimney at a depth of about 1700 meters in the Mid-Atlantic ridge. In

this case, the camera was pointing towards the object in a forward-looking configuration. The

shape of the object shown was recovered using our approach presented in Chapter 5. Note the

difference in the level of detail when compared with a 2.5D representation of the same area obtained

using a multibeam sonar in (b). The trajectory followed in (b) was downward-looking, hovering

over the object. The trajectory in (b), shown in blue, corresponds to the survey in (a).

32 CHAPTER 2. 3D OPTICAL MODELLING

Chapter 3

Related Concepts

3.1 Introduction

In this chapter, we present some useful concepts required to understand the basis of the

surface reconstruction methods that will be presented in the literature review in Chapter 4,

as well as our further proposals in Chapters 5, 6 and 7.

We start by giving the definition of a surface, as well as reviewing some of its main

types of representations and their properties. Then, we briefly introduce some common

algorithms and data structures in computational geometry, as these are extensively used

in the literature. Finally, we focus on the specific problem of surface meshing. Given

the problem at hand, and when not stated otherwise, we assume to be working on R3

throughout this chapter, despite that many of the following definitions may be generalized

to higher/lower dimensions.

3.2 Surfaces

Before dealing with the surface reconstruction problem, it is important to start by de-

scribing what a surface is. Surfaces (as well as curves) are a type of topological spaces

called manifolds. More precisely, a topological space consists of a point set P associated

with a series of neighborhood relationships. These neighborhoods are defined as a set of

open subsets T that satisfy the following conditions:

• The empty set ∅ is contained in T .

• P is in T .

• The union of an arbitrary number of sets is also in T .

• The intersection of a finite number of sets is also in T .

33

34 CHAPTER 3. RELATED CONCEPTS

Regarding the definition of a manifold, another important concept to define is that of

homeomorphism. A homeomorphism is a map h : X → Y from space X to space Y which

is bijective and has a continuous inverse. This map defines an equivalence relationship

between two topological spaces. Broadly speaking, and taking the specific example of

two surfaces, they are homeomorphic if one can be transformed to the other by twisting,

squeezing, or stretching without cutting or attaching.

Given the concepts of topological space and homeomorphism, we can now define a

k-manifold as a topological space that is locally homeomorphic to the Euclidean Rk. More

precisely, surfaces are 2-manifolds, where around each point its neighborhood is homeo-

morphic to the open 2-ball, i.e., an open disk. Since any open k-ball is homeomorphic to

Rk, this implies that, on a small scale around a point in the manifold, the neighborhood

relations resemble that of R2 (i.e., the plane).

In this section, we further detail the most commonly used representations to describe

a surface, and a possible classification of surfaces based on some properties.

3.2.1 Surface Representation

There are mainly two types of representations for a surface: explicit and implicit. On

the one hand, the explicit formulation, also called parametric, consists of defining the

3D surface as a function depending on 2D parameters. On the other hand, the implicit

formulation defines the surface as an isovalue inside a scalar field. These formulations are

explained in detail below.

3.2.1.1 Implicit

The volumetric view of the implicit formulation casts the surface as a level set inside a

scalar valued function I : R3 → R, so that S = {px ∈ R3|I(px) = k}, where k is the

iso-level defining the surface. Without loss of generality, and following the majority of

approaches, the zero level set k = 0 is considered to describe the surface.

Some examples of implicit definitions include radial basis functions [43], algebraic

surfaces, multilevel partition of unity [165], or some moving least squares surfaces [5].

These representations usually come in the form of distance functions, i.e., a point px ∈ R3,

I(px) = dist(px, S). However, in some cases, cruder representations like an inside/outside

labelling may be sufficient to represent a closed surface. In this latter case, the function

is called the indicator function χ of the surface, which, when given a point, the function

is 0 if the point is located outside the object O, and 1 if located inside, i.e.:

χ(px) =

{
1 if px ∈ O
0 if px /∈ O.

(3.1)

3.2. SURFACES 35

(a) Implicit function (b) Indicator function

Figure 3.1: Implicit/Indicator functions in 2D. The value for each point in the implicit function

in (a) corresponds to the distance from a given point to the curve defining the object, while the

indicator function in (b) provides an inside/outside labelling for each point with respect to the

shape.

Obviously, in the case of indicator functions, the surface S is found at the interphase

between 0 and 1 labels. A 2D example of both methodologies can be seen in Figure 3.1.

In order to apply easy computations to implicit representations, the continuous implicit

function is discretized in some bounding box around the object. Arbitrary evaluations of

the functions inside the discretized domain are then obtained through interpolation.

A simple and common approach is to divide the embedding space into a regular voxel

grid. This basic subdivision of the embedding space provides the advantage of being very

easy to manipulate. However, the memory consumption costs increase dramatically with

the accuracy, as it is directly related to the size of the voxels (e.g., halving the size of a

voxel, and consequently doubling precision, increases the grid size cubically).

In order to alleviate memory issues, some adaptive data structures have been pro-

posed in the latter years. These data structures consist of faithfully representing the

implicit function at the interest areas (i.e., near the surface), and representing naively

non-interesting parts (i.e., far from the surface). Hierarchical octrees [207] or tetrahedral

meshes [8] are examples of these representations.

Implicit surfaces are well suited to inside/outside geometric queries, useful in Construc-

tive Solid Geometry (CSG). Furthermore, the evolution of the surface is easily tracked

using an implicit formulation. However, it is difficult to sample the surface exactly using

this representation, as is moving a point onto the surface.

As previously stated, even in the case of the surface being implicitly defined, our goal

is to extract its explicit form as a triangle mesh. In Section 3.4, we discuss the common

methodology for conversion between these two representations.

36 CHAPTER 3. RELATED CONCEPTS

3.2.1.2 Explicit

An explicit surface consists of a function f : Σ → S mapping the Σ ∈ R2 parameter

domain to the surface S = f(Σ) ∈ R3. Simple shapes have an explicit formulation that

is defined over a range of parameter values. For example, a sphere may be defined using

spherical coordinates as follows:

x = r cos θ sinφ

y = r sin θ sinφ

z = r cosφ

, (3.2)

where r is the radius of the sphere, and the parameters θ and φ range from 0 to 2π and

from 0 to π, respectively. However, a simple parametric formulation like the one above may

be nonexistent to represent more complex surfaces accurately enough. For this reason, a

more general way to represent surfaces is to define them in piecewise parametric form. A

piecewise parametric representation divides the surface into small parametric parts, called

surface patches, which define the global surface when joined together. Obviously, the size

and number of surface patches defining the surface rule its accuracy (see Figure 3.2).

The most common piecewise parametric surface representations are triangle meshes.

A triangle mesh can be represented as a graph structure, having a set of vertices V =

v1, ..., vn, with associated points p(vi) defining its 3D position. Besides, neighborhood

relationships between vertices are defined by a set of faces connecting them F = f1, ..., fn

(fi ∈ V × V × V) and/or a set of edges E = e1, ..., en, ei ∈ V × V . On top of that, 2D

positions can also be associated to each of the vertices in the mesh, so that the R2 → R3

parametrization can be directly defined using the barycentric coordinates of each triangle.

Barycentric coordinates define a linear 2D patch using each triangle t = [pa, pb, pc] via the

following parametric representation:

p = αpa + βpb + γpc, (3.3)

where α+ β + γ = 1 and α, β, γ > 0.

There are many advantages when using this representation. On the one hand, it is

suitable for visualization with common graphics hardware. Furthermore, having a para-

metric (or piecewise parametric) representation allows the reduction of the 3D complexity

of some problems to its 2D counterpart in the parameter domain. For these reasons,

problems such as sampling the surface are easily accomplished, as they only require a

sampling in the space of the parameters. On the other hand, there are also some disad-

vantages in using this representation. An obvious one is that manipulation of this surface

is not trivial, since a change in the shape of the surface also implies the need to update

the parametrization. All the same, the problem of tracking an evolving surface requires

3.2. SURFACES 37

Figure 3.2: Piecewise-explicit representations of a circle, with increasing resolution from left to

right.

tracking and modifying the topology and parametrization of the surface. By comparison

with the properties of the implicit formulation discussed in the previous section, we can

conclude that the advantages and drawbacks of the explicit and implicit representations

are complementary. Thus, the application of one representation or the other is application

dependant.

3.2.1.3 Representation Selection

The aim of this thesis is to develop surface reconstruction methods for seafloor modelling

purposes. Thus, the applications of the results we obtain are mainly visualization (enhaced

by texture mapping), and light manipulation, such as point-picking or area/volume com-

putations. Based on these post-processing purposes, and checking the above mentioned

advantages and drawbacks for each type, in this thesis we require the methods to finally

provide the surface in a piecewise explicit representation. Note that this requirement does

not ban the use of methods working in an implicit formulation, since a surface in this

representation can converted to its explicit form using one of the methods in Section 3.4.

Following the vast majority of the literature, we refer hereafter to the piecewise parametric

representation with triangle surface patches as simply the explicit representation.

Despite this choice, there are other valuable and commonly used representations of

surfaces that we refrain from further commenting on as they fall beyond the scope of

this thesis. Some examples include quadrangle meshes (where the surface patch is a

quadrangle) [33], spline surfaces [77, 172], and subdivision surfaces [219].

3.2.2 Surface Classification

A given surface (or its explicit/implicit representation) can be broadly classified according

to some properties. In our context, the most important are smoothness, manifoldness,

orientability, and the existence of boundaries. Figure 3.3 exemplifies this classification

according to these characteristics. Surface reconstruction algorithms differ in the assump-

tions they make on some of these properties, as well as their behaviour with respect to

38 CHAPTER 3. RELATED CONCEPTS

Figure 3.3: A sample of surfaces classified using the criteria described in section 3.2.2.

them. We detail them more precisely below.

Smoothness A surface S is smooth if it is differentiable everywhere, i.e., it has well

defined derivatives at every point p ∈ S. Roughly speaking, taking an arbitrary point p

from a smooth surface, at a very small scale the function near this point resembles a plane.

In this thesis, we assume the surfaces to reconstruct to be smooth. Other important types

of surfaces are the piecewise-smooth ones, consisting of smooth patches joined together

through sharp curves or corners.

Manifoldness Recalling the definition of a surface in Section 3.2, a 2-manifold surface is

that having its neighborhood relations homeomorphic to a topological disk. The problem

of non-manifoldness is related to the problems during the generation of the representation

of this surface. Triangle meshes may contain some degeneracies that prevent the mesh

from being manifold. For an explicit surface to be manifold, it requires having every

vertex surrounded by a fan of faces, and also that any given edge has at most two incident

faces. In cases where these requirements are not fulfilled, the mesh is non-manifold. Very

few methods in the mesh processing literature allow for a non-manifold input, promoting

the use of mesh repairing techniques [141, 163, 26].

Orientability The orientation of a face is a cyclic order of its vertices. Two adjacent

faces are compatible when the vertices of their common edge are in opposite order. A

manifold mesh is orientable if any two adjacent faces have compatible orientation. Some

surfaces, like the Klein bottle or the Möbius strip, are unorientable, i.e., a consistent

orientation cannot be devised.

Boundaries There exist boundaries in a manifold mesh when edges have just one in-

cident face. It is often assumed in many papers to work with manifold surfaces without

boundaries, also referred to as closed or watertight. However, as pointed out in previous

chapters, we do not make this assumption.

3.3. COMPUTATIONAL GEOMETRY 39

3.3 Computational Geometry

The computational geometry research field has played an important role in the area of

surface reconstruction. More specifically, the Delaunay and Voronoi structures are the

base of many approaches in the state of the art, as well as the methods proposed in this

thesis. The base space decomposition proposed by Delaunay or Voronoi, along with their

many properties, allow the definition of surface reconstruction methods with theoretical

guaranties, as will be seen in Chapter 4. In the context of this thesis, the Delaunay trian-

gulation is the base of the surface mesher method that will be presented in Section 3.4.2,

which is used in the methods proposed in Chapters 5, 6 and 7. Furthermore, we also use

the Delaunay triangulation to store irregular implicit functions in Chapter 7. In order to

fully understand the insights of these types of approaches, we present in the following,

some useful definitions from the field.

Throughout this section, we assume a general position on the point sets. This assump-

tion is often taken in the computation of many geometrical structures in computational

geometry (such as the Delaunay triangulation or the Voronoi diagram). A set of points

in R3 is in a general position if there are no degeneracies such as having three collinear

points, four points in a common circle/hyperplane or five points on a common sphere.

Even in the case of P not being in general position, algorithms can also apply the Simu-

lation of Simplicity (SoS) method [73] in order to eliminate the special cases rising from

degeneracies. These techniques are used in order to avoid dealing with special cases when

defining the algorithms.

3.3.1 Simplicial Complex

When talking about triangulations, one often refers to the usual case, where a surface or

a plane is subdivided into a set of triangles. However, the triangulation concept can be

generalized to an arbitrary number of dimensions, and adopt further configurations.

A k-simplex is the generalization of a triangle for a dimension k. It is defined as

the convex hull spanned by k + 1 vertices. Thus, as illustrated in Figure 3.4, in an R3

space, one can find 0-simplices (vertices), 1-simplices (edges), 2-simplices (triangles) and

3-simplices (tetrahedra). At the same time, a k-simplex is formed by faces of dimension

d < k. The boundary of a k-simplex has k + 1 0-faces, k(k + 1)/2 1-faces and
(
k+1
d+1

)
d-

faces in general. If we take as example the 2-simplex (a triangle), it contains three 1-faces

(edges) and three 0-faces (vertices).

Given the definition of simplices, simplicial complexes are used to generalize tri-

angulations to arbitrary dimensions. A simplicial complex K is a finite set of simplices,

so that all the faces forming its simplices are in K and the intersection of any two sim-

40 CHAPTER 3. RELATED CONCEPTS

k=0 k=1 k=2 k=3

Figure 3.4: Examples of a k-simplex for k ranging from 0 to 3.

(a) (b)

Figure 3.5: A simplicial complex is depicted in (a). Note that (b) is not a simplicial complex, as

some of its simplices intersect without sharing a face.

plices is already a face of one of them. This definition raises complexities like the one in

Figure 3.5(a), but forbids configurations like the one on Figure 3.5(b). Furthermore, the

dimension of K is defined by the maximum of the dimensions of the simplices conforming

it.

While more restrictive, notice that the previously defined explicit surfaces representa-

tion also describes simplicial complexes.

3.3.2 Convex Hull

The convex hull CH(P) of a set of points P is the intersection of all the convex sets

containing P . Linking with the previous definition of simplicial complexes, it can also be

referred to as the union of all the possible simplices that can be generated by P . Also, in

an informal way of speaking, the CH(P) can be seen as the shape the set of point forms

when covered by an elastic material, like a rubber band.

3.3.3 Delaunay Triangulation

Given a set of points P , the Delaunay triangulation Del(P) is a simplicial complex that

breaks down the convex hull of P into tetrahedrons, so that no point in P is inside the

3.3. COMPUTATIONAL GEOMETRY 41

circumsphere of any tetrahedra in Del(P). Introduced by Boris Delaunay in [61], one of the

main advantages of this triangulation is its maximization of the minimum angles among

all possible triangulations of a given vertex set. In other words, it produces a triangulation

with triangles as close to regular as possible.

3.3.4 Voronoi Diagram

The Voronoi diagram Vor(P) [205] is a decomposition of R3 into a set of convex polyhe-

drons determined by distances between sets of points. Each point p in the set P defines

a Voronoi cell Vpi , which contains all the points in R3 that are closer to pi than to any

other point in P :

Vpi = px ∈ R3 : ∀pj ∈ P ‖px − pi‖ < ‖px − pj‖. (3.4)

3.3.5 Delaunay/Voronoi Duality

A relevant property between the Delaunay triangulation and the Voronoi diagram is that

they are dual. That is, when the intersection between cells Vp1 , Vp2 , ..., Vpn in the Voronoi

diagram is not empty, then CH(p1, p2, ..., pn) is a simplex of the Delaunay triangulation.

Table 3.1 lists these dualities in R3.

3.3.6 Delaunay/Voronoi Related Concepts

In this section, we describe some of the concepts related to the Delaunay triangulation

and the Voronoi diagram that are useful for the analysis of the computational geometry

methods in surface reconstructions.

3.3.6.1 Poles

Given a Voronoi cell Vp, the poles are defined as two specific vertices. On the one hand,

the positive pole q+
p is defined as the vertex of Vp farthest from p. As will be discussed in

Chapter 4, the vector u+
p joining p and q+

p can be used as an approximation of the normal

at p under some conditions. On the other hand, the negative pole q−p is defined as the

point furthest from p, so that the vector u−p joining q−p and p makes an angle with u+
p

higher than π/2.

3.3.6.2 Delaunay Subcomplexes

Using the Delaunay triangulation as a base, one may define a subcomplex by restricting

it to a subset of its simplices following some properties. In this section, we define two of

the most popularly used in the literature.

42 CHAPTER 3. RELATED CONCEPTS

Table 3.1: List of dualities between the Delaunay triangulation and the Voronoi diagram in 3D.

Delaunay Voronoi Depiction

vertex cell

edge face

triangle edge

tetrahedron vertex

3.3. COMPUTATIONAL GEOMETRY 43

(a) Point sets

(b) Delaunay triangulation

(c) Voronoi diagram

(d) Delaunay/Voronoi duality

Figure 3.6: Sample of the Delaunay/Voronoi decompositions, with its duality relationships (left

column in 2D and right column in 3D). From first to last row, we find the input point set, its

Delaunay triangulation, the corresponding Voronoi diagram, and both constructions together (in

order to show their duality).

44 CHAPTER 3. RELATED CONCEPTS

Gabriel Complex A Gabriel simplex is that having its circumscribing sphere empty

of other points. Note that by definition, all tetrahedra inside the Delaunay triangulation

fulfills the Gabriel property. However, this is not the case for the lower dimensional

simplices (triangles and edges). Nevertheless, all the Gabriel simplices are contained in

the Delaunay triangulation. Gabriel complexes, k- GC(P), can be defined by retaining all

the Gabriel simplices of dimension k from the Delaunay triangulation.

α-Shape The α-shape definition provided by Edelsbrunner and Mucke[72] is one of the

first trials in the literature to formalize the concept of shape defined by a point set P .

α-shapes are generalizations of the convex hull of a point set guided by a parameter α,

which are demonstrated to be contained in Del(P). This parameter ranges from α = ∞,

where the α-shape is equal to the convex hull of the points, to α = 0, where the α-shape

is equivalent to the point set itself. It is defined by the domain covered by the simplices

in Del(P), whose empty circumscribing sphere has a radius r ≤ α. More intuitively, one

can imagine having an eraser ball of radius α, which one can use to erase the space, but

that can not remove the points, which are fixed and do not let the eraser pass through

them. Starting with a filled space and using this spherical eraser, one can remove all the

parts of the space into which this spherical eraser can fit. The space not reacheable by the

eraser will result in a shape containing spherical caps and arcs. This generic definition is

called the α-hull, and is related to the α-shape by substituting the spherical caps between

triplets of points by triangles, and arcs by segments.

3.3.6.3 Constrained Delaunay

A constrained 2D Delaunay triangulation is that forced to contain a set of input edges

as part of it. In the 3D case, not just edges but also planar faces may be required to be

contained in the triangulation. While there is always a constrained triangulation in 2D,

this is not the case in 3D, which may require the addition of Steiner points [192].

Even if semantically similar, it is important not to confuse this concept with that of

Restricted Delaunay triangulations, defined in later chapters.

3.3.6.4 Power Diagram/Regular Triangulation

The power diagram and the regular triangulation are the generalizations of the Voronoi

diagram and the Delaunay triangulation respectively for a set of weighted points. In this

sense, each point pi has an associated weight wi. These weights give rise to a redefinition

of the distance function from an arbitrary point px in space:

distpow(px, pi) = ‖px − pi‖ − wi. (3.5)

3.4. SURFACE MESHING 45

Thus, given the new distance function (referred to as the power distance), the power

diagram is the decomposition of R3 into convex cells so that:

PDcell(pi) =
{
px ∈ R3 : ∀pq ∈ P, distpow(px, pi) ≤ distpow(px, pq)

}
. (3.6)

As previously observed for Voronoi/Delaunay, the duality of the power diagram de-

composition gives rise to the regular triangulation.

3.3.7 Medial Axis

The Medial Axis (MA) MA(S) of a surface S corresponds to the closure of points having

more than one closest point on S. It provides a skeletal representation of the shape and is

used in many applications, like shape recognition [27]. A closely related concept is that of

the medial axis transform MAT(S). The two (or more) nearest neighbors on the boundary

surface S define a set of maximal balls, i.e., empty balls not containing any points from

S. The MAT(S) correspond to this collection of balls, whose centers are on MA(S). This

transformation is bidirectional: given S, one can obtain MAT(S), and from MAT(S) one

can recover S. This duality is exploited by some surface reconstruction algorithms.

3.3.7.1 Local Feature Size and ε-Sampling

The feature size lfs(p) is defined as the minimum distance from a point p located on

a surface S to the medial axis MA(S). Using this concept, Amenta and Bern [11], [10]

presented a non-uniform sampling definition called the ε-sampling. Given an ε > 0, a

set of points is an ε-sampling of a surface S if every point x on S has a sample on P

with a distance of at most ε · lfs(x). Even if this sampling condition allows the definition

of algorithms for surface reconstruction with theoretical guaranties, it is obvious that it

cannot be checked as a step prior to reconstruction, as its definition requires the unknown

surface S.

3.4 Surface Meshing

The meshing term is quite generic. In short, it consists of generating a mesh of a surface

from an already known representation of that surface. Because of its large application in

very different research fields, one of the most important problems is to extract triangle

meshes from implicit representations. For this reason, we separate the methods devised

to polygonize implicit surfaces from more generic ones, which can be applied to different

kinds of representations. Note also how this problem is intrinsically related to surface

reconstruction: if we are able to devise some representation of the surface of the object

46 CHAPTER 3. RELATED CONCEPTS

from a set of points on this surface, this representation can be meshed using the methods

in this section in order to extract the required triangle mesh.

Note, however, that we intentionally omit the approaches that only accept as input an

already existing triangulated mesh as the surface approximation. This problem, referred

to as remeshing, has some specific approaches taking advantage of the triangulated input.

Obviously, these types of methods have no interest in our scenario, since the triangulated

surface is what we expect the surface reconstruction process to provide. Nonetheless, they

might be suitable as a post-processing step once the surface has been recovered in order to

enhance some of its properties. For further reference on this subject, the reader is referred

to the extensive survey proposed by Alliez et al. [9].

The problem of surface meshing has been largely discussed at length over the last

decades. The present definitions do not intend to be a thorough survey of the matter, but

a review of the most commonly used algorithms and their variants. Finally, it is worth

focusing on the meshing method of Boissonnat and Oudot [30], presented in the last

section, as its modification is the basis of the surface reconstruction proposals presented

in Chapters 5 and 6.

3.4.1 Isosurface Extraction

As we have seen in Section 3.2.1, explicit and implicit representations have complementary

sets of advantages and disadvantages. Thus, the representation required depends on the

application of the data. Consequently, the conversion between these two representations

may be required.

The conversion from an explicit to an implicit representation of a surface is quite

straightforward. Given a discretization of the space (e.g., a voxel grid), the value of an

implicit surface can be constructed by computing the signed distance from each discrete

position to its closest primitive on the surface. This way, the signed distance function rep-

resents the surface implicitly. This distance calculation may be computationally expensive,

but data structures like k-D Trees [82] can be used to alleviate the cost, introducing fast

closest distance queries.

On the contrary, the conversion from implicit to explicit representation has no direct

formulation. The problem of finding an explicit representation, normally in the form of

a triangle mesh, from an implicit one, is known by the name of isosurface extraction or,

more generally, isosurface meshing. In this section, we present a review of the available

methods used for this purpose.

3.4. SURFACE MESHING 47

3.4.1.1 Marching Cubes

Marching Cubes is the most popular and used isosurface extractor method. Created by

Lorensen and Cline [145], it extracts a triangle mesh approximating an isosurface defined

by a scalar field. Having the implicit surface discretized in a regular grid, the algorithm

checks the scalar value at the 8 corners of each voxel to monitor if the surface passes

though it or not. Taking into account that each vertex may contain a larger or smaller

value than the one defining the required surface (the isovalue), the number of possible

cases is restricted to 28 = 256. However, by taking into account reflective and rotational

symmetry, the authors show that these 256 cases can be summarized into 15 possible

configurations. The final position of the vertex along an edge of the cube is a linear

interpolation of the scalar values at the vertices of that edge.

Even though its initial implementation assumes the implicit domain to be discretized

on a regular voxel grid, further improvements are devoted to using it on irregular data

structures like octrees [120]. Also, some extensions on the method have been proposed in

order to deal with sharp features, like edges or corners [123].

3.4.1.2 Dual Contouring

Quite related to the Marching Cubes approach, dual contouring methods [116] extract the

isosurface from the scalar field in a dual mesh. The main advantage of dual approaches is

their ability to represent sharp features on the mesh. However, it requires the input implicit

surface to provide gradients or surface normals. When not available, some approximation

has to be devised (e.g, they can be extracted using finite differences on the scalar function).

As in Marching Cubes, the process starts by computing implicit values at grid vertices,

and tagging each vertex as being inside or outside the surface. Then, the voxels whose

vertices have a mixture of inside/outside labels are the ones being intersected by the

surface and, consequently, taken into account. The main difference with Marching Cubes

comes at this point of the algorithm, since, instead of using a list of casuistics in order to

resolve the shape of the intersection inside the voxel, the dual approach generates a vertex

inside it. Thus, each intersecting voxel contains a new vertex, called the dual vertex. The

final connectivity of the surface is generated by connecting neighboring dual vertices.

Obviously, the most important step of this method is how to generate the dual vertex

at each voxel. Considering the normals at the intersection points in the edges of the voxel,

the dual vertex location pd is obtained by minimizing an error functional defined by the

intersection of planes spanned by those normals:

E(pd) =

n∑
i=1

((pd − pi)ni)2, (3.7)

48 CHAPTER 3. RELATED CONCEPTS

Figure 3.7: Example of a surface Delaunay ball.

where pi is the edge intersection point i, and ni its corresponding normal. This results

in solving a linear system of equations. Note however that the obtained explicit mesh may

contain not just triangle patches, but polygons with an arbitrary number of edges. Thus,

these polygons have to be triangulated in order to obtain a triangle mesh.

Further improvements on the method refer to better preservation of manifoldness [182]

or to improve its application on adaptive octrees [183] (note that the original method does

not require regular grids).

3.4.2 Restricted Delaunay Meshing

There are cases where not only no explicit representation of the surface is needed, but also

that the mesh is required to follow some characteristics. This may not be just an aesthetic

problem (i.e., having nicer triangles), but could also be required for further processing

applied to the mesh. This is the case, for instance, in Engineering computations like

FEM, where having a regular discretization of the mesh provides more accurate results

on the calculus involving this surface. In triangle meshes, the term regular refers to the

shape of its triangles. The methods following the Restricted Delaunay paradigm allow

the user to tune some characteristics of the final mesh. Consequently, these methods are

also useful in the fields of data compression or mesh simplification, since the user-defined

properties of the final mesh usually involve an approximation bound to be considered,

which provides the user with control of the tradeoff between complexity and accuracy.

Given a set of points E on or near a surface, the Restricted Delaunay Triangula-

tion (RDT) is a subcomplex of the 3D Delaunay triangulation of E formed by the De-

launay triangles whose dual Voronoi edges intersect the surface. Each RDT triangle has

a circumball centered on the surface and empty of all other E points. This circumball is

called a surface Delaunay ball (see Figure 3.7).

Boissonat and Oudot [30] proved that if the sampling E of the surface is dense enough

with respect to the local feature size of the surface, the RDT provides a good approximation

3.4. SURFACE MESHING 49

of the Hausdorff distance to the surface. Moreover, it provides a good approximation

of normals, areas and curvatures. The meshing algorithm iteratively refines an initial

3D Delaunay triangulation until all surface Delaunay balls meet some properties. More

specifically, starting from a small set of points on the surface, the method inserts the

center of a bad surface Delaunay ball at each iteration (note that this center corresponds

to the intersection between the Voronoi edge and the surface). A surface Delaunay ball is

considered bad when it does not meet any of the following requirements:

• Angle bound (αa): The RDT Delaunay triangle inside the ball must have all its

angles larger than this angle bound.

• Radius bound (αr): The ball must have a radius lower than this bound.

• Distance bound (αd): The distance between the center of the ball and the circum-

center of the associated RDT triangle must be lower than this bound.

The algorithm terminates when the RDT contains no triangle with a bad surface Delaunay

ball. The RDT is then the targeted approximation of the surface, and tuning the criteria

defining bad Delaunay balls is a means of controlling the quality of the approximation and

of the output isotropic surface triangle mesh in terms of sizing and shape of the triangles.

The process of inserting these points is known as the Delaunay refinement procedure.

In our context, an interesting property of this meshing approach is that it only requires

devising an oracle that, given a Voronoi edge, i.e., a line segment query, computes its

intersection with the surface. This loose requirement makes the algorithm well-suited

not just to isosurface meshing, but to various application scenarios. For instance, this

technique can be applied to remesh an already existing model (see Figure 3.8). In this

scenario, a triangle mesh is re-triangulated, in a way that its triangles follow the user

defined restrictions imposed by the αa, αr and αd parameters. This step may be useful in

order to retrieve a more regular mesh, or an approximation of the surface at a different

level of detail. Another example of the versatility of this method was proposed by Salman

and Yvinec [180], where they used this surface meshing approach to recover a surface

directly from an unstructured triangle soup. Note also that its coarse-to-fine procedure

maintains a low memory consumption.

It should be noted that the proposals presented in Chapters 5 and 6 are directly related

to this meshing methodology. However, there have been some variants and improvements

in the literature. Cheng et al. [51] proposed a different approach for Delaunay refinement,

also with theoretical guaranties, based on the topological ball property. The oracle for

this method becomes a bit more complicated, since the approximated surface must be

able to answer queries involving the previous line intersection test plus computations

50 CHAPTER 3. RELATED CONCEPTS

Figure 3.8: Sample of the behaviour of a surface mesher [30]. The original (irregular) mesh is

on the left, and center/right show the results for two different parameterizations of the meshing

algorithm, providing different resolutions for the input mesh. Note how the remeshed surfaces

promote triangles closer to regular.

of critical points in a given direction and some specific silhouette points. On the other

hand, there have been some proposals trying to diminish the memory overhead that the

method requires for maintaining the Delaunay structure with very large models and/or

high resolutions. This is the case of the method described in Dey et al. [67], where

they propose a divide and conquer method in which different parts of the surface are

reconstructed separately and then joined back together, maintaining coherence. Finally,

a recent line of work is devoted to the recovery of piecewise-smooth surfaces. In order

to deal with sharp edges, a common approach is to use the protecting balls mechanism

proposed by Cheng et al. [50].

Finally, note that even if we focus on the surface meshing case, the Delaunay refinement

algorithm is suitable for the meshing of domains with arbitrary dimensions. For instance,

the method can be used in R3 to create a well-shaped tetrahedralization of a volume.

Chapter 4

State-of-the-Art Review

4.1 Introduction

There is a wide variety of 3D scanners in both nature and resolution. A 3D scanner

is a device that measures 3D positions on an object’s surface and returns an array of

distance values. Local scans can then be joined into a single reference frame by means

of a registration technique. Once all the scans are merged, the object is represented by

discrete measures of its surface. This set of measures, which do not follow any underlying

structure, is called a point cloud or point set. In our precise scenario, the scanner is a

camera, and the point clouds are obtained through the techniques explained in Chapter 2.

Having the object represented as a point cloud gives us little information about the

overall appearance of the object. The connectivity information between points is needed

to get a notion of visibility for the different parts of the object given a specific point of

view. Despite the fact that new emerging visualization techniques are trying to exploit the

viability of the points as a surface primitive (e.g., see the work of [5]), the vast majority of

these approaches are geared towards finding a continuous surface representation following

the shape of the scanned object that the points describe. This process is referred to in

the literature as the problem of surface reconstruction from an unorganized set of points.

The point set is called unorganized because there is no assumption on the positioning of

these points, i.e., they are not assumed to be following any regular structure and their

connectivity is unknown. From now on, and to summarize, this problem is referred to in

the text as the surface reconstruction problem.

It is worth remembering that the surface representation we are assuming as the result

of these kinds of methods, as stated in previous chapters, is a triangle mesh. Also, we

intentionally omit approaches working with piecewise-smooth surfaces. The problem of

recovering surfaces with sharp features (edges and/or corners) is a research area that has

gained popularity in recent years. However, our application scenarios are more geared

51

52 CHAPTER 4. STATE-OF-THE-ART REVIEW

towards the biology, geology and archeology areas, where sharp edges or corners are rare

to find. For this reason, we base our work in the study and development of surface recon-

struction methods working on smooth surfaces. It is obvious that in some cases we can

find structures containing sharp edges in underwater scenarios, such as man-made struc-

tures (e.g., subsea manifolds), or specific species (e.g., some types of corals). Nevertheless,

the overall surface of the objects can still be recovered using the assumption of smooth

surfaces, even if these sharp edges may not be correctly represented.

Notice that the assumption of having no organization on the points gives generality to

the problem, which broadens the possible scope of methodologies to apply and also their

application fields. The areas of application include (among others): reverse engineering,

virtual reality and automatic modelling. Furthermore, this problem has been studied by

different research communities, including computer graphics, computational geometry and

computer vision. In fact, one of the reasons why this problem is so open is because it is

ill-posed: given a point cloud, one can make several proposals of surfaces that pass on (or

near) the points. The problem is then bound to rely on the sampling of this surface, which

translates into finding the surface that best fits the distribution of the set of points. It is

then important to get a good sampling of the object, taking into account that, normally,

high frequency areas of the surface (like edges or corners) need more samples to be reliably

represented than smoother parts.

Normally, the input points are not assumed to have any other information associated to

them other than their 3D coordinates. Nevertheless, some surface reconstruction methods

use additional information on the points, like their normals, to help in disambiguating the

problem. Furthermore, information does not necessarily have to come from the points, but

can come from other sensors, such as methods using vision-based information (including

textures or camera positions), to further restrict the search for a surface that corresponds

to that of the real scanned object.

The motivation of the present chapter is thus to unify the main contributions from

different communities devoted to solving the surface reconstruction problem of smooth

surfaces. We present an extensive, self-contained review of the methods and divide them

according to common properties. We start by briefly overviewing the challenges present in

real world point cloud datasets. We then describe the proposed classification in Section 4.3,

while the main groups are further discussed in Sections 4.4 and 4.5. Finally, Section 4.6

presents some conclusions regarding present approaches and future trends expected in this

field.

4.2. CHALLENGES OF POINT SET DATA 53

4.2 Challenges of Point Set Data

Despite the advances in accuracy and methodology of range scanning sensors, they are

bound to suffer measurement errors. Depending on the type and nature of the scanner,

these errors are more or less pronounced, but they are always present since the scanning

process is not perfect. It is important for surface reconstruction methods to be aware of

this fact. We will see in the sections to come that some methods assume the data as being

noise-free, which bounds the user to use a preprocessing step on the input points before

applying the surface reconstruction method. On the contrary, some other methods assume

the data to be noisy, and are able to recover a surface despite the errors in the input.

There are two main types of errors when talking about point clouds: noise and outliers.

Noise errors are related to the quality of the measurement, that is, they are variations

caused by the precision and repeatability of the sensor used to get the samples of the

surface. If a good knowledge of the sensor is provided, these errors can be modeled by

a Probability Density Function (PDF). However, it is possible to have different levels

of noise within a given dataset. On the other hand, outliers are wrong measurements,

meaning that they do not represent a sample of the surface, which normally makes them

lie far from their neighbors. These kinds of errors are caused mainly by defects in the

scanning procedure. For instance, a laser scanner applied to a reflective surface may not

be able to get the samples on the surface, and will retrieve these false measurements as

correct data (although these measurements correspond to outliers). In the specific case

of optical-based methods, the level of noise and outliers is normally higher than in the

case of other methods, like laser-based range scan. Specially when applying these methods

underwater, the poor imaging conditions complicate the modelling process, which results

in a wider variability of the noise and a larger number of outliers than when the point set

reconstruction is applied in a more controlled scenario. It is thus important to take into

account these aberrations when dealing with surface reconstruction on this type of data.

Besides noise and outliers, other challenges present in the point set come from the scan-

ning methodology used. For instance, some parts of the object may be under-represented

or even not scanned directly. In these cases, the resulting mesh depends on the surface

reconstruction method used. On the one hand, some methods consider holes as missing

data, and try to cover these holes in the surface by filling them in a plausible way. On the

other hand, some methods assume that the surface may be bounded, and use the lack of

data as a means to detect such boundaries. Moreover, another important source of error

is the registration of the different scans in a global frame. Obviously, a given 3D object

needs to be scanned from different points of view in order to be reconstructed. However,

if the registration of these individual scans in a global frame is erroneous, the point set

54 CHAPTER 4. STATE-OF-THE-ART REVIEW

Regular/Uniform
sampling

Variable/Non-uniform
sampling

Dense sampling Sparse sampling

Uniform noise

Variable noise

Original shape

vs

vs

Outliers Holes/Missing data Registration errors

Figure 4.1: Common challenges in real point based datasets to be handled by surface reconstruction

approaches.

will present some errors, such as double contours.

Finally, for a graphical summary of the problems associated to real-world datasets, the

reader is referred to Figure 4.1.

4.3 Classification

The problem of surface reconstruction is a continual hot research topic nowadays in various

research areas. The vast number of approaches proposed by these different communities,

following different methodologies and heuristics, complicates the creation of a global clas-

sification able to include them all.

There have been some proposals in the past to propose a classification on surface

reconstruction methods. However, surveys dealing with the problem in general are out-

dated, and some of them are partial, focusing only on some subset of the methods. One

can find early discussions about the surface reconstruction problem within surveys dealing

with range data interpolation, but these reviews normally treat the problem of surface

4.3. CLASSIFICATION 55

interpolation for the values on a single range image, like in Bolle and Vemuri [32], or

they focus on the interpolation-based procedure between vertices when having an already

triangulated domain, as in Lodha and Franke [144].

On the one hand, the work of Mencl and Müller [157] has been considered by many

authors as the first survey dealing with the surface reconstruction problem strictly using

an unorganized point cloud as input. They divide the methods according to common

basic strategies: spatial subdivision, distance functions, warping, and incremental surface

growing. The problem of this classification is that it is not exclusive, i.e., a method

can fall into more than one category, since more than one of these basic strategies may

be used in an algorithm. On the other hand, Cazals and Giesen [44] propose another

classification focused on methods using the Delaunay triangulation as their base: tangent

planes, restricted Delaunay, inside/outside labeling and empty balls methods. Despite

being a clear classification (we use some similar categories in our proposal), the great

quantity of literature on methods not relying on Delaunay are omitted. Finally, a short

survey focused on recent developments is presented in Schall and Samozino [185], where

methods are divided into Delaunay-based, implicit surface interpolation and learning-based

methods. However, they miss the previous literature leading to these methods and, given

its publication date, nowadays it is somewhat outdated.

It is obvious that an up-to-date generic taxonomy of surface reconstruction methods is

missing in the literature. We propose one inspired by what other authors proposed in the

past, by using some of their ideas to build our own classification, and also a categorization

able to encompass all the methods in the state of the art. Even if not unique, in the next

section we propose a classification including up-to-date proposed approaches. Detailed

descriptions of the methods falling in each category are given throughout the present

chapter.

4.3.1 Proposed Classification

We aim at finding a global classification providing an overview of the different methodolo-

gies proposed to solve the surface reconstruction problem. The basis of our classification

is to separate the methods according to their approaches; interpolation based or approxi-

mation based.

We understand by interpolation-based approaches those methods whose output surface

contains all or part of the input points as its vertices. On the other hand, we refer as

approximation-based methods to those using the input points as a notion of where the

surface is, and whose output surface does not necessarily have the input points as part of

its vertices. Consequently, in the text we distinguish between interpolating surfaces S̄, and

approximating surfaces Ŝ. The reason for this main classification is due to the common

56 CHAPTER 4. STATE-OF-THE-ART REVIEW

preprocessing and post-processing associated with these two approaches.

The surface resulting from an interpolation-based method adapts to the density of the

input point set, since they are part of the vertices of the surface. However, the quality

of the final surface is bounded by the quality (i.e., the noise) of the input point cloud.

For this reason, these kinds of methods should be applied when the input point cloud is

considered ideal (or close to it). Normally, a smoothing step is required to improve the

quality of the final surface. This smoothing can be applied in preprocessing in the input

point cloud, or in post-processing in the resulting mesh. In the case of using a surface

reconstruction method that does not take into account noisy inputs, a preprocessing in the

input points is needed. On the other hand, if a method allowing noisy input is applied, a

post-processing mesh smoothing step may be required to improve the visual appearance

of the mesh.

Additionally, interpolation-based methods are normally applied to input points having

further information associated. The type of information related to each point depends on

its origin, i.e., the scanning methodology used to gather them. For instance, in multiple-

view stereo computer vision 3D reconstruction systems, each point contains information

such as the views that have generated it, and its 2D coordinates in each image, texture

description, etc. If this information is needed in further processing after the reconstruction

step, it is important to keep them as being part of the final surface. In the previous

example, the information provided could be directly used easily to get a textured model

out of the images of the multiple-view stereo system without further processing.

On the other hand, approximation-based methods are applied when a smoother result

is needed. Since points are normally used only as a notion of where the surface should be,

they normally mitigate the effect of noise in the data. Nevertheless, their resilience to noise

does not ban the use of preprocessing on the points to obtain better results. Notice that

interpolation-based methods are bound to return an explicit representation of the surface,

since triangles must pass through the input points. This is not the case in approximation-

based methods, where a majority of approaches provide an implicit formulation of the

surface as result. As previously discussed, a surface mesher approach like those presented

in Section 3.4, is used in these cases to get the final surface in explicit form.

Of course, these two groups contain a great number of methods, and a finer division

should be applied. Further sections present how these approaches can be refined according

to common methodology.

Tables 4.3 and 4.4 present a summary of the proposed classification for the methods

available in the state of the art (ordered by their appearance in the text). In addition to

the main classification, the following important properties of the methods are discussed in

the left-hand columns of the tables:

4.3. CLASSIFICATION 57

• Boundaries: Indicates whether the method is able to detect and reconstruct bound-

aries on the surface. Note that, in the opposite case, the method fills the possible

holes.

• Noise: Denotes if the method is able to deal with noise in the input data. A

discussion on the type and level of the noise assumed is given in their corresponding

sections in the text.

• Outliers: Ability of the method to deal with a reasonable amount of outliers.

• Guaranties: Theoretical guaranties of the method. Some methods, mostly in the

Computational Geometry field, are able to provide theoretical guaranties for the

correctness of the method. These guaranties are normally based on restrictions

regarding the sampling of the surface. Notes on the assumed sampling and the

guaranties of each method are commented on in the text.

• Additional Info.: Indicates whether the method uses additional information during

the reconstruction process other than the coordinates of the input points. This

additional information is normally associated to the input points (e.g, normals), but

other information related to the sensor used to gather the data may also be used. If

the method requires per-point normals, but a heuristic to compute them is given in

the original article, we consider that no additional information is used.

• Complexity: Overview of the complexity of the method, as discussed by the author.

Taking into account the different implementation possibilities of each method, we

decided to include this information only when the authors discus it in the original

paper.

In order to build a coherent review, we use common nomenclature across all the meth-

ods. Furthermore, when possible, we provide results of applying the presented algorithms

to publicly available datasets. Table 4.1 defines the origin of the tested methods, which

can be either the original implementation (when provided by the authors), a third party

implementation or our own implementation. Regarding the input point sets used in the

tests, when raw point sets are used, they are plotted in a single color, but when per-point

normals are used, this information is used for shading. Note that while these tests may be

useful for an easy interpretation of the behaviour of each algorithm, they do not represent

an analysis of the advantages/weakness of each method, which are otherwise noted in both

the text and Tables 4.3 and 4.4 (at the end of this chapter).

58 CHAPTER 4. STATE-OF-THE-ART REVIEW

Table 4.1: Sources of the implementations of the methods used in this chapter.

Method Implementation Available at

α-shapes [72] CGAL [1]
http://www.cgal.org/Manual/latest/

doc_html/cgal_manual/Alpha_shapes_

3/Chapter_main.html

Crust [10](first part) MeshLab [53] http://meshlab.sourceforge.net/

Ball-Pivoting [23] MeshLab [53] http://meshlab.sourceforge.net/

Smooth Greedy [54] Ours -

Zipper [154] MeshLab [53] http://meshlab.sourceforge.net/

Power Crust [13] Original
http://www.cs.ucdavis.edu/~amenta/

powercrust.html

Robust Cocone [65] Original
http://www.cse.ohio-state.edu/

~tamaldey/cocone.html

Tight Cocone [64] Original
http://www.cse.ohio-state.edu/

~tamaldey/cocone.html

Peel [66] Original
http://www.cse.ohio-state.edu/

~tamaldey/Peel.html

Graph Cuts Stereo [132] Ours -

Hoppe Method [104] Ours -

Markov Random Field [169] Original
http://www2.imm.dtu.dk/image/

MRFSurface/download.html

MPU [165] Original
http://www.den.rcast.u-tokyo.ac.jp/

~yu-ohtake/software/index.html

Adaptive MPU+RBF [167] Original
http://www.den.rcast.u-tokyo.ac.jp/

~yu-ohtake/software/index.html

Multi-scale MPU+RBF [166] Original
http://www.den.rcast.u-tokyo.ac.jp/

~yu-ohtake/software/index.html

Smooth PU [161] Original
www.den.rcast.u-tokyo.ac.jp/~nagai/

Material/PoissonPU/PoissonPU.zip

Point Set Surfaces [5, 2]
As part of APSS

package
graphics.ethz.ch/apss/

Implicit PSS [124]
As part of APSS

package
graphics.ethz.ch/apss/

Algebraic PSS [97] Original graphics.ethz.ch/apss/

Touch-Expand Graph

Cuts [135]
Original http://vision.csd.uwo.ca/code/

Fourier Transform [117] Original
http://www.cs.jhu.edu/~misha/Code/

Reconstruct3D/

Wavelets [153] Original
http://josiahmanson.com/research/

wavelet_reconstruct/

Poisson [118, 119] Original
http://www.cs.jhu.edu/~misha/Code/

PoissonRecon/

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Alpha_shapes_3/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Alpha_shapes_3/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Alpha_shapes_3/Chapter_main.html
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/
http://www.cs.ucdavis.edu/~amenta/powercrust.html
http://www.cs.ucdavis.edu/~amenta/powercrust.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
http://www.cse.ohio-state.edu/~tamaldey/cocone.html
http://www.cse.ohio-state.edu/~tamaldey/Peel.html
http://www.cse.ohio-state.edu/~tamaldey/Peel.html
http://www2.imm.dtu.dk/image/MRFSurface/download.html
http://www2.imm.dtu.dk/image/MRFSurface/download.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
www.den.rcast.u-tokyo.ac.jp/~nagai/Material/PoissonPU/PoissonPU.zip
www.den.rcast.u-tokyo.ac.jp/~nagai/Material/PoissonPU/PoissonPU.zip
graphics.ethz.ch/apss/
graphics.ethz.ch/apss/
graphics.ethz.ch/apss/
http://vision.csd.uwo.ca/code/
http://www.cs.jhu.edu/~misha/Code/Reconstruct3D/
http://www.cs.jhu.edu/~misha/Code/Reconstruct3D/
http://josiahmanson.com/research/wavelet_reconstruct/
http://josiahmanson.com/research/wavelet_reconstruct/
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/

4.4. INTERPOLATION-BASED METHODS 59

Table 4.1: Sources of the implementations of the methods used in this chapter (continued).

Method Implementation Available at

Smooth Signed Distance [41] Original
http://mesh.brown.edu/ssd/software.

html

VRIP [60] Original
http://grail.cs.washington.edu/

software-data/vrip/

Spherical cover [168] Original
http://www.den.rcast.u-tokyo.ac.jp/

~yu-ohtake/software/index.html

Table 4.2: Sources of the point sets used through this chapter.

Repository Dataset name Figures

Stanford Scanning Repository1

Armadillo 4.9

Dragon 4.16

Happy Buddha 4.17

Bunny 4.18

H. Hoppe2
mechpart.4102 4.2

cat10.10000 4.34.11

mannequin.12772 4.5

Aim@Shape3

Foot 4.44.6

Bimba Con Nastrino 4.7

Olivier’s hand (Kreon) 4.8

Max Planck 4.124.20

Gargoyle 4.15

Bust - watertight 4.13

Y. Furukawa (Multi-view Stereo)4 SkullA 4.104.19

Y. Nagai5 Hotei 4.14

1 http://shapes.aimatshape.net

2 http://research.microsoft.com/en-us/um/people/hoppe/

thesis_data.zip

3 http://graphics.stanford.edu/data/3Dscanrep

4 http://homes.cs.washington.edu/~furukawa/research/mview/

index.html

5 http://www.den.rcast.u-tokyo.ac.jp/~nagai/material.html

4.4 Interpolation-based Methods

Interpolation-based methods are divided into two main groups corresponding to those

using a surface oriented or a volume oriented approach.

http://mesh.brown.edu/ssd/software.html
http://mesh.brown.edu/ssd/software.html
http://grail.cs.washington.edu/software-data/vrip/
http://grail.cs.washington.edu/software-data/vrip/
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://www.den.rcast.u-tokyo.ac.jp/~yu-ohtake/software/index.html
http://shapes.aimatshape.net
http://research.microsoft.com/en-us/um/people/hoppe/thesis_data.zip
http://research.microsoft.com/en-us/um/people/hoppe/thesis_data.zip
http://graphics.stanford.edu/data/3Dscanrep
http://homes.cs.washington.edu/~furukawa/research/mview/index.html
http://homes.cs.washington.edu/~furukawa/research/mview/index.html
http://www.den.rcast.u-tokyo.ac.jp/~nagai/material.html

60 CHAPTER 4. STATE-OF-THE-ART REVIEW

Surface oriented approaches solve the surface reconstruction process by retrieving the

surface directly, that is, joining the input points in triplets in order to form the triangles

belonging to the surface, and then merge these triangles into a single coherent mesh (usu-

ally manifold). On the other hand, volume oriented approaches cast the reconstruction

process as obtaining the boundary between two volumes of space: the inside and the out-

side of the scanned object/scene. In other words, surface oriented methods work directly

with the construction of triangles, while volume oriented ones deal with the separation

of the space into two volumes, and the surface is defined as the triangles being at the

interface between them.

A great majority of the interpolation-based methods come from the Computational

Geometry field and use the Delaunay triangulation and the Voronoi diagram structures

as their base. Moreover, by their nature, most of the volume oriented methods provide a

volumetric representation of the object of interest, and not just a description of its surface.

Hence, these last methods assume watertightness on the surface to be reconstructed, and

consequently prevent the recovery of bounded surfaces (with some exceptions).

A classification of the main contributions to this group of methods is shown in Ta-

ble 4.3. In the following sections, a more comprehensive review of the methods forming

each category is presented.

Several approaches have been proposed for each surface/volume oriented method group,

so we propose a second subdivision of these classes focusing on common methodologies.

4.4.1 Surface Oriented

Surface oriented methods are divided into the following groups:

• Delaunay Triangle Selection: Starting from the 3D Delaunay triangulation of

the input point cloud, a subset of triangles following some properties are selected as

potentially being part of the surface. Then, a greedy post-processing step is applied

to get the connectivity between these triangles describing a manifold surface.

• Surface Growing: Incrementally add new triangles to a surface that is growing at

each iteration, one triangle at a time. The selection/creation of the new triangle to

insert next is guided/restricted by the currently growing surface.

• Integration: Some connectivity relationships between points is extracted from the

information provided by the scanning sensor, and these local reconstructions are

then merged together into a single surface model.

4.4. INTERPOLATION-BASED METHODS 61

4.4.1.1 Delaunay Triangle Selection

Delaunay Triangle Selection methods differ mainly in the two heuristics that these methods

follow to extract the surface: the heuristic that defines a triangle as being a candidate to

be part of the surface, and the heuristic defining how to join these candidates into a global

consistent surface. Notice that these two steps, as opposed to Surface Growing methods,

are not really dependant on one another.

α-shape The first approach in this category was devised by Edelsbrunner and Mucke [72],

where they introduce α-shapes. The original definition of an α-shape, given in Sec-

tion 3.3.6.2, only defines a simplicial complex, containing tetrahedra, triangles and edges.

Obviously, this does not cope with the desirable surface representation as a manifold tri-

angle mesh. In the proposal by Guo et al. [98], they propose a heuristic to extract the

outer surface bounding the simplicial complex. Given the α-shape, a normal for each

face in the complex is computed. Since only undirected normals can be extracted from

triangles, a coherent orientation between them is obtained through the method of Hoppe

et al. [104] (further comments in Section 4.5.1). Once oriented normals are available, a

greedy procedure is used to extract the outer surface. Starting from an arbitrary triangle,

faces are added to the surface if they share an edge with a triangle already in the surface

and the dihedral angle between them is dihedral(ti, tj) = π+ ε, where ε is a parameter (in

the paper suggested to be ε = π/3). It is obvious that this approach has the problem of

requiring user input on the α parameter. It is worth noticing that an optimal α parame-

ter may not exist for a given point cloud with variable sampling, since α-shapes assume

regular sampling.

Normalized mesh The α-shapes are not the only proposal for a simplicial complex

resembling the shape of an object from point clouds. In an early work of Attali [15],

another simplicial complex called the normalized mesh is presented. It introduces the

concept of r-shapes, defined as those morphologically open and closed with respect to a

disk of radius r > 0. While they provide a sampling condition and prove its correctness

in a 2D case, a 3D case follows some heuristics. Basically, they retain a triangle as part

of the surface if the intersection between the enclosing balls defined by their 2 associated

triangles is larger than a threshold (quite similar to the 2D β-skeleton definition [122]).

This triangle selection recovers most of the shape under ideal conditions, but some holes

and inconsistencies remain. A heuristic is then proposed to complete the surface. All

the triangles in Del(P) are put in a queue and, at each iteration, a pair of tetrahedra

is merged into a single triangle providing that none of the previously selected triangles

disappear and the points remain being in the boundary of the object (i.e., it is not allowed

62 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.2: The α-shapes [72] results for different values of α, increasing from left to right (first

row for 2D and second for 3D). In the 2D case, the Delaunay triangulation is marked in light gray,

in order to show that the alpha shape is a subset of it. Note how alpha equals the point set itself

for a sufficiently small α, and converges to the convex hull of the points for a sufficiently large

value.

4.4. INTERPOLATION-BASED METHODS 63

to have isolated points).

Crust Very close in time, Amenta and Bern [10] proposed a method which is known for

being the first to provide theoretical guaranties in 3D: the Crust algorithm.

The authors first proposed a 2D curve reconstruction version in the paper [11], where

they defined the curve to be the subset of edges in Del(P) intersected by their dual Voronoi

edges. As stated in Section 3.3.7, the medial axis is directly related to the shape of the

object. Also, they observe that the Voronoi diagram can be seen as an approximation of

the medial axis: vertices in the Voronoi diagram define a set of maximally empty spheres,

which resemble the empty balls in the definition of MA(P). Then, the edges of the curve

are defined as those having a circumsphere empty of other vertices in P (already achieved

if in Del(P)) and empty of vertices of Vor(P).

In the 3D case, points in Vor(P) may fall too close to the surface, preventing the

method to be directly portable to R3. However, they observe that just a subset of the

vertices in Vor(P) do resemble the medial axis, which are the poles (see Section 3.3.6.1).

Thus, the method now consists of selecting those triangles whose enclosing ball does not

contain any other point from P nor a pole from Vor(P). Thus, the algorithm basically

computes Vor(P), selects the poles Q(P), and then computes a final Del(P ∪Q(P)). From

this last triangulation, the triangles having all three vertices from P follow the previously

stated property.

This method gives theoretical guaranties provided the points follow the ε-sampling for

a sufficiently small ε. However, this sampling condition is not likely to happen in real

data. For this reason, a final set of heuristics is needed. First, a filtering step is applied,

consisting of deleting triangles whose normals produce a large angle with the line joining

each of its three vertices pi, pj , pk and their corresponding positive poles q+
i , q+

j , q+
k (the

notion of large being governed by a user’s parameter). Then, a final step responsible for

orienting the normals coherently and constructing a manifold mesh is applied. By taking

a triangle on the convex hull as the reference triangle, its q+
i defining the direction of

the normal, its orientation is propagated by iteratively visiting new incident triangles in

a breath first manner. Figure 4.3 shows a sample of the behaviour of the Crust when

applied to both 2D and 3D datasets.

Cocone Improving on the Crust proposal, Amenta et al. presented the Cocone algo-

rithm [12], also relying on the ε-sampling to get theoretical guaranties. For an ε-sampling

with ε ≤ 0.06, the algorithm is proven to provide a manifold mesh interpolation S̄ homeo-

morphic to S, and any point on S̄ is also bound to be at a distance of at most 1.15ε
1−ε lfs(p

S
i)

for some point pSi ∈ S.

64 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) 2D Point Set (b) 2D Crust (c) 2D Crust + Del(P) +

Vor(P)

(d) 3D Point Set (e) 3D Crust (f) 3D Cocone

Figure 4.3: Examples of the Crust [10] and Cocone [12] algorithms. The first row shows the

behaviour of Crust in 2D (from left to right: point set, crust and crust with the corresponding

Delaunay triangulation and Voronoi diagram superimposed). Note how the curve is made up of

those segments intersected by their Voronoi dual. The second row shows the reconstruction of the

Cat point cloud (left to right: point set, Crust, and Cocone). In both cases, and despite most

of the cat’s shape being correctly recovered, some holes are present in the surface because of the

sampling conditions not being fulfilled.

4.4. INTERPOLATION-BASED METHODS 65

In this algorithm, the line joining pi with its positive pole q+
i is used as an estimation

of the normal at that point. Then, the Cocone is defined to be the cone-complement with

its apex at pi that makes an angle of π/2 − θ with the normal estimation at pi. Edges

in Vor(P) intersected by the three cones of the three Voronoi regions that formed that

edge are selected. A set of candidate triangles are generated as the set of dual triangles

corresponding to the selected Voronoi edges. Starting from those candidate triangles, a

manifold extraction step is required. This step consists of recursively removing from the

candidate triangles those adjacent to sharp edges. A sharp edge is defined as that whose

adjacent triangles form an angle greater than 3π/2. The deletion of sharp edges would

recursively delete boundary triangles, since boundary edges are sharp edges, which would

result in deleting the entire surface. Even though this algorithm is supposed to reconstruct

a watertight surface, undersampling normally also produces holes in the reconstructed set

of triangles, so this has to be taken into account. For this purpose, they perform an

umbrella check for each point pi, which consists of checking if the triangles adjacent to it

form a topological disk, and no two consecutive triangles around the disk make a dihedral

angle of less than π/2 or more than 3π/2. A triangle incident to a sharp edge is deleted

only if its three vertices are part of an umbrella. Notice that the Cocone method requires

a single Delaunay triangulation, as opposed to the Crust algorithm, which requires two.

This makes this method less expensive computationally. A visual comparison between

Crust and Cocone is presented in Figure 4.3.

The Cocone algorithm has many variants that deal with some important properties

for reconstruction. It was first extended in Dey and Giesen [62] to deal with boundaries,

by defining a boundary as an undersampled region. It was also modified in Dey et al. [63]

to deal with datasets consisting of large amounts of points, by resorting to a partition

and merging strategy: Space is partitioned following an octree structure, and the Cocone

algorithm is applied locally at each of its leaves. To get a consistent merging of all the

local Cocone surfaces, a band of points in adjacent octree bounding boxes are taken into

account when building the local reconstruction at each leaf. Volumetric variants of this

method are presented in Section 4.5.

Gabriel The approach of Petitjean and Boyer [171] proposes yet another property for

selecting triangles belonging to the surface, by claiming that good candidates tend to follow

the Gabriel property. We will see in this chapter how many methods in the state of the art

take advantage of the Gabriel property. For noise-free datasets, Gabriel triangles inside

the Delaunay triangulations are likely to be part of the surface of the object, as can be

seen in Figure 4.4.

Again, this method relies on a sampling condition for their method to work, but in

66 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.4: Gabriel triangles (right) of a given point set (left). Note how the majority are part of

the surface of the object.

this case the condition is only related to the input point set, rather than being defined

with respect to the unknown surface S. Notice that the sampling conditions presented

in the previous algorithms (ε-path and ε-sampling) are defined over a surface that we do

not know, and thus we cannot conclude if a given point set P fulfills the sampling criteria

or not. On the contrary, a sampling condition built on the samples alone can be checked

before the reconstruction.

The criterion is based on two main concepts: Local Granularity and Local Thickness.

The Local Granularity corresponds to the radius of the largest of the balls circumscribed

to the simplices in the star of a point pi. On the other hand, the Local Thickness is the

distance from a point pi to the discrete medial axis. The discrete medial axis, as intuitively

introduced in the Crust algorithm, is formed by the closure of centers of empty Voronoi

balls. Once these concepts are defined, a surface is said to be a regular interpolant of

P if the local granularity is strictly smaller than the local thickness for all its vertices.

Consequently, the point set is regular if it admits at least a regular interpolant. The

algorithm computes the surface as a subset of the 3D Gabriel Graph GC(P), constructed

by incrementally selecting triangles while minimizing granularity at their vertices.

Umbrella Filter Another example based on the 3D Gabriel graph is the Umbrella Filter

proposed by Adamy et al. [3]. They define the λ-complex as a subcomplex of a Delaunay

triangulation defined as a combination of the α-shapes and the β-skeleton. Given a simplex

u, a λ-ball is an open d-dimensional enclosing ball having a diameter diam(u) that has

all the vertices on its boundary. The λ-interval defines the range of λ-balls (at least one

possible) empty of points that each triangle inside Del(P) can generate. Thus, in this

case, the λ parameter defines a range of values, as opposed to the single-valued α and β

in the previously mentioned complexes.

Given a triangle t, its two associated tetrahedrons tet1 and tet2 inside Del(P) define its

4.4. INTERPOLATION-BASED METHODS 67

possible λ range as λi = diam(B(tet1))
diam(B(tet2))). The lower bound of the λ-interval is min(λ1, λ2),

while the upper bound is 1 if the centers of the circumscribed balls B(tet1) and B(tet2)

lie on different sides of the hyperplane defined by t.

While this definition is useful for proposing a correct solution in the 2D case, in 3D

they take advantage of the Gabriel graph. Notice that, by definition, the Gabriel Graph

is inside the λ-complex with interval λ = [1, 1]. The Umbrella Filter algorithm chooses

an optimal umbrella from the Gabriel graph for every sample point, where an umbrella

corresponds to a union of a set of triangles incident to a point pi on the surface mesh that

is homeomorphic to a disk. The optimal umbrellas are those minimizing the maximum of

the lower λ-interval bounds associated to its triangles. The resulting surface may present

non-manifold configurations that are heuristically filtered in a post-processing step.

Flow Complex The last representative example in this section also relies on Gabriel

triangles to get an initial description of the shape. The Flow algorithm presented by

Giesen and John [88] builds on the idea of associating a dynamical system induced by the

sample points to the 3D Gabriel complex. This dynamical system is built on the distance

function, distflow, that assigns to each point its least distance to any of the sample points.

The Flow, or the dynamical system that rules the function distflow, is used to get the

reconstruction. The critical points of this function can be determined from the Voronoi

diagram and the Delaunay triangulation of the set of points. Each of these critical points

has a label according to the Dimension of the Delaunay object used to generate it:

• Index 0: Minima, which correspond to the input points.

• Index 1: Intersection of a Delaunay edge and its dual Voronoi facet.

• Index 2: Intersection of a Delaunay facet and its dual Voronoi edge.

• Index 3: Local maxima of the distance function.

From this function, the interesting parts are the stable manifolds of index 2 saddles.

That is, the set of all points that flow (are attracted) into an index 2 critical point. The

stable flow complex is given by the simplicial complex built from the 3D Gabriel graph

and the triangulates whose points flow into index 2 saddles. From this set of triangulated

cells, a manifold surface is extracted. The processing is based on pairing and cancelation

of critical points. The pairing is between index-2 saddles and critical points of index 3

(maximums). A pair is valid if the pair formed by a saddle 2 a and a maximum of index

3 b in the stable manifold of a is contained in the boundary of the stable manifold of b.

A valid pair (a, b) is eliminated if there is a Gabriel edge in the boundary of the stable

manifold which is incident to the stable manifolds of at least three maxima. The pairs

68 CHAPTER 4. STATE-OF-THE-ART REVIEW

are canceled iteratively until no more pairs fulfill this condition. The resulting complex

is called the reduced flow complex. A final step that ensures topological correctness is

needed to eliminate parts of the surface that meet at a point or at an edge. A volumetric

algorithm exploiting the same flow relations presented in this algorithm is described in

Section 4.4.2.2, and a more detailed description of the flow complex is presented in a

second paper by Giesen and John [89].

4.4.1.2 Surface Growing

Surface Growing algorithms recover the surface by building it incrementally, making local

decisions at each iteration. As opposed to the methods in Section 4.4.1.1, Surface Growing

methods do not have a first step recovering candidate triangles. Candidate triangles can

be defined according to some properties, but their selection/creation is always dependant

on the triangles that are at a specific moment on the surface being greedily constructed.

Surface Growing methods can be seen as following a procedure that merges the two steps

in the Delaunay Triangle Selection methods. Furthermore, most of them do not need to

rely on the Delaunay triangulation as an underlying structure from which to extract the

triangles: they are constructed on the fly.

Boissonnat’s Greedy The first approach in this category is contained in an early article

by Boissonnat [28], which is considered the first article in the literature dealing with the

problem tackled in this thesis. From the two methods proposed in the paper, we focus

here on the first. It is based on differential geometry properties and, more precisely, on the

fact that the local neighborhood of a point in a differentiable surface can be approximated

by its tangent plane. This means that we can create and decide the triangle to insert

next on the surface by projecting the situation onto a local tangent plane, and making the

decision there.

First, the k-nearest neighbors K(px) of each point px ∈ P are selected. The prop-

agation in this algorithm is edge based, i.e., the principal primitive is the edge, so the

contour of the current surface is tracked at each step. Starting from a first edge ei,j (not

specified), a projection plane is constructed using K(pi) and K(pj) using a least-squares

method. Then, the edge and neighboring points are projected onto the local tangent plane

and a new point is selected to create a new triangle. The point to insert is the one seeing

the edge on the surface with a maximum angle, that is, the one that creates a more regular

triangle. Then the new triangle is added to the surface, the set of free points and the list

of contour edges is updated, and the process is repeated on an unvisited edge (the order

followed to pick up the next edge is not specified).

Note, however, that if the surface described by P contains areas of high curvature,

4.4. INTERPOLATION-BASED METHODS 69

the neighbors of a given edge may not be projectable on a plane. Besides, the nearest

neighbor search does not assure neighbors found being real neighbors of the original surface

S. Furthermore, the unrestricted growing of the surface could lead to triangles crossing

one another. Despite its flaws, this method presents the basis of many methods in the

present group.

Graph Greedy Another idea, presented by Mencl and Müller [156], is to use a graph

as the underlying structure where the surface is built incrementally. The main idea is to

augment the Euclidean Minimum Spanning Tree (MST) of the input points (MST (P))

incrementally. Even though this method proposes a well described processing pipeline, its

execution depends on a large number of parameters. Their tweaking and the large number

of steps required increases the complexity of this algorithm.

Ball-Pivoting Another important contribution is the Ball-Pivoting algorithm, presented

by Bernardini et al. [23], especially for its simplicity and its low computational complexity.

These two properties make this method applicable to large input sets, prohibitive at the

time the algorithm was created. In the Ball-Pivoting, a triangle is part of the surface if

a ball of a user-specified radius ρ touches its three points without containing any other

point.

Starting with a seed triangle, the ball pivots around an edge until it touches another

point, forming a new triangle. The output mesh is a manifold subset of an α-shape,

as clearly the parameter ρ has a similar meaning to that of α. Following the previous

observation, the manifold obtained is also part of the Del(P). However, and in contrast to

the α-shapes algorithm, it does not need to compute explicitly the Delaunay triangulation,

thus avoiding the complexity and memory requirements of building this structure.

The original algorithm needs an estimate of the normal at each surface sample to

disambiguate cases produced by error in the measurement or registering process. The

process begins by selecting a seed triangle. This initial selection is performed by getting a

point pi along all unvisited points. Then, pairs of points in the neighborhood of pi, taken

in distance order, are used to build candidate triangles. Once a candidate triangle made

of consistent normals at each vertex has an empty ball of radius ρ, it is selected as the

seed triangle. During the pivoting step, the ball remains in contact with an edge ei,j in

the boundary. Let the center of this ball be center(B(ei,j)) . This restriction makes the

circular trajectory of the ρ-ball constrained to a circle having as its center the midpoint

mei,j of the edge ei,j and radius ‖center(B(ei,j))−midpoint(ei,j)‖. Then, points in the 2ρ

neighborhood of midpoint(ei,j) are considered. ρ-balls are placed on neighboring points,

and the intersection points between the balls and the trajectory circle are the candidate

70 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.5: Behaviour of the Ball-Pivoting algorithm [23] for a changing value in the ρ parameter.

The left-hand figure shows the input point cloud, and the value of ρ is increased starting from the

second figure, from left to right. Note that, as was the case for the α-shapes, an optimal ρ value

may not exist for a given dataset.

centers for the ρ-balls. The first center found following the circular trajectory is used to

build the next triangle. New triangles are generated using a Join operation, adding a new

triangle to the mesh, or a Glue operation, removing coincident edges.

It is worth noting how the speed and low memory footprint of this method lead to the

application of the surface reconstruction to large datasets, containing millions of points.

Furthermore, the proposal of Digne et al. [69] demonstrates that interpolation-based meth-

ods can be applied to noisy inputs. In their approach, a scale space version of the point

set is built, and then the ball pivoting algorithm is applied in a smooth scale. Then,

through back-tracking in the scale-space, the vertices in the mesh are placed in their orig-

inal positions, thus retrieving a mesh preserving the details present in the input point

set.

Finally, in order to get an idea of the behaviour of this method, Figure 4.5 presents

some results.

Spiraling Edge The Spiraling Edge proposal of Crossno and Angel [58] follows a similar

approach to the Ball-Pivoting. This method assumes knowledge of the normals, as well as

knowledge of the neighborhood of each point, so these computations are not considered

part of the algorithm. The authors claim low computational cost in the execution of the

method, but this is mainly due to these restrictive assumptions. It works by producing

a local approximation of the surface by creating a star-shaped triangulation between a

point and a subset of its nearest neighbors. This surface patch is incrementally extended

by locally triangulating the neighbors of the points on the boundary of the current surface

that have not yet been triangulated. The creation of new triangles on the boundary is

performed in counterclockwise order around the normal of the points, starting from the

4.4. INTERPOLATION-BASED METHODS 71

first one and following the creation order. Boundary points require special treatment. As

we can see, this method assumes locality on the points, as done by [28], meaning that they

assume the surface to be sampled densely enough to be able to perform the reconstruction

locally by projecting neighbors of a point onto its tangent plane.

Lower Dimensional Delaunay Another relevant method, also relying on the locality

property, is the one presented by Gopi et al. [92]. It also presents guarantees for their

defined sampling criterion that causes the obtained S̄ to be homeomorphic to S. The

algorithm presented in this paper is based on reconstructing the surface locally for each

point in its tangent plane using a local 2D Delaunay triangulation. Moreover, it allows

for surfaces with boundaries.

The δ-sampling definition introduced by the authors is based on the local curvature of

the surface. Let the principal curvature kv at a given point p and in a given direction v

be defined as follows:

kv = k1, (4.1)

k1 and k2 being the principal curvatures at that point, and θ the angle that v makes with

the principal direction. With kv, they define a closed contour Cδp on a surface spanned by

the two points pi and pj along with their normals and local curvature values:

∀pj ∈ Cδpi , kv · arclength(pi, pj) = δ, (4.2)

where arclength(pi, pj) is the Euclidean distance between the two points on S, and the

direction v is defined by the projection of the vector −−→pipj onto the surface. Then, a given

P is a δ-sampling of a surface S if every point ps ∈ S has a closest point pp ∈ P , so

that pp ∈ Cδps . Basically, this sampling condition requires the points to be closer in high

curvature regions, while allowing them to be more spread out in low curvature parts.

Regarding the algorithm, it starts by computing the normals for each point in P , if

they are not known beforehand. The procedure for computing and orienting these normals

is similar to that used by Hoppe et al. [104] (despite its formulation being different). Once

per-point normals are available, they compute the curvature. This is achieved by using

the k-nearest neighbors of the points, and using the formula of [203]. Given a point pi and

one of its neighbors pj , the normal curvature along the direction ~vi = (−−→pipj − (−−→pipj ·ni)ni)
in the tangent plane at pi is defined as:

kvip =
2(ninj)

−−→pipj
‖−−→pipj‖2

. (4.3)

Taubin proposes to compute the curvature tensor as:

Mp =

k∑
i=1

uipik
vi
pi~v~v

T , (4.4)

72 CHAPTER 4. STATE-OF-THE-ART REVIEW

where uipi = ai+1−ai−1

4π , a being the angles sorted in counterclockwise order, and vi being

expressed in terms of the principal directions defined by the local tangent plane. The

minimum and maximum eigenvalues of this matrix represent the principal curvatures

kmin and kmax of each point.

Using the previously computed curvatures, the candidate points around a given pi are

selected as being in the 2δ neighborhood of the point. The maximum ratio of distances

between two points in the contour Cδpi is the ratio of principal curvatures at point pi. Being

dist(pi,K1(pi)) the distance from pi to its closest neighbor, and the constant n = 2kmax
kmin

, the

neighbors to take into account are those inside the sphere of radius r = mp·Dist(pi,K1(pi))

around pi. Points inside this neighborhood are further refined by computing the height

values of these points in the tangent plane of pi, and eliminating those whose value is

greater than
√

1+4δ2−1
kmin

, since these points are outside the tubular neighborhood of the

surface around pi.

Each of the candidate points are triangulated in the local tangent plane. This trian-

gulation starts by sorting the angles (taking into account the quadrant they lie in) that

the points form. Then, the points are taken in triplets, pa, pb and pc, at each iteration,

and are checked to see if a point pb (middle one) can be a Delaunay neighbor of pi in

presence of pa and pc. All candidate Delaunay neighbors are stored in a list ordered by

their radial angle with respect to the central vertex. Vertices pa, pb and pc form a triangle

if all (pb, pc), (pc, pa) and (pa, pb) are consecutive neighbors in their correspondent ordered

lists.

Smooth Greedy As opposed to the methods proposed so far, Cohen-Steiner and Da [54]

propose a method using the 3D Delaunay triangulation as a base. Assuming a smooth

surface, it prioritizes minor variations on the curvature of the growing surface. By doing

this, ambiguous decisions can be overcome by the advancing front coming from other

directions. Thus, the method uses a unique advancing front that incrementally constructs

the desired surface by running along the structure of the Delaunay triangulation.

To ensure maintaining a manifold mesh at all times, the authors divided the possibil-

ities arising from adding a new triangle to the current surface into four. Given the new

point pi generating the candidate triangle, and the associated edge ej,k on the boundary

of the current surface, the four cases are the following:

• Extension: pi is not in the current surface.

• Hole filling: pi is on the boundary, and both neighbors of pi in the boundary are

also endpoints of ej,k.

• Ear filling: pi is on the boundary, and only one of the neighbors of pi in the

4.4. INTERPOLATION-BASED METHODS 73

boundary is also an endpoint of ej,k.

• Gluing: pi is on the boundary, and no neighbor of pi in the boundary is an endpoint

of ej,k.

Then, the selection of the next triangle to insert in the surface is twofold: first, choose

a candidate (among all valid ones) for each of the edges forming the boundary of the

current surface mesh, and second, choose a triangle from all those previously selected. The

choice of candidate triangles for each edge is guided by the radius of their circumspheres,

getting at each step the one minimizing it. This idea builds on the fact that smaller

triangles are more likely to be part of the surface, under a dense and more or less regular

sampling assumption. Sliver tetrahedra can introduce errors if only following this idea

(e.g., surface foldovers), so a candidate triangle is discarded if its angle with the current

surface is below a threshold (set to 5π/6 in the paper). Starting with the triangle having

a minimum circumradius, new triangles are inserted in the surface guided by the dihedral

angle they make with the current surface, prioritizing small values. However, if these

dihedral angles are below a threshold, their priority is guided by their circumradius rad(ti),

being priority(ti) = 1/rad(ti). On the other hand, if the dihedral angle is over the

threshold, its priority is set to priority(ti) = −dihedral(S̄, ti), where dihedral(S̄, ti) is the

dihedral angle between the currently growing surface S̄ and the candidate triangle ti.

The authors further propose two variants of the algorithm dealing with more than

one component (multiple surfaces), and with boundaries. For multiple components, the

idea is simple: the process has to start again from another triangle formed by points that

have not yet been visited. For boundaries, triangles having a large circumcircle (greater

than a threshold) are discarded. Thus, boundaries are seen as undersampled parts of the

surface, and large triangles are likely to fill an undersampled area. Notice that using a 3D

Delaunay triangulation naturally eliminates the possibility of self-intersection problems on

the growing mesh, as it can only intersect with itself at points or edges of the triangulation,

not between triangles. In Figure 4.6 one can see some steps of this greedy procedure,

showing how the method grows the surface in low curvature areas prior to facing the more

curved ones.

To conclude, we have mentioned some of the more relevant greedy surface methods,

but there are many other proposals that can be seen as small variants of the presented

approaches, either using the Delaunay structure [129], or a data structure-free greedy

procedure in space [142, 108, 140].

Medial Scaffold Transform Finally, the method by Chang et al. [48] is very different

in essence from the rest of the methods presented in this category. In this case, the process

74 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.6: Various iterations of the Smooth Greedy algorithm [54]. Top-left corner shows the

original point cloud, and then from left to right, top to bottom, different steps of the evolution of

the greedy surface are presented.

is guided by a structure called the Medial Scaffold (MS(P)).

The Medial Scaffold is a graph representation of the Medial Axis of an object, defining

the relations of how medial curves (edges in MS(P)) connect medial points (vertices in

MS(P)). This graph can be computed directly from a point cloud, as suggested by Ley-

marie and Kimia [138]. The main idea is to see the point cloud as a deformation of the

original S, where holes have been growing till only infinitesimal points remain. During

this deformation, the MS(P) suffers a series of changes. Thus, the reconstruction process

can be seen as an inverse transform of the MS(P), i.e., one can find the surface by undoing

the transitions that lead to the current MS(P).

There are many transitions during the deformation process, but this paper only con-

siders a type of transition, called the gap transform. The gap transform is based on the

fact that removing a triangle patch from the surface generates a group of three sheets,

together with a curve in the Medial Axis at their intersection. Inverting the process con-

sists of finding these curves and their associated triplets of sheets, i.e., their representation

in MS(P), and change them by a surface triangle. However, the order in which the gap

transforms are computed is important.

For this reason, a two stage greedy approach is used. The set of curves are divided

into two queues. The first queue is made up of curves that contain the circumcenter of

the triangle that should recover by its inverse transformation, since these are the simple

cases (high confidence of generating a correct triangle). The second queue contains the

4.4. INTERPOLATION-BASED METHODS 75

rest of the curves, which can lead to ambiguities. For ordering the curves without local

connectivity information (1st queue), the algorithm favors compact triangles and triangles

smaller than the length of their associated curves. The length of the curve is its shortest

path when divided by the circumcenter of its generating triangle. On the other hand,

curves having local context information are divided by whether they can share an edge

or a vertex with an already reconstructed triangle. If they can share an edge, they are

likely to be correct if the dihedral angle between them is small. If the triangle can share

a vertex with the already reconstructed triangles, the algorithm aims to preserve one-ring

(fan) ordering around a triangle.

4.4.1.3 Integration

A strong prior is required by the algorithms in this section, which is knowing some local

connectivity about the input points at the time of the capture. That is, these kinds of

methods assume a range scanner to be able to provide a 2 dimensional array of ranges as

output. Scanning methodologies fulfilling this property could be, for example, a computer

vision 3D reconstruction pipeline, where we know the local connectivity between points in

the 2D image plane, or most time-of-flight cameras.

Zipper The representative method of this category is the Zippering technique proposed

by Turk and Levoy [204]. In this method, the local connectivity information of a local

image range scan is used to define the surface locally. Then, assuming that we have already

registered the local scans in a global coordinate frame, the problem is reduced to merging

local triangulations together in a single surface by triangulating overlapping areas again to

achieve continuity. A new range scan is added at each iteration using the following steps:

1. Remove overlapping portions of the mesh: Remove the redundant triangles on the

boundary of the first mesh, and then from the second. A triangle is redundant if

its three vertices have correspondent vertices on the other mesh within a tolerance

distance d.

2. Clip a mesh against the other: After removing redundant triangles, the two meshes

slightly overlap. If the process was taking place in 2D, it would be as follows: take

the set of points P i that are intersection points between edges of mesh S̄a and mesh

S̄b. Triangles from mesh S̄b need to be split once for each vertex, while triangles

from mesh S̄a loose a part of them, because it falls under the boundary of S̄b.

Since in 3D these edges from borders of mesh S̄a and S̄b do not need to intersect,

an augmentation of the border of S̄b is performed by adding a collection of four

triangles that are roughly perpendicular to the boundary of S̄b (two triangles over

76 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.7: Zippered meshes, using the implementation of the variant proposed by Marras et

al. [154]. The first pair of figures shows two separated range scans. The next pair of images shows

the merged model, the first denoting in red the border where the zippering took place.

the border and two below the border, forming a quadrilateral for each pair). This

augmentation can be seen as forming a wall perpendicular to the boundary of S̄b,

so the procedure described in the plane can be applied in 3D.

3. Remove small triangles introduced during clipping: This part pretends to improve

the quality of the resulting mesh, since the clipping step generates small triangles

which may not be desired depending on the application of the surface. The method

consists of eliminating all the triangles having an altitude greater than a threshold

by deleting one of the vertices of the triangle and all the triangles that shared it.

Then, a constrained triangulation is used to fill the generated holes.

A sample of the behaviour of a variant of the method, presented by Marras et al. [154],

can be seen in Figure 4.7.

Venn Zipper Also defined for range images, is the method devised by Soucy and Lau-

rendeau [199]. In this case, different parts of the model are estimated by a set of triangu-

lations modeling each canonical set of the Venn diagram of the different views. The Venn

diagram of the set of views represents the parts/strips of the object that are viewed from

different views at the same time. Then, the integrated surface model is built from these

local surface models describing each canonical subset of the Venn diagram.

The Venn diagram of a set of range views can be computed by obtaining the common

surface parts between each pair of views. A canonical subset of the Venn diagram is the

one that has the points that are visible in a particular combination of range views. Thus,

we need to detect views for each point in the range, which other range scans have also

sampled (approximately). Since the same point is never sampled exactly in two different

range scans, this matching between points is approximated. A point in one image is

considered as sampled in another image if the following two tests apply:

4.4. INTERPOLATION-BASED METHODS 77

• Surface Neighborhood Test: The point must be located near a surface patch sampled

by the second image. For each of the surface patches in the second image, projected

to 3D, an uncertainty zone based on the error of the measuring device is defined,

and if a point falls inside this zone, it is marked as visible in the other view.

• Surface Visibility Test: A point in the first range image must be visible in the second

view. This is done by using the dot product on the surface normals.

After applying the previous two tests, a region growing approach is used to refine the

discontinuities between canonical subsets of the Venn diagram.

The constructed Venn diagram is traversed from top to bottom, the top being the

canonical subset having the largest number of views. Then, a parametric grid is built

from each canonical set, having an orientation equal to the average of the orientations of

the views in the set. All the information from the different views is merged and averaged

in this parametric grid. Once we have a parametric grid from each canonical subset, an

integrated model is built by re-parametrizing in a global grid again, so the final integrated

model is a 2.5D triangulation defined in a single reference frame, coinciding with that of

the first image.

4.4.2 Volume Oriented

Since these methods rely on the volume, an initial spatial decomposition in unjoined cells is

used as a base by the methods in this category. Although not exclusive, this decomposition

is usually the 3D Delaunay triangulation. The proposed classification for volume oriented

methods is as follows:

• In/Out Separation: Cells in the structure are marked as belonging to the in-

side/outside of the surface according to some properties. Then, as in the Triangle

Selection case, cells belonging to the same part of the volume are joined incremen-

tally to form two final sub-volumes from which we can extract the surface mesh as

the interface between them.

• Sculpting: Cells are sculptured (i.e., deleted) from the initial spatial decomposition

from outside-inside following an order defined by some priority rules.

• Graph Partitioning: Similar to the In/Out Separation methodology, but here

the initial spatial decomposition is transformed to a graph representation, having

weights defined by some properties. Having this weighted graph representation, a

graph partitioning technique is used to separate the two inside/outside volumes.

78 CHAPTER 4. STATE-OF-THE-ART REVIEW

4.4.2.1 In/Out Separation

Methods in this section are related to those in Section 4.4.1.1 in that they follow the

same idea of defining a set of cells following some property, and then join them iteratively.

Nevertheless, in this case, methods seek two sets of cells defining the inside and the outside

of the object. Basically, cells being more likely to be part of one set or the other are defined,

and then two complementary sets of inside/outside cells are created from them.

Power Crust The first and most representative method in this class, given its many

citations, is the Power Crust method proposed by Amenta et al. [13]. The method first

builds an approximation of the medial axis transform defined by P and then uses its

inverse transformation to get the surface.

The MAT(P) is approximated using the poles, and more precisely the correspondent

polar balls B(qi), which are balls centered at qi and touching nearby points. The radius

rad(qi) defines weights on the poles that are used to build a power diagram. Polar balls

corresponding to poles inside the surface are called inner polar balls, and polar balls

corresponding to poles outside the surface are called outer polar balls. The Power Crust

is the boundary between the cells in the power diagram belonging to the inner poles and

the cells in the power diagram corresponding to the outer poles. It has been demonstrated

that inner and outer polar balls should intersect slightly, if at all. Power Crust interpolates

the input samples which lie on the surface of the union of the inner and outer polar balls.

Furthermore, the algorithm provides a secondary output, which is an approximation of

the medial axis. This approximated medial axis is called power shape, and is retrieved

from the regular triangulation, the dual graph of the power diagram. It is formed by the

simplices connecting poles whose cells are adjacent in the power diagram.

Once the power diagram is built, the poles have to be classified as being inside (inner) or

outside (outer) the object. This procedure starts from the poles adjacent to the bounding

box bbox(P). Then, this initial labelling is propagated based on the angle of intersection

between polar balls: if they intersect deeply, the balls are part of the same subgroup,

while two balls belonging to different groups should intersect slightly. During a greedy

procedure, each ball has two associated values in and out, lying between 0 and 1. These

values denote the confidence of the pole for being inside or outside respectively. The

algorithm starts by labeling the poles adjacent to bounding box points with an out value

of 1 and an in value of 0, and in/out values of 0 to the other. Then the poles are visited

and labeled following a priority queue, whose priority is defined by in/out values in the

following way:

• If only one of the two values is greater than zero, then its priority is the non-zero

4.4. INTERPOLATION-BASED METHODS 79

value.

• Otherwise, if both values are greater than zero, that means the labeling for this pole

is confusing, and is added to the queue with a priority |in− out| − 1.

At each iteration, the top element of the queue is removed and its label is fixed to the

greater of the two values in/out, updating the weights of the remaining unlabeled poles.

In order to equip the method with resilience to noise, the authors propose discarding

some poles according to a measure of how elongated the Voronoi cells are. A lower bound

of the lfs(p) is heuristically estimated using the distances from the point to the poles

and some user parameters. Then, the poles having a distance to their corresponding

sample below the computed bound are not taken into account. Using the subset of poles

over the threshold, they ensure that only skinny and elongated Voronoi cells are retained.

Furthermore, by discarding both poles of a sample when either of them does not pass the

previously mentioned test, the method acquires the ability to recover sharp features (even

if not sampled).

They also propose extensions to the algorithm. The first one deals with holes (bound-

aries) in the surface, by using the fact that, in such places, inner and outer polar balls

intersect deeply. The second one is an offset surface computation from the MAT(P),

by adding/subtracting a constant value from each of the polar balls (e.g., subtracting in

interior polar balls and adding in exterior polar balls to get an inside offset surface).

Notice that the output of this method are not necessarily triangles, but polygonal faces

(that can be easily triangulated). Also, not all the input points have to be necessarily

part of the reconstructed surface, and some new vertices may appear. To conclude, the

application example in Figure 4.8(b) demonstrates the validity of the method.

Robust Cocone A method following a similar strategy, but providing theoretical guar-

anties in case of noisy data is the Robust Cocone method presented by Dey and Goswami [65].

Here, a set of large Delaunay balls, resembling the polar balls in Power Crust, are used

to devise the surface. They prove that, given the assumed noise model, the union of in-

ner/outer Delaunay balls is homeomorphic to the underlying surface. The noise model is

described theoretically, and is based on the lfs sampling criterion. Given a point set P ,

it follows a (ε, k)-sample of the original surface S if:

• The sample without noise P I (I for Ideal) is an ε-sample of S, that is, dist(pIi , P
I) ≤

ε · dist(pIi ,MA(P)) for each point pIi ∈ P I . This property assures dense sampling.

•
∥∥pi − pIi ∥∥ ≤ ε2 · lfs(pi). This assures that the sampled points are close to the ideal

surface/sampling.

80 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Point set (b) Power Crust (c) Robust Cocone

Figure 4.8: Sample of both methods presented inside the In/Out Separation category. Note how

there are small differences between the Power Crust and Robust Cocone results (loss of small

details and a bridge between fingers for Robust Cocone).

• ‖pi − pj‖ ≤ ε2 · lfs(pIi) for any two points pi, pj in P where pj is the k-nearest sample

point to pi. This property forces the sampling to be locally uniform.

As in the Power Crust algorithm, the overlap (or intersection) between balls is used to

separate inside/outside tetrahedra. The algorithm chooses a Delaunay ball, and expands

the set (inner or outer) by iteratively adding the neighboring ones that intersect with

the already constructed set at an angle larger than a given threshold. The boundary

of the inner/outer set of balls is the surface. Despite the procedure explained, the final

implementation they propose uses the set of balls to filter P to those on the boundary of

the balls, and then apply the Tight Cocone algorithm [64] (described in Section 4.4.2.2).

As observed in Figure 4.8, the behaviour of both Power Crust and Robust Cocone is

similar.

4.4.2.2 Sculpting

The algorithms falling into this section cast the surface reconstruction problem as a sculpt-

ing process. The initial volume (normally the Delaunay triangulation of P) is iteratively

refined from the outside to the inside to reveal the final surface/volume of the object.

Boissonnat’s Sculpting The first approach in this category corresponds to the second

proposal in the previously mentioned article by Boissonnat [28]. Starting from the 3D

4.4. INTERPOLATION-BASED METHODS 81

Delaunay triangulation of the input points, tetrahedra are eliminated sequentially until

all points are on the exterior of the volume. This procedure is restricted to reconstruct

polyhedrons of genus 0 (objects without holes).

The elimination procedure is based on maintaining the definition of a polygon for the

current volume after each tetrahedron is removed. In order to preserve this property, and

defining S̄B as the boundary of the polyhedral shape, the only tetrahedra that can be

eliminated are the ones with one face, three edges and three points on S̄B, or alternatively

those with two faces, five edges, and four points on S̄B. The order in which tetrahedra are

eliminated is guided by a value assigned to each tetrahedron with at least one face on S̄B.

This value is defined as the maximum distance from the faces of the tetrahedra on S̄B,

and the circumsphere of the tetrahedra. The algorithm ends when all the input points are

on S̄B or the maximum value of the heuristic applied to the current interior tetrahedra

does not decrease with the elimination of the next tetrahedra.

Tight Cocone On the other hand, the Tight Cocone method described by Dey and

Goswami [64], as its name implies, is an extension of the Cocone algorithm to deal with

watertight surfaces. Even though the Cocone algorithm also assumed watertight surfaces,

the initial implementation produces undesirable small holes in the final surface located in

undersampled regions.

The method starts by constructing a first approximation of the surface using the Co-

cone method. A labeling algorithm on the 3D Delaunay triangulation is used to decide

which tetrahedra are outside the surface and which are inside. Then, a peeling algorithm

is needed to remove the tetrahedra marked as outer, as well as some other tetrahedra that

were unclearly labeled. The labeling is based on the definition of good points, which are

points having incident triangles in the Cocone forming a topological disk.

The labeling maintains a stack of pairs containing a good point and a tetrahedron

marked as out. Using the separation that an umbrella (topological disk of triangles)

generates of inside and outside, we can iteratively mark tetrahedra and update the stack

using adjacency relations of the tetrahedra already marked out, taking into account that

an umbrella cannot be crossed. All marked tetrahedra are incident to at least one good

sample point, while tetrahedra not having any good points are called poor tetrahedra.

After labeling, the peeling process consists of removing the outer tetrahedra in order

to reveal the inside volume of the object. It maintains a stack of surface triangles that

form the boundary of the union of peeled tetrahedra. At each step, a triangle ti from this

stack is popped out. Since it is on the stack, one of its associated tetrahedra is already

peeled, and we have to check the state of the other. If the other one is also already

peeled, the triangle separates two tetrahedra on the outside, so they are not part of the

82 CHAPTER 4. STATE-OF-THE-ART REVIEW

surface. Otherwise, there are three possibilities depending on the properties of the current

non-peeled tetrahedron teti:

• teti is not poor and is marked in: Insert it in the output list.

• teti is marked out : The peeling must move inside this tetrahedron through ti, so the

stack is updated with the three triangles different from ti of teti.

• teti is marked as poor : Also walk inside teti, as in the previous case, if ti is not

the smallest triangle in teti. This last check is performed because the locality idea

of Dey and Goswami [64] states that the smallest triangle of a tetrahedron of an

undersampled region separates the interior from the exterior of the object.

At the end of the peeling stage, the boundary of the inner volume is retained as the

reconstructed surface. The behaviour of this algorithm can be seen in Figure 4.9 (b).

Convection The convection approach presented by Chaine [47] also follows a sculpting

methodology. The algorithm tries to implement the convection method of Zhao et al. [216],

which is based on modelling how a curve is deformed when attracted by its distance to

the input points. The difference with the method in Zhao et al. [216] is that, instead of

using and moving an implicit representation, the authors use a discrete version level set.

More precisely, they control the evolution of a pseudo-surface embedded in the 3D

Delaunay triangulation. The pseudo-surface is made of half-facets, which are facets with

an orientation. Also, a pseudo-surface is not a simplicial complex, since two adjacent

half-facets can share more than one edge. Apart from the half-facet concept, they also

define the concept of half-balls, which are the part of the smallest enclosing ball of a facet

falling in the half-space defined by the half-facet. They also extend the notion of Gabriel

to half-facets, being those with half their ball empty. The pseudo surface obtained is

oriented inwards, its half-facets are part of the Delaunay triangulation of the input points,

and they also meet the Gabriel property.

The algorithm starts with the pseudo-surface being initialized to CH(P), with the half-

facets oriented inward. Then, it evolves inside the Delaunay triangulation by sculpting

some tetrahedra. The surface shrinks inward by making the area it encloses decrease.

This evolution stops when all the half-facets meet the Gabriel property. At each step, if a

half-facet does not meet the Gabriel property, there may be two possibilities:

• The half-facet corresponds to a facet in the pseudo-surface with a different orien-

tation: This means that the pseudo-surface has met itself during convection. If

surfaces without boundaries are assumed, these kinds of facets are eliminated di-

rectly. On the other hand, under the assumption of bounded surfaces, these cases

4.4. INTERPOLATION-BASED METHODS 83

are acceptable. When collapsing a pair of coincident half-facets, 8 possibilities must

be taken into account (see original text for details).

• Otherwise, replace the half-facet with the three half-facets it is hiding.

This method stops before reaching all the points if pockets are part of the surface, even

if they are sampled enough. Pockets are important concavities larger than the hidden

half-balls that interface between the cavity and the outside. To solve the early end of

the algorithm in these cases, a half-facet that meets the Gabriel property can be further

shrunk if its size is not coherent with the local 3D density of the sampling. The density

around a point is approximated, in this case, using the distance to its four nearest points.

Wrap Another representative example for this category can be found in the Wrap al-

gorithm of Edelsbrunner [71, 70]. As in the previously mentioned method of Giesen and

John [88], the concept of flow is used, but in this case to define a relation between simplices

on a Delaunay triangulation. The flow distance function, defined by the points P , has only

one direction of steepest ascent at each possible p ∈ R3, except at critical points. This

property is used to define the flow relation, which is an acyclic sequence of contractions

on Delaunay simplices following the flow induced by the point set. In this sense, a relation

involving a triangle ti and its two associated tetrahedra teti and tetj exist if there is a

point p ∈ R3 on ti that passes from teti to tetj following the flow.

The flow defines the relations of ancestor and descendant between simplices. Using

these notions, the simplices in the Delaunay triangulation can be classified in three types:

• Centered: Simplices containing critical points in its interior. They do not have

ancestors nor descendants.

• Confident: The simplex is not centered and its affine hull intersect is a dual Voronoi

face.

• Equivocal: The affine hull of the simplex intersect is a dual Voronoi face.

A sink is a simplex in the Delaunay triangulation of the input points that do not have

a predecessor in the flow relation. By definition, sinks are centered simplices, including

a simplex at infinity, to account for the unbounded side of the convex hull of the set

of points. Each of these sink simplices (finite or unbounded) generate a sequence of

ancestors, and the set of all the ancestors from all the finite (or equivalently, the infinite)

simplices form a volume, whose boundary is the required S̄. In order to obtain this surface,

the algorithm iteratively collapses tetrahedra, starting with the CH(P), and following the

ancestor/predecessor relations between simplices. A collapse shrinks the current Delaunay

subcomplex, and only 6 cases can occur (see original text for details).

84 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Input Point Set (b) Tight Cocone (c) Peel

Figure 4.9: Examples of the behaviour of the Tight Cocone and Peel algorithms when applied to

the Armadillo dataset.

Contrary to most algorithms, the order of the sequence of collapses does not matter,

and the algorithm always gets the same final result. This collapse maintains the homotopy

type of the Delaunay complex, so the retrieved surface is homeomorphic to a sphere. To

allow for other topologies, a simplex removing operation is added to the algorithm, and

then collapses are not only computed for the infinite sink, but also for other finite sinks.

Peel Another approach is the Peel algorithm presented by Dey et al. [66]. This method

is based on iteratively deleting tetrahedra from an α-complex for a sufficiently small α

(proposed value for α is six times the largest nearest neighbor distance among the given

points). The peeling process consists of removing edges and their two associated triangles,

without deleting any vertices. While there remain tetrahedra to be peeled, the algorithm

removes them in a top-down way. It is demonstrated in the article that following a top-

down approach leads to a surface S̄ that is isotopy equivalent to the unknown surface S.

The algorithm it is also proven to give an isotopic reconstruction in the case of bounded

surfaces. Figure 4.9(c) shows an example of the application of this method.

4.4.2.3 Graph Partitioning

Algorithms in this section build a graph structure out of the point cloud (usually based on

Delaunay/Voronoi), associates some weights to its edges, and applies a graph partitioning

algorithm in order to find the separation of tetrahedra being inside or outside the object.

Eigencrust The first algorithm using graph partitioning techniques is the Eigencrust of

Kolluri et al. [125]. This noise resilient algorithm reconstructs a watertight surface from a

4.4. INTERPOLATION-BASED METHODS 85

point cloud using spectral graph partitioning on a graph embedded in the Delaunay trian-

gulation of the input point cloud. The spectral partition is used to label each tetrahedron

as being inside or outside the shape of the object. As usual, the surface is found as the

interface between in and out tetrahedra.

The labeling is performed in two steps. First, the algorithm only takes into account

the poles computed from the Voronoi diagram of the input point set. The poles are

used as vertices of the so-called pole graph. Poles q+
i and q−i from the same sample

share an edge in graph G1. Also, if there is an edge in de Delaunay triangulation that

joins vertex pi, having poles q+
i and q−i , and pj , having poles q+

j and q−j , then the edges

e(q+
i , q

+
j), e(q+

i , q
−
j), e(q−i , q

+
j) and e(q−i , q

−
j) are also in G1. Each of these edges has a

weight w(e(qi, qj)) proportional to the angle of intersection of the circumspheres described

by each of the poles:

w(e(qi, qj)) = −e4+4 cos(iangle(B(qi),B(qj)), (4.5)

where iangle(x, y) is this intersection angle. Poles likely to lie on the same side of the

surface have a large positive weight, while their weight is small when they barely intersect.

When the angle of intersection is 0 (no intersection), the edge is removed from the graph.

Note that this heuristic (angle of intersection between polar balls) is the same used in [13]

(Power Crust). Furthermore, nodes known to be outside the model (lying on a bounding

box for example) can be collapsed into a supernode representing all of them.

Given graph G1, the weighted adjacency matrix L, with negative weights, is built.

Then, the eigenvector associated with the smallest eigenvalue λ of the following system is

computed:

Lx = λDx, (4.6)

where matrix D corresponds to the diagonal of L. Each component of x corresponds to

a pole, i.e., to a tetrahedron. Tetrahedra corresponding to components in x having the

same sign as the outer supernode are labeled outside, while those having an inverse sign

in x are labeled inside.

The remaining tetrahedra are labeled in a second step, by computing a new graph G2.

Each unlabeled tetrahedron forms a node in the graph, and two supernodes representing

the tetrahedra already labeled as in or out respectively are created. Then, an edge is

added for each node sharing a face in the Delaunay triangulation, and an edge to the

corresponding supernode is also added if an unlabeled tetrahedron shares a face with

an already labeled one. Weights between tetrahedra in this graph follow the heuristic

of enforcing aspect ratio of the joining triangular faces, encouraging regularity on the

triangles of the output surface. Graph G2 has only a negative weight, connecting the two

in/out supernodes. Once constructed, it is partitioned using the same procedure as G1.

86 CHAPTER 4. STATE-OF-THE-ART REVIEW

Optionally, the authors also propose an alternative to this second labeling step, con-

sisting of using the labeling of the first partition to label power cells, substituting the

Power Crust labeling algorithm. Power Crust can be directly extracted from this labeling.

The resulting surface may be non-manifold, so a relabeling step that takes into account

manifoldness should be needed. It is worth noticing that this algorithm presents good

results in the case of having a large number of outliers as part of the input points.

Graph Cuts Stereo Another example in this section is that of Labatut et al. [132],

based on using some additional information generated when creating the input point cloud.

In this case, the input point cloud is assumed to be extracted from a computer vision

multiple-view stereo 3D reconstruction pipeline, that is, from the matching of image key-

points across images in a calibrated system. A Delaunay triangulation is built from this

point set, and its dual, the Voronoi diagram, is used to define a graph built on top of

it. The surface is extracted from this graph representation using an S-T cut (source-sink

cut) method [37] whose energy minimization takes into account the area of the surface,

its visibility and its photoconsistency.

When building the input point set, keypoints in the images are matched and a discrete

(point based) reconstruction of the object/scene is retrieved. Then, a Delaunay triangu-

lation is built incrementally, adding one point at a time. When inserting a point into the

triangulation, its nearest neighbor is selected. The maximum reprojection error between

the two 3D points is computed, and if this value is above a threshold, this point is con-

sidered a new point and is added to the triangulation. However, if the error is below that

threshold, the point is considered to be the same and, instead of adding the new point,

the position of the one already in the triangulation is updated. This procedure provides a

cloud where each point has a number of views in which it has been seen. The graph built

on the Delaunay triangulation of the input points has a node representing each tetrahe-

dron, while an edge is added to the graph if the two tetrahedra representing the nodes

share a triangular face. By seeing this definition, one can observe that the nodes and

edges forming this graph are equivalent to the nodes and edges in the Voronoi diagram.

Furthermore, two special nodes are added: the source and the sink. These two nodes do

not correspond to specific positions in space, and each node in the graph has an edge that

joins it with each of them.

Using this graph representation, the idea is to minimize the following energy functional

using the S-T procedure defined in Boykov and Kolmogorov [36]:

E(S) = Evis(S) + λphotoEphoto(S) + λareaEarea(S), (4.7)

where λphoto and λarea are positive weights. Regarding the terms of the energy, Evis(S)

4.4. INTERPOLATION-BASED METHODS 87

accounts for visibility. Each center of each view (i.e., camera position) in the initial cap-

turing system form a segment called line-of-sight (LoS(pi)) with the points that have been

seen from that position. Now, weights on the graph are set according to the intersections

between these segments and the Delaunay triangulation. Taking the LoS(pi) of each point,

an edge to the sink with weight λin is added for the tetrahedra after the point pi and fol-

lowing the direction of LoS(pi). On the other hand, a λ∞ weight is added to the edge

joining the tetrahedra where the camera’s viewpoint is located and the source. Finally, a

λout weight is assigned to the triangles crossed by the ray (from inside to outside).

Next, the Ephoto term accounts for photoconsistency of the triangles on the surface.

This photoconsistency for each triangle is only computed in the views from which its three

vertices were reconstructed. For each directed pair of tetrahedra (taking into account the

normal of the triangle) a weight wphoto(e(i, j)) = ρ is added if the LoS(pi) and nti of the

triangle fulfill that LoS(pi) ·nti > 0, and where ρ represents the photoconsistency measure

accross images. Any photoconsistency measure could be used, in the original paper they

suggest the mean of the color variance of the pixels falling inside the projected triangle.

Finally, the Earea(S) term enforces a minimum surface. This is achieved by adding

for each edge of the graph, a weight warea(e(i, j)) with the area of the triangle it rep-

resents. It is worth noticing their proposal to include infinite vertices of the Delaunay

triangulation and their associated tetrahedra into the minimization. By taking them into

account, bounded surfaces are reconstructed even if the algorithm has a clear volumetric

formulation. Additionally, it is mentioned in a later paper [99] that the photoconsistency

is not accurate under dense sampling, since, under high sampling, triangles become small

and the small texture patch contained in them is not informative enough. Finally, an ex-

tension to preserve weakly supported surfaces, seen at glancing angles from the cameras,

is presented by Jancosek and Pajdla [112].

Graph Cuts Range The last method in this section is also a method from Labatut et

al. [133], basically consisting of an extension of the previous algorithm to work directly

on range scans. Since it still relies on lines-of-sight, these datasets must also contain the

position from where each point was captured.

Now, in Equation (4.7), the visibility term has changed slightly and the photoconsis-

tency term has been replaced by another term accounting for surface quality. In this case,

the visibility constraint is relaxed by a parameter w that modifies the weights of the edges.

First, the final tetrahedron along LoS(pi) is not the first after the end of the line-of-sight,

but is the one at 3β distance from it, where β is a user’s parameter. Also, both inside and

outside weights of the intersected faces are smoothed out using β:

wsoftvis(e(teti, tetj)) = 1− e−d2/2β2
, (4.8)

88 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Sample images

(b) Point set (c) Graph Cuts Surface

Figure 4.10: Graph Cuts Stereo method [132]. First row shows a sample of 3 images from a total of

24 composing the SkullA dataset. The second row contains the point set and surface as obtained

by the Graph Cuts Stereo method.

4.5. APPROXIMATION-BASED METHODS 89

d being the distance between the intersection point of the current facet with the LoS(pi)

and the input point pi. Changing the β parameter is a means to control the smoothness

of the resulting mesh. This change takes into account that range scans are very dense

but also noisy, and consequently the resulting surfaces using the original visibility term

get very bumpy. This is due to the mislabeling of interior tetrahedra produced by having

a dense sampling with few lines-of-sight per sample. Note that this does not happen in

the previous case when using computer vision features, as they are seen from more than

one view-point and thus generate more than a single line-of-sight per point. On the other

hand, the surface quality term aims at finding good quality triangles for the final surface.

As in many other approaches (β-skeleton, Power Crust, etc.), this term aims at favoring

the spheres bounding a tetrahedra to not intersect deeply at the shared face t. A weight

that takes into account the angles γ1 and γ2 that the circumspheres of the 2 tetrahedra

sharing a face make with the plane defined by that triangle is added to the graph for each

edge:

wqual(e(teti, tetj))) = 1−min(cos(γ1), cos(γ2)). (4.9)

As noticed by the authors, the resulting surface does not have to be smooth nor visually

pleasant. For this reason, they suggest to using a Laplacian smoothing on the resulting

mesh to alleviate these problems. As previously mentioned, this recommendation extends

to all the methods in Section 4.4.

4.5 Approximation-based Methods

Again, methods falling in this category are further subdivided according to common

methodology. Nevertheless, and in contrary to the interpolation-based methods, the un-

derlying surface representation the algorithms follow is not always the explicit one. Since

we have relaxed the restriction of the final surface passing through the input points, most

of the approximation-based algorithms use an implicit formulation to get the surface, and

then gather the surface as a triangle mesh using an isosurface extractor method. Despite

the predomination of implicit based algorithms, there are still some methods using an

explicit formulation of the surface.

Approximation algorithms have been classified into the following subgroups:

• Tangent Planes: Compute signed distance functions considering per-point normals

as tangent planes to the unknown surface.

• Unsigned Distance: Works with an unsigned version of the implicit distance to

the surface as a base. In these cases, the problem consists of finding heuristics on

how to extract the surface from this representation.

90 CHAPTER 4. STATE-OF-THE-ART REVIEW

• Radial Basis Functions: Solve for an implicit signed distance function using the

Radial Basis Function interpolation technique.

• Moving Least Squares: The implicit formulation of Moving Least Squares allows

the definition of the surface as the zero level set.

• Deformable Surfaces: An initial rough guess of the surface is iteratively deformed

towards the input points.

• Gradient Enforcement: Uses input points and associated normals as samples of

a gradient field, and try to enforce these gradients in the final indicator/implicit

function describing the surface.

• Integration: As in the Integration subgroup of the interpolation-based methods, lo-

cal connectivity knowledge between samples is assumed or computed, and individual

contributions are blended together in a global frame.

• Local Primitives: Comprises the methods working in a local view. Small prim-

itives are computed locally around input points, and then used to build a global

representation of the object. Nevertheless, the creation of the final surface also fol-

lows local procedures by using the close vicinity of each surface primitive at a time

and using an explicit approach.

In Table 4.4 we can find the most relevant examples for each of the described groups. It

is worth noting that given the approximate nature of the surface, theoretical guaranties are

hard to define (note the very few methods having them). Nevertheless, another column has

been added to the table indicating whether the surface representation the algorithm used

is either implicit (I) or explicit (E). Recall that this column was not needed in Table 4.3 of

interpolation-based methods, since they all use an explicit surface formulation. A detailed

description of each category and the methods conforming it is provided in the following

sections.

4.5.1 Tangent Planes

Tangent Planes methods use normals at input points (not necessarily required to be known)

as a notion of where the surface should be to approximate the distance from any given

point in R3 to S̃. Thus, they use the normals to generate an implicit function whose zero

level set approximates the surface.

Hoppe’s Method The method of Hoppe et al. [104], known for being the first to define

the problem at hand as the surface reconstruction problem from an unorganized point

4.5. APPROXIMATION-BASED METHODS 91

cloud, is the first in this category. The method is based on using tangent planes at each

of the input points. Having these planes as the approximation of the surface, the signed

distance from a point pR
3

to the surface is computed as the distance to its nearest tangent

plane. In addition to proposing a reliable computation of a tangent plane (normal) for

each point, this paper also proposes a method to correctly orient the normals across the

surface. This last part is crucial in obtaining a signed distance function, and has been

intensively used in the literature.

Tangent planes are represented by a center ci and a normal ni. These two elements are

determined using the K(pi), being the number of neighbors k a user parameter as usual.

The center ci corresponds with the centroid of the K(pi), while the ni is retrieved by

means of Principal Components Analysis (PCA). The normal is computed as the minimum

eigenvalue extracted from the covariance matrix m created using the neighborhood:

m =
∑

pk∈K(pi)

(pk − ci)(pk − ci)T . (4.10)

Once the planes are computed, a consistent orientation is required in order to be able to

compute a signed distance function to them. The base structure for the normal orientation

is the Riemmanian graph, an extended MST between centers of the tangent planes that

contains an edge between two centers of planes if either ci ∈ K(cj) or cj ∈ K(ci). Then, a

cost w(e(ci, cj)) = 1−dihedral(ni, nj) is assigned to all the edges, and a traversal following

the MST of the resulting graph is performed. During traversal, if ni · nj < 0, then nj is

replaced by −nj .
Once all the planes are oriented, the signed distance function for an arbitrary point

px ∈ R3 is defined as:

I(px) = (px − ci) · ni, (4.11)

where ci and ni correspond to the closest tangent plane to px, computed as the one having

its center ci closest to px. This distance function is evaluated on each of the voxels vi from

grid G used to discretize the space.

This simple rule is valid for closed surfaces, however, if the surface is known to have

boundaries, the distance function must take this into account and return an undefined

value for points outside the boundaries. In this case, assuming we have a ρ-dense point

set (all balls having a radius ρ and its center in one of the sample points with at least

another input point inside them) and that the measures are δ-noisy (errors from measures

to original points are at most δ), a point p is marked as undefined if the projection of the

point onto its closest tangent plane is greater than ρ+ δ. The implicit formulation is later

triangulated using a surface meshing approach based on Marching Cubes.

The presented algorithm has two major problems. On the one hand, relying on the

k-nearest neighbors to compute the tangent planes may fail in the case of having two

92 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Point set (b) Tangent planes (c) Hoppe’s Reconstruc-

tion

Figure 4.11: Hoppe’s method [104] applied to the Cat dataset. From left to right, the input point

set, a visualization of the tangent planes (as small patches, the blue vector denoting the normal

direction) and the reconstruction result.

parts of the sampled surface very close to one another, and of course, it does not assume

outliers to be present in the data. On the other hand, the orientation of the normal is also

a heuristic depending on k-nearest neighbors. Nevertheless, in case of close-to-ideal data,

the method achieves smooth results (see Figure 4.11).

Natural Neighbors The other method in this section is the Natural Neighbors inter-

polation of Boissonnat and Cazals [29]. The Natural Neighbors of a point px are defined

as the neighbors of px in the Delaunay triangulation of the set P . An equivalent defini-

tion is to describe the Natural Neighbors as the points on P ⊕ {px} whose Voronoi cells

are modified upon insertion of px to the set. On the other hand, the Natural Regions

NR(Vpi , px) of px are the portion of the Voronoi cells that are chopped off by this inser-

tion. If vol(NR(Vpi , px)) represents the volume (in 3D, area in 2D) of the NR(Vpi , px),

then the Natural Coordinate associated with pi is defined as follows:

λpi(x) =
vol(NR(Vpi , px))∑
j∈P vol(NR(Vpj , px))

, (4.12)

where consequently vol((Vpj , px)) = 0 if pj is not a natural neighbor of px.

The proposed Natural Neighbor interpolation defines an implicit formulation such that

∀p ∈ P , I(p) = 0, which is the following:

I(px) =
∑
i

λ1+w
pi (px)f(pi, px), (4.13)

where w is some arbitrarily small value w > 0. In order to bound the natural coordinates

dealing with unbounded Voronoi cells, 4 points on an enclosing bounding box around the

4.5. APPROXIMATION-BASED METHODS 93

input points are added to the point set. The choice for f(pi, px) is similar to that proposed

by Hoppe et al. [104]:

f(pi, px) = (pi − px) · ni, (4.14)

that is, the distance to the tangent plane defined by each oriented point. The local tangent

planes are assumed to be known, since the method assumes known unit normals at input

points.

Since the Delaunay triangulation of the points is needed to compute the Natural Coor-

dinates of the points, they also use it to approximate the unknown surface. Taking its dual

Voronoi diagram, the process evaluates the function at both endpoints of its edges, and

retains those edges evaluating positive in an endpoint and negative on the other. The dual

triangles in the Delaunay diagram of these Voronoi edges form the initial approximation

S̃ of the surface.

This initial approximation S̃ can be refined by inserting points to the initial set and

updating the Delaunay triangulation built in the last step. Note that the insertion of new

points in the original Delaunay triangulation would alter the implicit function, so these new

points are inserted in a new Delaunay triangulation. Each of the facets is associated with

an error, which is the value I(center(ti)), being center(ti) the center of the circumcircle

of the facet. Facets whose errors are larger than a user’s specified threshold, and facets

whose angles are all smaller than 30 degrees are added to a queue. While this queue is

not empty, the triangle ti having largest error is extracted. Then, the intersection point

between the Voronoi edge and the triangle ti that is intersected in S̃ is added to P , and

both the Delaunay triangulation and the queue are updated if needed.

To sum up, the reconstruction is performed by following a similar approach to that of

Hoppe et al. [104], but by building the Delaunay triangulation of P and evaluating the

implicit function at each of its tetrahedra circumcenters. The result is a set of triangles

that can be further refined using the method of Chew [52], a precursor of the meshing

algorithm presented in Section 3.4.2, to obtain the final mesh.

Markov Random Field Another interesting proposal revisiting the method of Hoppe el

al. [104] is that of Paulsen et al. [169]. In their method a similar PCA pipeline is described,

but slightly different heuristics are followed. Furthermore, the final distance function is

regularized using a Markov Random Field (MRF) strategy, allowing the inclusion of the

noise model of the capturing device into the process.

As in the original method, tangent planes approximating S are computed using PCA.

However, the nearest neighbor search is restricted. First, a sampling density is computed

by finding the average µi and standard deviation stdi of the distances to K(pi). Addition-

ally, a fixed search radius of 2.5µi is used to get the neighbors for a point. Furthermore, an

94 CHAPTER 4. STATE-OF-THE-ART REVIEW

outlier detection procedure is proposed. A point is considered an outlier if its third associ-

ated eigenvalue explains more than 10% of the variation, or its distance to the computed

tangent plane is greater than µi. Then, a graph representation is built from the neighbors

of a point. A point is considered as a neighbor of another if they are at a distance less than

µi + 6stdi and their mutual normal angle is less than 15◦. The connected components of

the resulting graph containing fewer points than 1% of P are removed. Normal directions

are then forced to be coherent with the position of the scanning device, so this information

is assumed to be known.

Besides, not just the distance to the first nearest tangent plane is computed, but a

blending to the 5 nearest ones is proposed. Depending on the nature of the data, two

methodologies are proposed. The first one, amenable when the points are only influenced

by Gaussian noise, consists of using the mean of these values. The second one, recom-

mended for datasets containing outliers, is to use the median value.

At this point, the signed distance field is defined, but the level set representing the

surface may not be smooth and contain holes. Thus, this initial implicit representation

is refined through a MRF regularization. Given the initial implicit distance field I0, the

goal is to find the distance field I that maximizes the posterior probability defined by the

theorem of Bayes:

I = arg max
d

P(I|I0). (4.15)

The local probabilities affecting it are formulated as energies. There are basically a

prior and an observation model. On the one hand, the prior model defines the behaviour of

the surface under no sampling. It is based on minimizing differences between neighboring

Laplacians:

EU (I(vi)) =
∑

GN6(vi)

‖L(vi)− L(vj)‖ , (4.16)

where L(vi) is the Laplacian of the function at voxel vi, computed using finite differences.

On the other hand, the observation model forces the surface to pass through P :

EO(I(vi)) =
∥∥I(vi)− I0(vi)

∥∥ , (4.17)

that is, the difference between the original distance value v0
i ∈ I0 and the current one. To

balance the prior model, each voxel has an associated confidence value αi computed using

the distance to the KP (vi), so that voxels near the input points get more confidence and

vice versa.

Given the initial distance field I0 and the prior and observation models, the Bayes’

theorem provides inference on the posterior probability:

4.5. APPROXIMATION-BASED METHODS 95

(a) Point set (b) MRF surface

Figure 4.12: Example of the MRF surface reconstruction method [169].

P(I|I0, GN6(vi)) = exp(−αiβEO(I(vi))− (1− αiβ)EU (I(vi))), (4.18)

where β is a user-defined global weight. Note that by modelling the system as a MRF,

the local neighborhood GN6(vi) is sufficient to compute the maximum likelihood estimate

of the previous probability for a given voxel. Furthermore, the maximization in Equation

(4.15) can be solved by minimizing the weighted sum of the energy functions in Equations

(4.16) and (4.17). The solution of this formulation is linear, and three methods have been

proposed by the authors to solve it: Multiscale Iterative Conditional Modes, Conjugate

Gradient and Sparse Cholesky Factorization. A discussion on these methodologies and the

obtained results are stated in the original reference. Figure 4.12 shows a result obtained

by this method.

Voronoi-Based Variational As pointed out in Amenta and Bern [10], under close to

ideal sampling conditions, the elongated shape of the Voronoi cells spanned by the input

points allows the approximation of their normals using the poles. However, this is not

the case for noisy samples. In noise-ridden data, the Voronoi cells close to the data are

not elongated anymore. However, Alliez et al. [8] observe that, by joining a set of these

cells, its union finally resembles an elongated shape from which a normal estimation can

be extracted.

In order to obtain a normal for each point, they start by computing the covariance

matrix of its corresponding Voronoi cell. Then, the anisotropy of the covariance matrix is

96 CHAPTER 4. STATE-OF-THE-ART REVIEW

computed using the ratio between its largest/smallest eigenvalues. By iteratively adding

new neighboring cells, the covariance matrix and its anisotropy are changed. The process

continues until the union of cells having the largest anisotropy is the one retained, and a

normal value is extracted from its covariance matrix [104].

Note that the gathered normal information is unoriented, and thus the set of retrieved

covariance matrixes C defines a directional field. However, using this information only,

the final shape inference is computed by maximizing the following constrained energy

functional:

arg max
f

E(f) =

∫
Ω
∇fTC∇f

subject to

∫
Ω

[
‖λf‖2 + ε ‖f‖2

]
= 1,

(4.19)

where E(f) is the anisotropic Dirichlet energy, accounting for the alignment between ∇f
and the directions induced by C. Furthermore, the latter constraint imposes E(f) to be

maximized over the unit ball defined by the biharmonic energy. The expression is dis-

cretized and solved in an adaptive tetrahedral grid constructed using restricted Delaunay

meshing in 3D, which is tuned to gracefully adapt the shape of its tetrahedra to the local

sampling density (i.e., to follow an octree-like behaviour).

4.5.2 Unsigned Distance

Methods in this category rely on defining an unsigned distance function from the point

sets, and then extract the surface from this representation. Note that using an unsigned

distance field usually prevents the requirement of known per point oriented normals at

input points. However, some heuristics have to be defined in order to extract a surface

mesh out of this uncommon distance field.

Unsigned Graph Cut In the paper by Hornung and Kobbelt [107] the unsigned dis-

tance function is used as a confidence map representing the probability of the surface

passing through a given voxel. From this probabilistic scalar field, a graph representation

is computed and a S-T algorithm [37] is applied to divide the space into the inside and

outside subspaces defined by the object.

The unsigned distance function is generated iteratively, by placing the points inside

a voxelized space and then applying dilation operations over the 6 neighbors of a filled

voxel. The diffusion of the values starts with voxels containing a point having vi = 0, and

then neighboring voxels are modified with the following function:

4.5. APPROXIMATION-BASED METHODS 97

vi =
1

7

I(vi) +
∑

vj∈GN6(vi)

I(vj)

 . (4.20)

The dilation operations are executed until a unique closed crust of voxels dividing the

inside and outside space in the voxel grid is obtained. Then, a graph is built on this voxel

space, where a node represents one of its faces, and each of them shares an edge with the

neighboring faces in the same voxel. This generates an octahedral graph for each voxel,

having an assigned weight of:

w(e(vi, vj)) = I(vi)
s + a, (4.21)

where vi is the voxel where the edge e(vi, vj) lies, the parameter s is used to emphazise

the voxel values, and a is a constant. Then, an S-T algorithm [37] is applied to minimize

the energy:

E(S) =

∫
S̃
vidvi +

∫
S̃
adS̃. (4.22)

The surface voxels are defined as those containing at least one cut-edge after applying

the Graph Cut algorithm. In order to speed up the process and to achieve hole filling

and fine details, a coarse-to-fine hierarchical approach is proposed. Starting with a coarse

voxelization of the space, the surface voxels of the lower resolution are used to initialize

the crust of the higher resolution problem. This helps in the initialization of the proper

crust and in filling gaps in low sampled areas.

The authors also propose a method to directly retrieve the mesh out of the surface

voxels. In this mesh, vertices lay on voxel centers and faces correspond to voxel corners.

The mesh is generated by running over all 2× 2× 2 groups of voxels. Each center voxel is

a polygonal face if the block contains at least 3 voxels from the set of surface voxels. The

edges of the face are generated by cycling through the 2× 2× 2 block of voxels.

Signing the Unsigned The method of Mullen et al. [159] proposes a completely dif-

ferent approach. Starting from an unsigned distance, it tries a set of heuristics in order

to transform it into a signed distance field. The algorithm is divided into three parts.

First, a rough unsigned distance function is computed from the points. Then a stochastic

sign estimation, along with a confidence, is generated for each of the discrete distances.

Finally, a globally coherent distance function is computed.

The initial rough approximation of the distance function uses the Wasserstein distance,

98 CHAPTER 4. STATE-OF-THE-ART REVIEW

defined as follows for an arbitrary point px ∈ R3 to the point set P :

distw(px) =

√√√√1

k

∑
pi∈K(px)

‖px − pi‖. (4.23)

This approximation, despite being robust to both outliers and noise, is not directly usable

to extract the surface, since the distance is unsigned and has no precise isovalue defining

S̃. However, it allows the identification of an ε-band (or volumetric crust) on the space

defining where the densely sampled areas are located.

The working space is partitioned using an octree decomposition, to build a first coarse

mesh D1 using a Delaunay triangulation as the underlaying structure. Then, an optimal

ε is sought using the following function:

m(ε) =
c(ε) + h(ε) + g(ε)

d(ε)
, (4.24)

where c(ε) is the number of components, h(ε) is the number of cavities, g(ε) is the number

of tunnels and d(ε) is the density of the input points inside the ε-band. To compute an

optimal value ε in m(ε), nodes of the coarse mesh are sorted according to their distance

value and the range of possible ε is split into 200 intervals. The points, edges, faces

and tetrahedra are bucket-sorted inside the corresponding intervals. Then, a union-find

algorithm is used to compute the evolution of the connected components in each band.

The density of the input points is computed as the ratio between the number of input

points inside the ε-band and its volume. Finally, a union-find algorithm is used in reverse

order of distance to get the number of connected components, from which the cavities h(ε)

can be deduced. The values of m(ε) are plotted for the different values of ε, and the best

ε is selected as the first local minima after the first local maximum.

Given an optimal ε-band, the distance inside it is refined in two ways. First, the mesh

D1 is extended using Delaunay refinement to contain twice as many vertices inside the

ε-band, creating D2. Second, the distance estimate inside the band is refined by using

PCA. For each vertex in the band, the unsigned distance is recomputed as that to a plane

created using nearest neighbors and PCA [104].

Once the consistent unsigned distance field Iu is estimated, the sign of the function

needs to be retrieved for proper meshing. A first stochastic coarse estimation of the sign is

performed. For each vertex in D2 outside the band, a series of rays are thrown in different

directions, and the number of intersections with the band is computed. If this number

of intersections is odd, this means that the point is inside the surface. Otherwise, if it is

even, this means the query point is outside. A confidence for this sign is also assigned by

computing:

conf(pi) = 2 max(e, o)/r − 1, (4.25)

4.5. APPROXIMATION-BASED METHODS 99

relating the number of even e and odd o intersections with r, the number of rays shot.

To propagate this sign inside the band, all the vertices contained are sorted by their

distance. Then, always taking the one with the largest distance, the neighbors having an

already estimated sign ŝ(pi) are taken into account. If these neighbors have the same sign

estimation, this estimation is assigned to the vertex along with a confidence equal to the

greatest confidence of the neighbors. Otherwise, if some neighbors disagree on the sign,

the confidence of the point is set to 0.

The final signed implicit function computation consists of a smoothing step over the

previously computed signed function. This smoothing is performed by minimizing the

following energy:

E(s(p)) =

∫
Σ

[
|s(p)Iu(p)|2 +W (conf(p))(s(p)− ŝ(p))

]
, (4.26)

where W (x) is a weighting function mapping the confidence ŝ(p) to a weight on the fitting

term, and s(p) is the final sign. This minimization can be discretized in D2 and solved

using a system of linear equations.

The method of Mullen et al. [159] accepts outliers and constant noise, but fails when

noise varies inside the dataset. Clearly, the fixed k-neighborhood used to compute the

distance function does not take into account this variability, and should be adaptively

devised according to the noise in a given region. In Giraudot et al. [90], the unsigned

distance function is built with adaptive k values that depend on the local noise scale.

Since the unknown surface is a 2-manifold, for a given evaluation point, they increase the

k value until the apparent dimension matches that of a surface. They also propose some

new approaches to sign the unsigned field.

4.5.3 Radial Basis Functions

The Radial Basis Function (RBF) approximation procedure is used in a broad range of

application areas. An RBF is a function where its value depends on the distance from a

given origin (the RBF center). In order to approximate a given function, a set of RBFs

are merged together, using some weights. The result is the description of the function in

a compact representation having the form:

f(px) =

n∑
i=1

wiφ(‖px − ci‖), (4.27)

where φ is the RBF, ci is its center, and px is the point where the function is evaluated.

Then, given a set of discrete samples of the function to approximate, the problem is

reduced to finding a set of centers (i.e., a set of primitives) and their associated weights.

100 CHAPTER 4. STATE-OF-THE-ART REVIEW

Blobby Before going into detail with more complex examples using RBF approximation,

we present a first approach by Muraki [160] dealing with the problem using a different,

though similar, formulation. The problem here is to reconstruct/compress a single range

image. In this case, a set of spherically symmetric fields are used as primitives, and the

scalar fields from n primitives are merged, or rather summed, to get a value for a given

point:

I(vi) =
n∑
i=1

bie
−aif(pi). (4.28)

In Muraki [160], the primitive φ(pi) is a spherical symmetric field having the form:

φ(px) = (px − ci)2, (4.29)

where c is the center of the primitive. As we have seen, this field value defined by f is

decaying exponentially with respect to the distance from c, with modifying parameters a

and b. With these principal equations, the optimization problem is defined as minimizing

the distance between measured points and isosurface values for the m measured points

with depth values z of the scan:

Evalue =
m∑
i=1

|I(vi)− z|2 , (4.30)

with m referring to the number of voxels. Using only this equation, there is no clue about

which part of the surface, the outside or the inside, is being fitted. Another constraint

that accounts for the gradient of the voxel grid to match the one described by the normals

of the input points is added to the optimization:

Enormal =

m∑
i=0

∣∣∣∣ni − −∇I(vi)

|−∇I(vi)|

∣∣∣∣2 , (4.31)

where ∇V (vi), the gradient at a given point, is computed using its neighbors in the

regular grid. Finally, a term accounting for the influence of each primitive is added to the

optimization, in this way preventing the movement of the shape into non-sampled areas:

Eshrink =

(
n∑
i=1

a
− 3

2
i |bi|

)2

. (4.32)

With all the terms described above, the energy to minimize remains as follows:

E =
1

m
(Evalue + αEnormal) + βEshrink, (4.33)

where the α and β parameters are a tradeoff for the influence of the Enormal and Eshrink

terms respectively.

4.5. APPROXIMATION-BASED METHODS 101

Note that this approach does not directly fit the formulation presented in Equation

(4.27), since the spherical fit depends on two parameters ai and bi, so the final optimization

needs to find 5 parameters (the 3D center ci, ai and bi) for each of the desired primitives

used to approximate the range image. In this problem, the number of primitives is also an

unknown, and a large number of primitives leads to a difficult problem to solve. For this

reason, the author proposes making an initial fit using one primitive, and then dividing it

into two to increase the goodness of the fitting. This division is applied recursively until

the desired approximation is achieved. The problem of this procedure is choosing the

order in which the primitives must be subdivided. In order to know which subdivision is

to be performed in a given state, they apply the minimization to all the possibilities and

get the one minimizing the energy, which, of course, is also a computationally-inefficient

solution.

Fast RBF The method by Carr et al. [43] uses the most similar approach to the generic

RBF approximation technique, defined in Equation (4.27), in order to interpolate a signed

distance function I described by the input points with oriented normals. Input points

from P are used as RBF centers, and their values in the implicit function to approximate

must be zero. Having the RBF centers defined, their weights are the only unknowns.

Additionally to P , off-surface points at a given distance following the normal of the point

are added, both inside and outside the surface, in order to prevent the trivial solution

of I being zero everywhere. For each pi, its off-surface points are placed at a distance

lower than dist(K1(pi), pi)), to avoid interferences between different parts of the surface.

The authors notice that off-surface points are not really needed for every point, so if the

value/orientation of a given normal is not reliable, its corresponding off-surface points are

not computed. The RBF system of equations related to this problem is the following:(
A Pol

PolT 0

)(
λ

c

)
=

(
f

0

)
, (4.34)

where:

Ai,j = φ(‖pi − pj‖) (4.35)

Poli,j = pol(pi), (4.36)

and pol(pi) is a polynomial of small degree. Recommended RBFs for this problem are

biharmonic splines, φ(r) = r, where r is the radius, or triharmonic, φ(r) = r3. The use of

RBF methods have been limited to datasets having a few thousand points, given the huge

amount of required memory and computational cost encountered in solving the previously

presented system of equations. To reduce this drawback, they propose using the Fast

Multipole method [94] to solve the system of equations.

102 CHAPTER 4. STATE-OF-THE-ART REVIEW

In order to reduce the computational cost of evaluating the function with a huge num-

ber of vertices, a center reduction procedure is also proposed. It consists of choosing only

a subset of points as the RBF centers. Using the approximation they provide, residuals

are evaluated, and new centers are appended in areas where they are higher. Then the

RBFs are refitted and the insertion of new points is iterated until a user defined threshold

is reached. Furthermore, the authors take into account the noise in the data by using a

parameter ρ accounting for the stiffness to the given data points (i.e., smoothing). The

system of equations accounting for parameter ρ is the following:(
A− 8nπρI Pol

PolT 0

)(
λ

c

)
=

(
f

0

)
, (4.37)

where n is the number of centers, and I is the identity matrix.

Multilevel Partition of Unity One of the problems of applying approaches like the

one presented in Carr et al. [43] is that the fitting of an RBF is global in the sense that

all example input values are taken into account when finding the weights of a given basis

function. This makes the resulting system of equations become dense, and computationally

complex to solve. For this reason, there are some methods trying to alleviate this problem

by using RBFs of compact support. However, Compactly Supported Radial Basis Function

(CSRBF) are not able to close holes and fill in missing parts of the surface, which means

that their influence domain has to be carefully selected.

There are several approaches having Ohtake as the first author dealing with the CSRBF

problem in several ways. The common property to all of them is the addition of a fitting

function associated to each of the RBFs. By doing this, local fitting is performed by a

local function and the RBF values are used to blend the separated contributions. The

most well-known method is Multilevel Partition of Unity (MPU) implicits [165]. In this

algorithm, the space is subdivided using an octree, and functions are fitted to each local

subdomain. Then, the influence of this function is weighted using an RBF of the form:

φ(pi) = b

(
3 ‖x− ci‖

2ri

)
, (4.38)

where b(x) is the quadratic B-spline, and ri is the support radius of this RBF. Since in

this algorithm RBFs are only used as a weighting, the resulting approximation function

depends on the RBFa as a multiplicative factor:

I(px) =
n∑
i=1

gi(px)φi,r(‖px − ci‖). (4.39)

The support of each weighting function is proportional to the diagonal of the cell of

the octree where the approximation is computed (ri = βd, β being a parameter and d

4.5. APPROXIMATION-BASED METHODS 103

being the diagonal). For each cell during the subdivision process, a local shape function

is built using least-squares fitting. The ball of radius ri must contain a minimum set of

points to compute the approximation. The radius is progressively increased by a factor

until this minimum number of points is achieved. Then, three possibilities are proposed

for the local approximation function:

1. 3D quadric: To approximate large, smooth areas of the surface.

2. Bivariate quadratic polynomial in local coordinates: To approximate a local smooth

patch.

3. Piecewise quadratic surfaces: To fit edges and corners.

Tests on the distribution of the points and their normals are computed to determine which

of the three functions to use in each case. If there are more than twice the minimum

number of points in the cell, (1) or (2) are used, otherwise, more detailed checks based on

the normals of the points have to be executed to decide if an edge or a corner is present.

An example result of this method can be found in 4.13(b).

MPU+RBF Following the MPU approach, both methods presented in Ohtake et al. [166,

167] uses a Partition of Unity (PU) procedure followed by a finer fitting using an RBF pro-

cedure. The following equation, used in both methods, has a first term that is equivalent

to the PU approach, while the second accounts for the RBF fitting:

I(px) =
∑
ci∈C

gi(px)φi,r(‖px − ci‖) +
∑
ci∈C

wiφi,r(‖px − ci‖), (4.40)

where gi(px) is the local fitting function that has to be solved by least squares in a moving

projection plane at ci. The local projection plane is defined by a weighted averaging of

normals, and the coefficients g we aim to solve in this local plane are the following:

h(u, v) = g1u
2 + 2g2uv + g3v

2 + g4u+ g5v + g6. (4.41)

Then, the methods diverge in the procedure to obtain a reduced number of approx-

imation centers C. In Ohtake et al. [166] they use a multi-scale approach and solve the

problem in a coarse-to-fine way. At each scale, points are divided using an octree, and

for each cell a single representative point is constructed using the centroid of the points

falling on it and their mean normal. Then, starting from I0(px) = −1, the interpolation

functions at each level k in the hierarchy are:

Ik(px) = Ik−1(px) + ok(px), (4.42)

104 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Bust dataset (b) MPU (c) Adaptive (d) Multi-scale

Figure 4.13: Results of the reconstruction of the Bust dataset (a) for three similar methods:

MPU [165] (b) and the adaptive [167] (c) and the multi-scale [166] (d) version of MPU+RBF.

where ok is the octree node at depth k, having

ok(px) =
∑

cki inC
k

[gki (x) + wki]φki,r(
∥∥∥px − cki ∥∥∥). (4.43)

Coefficients wki are found by solving the system of linear equations generated by

Ik−1(cki) + ok(cki) = 0. The support size rk at each level is defined by rk+1 = rk/2,

where r1 is proportional to the diagonal of the bounding box defined by P .

On the other hand, the method proposed in Ohtake et al. [167] uses a subset of the

input points as C, as suggested by Carr et al. [43]. The selection of the centers is guided by

a measure of the overlap at a given point px, corresponding to the evaluation I(px) of the

RBFs at this point. At each step, from a random subset of points having I(pi) > t, the one

with the lowest value is selected. Then, an optimal support size and local approximation

are computed at that point. These values are used to update I(pi) for all pi ∈ P , and the

procedure is repeated until all I(pi) < t. The selection of an optimal support size at each

step is guided by the local error εlocal at each center. Thus, the energy to minimize is the

following:

E(r) = εlocal(r)
2 +

d

r2
, (4.44)

where d is proportional to the diagonal of the bounding box of P . As the support size

increases, so does the local error, and the one dimensional minimization in E(r) accounts

for finding a good tradeoff between the two.

A simple test of both methods can be found in Figure 4.13 (c,d).

4.5. APPROXIMATION-BASED METHODS 105

(a) (b) (c)

Figure 4.14: Comparison between the original MPU [165] and the smoothed version [161]. Note

how the heavy noise of the input dataset (a), in both position and normal, leads to a bumpy

surface with artificial components on MPU (b). Smoothing out the local contributions results in

a continuous representation of the surface (c).

Smoothed PU The blending of local functions proposed in the MPU method [165] and

its variants [166, 167] accounts for obtaining a continuous surface by merging these local

contributions. However, these local approximations are computed independently, without

taking into account that neighboring local surfaces should present a continuity of surface.

The method by Nagai et al. [161] tries to overcome this phenomenon by smoothing the

local contributions with respect to their vicinity.

Thus, local surfaces are smoothed out to better agree with one another in a two-step

procedure. Only planar local approximations are used in order to simplify calculus, as the

only parameters to modify are its origin point and normal. First, the normals are modified

using Laplacian smoothing, i.e., each normal is replaced with an average of the normals of

its neighbors. The new normals define a new gradient field, and the origin point is moved

so that this new vector field corresponds with its gradient. These two steps are iterated

(five iterations suggested) in order to obtain a smoothed version of the mesh.

Furthermore, the framework is reformulated into a covering spheres data structure,

substituting the typical octree structure. Thus, all the differential operators needed are

redefined to work in this new space division.

However, applying the previous method provides an over-smoothed mesh, which leads

to loss of details and sharp features. To solve this problem, new terms are taken into

account. First, they use an anisotropic weighting in order to recover the edges that might

have been present on the original shape. Second, they introduce a data term into the

smoothing in order to preserve small details. Note the improvement provided by this

method over the original MPU in Figure 4.14.

106 CHAPTER 4. STATE-OF-THE-ART REVIEW

Voronoi Centered RBF In the Carr et al. approach [43] the relevance of a good

selection of centers for the RBFs is taken under consideration. Samozino et al. [181]

propose a method that gracefully mixes this approximation method with the shape analogs

for MA provided in some of the methods in Section 4.4.1. Instead of a subset of input

points, the centers for the RBFs are selected from the poles in the 3D Voronoi diagram.

This approach is based on the previous observation that the 3D MA can be approximated

using the poles under certain conditions. They claim that using the RBF centers placed on

the MA greatly reduces the number of RBFs required to approximate the shape faithfully.

Furthermore, instead of using the poles directly, a λ-medial axis is used, as defined

by Chazal and Lieutier [49]. Naively speaking, the λ-medial axis is that having maximal

empty balls of radius λ. This minimum on the empty ball size confers a more stable medial

axis under small variations on the surface. Finally, given a desired number of RBFs, the

poles in the set contained in the λ-medial axis are clustered to get the centers for the RBFs

(compactly supported in this case). Since points on the MA contain the points with two

or more closest points to the surface, the value for an RBF is imposed to be the radius of

its corresponding medial ball.

Note that, while no per-point normals are required, a labeling of in/out poles simi-

lar to that of Power Crust [13] is needed to provide the system of equations with both

negative/positive constraints.

Cone Carving RBF Due to the lack of data, even when using RBFs with full support on

R3, the hole filling structures that arise in areas of poor sampling may not be correct. This

is because no constraints are selected on these positions. On regular RBF interpolation,

positive/negative constraints are located along the normal of each point. Consequently,

when there are no points sampling a given part of the surface, there will be no constraints

in the system. This causes the RBF procedure to create smooth surfaces over these areas,

which may not be desirable depending on the context.

The method of cone carving from Shalom et al. [189] tries to ameliorate the results

of the RBF interpolation method for undersampled parts by adding further constraints

derived from visibility information. A visibility cone is the empty generalized cone with

its apex at an input point p and formed by all the rays extending towards the outside of

the shape. Since building the cone requires the unknown surface, an approximation of this

surface is computed by splatting the points on an outer cube centered at a given point p.

Then, the visibility cone is built by joining p with the silhouete of the parts of the cube

not contained in the footprint of any splated point.

Taking into account a blended distance to the nearby visibility cones, new inside/outside

constraints can be placed anywhere in the space to further improve the RBF approxima-

4.5. APPROXIMATION-BASED METHODS 107

tion.

Eigen RBF Another approach toward removing the need of known normals in the RBF

procedures is the method presented by Walder et al.[206]. The optimization is cast to the

solution of an eigenvalue problem Av = λv, resulting from an energy minimization taking

into account many different terms. The resulting surface is well defined over the whole

domain and the RBFs have compact support.

In order to avoid normals, the formulation they propose is the following:

arg minI
∑
pi∈P

I(pi)
2

︸ ︷︷ ︸
Data Term

−

λe

∫
u∈R3

I(u)2dµ(u))︸ ︷︷ ︸
Energy Term

−

λg
∑
pi∈P
|∇I(pi)|2︸ ︷︷ ︸

Gradient Term

+

λr |I|2︸ ︷︷ ︸
Regularization Term

(4.45)

Let’s now define the purpose of each term in the function in Equation (4.45):

• Data Term: Values at input points should tend to zero.

• Energy Term: Values at points other than P should be relatively large.

• Gradient Term: Gradients of the resulting function applied at P should be large.

• Regularization Term: Restricts the smoothing by using thin plate energy [43].

Weights λe, λg and λr tune the strength of each term.

The function I(x) has the form of a mixture of RBFs, as in Equation (4.27), but

of compact support. The set of centers and supports in CSRBF (B-splines) are known.

Contrary to other approaches, the RBF centers do not correspond to input points. Instead,

they are distributed around the whole domain in an adaptive grid: RBFs with larger

support and more spread are used in places far from the input data, and are smaller and

more compactly supported in the inverse case. Although not specified, centers seem to

be placed in a regular space subdivision structure, such as an octree for instance, their

support being a multiple of their corresponding cell width or diagonal.

The variables to solve for are the weights wi. Thus, the objective function has to

be rewritten in terms of w = [w1, ..., wn]. By means of rewriting each term in a vector-

matrix-vector form (see original text for details), the problem transforms to the following

108 CHAPTER 4. STATE-OF-THE-ART REVIEW

eigenvalue problem:

(−λeAe − λgAg + λrAr +AdA
T
d)w = λw, (4.46)

where Ae, Ag, Ar and Ad are the matrix forms of the data, energy, gradient and reg-

ularization term respectively, as a function of w. The solution is found in the smallest

eigenvalue.

Despite the fact that this method does not require known normals, it does require the

tuning of the λ parameters in Equation (4.45).

Support Vector Machines A different group of methods are those using RBFs as

part of a machine learning technique, like the one by Schölkopf et al. [186], which has also

been described in other papers such as Eigensatz et al. [74]. In this method, the surface

reconstruction process is cast into a Support Vector Machines (SVM) learning problem.

Its main advantage over other methods in this category is that it does not require normal

values at input points. The idea is to use a positive definite kernel function allowing the

transformation of the points into a Reproducing Kernel Hilbert Space (RKHS), with the

hope that computations can become linear in this space. The positive definite kernel to

use is the Gaussian one:

φ(px, py) = e

(
−‖px−py‖

2

2σ2

)
. (4.47)

The formulation of single-class SVMs is very similar in form to the main formulation

of the RBFs presented in Equation (4.27):

I(px) =
∑
i

φ(‖px − pi‖)− ρ. (4.48)

However, the minimization problem to solve is completely different. The main idea

comes from the one-class SVM, which tries to separate points from the origin by a hyper-

plane with the largest possible margin. This problem can be written using dot products,

which is find the w and ρ such that ∀pHx ∈ PH ,
〈
w, pHx

〉
> ρ, where PH are the input

points in a Hilbert space. A Hilbert space is a generalization of the Euclidean space to

arbitrarily high dimensions. The requirements for a space to be considered a Hilbert space

is to be a vector space allowing to compute inner products. Note that the distance to the

hyperplane is ρ/‖w‖.
The problem of finding the SVM is extended in their proposal, and instead of only

looking for a hyperplane, it aims to recover two: those enclosing all the data points. This

approach is called the Slab SVM, and results in a convex quadratic optimization problem

that targets finding the space between the two parallel hyperplanes containing PH with

a width δ/‖w‖ guided by the user’s parameter δ. Thus, the problem is to maximize

4.5. APPROXIMATION-BASED METHODS 109

the distance of the slab to the origin of the Hilbert space, which leads to the following

minimization:

arg minw,p
1
2 ‖w‖

2 − ρ
s.t. ρ ≤

〈
w, pHx

〉
≤ ρ+ δ ∀pHx ∈ PH

. (4.49)

This minimization is derived to its Lagrange dual optimization formulation (see original

papers for the complete development):

arg minα,β
1
2

∑N
i,j=1(αi − βi)(αj − βj)

〈
pHi , p

H
j

〉
+ δ

∑N
i=1 βi

subject to ∀i, α, β ≥ 0∑N
i=1(αi − βi) = 1.

(4.50)

The whole the procedure described so far corresponds to a slab separation in a Hilbert

space. Thus, for the moment, the problem uses a set of points mapped into an arbitrary

Hilbert space. This means that the input points have been mapped from R3 to H by

means of some mapping function, map(px) = pHx . Here is where the kernel trick can be

used. It is known that certain functions, like Gaussians, can be expressed as an inner

product. Thus, if the expression to solve is only defined according to dot products, the

mapping from R3 to H does not need to be computed explicitly, and the dot product can

be changed by the kernel function:

〈pi, pj〉 = 〈map(pi),map(pj)〉 = φ(pi, pj). (4.51)

This substitution of the mapping for a kernel is the so called kernel trick.

As we have seen above, Equation (4.50) only depends on
〈
pHi , p

H
j

〉
, so we can substitute

it with k(pi, pj). The implicit surface to solve then becomes:

I(px) = 〈w,map(px)〉 − ρ =
N∑
i=1

(αi − βi)φ(px, pi)− ρ, (4.52)

where αi and βi are the solutions to Equation (4.50). Note that once αi and βi are known,

the ρ variable can also be obtained.

One must notice that the presented Slab SVM method has some drawbacks. First, it

involves solving a convex quadratic optimization problem. Second, the signed function is

only well defined inside the slab, and tends to negative values in other places (either inside

or outside the volume). And finally, the kernel function (i.e., the Gaussian) has global

support.

Support Vector Regression Another approach using SVMs is the one presented in

Steinke et al. [200]. In this case, normals at input points are required, since off-surface

points, like those in Carr et al. [43], are used to constrain a Support Vector Regression

110 CHAPTER 4. STATE-OF-THE-ART REVIEW

(SVR). The ε-insensitive SVM regression algorithm is used with this data in order to fit

the surface (the reader is referred to Smola and Schölkopf [196] for a tutorial on SVR

methods). The main property of the ε-SVR is that it penalizes the function values f(x)

if their difference with the expected value is above a threshold ε. The convex quadratic

optimization corresponding to the ε-SVR formulation is the following:

arg minw∈H,ξi,ζi∈R
1
2 ‖w‖

2 + c
∑

i(ξi + ζi)

subject to 〈w,map(pi)〉+ ρ− I(pi) ≤ ε+ ξi

−〈w,map(pi)〉 − ρ+ I(pi) ≤ ε+ ζi

ξi, ζi ≥ 0

, (4.53)

where ξi and ζi are slack variables, and c is a parameter accounting for the tradeoff between

error penalization and function regularization.

The authors propose using a slight variation of the standard ε-SVR, in which the

displacement ρ is set to a fixed value in order to simplify the dual formulation of the

optimization problem. The Lagrange dual to this problem, again using the kernel trick, is

the following:

arg minαi,βi∈R
1
2a

TMa+
∑|P |

i=1(α− β)I(pi)+

+ε
∑|P |

i=1(αi + βi)

subject to 0 ≤ αi, βi ≤ c,
(4.54)

where a = (α1 − β1, ..., αn − βn)T , M(i, j) = φ(pi, pj), and c is a user’s parameter.

As in Scholkopf et al. [186], the hyperplane ends up being defined by the kernel func-

tions (see Equation 4.52). The problem proposed in Equation (4.54) is solved by using a

coordinate descendant optimization algorithm. The function is optimized one dimension

at a time, keeping the rest of the values for the other variables fixed:

αnewi =
−I(pi)− ε−

∑
j 6=iMi,jαj

Mi,i
. (4.55)

This method is similar in essence to the Gauss-Seidel method. In order to ensure

sparsity of the matrix M and providing less computational effort, the kernel function to

use is a CSRBF. More precisely, the kernel is the Wu function, which has the form:

φ(w) = (1− w)4
+(4 + 16w + 12w2 + 3w3), (4.56)

being w =
‖pi−pj‖

r , and r the support size. In order to further reduce computational cost,

the bounding box of the points is subdivided to a given resolution proportional to the

support size, and initial centers are selected. Furthermore, the procedure is multi-scale:

first a coarse approximation is sought, and then only its residuals are approximated on

finer scales (the support of the kernels at different scales is halved).

4.5. APPROXIMATION-BASED METHODS 111

4.5.4 Moving Least Squares

The Moving Least Squares (MLS) is a technique widely used in many fields requiring

the approximation or interpolation of scattered points. Broadly speaking, the procedure

consists of applying a Least Squares in a local reference frame at each point. Then these

local fits are joined together by weighting their contribution by a function dependant

on the distance from each generating point, that is, an RBF. The final approximation

function I(px) is obtained from a set of local approximation Ii(x) = gTi (x)c(x), where

gi(x) = [b1(x), b2(x), ..., bn(x)] is the polynomial basis, and ci(x) = [u1, u2, ..., un] is the

vector of unknown coefficients. Thus, I(px) has to minimize the following equation:

I(px) = arg min
Ii

|P |∑
i=1

φ(‖px − pi‖) ‖gi(px)ci(px)− I(pi)‖ . (4.57)

Despite having this common definition, the term MLS surfaces has been used to define

two different approaches. First, we find the methods using MLS surfaces as a projec-

tion operator. Given a point px, and by means of a non-linear optimization procedure, a

projection of this point onto the MLS surface is found without computing the full mini-

mization proposed in Equation (4.57). On the other hand, we find methods that try to

solve the minimization proposed in Equation (4.57) directly, which leads to an implicit

function I(px) that can be evaluated over the whole domain. This means that, in this

second approach, the function can be evaluated at discrete positions in space (e.g., a voxel

grid), and extract the surface using a surface mesher. In order to distinguish between

these two approaches, we refer to the first one as the projection MLS approach, and the

second one as the implicit MLS approach.

As we can see, these two approaches, while similar in nature, differ in the final use

of the procedure. As previously mentioned, the implicit MLS approach can be used di-

rectly for surface reconstruction purposes, and consequently they fit as part of the present

review. On the other hand, the projection MLS defines a local method to get a point

projected on an unknown surface defined by the samples. Obviously, this procedure is

not directly applicable to the surface reconstruction problem as described in this survey.

In our case of study, projection MLS methods are useful as a preprocessing of the points

before a surface reconstruction method is applied, since they can be used for tasks such

as upsampling, downsampling or noise reduction. However, these kinds of methods are

widely used in current point-based visualization, that is, visualization techniques using

points as primitives. This is because projection MLS allows the resampling of the surface

at a desired sampling rate, and thus renders an image of the surface at a desired resolution.

For the above mentioned reasons, in the following, we focus on specific examples of

MLS having an implicit formulation. Also, it is worth noting that, since all the MLS

112 CHAPTER 4. STATE-OF-THE-ART REVIEW

definitions are defined just near the points, bounded surfaces can be recovered at the limit

of their support.

Point Set Surfaces Based on the idea of stationary points defined by Levin [137], the

authors introduced the projection operator in the computer graphics literature in [5], with

the name of Point Set Surfaces (PSS). Given a query point px near an unknown surface,

its projection onto the approximated MLS surface can be computed using only a set of

k-nearest neighbors from P . The projection operation is performed in two steps: first a

local reference frame is computed, then a bivariate polynomial approximation is computed

in this local frame, and finally the point is projected onto it.

In order to find the reference frame (or plane) H for a given pq ∈ R3 (q for query) near

S, the idea is to minimize the local weighted sum of squared distance of points pi to the

H(x), that is, minimize the following function:

E(pq, n) =

|P |∑
i=1

φ(‖pi − pq‖)(nT pi − nT pq)2, (4.58)

where φ is the weighting function. The unknown pq is formulated in terms of the query

point px as a displacement s from it along n: q = px + s · n. This leads to the following

function to minimize:

Emls(pq, n) =

|P |∑
i=1

φ(‖pi − pq − s · n‖) 〈n, pi − x− s · n〉2 . (4.59)

Note that the weighting function φ(px) is a Gaussian having the following form:

φ(px) = e
−p2x
h2 , (4.60)

being h a parameter reflecting the anticipated spacing between neighboring points. This

parameter h serves as a tradeoff to smooth out features of the surface. Using non-linear

iterative minimization, and prioritizing the smallest s, the required reference frame is

retrieved.

On the other hand, to find the local bivariate polynomial fit g(x, y) = z, a standard

least squares technique is applied. Each point pi defines a height value f(pi) over the

reference frame H, and the error to minimize is the following:

Emls − h(g(x, y)) =

|P |∑
i=1

φ(‖pi − pq‖)(g(xHi , y
H
i)− f(pi))

2, (4.61)

where, after the previous local frame computation, pq is the projection of pi in H, and

(xHi , y
H
i) its local coordinates in H. Finally, the projection of the point is px+(s+g(0, 0))n.

4.5. APPROXIMATION-BASED METHODS 113

(a) Point Set (b) Point Set Surfaces

(c) Implicit PSS (d) Algebraic PSS

Figure 4.15: Surface reconstruction example for some methods in the Moving Least Squares cate-

gory. We used the original APSS [97] implementation (d), which also contains the original Point

Set Surfaces [6] (b) and the Implicit PSS [124] (c). The implicit formulations posed by each variant

are contoured through Marching Cubes [145].

114 CHAPTER 4. STATE-OF-THE-ART REVIEW

The initial definition of the MLS projection operator by Alexa et al. [7] can also be cast

to an implicit formulation. This procedure has been reinterpreted for simplicity by the

same authors in various articles, by only using the reformulated first part of the algorithm,

that is, the projection to a local reference plane. Based on this simplification, they propose

an implicit formulation of their MLS definition [6] as:

I(px) = nx(a(px)− px), (4.62)

where a(x) is the weighted average of neighbor samples:

a(px) =

∑KP (px)
i φ(‖px − pi‖)pi∑KP (px)
i φ(‖px − pi‖)

. (4.63)

The normal direction nx at px is computed as a weighted average of input normals, in

the case of oriented point sets, or as the direction of smallest weighted covariance at px,

for an unoriented set. See the smooth results provided by this technique in Figure 4.15

(b). Furthermore, they allow for boundaries by defining the surface just around a given

distance from the point set [2].

Another interesting approach is the one by Amenta and Kil [14], casting the previously

defined surface as the set of critical points of an energy function along lines defined by a

vector field. Furthermore, they also claim that all the existing variants of MLS surfaces

can be defined using an energy function paired with a vector field.

Finally, it is worth noting that the locality of this method has been used to develop

out-of-core methods [59], working on slabs of the data fitting in memory to process large

point sets.

Implicit MLS This variant of MLS was first defined by Shen et al. [191] to interpo-

late/approximate polygon soups. The system of equations derived from Equation (4.57)

using the point set constraints, which are the ones we are interested in, is the following:
φ(‖px − p1‖)

. . .

φ(‖px − pn‖)

gT (p1)
...

gT (n)

 c =

φ(‖px − p1‖)

. . .

φ(‖px − pn‖)

I(p1)
...

I(pn)

 . (4.64)

They solve for c using normal equations. Notice that this approach is similar to the

MPU approach proposed in [165], and described in Section 4.5.3 of this chapter. In this

case, a local fit is computed for each point, while in MPU the space is first partitioned

using an octree and the fit is computed on each of its leaves.

Following the proposal of Shen et al., but applied to point clouds directly, we find

the simple implicit MLS approach proposed in [124]. By taking g = [1] and assuming

4.5. APPROXIMATION-BASED METHODS 115

I(pi) = 0, the definition they propose for the MLS implicit is the following:

I(px) =

∑|P |
i=1 φ(‖px − pi‖)(nTi (px − pi))2∑|P |

i=1 φ(‖px − pi‖)
. (4.65)

That is, each point defines a local tangent plane (given its normal), and the weighted

distance from a point px to all the tangent planes defined by the points P is the value of

the implicit MLS surface for px. The results of applying this simple procedure are depicted

in Figure 4.15 (c).

By assuming a uniform sampling, the author demonstrates that the zero-set of the

resulting implicit is isotopic to the original surface. Extending this work, Dey and Sun [68]

propose using a weighting function (a Gaussian) dependant on the lfs(P). By doing this,

they can also obtain theoretical guarantees in the case of non-uniform sampling.

Algebraic PSS Another popular approach is the one presented by Guennebaud and

Gross [97], where the APSS are described. As opposed to the previously presented pro-

posals for Implicit MLS, they define the implicit function for each query point px as an

algebraic spherical fit at this point. By fitting algebraic spheres instead of planes, the

APSS achieves a non-iterative procedure to get an implicit surface representation as well

as a projection operation. An algebraic sphere is defined by s(px) = [1, pTx , p
T
x px]u, where

u = [u0, u1, u2, u3, u4] is the vector of coefficients.

The fitting procedure described uses normals to further constrain the solution. In case

of unknown normals, an initial simple algebraic sphere is fit to a point using its neighbors.

This initial fit is used to get an approximated unoriented normal as the gradient of the

scalar field it describes. To get a coherent orientation along the point set, a MST (P)

is constructed, so the procedure is similar to the method by Hoppe et al. [104]. First,

a confidence value is assigned for each of the normals, based on the residuals of their

eigenvalues compared to their smallest positive one. Each edge on the graph has as its

weight value the sum of the confidences of its two endpoints. Moreover, some of the edges

in the MST are pruned, by removing edges from a point to a neighbor that is behind

another neighbor, i.e., pj is removed from the k-nearest neighbors of pi if there is a point

pn so that (pi − pn)T (pj − ph) < 0. This definition allows taking into account only the

closest points to pi in each direction. The propagation of the normals starts orienting

outwards a point on the bounding box of the set, and traversing the tree. At each edge,

the propagation of the orientations between points is performed by fitting an algebraic

sphere as an approximation of the surface passing through the two points.

Once the normals are known, the authors propose including the constraint of having

the values of the fitted sphere gradient equal to the normal values at each pi ∈ P . This

116 CHAPTER 4. STATE-OF-THE-ART REVIEW

formulation results in a linear system of equations to solve:

W
1
2 (x)Du = W

1
2 (x)b, (4.66)

where:

W (x) =

w(px, p1)
. . .

w(px, pn)

βw(px, p1)
. . .

βw(px, p1)
. . .

βw(px, pn)
. . .

βw(px, pn)

D =

1 pT1 pT1 p1

...
...

...

1 pTn pTnpn

0 aT1 2aT1 p0

...
...

...

0 aT1 2aT1 pn
...

...
...

0 aTd 2aTd p0

...
...

...

0 aTd 2aTd pn

b =

0
...

0

aT1 n1

...

aT1 nn
...

aTd n1

...

aTd nn

, (4.67)

where ax denotes the unit basis vector in dimension x of the coordinate system of the

fitting reference frame, and β is a weight for the normal constraints.

It is worth noting that they also rely on a weighting function that has the following

form:

w(px, py) = φ

(
‖px − py‖
hi(px)

)
, (4.68)

where the spacing hi(px) can be dependant on the sampling of P , and φ is recommended

to be φ(r) = (1− r2)4, if r < 1 or zero otherwise. A sample result of this method can be

found in Figure 4.15 (d).

In a later work from the same authors [96], they claim that the constraint of aligning

the gradient and the normals of the points is sufficient to achieve the u1, u2, u3 and u4

from u, so only the u1 component remains unknown. Thus, they first compute these 4

components, and then they use the algebraic distance constraints to find u1. This 2-step

process provides a faster fitting. Moreover, they propose multiplying the u4 component

with a user’s parameter, which provides control of the curvature of the fitting.

Hermite PSS The previously introduced implicit definition of PSS is modified to allow

for the interpolation of both point and normal constraints of Alexa and Adamson [4]. This

is achieved by using singular weight functions, i.e., RBFs tending to infinity when close to

zero. An example of such a function can be:

φ(px, py) = ‖px − py‖−m , (4.69)

where m ≥ 2.

4.5. APPROXIMATION-BASED METHODS 117

Using these weighting functions, they enforce the implicit function to take the previ-

ously required interpolatory constraints for each pi ∈ P :

a(pi) = pi, n(pi) = ni, (4.70)

being a(x) the centroid, as presented in Equation (4.62), n(x) a function giving a normal

at a point. That is, when evaluated at input points, the points themselves and their

normals are preserved.

4.5.5 Deformable Surfaces

Deformable surfaces methods start the process with a dummy initial surface, usually a

very rough approximation of the factual or just a simple shape, e.g., an sphere, enclosing

or enclosed into P . Then, this initial shape is iteratively deformed towards the input point

cloud.

The majority of these methods use an implicit form to represent the moving surface,

since it allows making computations of a surface inside the cartesian grid without the need

to parameterize the moving surface. Nevertheless, and despite the drawbacks commented

in Section 3.2.1.2, there are also some methods using a deformable explicit surface.

Level Set A representative example of this section is the level set approach. The level

set is a method for deformation of closed curves or surfaces in d dimensions. The track-

ing of the surface is done through its zero level set (i.e., the 0-isosurface) in its implicit

representation. This implicit surface is dynamically deformed and tracked according to a

given Partial Differential Equation (PDE). Thus, the level set method proposes a non-

parametric variational optimization tracking a surface deformation on a regular grid.

Zhao et al. [217] were the first in using the level sets formulation for surface recon-

struction. Later, the authors updated the method by speeding-up the techniques for the

computation of both the level set and the initial surface [216].

Intuitively, during the level set method, the surface is iteratively deformed so as to

minimize a given energy functional. Two independent models defining this energy are

proposed by the authors. The first one, referred to as the minimal surface or the gradient

flow model, is a variational formulation where the energy to minimize depends on the

distance to the input data P and also a regularization term depending on the current

isosurface S̃:

E(S̃) =

[∫
S̃
distd(px, P)area(S)

]1/d

. (4.71)

Using this energy term, the resulting surface behaves like an elastic membrane attached

to P . The Euler-Lagrange formulation derived from the energy term in Equation (4.71)

118 CHAPTER 4. STATE-OF-THE-ART REVIEW

is used to derive the stationary condition related to the energy term:

distd−1(px)

[
∇distd(px) · nx +

1

d
distd(px)k(px)

]
= 0, (4.72)

where we can see a balance between the potential force, the first term in square brackets,

and the surface tension, which corresponds to the second term in square brackets. Fur-

thermore, the scaling factor distd−1(px) provides the membrane to be more rigid away

from the input data and more flexible when close to it. The parameter d, i.e, the norm

used by the distance function, affects this flexibility.

The second model presented is the convection one. The presented gradient flow model

in Equation (4.72) requires the computation of the mean curvature of the surface, which is

a nonlinear parabolic equation. Following Courant-Friedrichs-Lewy (CFL) conditions [57],

the time step for evolving the surface ∆t is restricted to be less than h2, where h is the

resolution of the grid discretizing the working space. This results in lots of iterations

being needed in order to reach the local minimum defining the surface. For this reason,

the simpler and coarser convection model is recommended to be executed first, followed

by the more complex and finer gradient flow model computation. The convection model

of a flexible surface S̃ on a velocity field, which in our case corresponds to the distance

function to P , is described by the differential equation:

dS(t)

dt
= −∇dist(px, P), (4.73)

these equations reflect that a point px, when attracted by this distance field, is attracted

to its closest point in P .

The previously reviewed models define the energy functionals to minimize inside the

level set method. Starting from a rough initialization of the surface, it is deformed towards

the minimum following a motion model, i.e., it is iteratively deformed at different time

steps. Thus, in order to apply the level set formulation we need to extract its time evolution

(motion) as a PDE. In order to do so, the zero level set must have the same motion law

as the moving surface:

dI(S(t), t)

dt
= I(t) +

dS(t)

dt
· ∇I = 0, (4.74)

where dS(t)
dt represents the velocity of px in:

S̃ = {px : I(x, t) = 0} . (4.75)

The motion of the gradient flow and convection models has to be extended to all

possible level sets of I(x, t). Since in both models the motion depends only on the geometry

4.5. APPROXIMATION-BASED METHODS 119

of the moving surface, the motion is geometric, and the same one has to be applied to all

level sets. Thus, the gradient flow level set formulation remains as follows:

δI

δt
= |∇I|

[
∇d ∇I
|∇I|

+ d∇ ∇I
|∇I|

]
, (4.76)

while the level sets formulation of the convection model is the following:

δI

δt
= ∇dist(px, S) · ∇I. (4.77)

With the PDEs derived, an initial signed distance function is iteratively distorted using

Equation (4.77) in the initial time steps, and later refined following Equation (4.76) in the

final steps. Therefore, is important to get a reliable initialization of this signed distance

function.

Starting with the unsigned distance defined from P , an outer isovalue far enough from

the points to capture the shape of the surface is selected. Obviously, a closed shape

defines two iso-contours in its unsigned distance field: one on the inside of the shape and

one outside. The idea is to use the outer iso-contour to define the initial signed distance

function. Using the knowledge of the bounding box defined by the grid I to be on the

outside of the surface, the outer volume is propagated to the previously defined outer

isovalue. Then, all the points not tagged as exterior are defined as interior, and a signed

distance function to the isovalue can be built.

While the level set definition remains the same through the two proposals [170, 215],

the initialization procedures differ. In their first approach [217], the unsigned distance

field is built using the eikonal equation, upwind updates and Gauss-Seidel iterations using

a different ordering of sweeps accross the discrete grid I. On their second approach [216],

a fast tagging algorithm is proposed.

Note, however, that deforming the initial signed distance inside a discrete grid following

either Equation (4.77) or (4.76) may produce the resulting implicit not being exactly a

signed distance function. For this reason, a reinitialization procedure is applied after a

number of iterations in order to maintain the evolving isosurface as a signed distance

function.

Coulomb Potentials The method proposed by Jalba and Roerdink [111] uses a modi-

fied version of the fast tagging approach presented above, called the convection algorithm.

Basically, it provides a scalable and memory efficient process by redefining the process to

be performed in an octree structure. In this method, the term dist(px, P) in Equation

(4.73) is substituted by the electric scalar potential (a.k.a. Coulomb potential).

Each point in the input set has an associate charge value q(pi). Authors propose not

using the Coulomb potential directly, but the generalized Coulomb potentials, which are

120 CHAPTER 4. STATE-OF-THE-ART REVIEW

able to decay faster with distance than as the inverse of distance:

I(pi) =
∑
j 6=i

qj
‖pi − pj‖m

, (4.78)

where m > 1 represents the order of the Coulomb potential. Higher order potentials are

a good choice for ideal data, while lower order potentials are required in order to filter

noise. Since the working space is subdivided using an octree, potentials are only evaluated

at the centers of the nodes of the octree, instead of the full space.

Given a user’s defined maximum octree depth, one point is inserted into the octree at

a time. As previously mentioned, each point consists of a position px and a charge q(px).

Upon insertion, if the point reaches the maximum allowed depth for the octree, and that

node is not empty, its centroid and total charge is assigned by taking into account all

points/charges falling into it:

centroid(odx) =

∑
px∈odx

pxq(px)∑
px∈odx

q(px)

q(odx) =
∑

px∈odx q(px)
, (4.79)

where centroid(odx) and q(odx) are the centroid and charge of a given octree cell of depth

d. Initially, all particles have the same charge q(px) = 1. Once constructed, the octree is

balanced (i.e., any two neighboring cells differ at most by 1 in depth). In order to evaluate

the Coulomb potential at any arbitrary position, the total charge and centroid of each

of the cells of the octree must be computed. The octree is traversed in depth-first order

and the Equations (4.79) are applied at each depth. Then, the evaluation is performed

following the approach proposed in Barnes and Hut[18], which is briefly discussed in the

following. To evaluate the potential at a given position px, a small positive test charge

q(px) = 1 is assumed, and the following equation is applied:

I(px) = q(px)

|P |∑
i=1

pi.q

|ri − pi|m
, (4.80)

where ri is the distance from px to the centroid of the ith cell. If the ratio l/ri < θ, l is the

size of the current cell in the octree and θ is a user-defined threshold trading for accuracy,

the potential is computed from the total charge and centroid of the particles falling within

the cell. Otherwise, the computation continues with the children nodes of the current cell.

Once a way to obtain the potential at an arbitrary position has been defined, the

convection algorithm can be applied. Of course, the algorithm must be redefined to work

in the octree structure. The traversal is performed in a breadth-first manner, using a heap

sorted by increasing value of the potential evaluated at each centroid(odx). Starting with

a set of cells known to be at the exterior of the shape, the queue is built using the set of

exterior cells that still have at least one untagged cell. Then, the front advances towards

4.5. APPROXIMATION-BASED METHODS 121

non-empty leaves following the values of I in increasing order, labeling the cells as exterior

at each marching step. When the ridges and local maxima of I are reached, the marching

stops and the current cells are labeled as part of the boundary. The remaining cells are

labeled as interior.

Note that instead of initializing an outer surface and deforming it through a level

set [216], the tagging algorithm is used directly to find the exterior volume of the surface

isovalue defined by the previous potential. Thus, the interface in the volume corresponding

to the surface is fit directly. Basically, the tagged volume is considered as the indicator

function χ, which is smoothed out in order to alleviate the stairwise shape that would

appear if the isosurface was directly extracted from it. The smoothed version χ̃ of χ is

computed as the sum of contributions of nearby cells, where each contribution is weighted

by quadratic B-spline kernels.

Touch-Expand Graph Cuts In latter years, there has been a greater popularity of S-T

graph cuts methods to solve some variational formulations. In the present case, the method

of Lempitsky and Boykov [135] propose an extension of existing S-T cuts approaches to

work on a slab of the volume at a time, in this way reducing the memory requirements

that would arise if using a whole discretized grid on the working space.

In this case, the energy to minimize is expressed as follows:

E(S) =

∫
S
λds−

∫
S
〈~vs, ns〉ds. (4.81)

Below we discuss the meaning of this expression. The first integral of the energy is the

shape prior, corresponding to the typical area-based regularization governed by the user’s

parameter λ. The second integral accounts for the data fitting and tries to maximize the

flux functional. The flux is a measure of how well the surface is aligned with a vector

field. In the present case, one can generate a semi-dense vector field generated from P

and its associated normals. Here semi-dense means that each point and normal is blurred

in the space using a Gaussian, to spread its influence. In Equation (4.81) this similarity

between the normals over the surface ns and the input vectors ~vs is enforced through the

dot product. Using a divergence theorem, the problem equals the maximization of the

integral over the volume M bounded by S (i.e., the interior of S):

E(S) =

∫
S
λds−

∫
M
∇vpdp. (4.82)

An occupancy metric, derived from the lines-of-sight from the sensor or the silhouette

information, can be further added to the minimization if available.

In order to minimize the previous energy, the touch-expand algorithm uses a max

flow algorithm within a band around the points. The exterior/interior slabs needed to

122 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Point set

(b) Touch-expand result (c) Smoothed

Figure 4.16: Touch-expand algorithm [135] applied to the Stanford Dragon dataset (figure in the

first row). Note how the resulting surface presents a staircase effect, produced by the method being

a binarization inside a regular voxel grid (lower left figure). As suggested in the original reference,

some smoothing is needed to alleviate this aberration (lower right figure).

connect the source/sink links (correspondingly separating the in/out sets) are detected

using normal information, or even cruder notions like the scanning pose/direction. Then,

the typical min-cut approach is computed to obtain a separation on the slab minimizing

the given energy. If the initial band is too narrow in some parts of the object, the solution

retrieved by the S-T cut touches one of the source/sink sets, meaning that the solution was

not contained in the initial slab. Consequently, the slab is enlarged around the touched

area, and the min-cut is computed again. This process continues iteratively until no

touches are produced in the result, i.e., the optimal solution is within the current slab.

As opposed to other methods using graph cuts, like that of Hornung and Kobbelt [107],

where the optimization is performed on a fixed band, this method ensures finding a global

solution, as it extends the band on demand if the global minimum is not located inside it.

Check the results posed by this method in Figure 4.16.

Discrete Membrane Shrinking Apart from the previously described variational meth-

ods, other strategies have been proposed using deformable surfaces with an indicator func-

4.5. APPROXIMATION-BASED METHODS 123

tion as a result. One of them is the one presented by Esteve et al. [76], where an initial

membrane is continuously deformed using a sequence of contraction operations that are ex-

ecuted sequentially. It has the advantage of not relying on distance functions, nor needing

to compute neighbors’ relations between points.

They formulate the α-shapes concept in a discretized voxel grid by changing the eraser

object from a ball to a cube. The aim of the algorithm is to obtain the solid that would

remain after erasing the voxel grid with cubes of different sizes. Larger cubes are used

to reveal a crude volume, and sequentially smaller cubes are used to reveal finer details.

Furthermore, it takes into account the possibility of having more than one component

described in the working space.

Voxels are marked as hard/soft, according to whether they contain a point from P , or

an inside/outside/boundary relative to the current membrane at a given iteration in the

method.

The main algorithm consists of voxelizing the space, and marking as hard voxels those

containing an input point. Then, a discrete membrane of face connected voxels is initialized

as the 6 faces of the voxelization. Then, this membrane is iteratively contracted at locations

having soft voxels, using hard voxels as a fix reference to restrict the shrinking process.

The shrinking of the discrete membrane is performed by using entities called the plates.

A plate is a square of n × n voxels aligned with a plane defined by a coordinate in the

reference frame (X, Y or Z). The front/back sides of the plate are the n×n voxels located

in front/back of the plate. The lateral sides are the voxels located around the plate on the

same axis-aligned plane. The lateral front/back sides are the voxels located on the lateral

sides, but on the front/back plane. The Discrete Membrane (DM) Shrinking procedure

uses 3 different operators for a plate of a given size:

• Contraction: A plate made of soft boundary voxels or outside voxels whose back-

sides are made of outside voxels modifies the DM by converting boundary voxels

that belong to the plate in outside voxels, and front, lateral and lateral front voxels

of the plate to boundary voxels.

• Undo Contraction: This reverses the Contraction operation. This only happens

when a set of Contraction operations lead to an incursion. Each outside voxel keeps

track of its generation, i.e., the plate size that has converted it into an outside voxel.

An incursion occurs when two outside voxels of different generations are on opposed

faces of a boundary hard voxel.

• Freezing: This converts boundary voxels into frozen ones, which are soft voxels

that are treated as hard voxels in future tests.

124 CHAPTER 4. STATE-OF-THE-ART REVIEW

The algorithm starts with a large plate, and uses the 3 operations above to deform the

DM. Then, at each iteration, the size of the plate is decreased, covering finer parts of the

object.

Due to the use of a planar plate of voxels to deform the surface, the final shape

tends to have flat regions of strong steeping in areas of low density of points. For this

reason, a relaxation step is needed to smooth the resulting surface in these areas. Even

with the smoothing step, the resulting surface has a steep look if the surface is extracted

directly using marching cubes, since it is not an implicit but an indicator function, so a

post-processing after surface extraction is needed for smoothing these features in order to

obtain a visually pleasant surface.

Self-Organizing Map Methods commented on up to this point are based on an implicit

formulation of the deformable surface. However, some authors have proposed methods to

deform an explicit surface representation, despite the increasing level of complexity that

requires keeping track of its evolution.

From this last class of methods, there is a set that adapts the Neural Network (NN)

concept for surface reconstruction. Neural networks are grids of interconnected nodes

which respond to a set of input signals, and which try to mimic the behavior of their

biological counterparts. They are used in both supervised and unsupervised learning.

In an early project by Yu [212], a Kohonen’s Self-Organizing Map (SOM) is used as a

structure to recover the surface. The NN is arranged into a triangular mesh. Each neuron

represents a vertex of a surface that deforms during the learning process of the SOM, so the

weights of each cell are their coordinates in 3D space. At each step of the learning process,

the input is a randomly chosen 3D point from the set. The point closer, in Euclidean

distance, to that point is the winner point, and its weight and that of its neighbors is

modified to approach this distance. The evolving surface following this approach tends

to get stuck in concavities. In order to solve this, the edge swap operation [105] is used

to disambiguate these cases. Moreover, the learning is performed at different sequential

resolutions for the SOM mesh, letting the coarse meshes adapt to the global topology, with

finer meshes representing the details. From one level in resolution to the next, triangles

are divided into four by creating a new vertex at the middle of each edge. Note however

that the topology of the initial mesh cannot change through the process.

Growing Cell Structure Following the above mentioned approach, we find the work of

Ivrissimtzis et al.[110, 109]. The main differences between this work and that of Yu [212]

is that in this case a Growing Cell Structure (GCS) is used. The GCS approach allows

the NN to grow incrementally during the learning process instead of being static as in the

4.5. APPROXIMATION-BASED METHODS 125

SOM method.

The main steps are similar to the ones presented by Yu [212]: a random point is the

input to the network, and its closest point on the net along with its neighbors are moved

towards the point. To speed up the nearest-neighbor search, the vertices of the network

are stored in an octree structure that is updated when a vertex position changes.

As stated above, the GCS grows incrementally, so its topology must change after a

certain number of learning iterations. The initial surface could be something simple, like

a tetrahedron, and the method should have the ability to change the number of vertices,

create boundaries and find handles on the surface. Vertices store a counter that represents

the times it has been the winner in the learning steps. If a vertex has a large value for this

counter, it is split using a vertex split operation, since it represents an area that is relevant

for the surface described by the points, and more vertices should be used to represent it.

Contrarily, the vertices having a low value in the counter, i.e., the most inactive ones, must

be deleted with a half-edge collapse operation. Both the vertex split and the half-edge

collapse operations are described by Hoppe et al.[105], and do not change the topology

of a given mesh. However, the method also allows triangle removal and boundary merge

operations, which create and merge boundaries respectively, thus changing the topology of

the evolving mesh. Triangle removal is performed in very large triangles, which represent

parts of the surface that are not correctly sampled given P . On the other hand, two

boundaries are merged if they are close enough according to their Hausdorff distance.

Furthermore, two approaches are provided to improve the performance of the NN.

Since the selection of the input point at each step is a random process, the neural mesh is

not necessarily the same at any execution. Resulting models can contain errors in some

cases, so the authors propose using the ensembles technique, which consists of executing

the learning a given number of times and merging the results. The algorithm is then

applied, and the different results are merged by using an averaged voxelized model. The

implicit function inside this voxelized model is extracted and the learning starts again.

Also the forgetting approach is used, which consists of coarsely voxelizing the interior of

the moving mesh to delete the details. This approach usually improves the quality of the

learning process in NNs.

Implicit SOM We have seen that approaches based on NNs have posed the surface to

track in its explicit formulation. However, this technique can also be used to track an

evolving implicit function modelled in a SOM, as presented by Yoon et al. [211].

The voxels of the regular grid discretizing the working space are, in this case, the nodes

of the NN, which contain a scalar value. Then, the algorithm applies three sequential steps

iteratively:

126 CHAPTER 4. STATE-OF-THE-ART REVIEW

1. Generate training data: Using points with normals, samples are generated along the

normal direction, both inward and outward, in order to create a sample of the signed

distance function [43].

2. Competitive learning: The node vi nearest to a training sample ps updates its scalar

value by vi = vi + α(I(pi) − vi), being the variable α a parameter governing the

sensitivity of the training.

3. Propagation/smoothing: Note that the learning step only affects a subset of G,

corresponding to the nodes nearest to the training data. In order to propagate the

learning away from the data, a set of iterations of Laplacian smoothing is performed:

vi = λvi + (1− λ)mean(GN6(vi)). The λ value is decreased at each iteration of the

learning process.

After some iterations of the three steps above, the SOM converges. However, the au-

thors noticed that the previously described process leads to an overfitting of the isosurface

to the data. They further propose an overfitting control methodology, by selecting, at

the competitive learning step, only one set of samples as training, and leaving the rest to

validate the current I. After training, the validation set is compared to the values in the

implicit function, and the errors are computed. If the errors do not differ too much from

the ones in the previous iteration, the process is stopped.

Coarse-to-Fine Explicit There are other ways of evolving an explicit surface to fit

a given point cloud. A good example is the work of Sharf et al. [190], where an initial

closed surface placed inside the object is deformed following a scalar field representing the

unsigned distance to the points. The main idea is to follow a coarse-to-fine approach, and

force the surface to represent the global geometry before going for the detailed parts. The

model is deformed until it is sufficiently close (according to a user’s parameter) to P , and

then an MLS projection operation is performed to project vertices to the point set. It also

applies mesh optimization procedures at each iteration to ensure the quality of the mesh.

The deformable surface is initialized as a small sphere formed by an unstructured

triangle mesh, placed in the interior of the point cloud. The placing of this seed surface

is left to the user. The evolution moves the vertices in an outward normal direction,

following the scalar field. This scalar field is made from the unsigned distances of each

voxel to its closest point. Notice that it can be unsigned because the motion is guided

by the outward normal direction, and the scalar field is only used to define the speed of

the movement. The scalar function is represented inside an octree, and is made from a

coarse RBF approximation using the method by Ohtake et al. [167] to define the unsigned

zero level set, followed by the fast marching method proposed by Zhao et al. [216] for

4.5. APPROXIMATION-BASED METHODS 127

signing. The evolution resembles a balloon inflating inside the object, and different fronts

or sets of points compete at the same time for evolution. A parameter accounting for

surface tension is responsible for the coarse-to-fine behavior. It starts as a large value, and

is incrementally released each time the evolution of a vertex is stopped. Also, when the

tension is below a certain threshold, the front is subdivided. The model can arrive at an

inactive state before all the target points are within a small given distance from the target

points, so some mesh components are redefined as fronts by using a wake up procedure.

This procedure consists of defining the set of unsatisfied vertices, i.e., those with a large

distance to the points. A distance transform is computed using only those points, and the

closest components in the mesh are activated as fronts. These fronts are subdivided and

their tension is released, allowing further movement, which is guided now by the distance

transform of the unsatisfied points.

At each iteration, the new positions of the vertices are computed using least squares

for solving a constrained Laplacian system, following the approach by Sorkine and Cohen-

Or [198]. When the vertices of the mesh are sufficiently close to the point set, the vertices

are projected to the MLS surface defined by P .

4.5.6 Gradient Enforcement

The methods falling in this category regard the set of input points with normals as a

discrete set of samples of a gradient field over R3. This gradient field can be used to impose

some restrictions on the implicit surface described by the points. Given its properties when

casting the problem in this formulation (commented on in each method), the indicator

function is normally selected to represent the surface of the object.

Luckily enough, all the methods in this section have an implementation provided by

the authors, and a visual comparison containing all of them can be seen in Figure 4.17.

Fourier Transform The FFT method proposed by Kazhdan [117] was the first to

exploit gradients for surface reconstruction. In his approach, the indicator function of

the object is defined using the Fourier transform. Basically, the Fourier coefficients of the

indicator function described by the points are computed, and the indicator function is

finally recovered with its inverse transform.

As with some of the methods in this category, it is based on Stoke’s theorem, and more

specifically, on the Divergence (a.k.a. Gauss) theorem, which allows the expression of a

volume integral as a surface integral, thus providing a method for expressing the integral

of a function over the interior of a region as an integral over its boundary:∫
M
∇~F (px)dpx =

∫
∂M

〈
~F (px), nx

〉
dpx, (4.83)

128 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Happy Buddha

dataset

(b) FFT (c) Wavelets

(d) Poisson (e) Screened Poisson (f) SSD

Figure 4.17: Examples of the Gradient Enforcement methods applied to the Stanford Happy

Buddha dataset. From left to right, top to bottom: input point set, FFT [117], Wavelets [153],

Poisson [118], Screened Poisson [119] and Smooth Signed Distance (SSD) [41]. In all cases, the

depth of the octree used is 10, except for the FFT method, which uses a fixed regular grid of size

5003.

4.5. APPROXIMATION-BASED METHODS 129

where M is a volume, ~F (px) defines a vector field, and ∇~F (px) its divergence. Obviously,

with only the input points as samples on the surface, the previous integral can not be

applied directly. Nevertheless, a Monte Carlo approximation can be computed using this

discrete set: ∫
M
∇~F (px)dpx ≈

|M |
N

|P |∑
i=1

〈
~F (px), nx

〉
. (4.84)

As previously stated, given a solid object M and its indicator function χ, the problem is

to find the associated Fourier coefficients. Those coefficients being χ̂, they can be obtained

using a volume integral. However, and by means of using the Divergence theorem, the

volume integral can be cast to a surface integral:

χ̂(pf) =

∫
[0,1]3

χ(px)e−2πi〈px,pf 〉 =

∫
M
e−i〈pf ,px〉dpx =

∫
∂M

〈
~F (px), ~N(px)

〉
dpx. (4.85)

Note that while throughout this chapter we used i as an index, here it represents the

imaginary unit. Additionally, the surface integral can be discretely defined by the input

oriented point cloud using the Monte Carlo approximation:

χ̂(pf) =
1

|P |

|P |∑
j=1

〈
~F (px), nx

〉
. (4.86)

Now, ~F has to be a function whose divergence∇~F is equal to the complex exponentials,

to agree with Equation (4.83). From the many possibilities following this equality, the

authors propose using a function that, when converted to its indicator function, rotates

according to the normals of the input points. Being px = (xx, yx, zx) ∈ P and pf =

(xf , yf , zf) ∈ χ:

~F (pf)(px) =

i·xf

x2f+y2f+z2f
e−i·(xfxx+yfyx+zf zx

i·yf
x2f+y2f+z2f

e−i·(xfxx+yfyx+zf zx

i·zf
x2f+y2f+z2f

e−i·(xfxx+yfyx+zf zx

 . (4.87)

Given these definitions, one is able to compute the Fourier Coefficients up to an additive

and multiplicative constant. However, a single coefficient requires a summation over all

input points.

In order to avoid this complexity, the authors propose casting the problem as a con-

volution. If the point cloud is splatted on a regular grid, it results in a gradient field,

containing only values at the positions of P . The Fourier coefficients of this gradient field

~̂N and those from the indicator function are related:

χ̂M (pf) =
i

‖pf‖2
〈
~̂N(pf), pf

〉
. (4.88)

130 CHAPTER 4. STATE-OF-THE-ART REVIEW

Thus, the simplified computation consists of splatting the normals onto the voxel grid,

obtaining ~̂N , and then using the fast Fourier transform to convolve ~̂N with the following

filter:

~̂F (pf) =
i(xf , yf , zf)

(x2
f , y

2
f , z

2
f)
. (4.89)

Notice that the recovered indicator function, as previously observed, has an unknown

additive factor (because the function is undefined at pf = (0, 0, 0)) and an unknown

multiplicative factor (the surface area, |M | term in Equation 4.84, is unknown). For

this reason, in order to obtain a valid isovalue to extract the surface from the recovered

pseudo-indicator function, the values of the characteristic function at the input points are

recovered, and an average of these values is used. This is motivated by the fact that points

P should lay on, or close to, the surface of interest.

So far, the point set has been assumed to have a regular sampling, so the Monte

Carlo approximation could be applied directly. However, since real datasets usually have

a non-uniform sampling, the authors propose weighting each point contribution to the

approximation by a factor describing its sampling density. In order to do so, they propose

a heuristic consisting of splatting a Gaussian on each point from P in the volumetric grid,

and merging them together. Then, the weight for each point is set as the inverse value

resulting in its position on the grid.

There are some methods that try to improve the original method, including new heuris-

tics. This is the case of the method proposed in Schall et al. [184], were the memory

limitations of FFT reconstruction are partially solved by using a partition of unity ap-

proach (see Section 4.5.3). The space is subdivided using an adaptive octree, and the FFT

reconstruction algorithm is applied on each cell. An explicit representation is constructed

and the Hausdorff distance from the points falling in that cell to the reconstructed mesh

is computed. If this distance is above a threshold, the cell is further subdivided and the

process continues. In order to avoid badly reconstructed areas at the borders of the leaf

octree cell, the points taken into account to compute a local reconstruction for a cell are

those falling inside the area defined by doubling the cell size. Local contributions to the

indicator function are blended together using Gaussian weighting.

Wavelets The main drawback of FFT reconstruction is that Fourier coefficients are

globally supported functions, which makes them complex to evaluate on large datasets.

As a proposal to overcome this problem, Manson et al. [153] substitute the Fourier co-

efficients with a hierarchy of compactly supported wavelet functions. The algorithm has

two parameters modifying the tradeoff between the accuracy of the reconstruction and

the computational complexity: the wavelet basis and its support size. Smoother wavelet

functions lead to smoother surfaces, but larger complexity, while large support size also

4.5. APPROXIMATION-BASED METHODS 131

leads to a better approximation, but at the expense of larger complexity. The reconstruc-

tion process may also be executed in a streaming fashion, keeping in memory small parts

of the model at the same time.

Wavelet expansion provides simultaneous localization in both frequency and spatial

domain, contrary to the Fourier expansion, which only refers to the frequency domain.

We briefly introduce the main ideas behind wavelets, describing them first in 1D for

simplicity, and then extending them to 3D. In order to briefly introduce 1D wavelets and

their associated transform, we must first talk about scaling functions. A scaling function

has the following form:

ϕj,k = 2j/2ϕ(2jt− k), (4.90)

where j and k are its parameters. The first one, j, accounts for the scale of the function:

the higher the j value, the higher the frequency of the function, and viceversa. This

parameter has a similar meaning to the parameter n, which represents the frequency

in the Fourier expansion formula: ϕn(t) = e−j2πnt. On the other hand, parameter k

represents the position of the function, that is, its shift. As already mentioned, this is

the spatial part missing in the Fourier transform. If function ϕj,k is a scaling function,

they are a family of basis functions, and therefore this means that any given function f(x)

can be expressed by a linear combination of them:

f(x) =
∑
j

∑
k

cj,kϕj,k(x). (4.91)

Each of the scaling functions define a function space Uj . If we name Wj the difference

between the two function spaces Uj+1 and Uj , we get that Wj contains the functions

representable in Uj+1 but not on Uj , because of its coarser resolution. In the same way

when the function space Uj is spanned by functions ϕj , the function space Wj can also be

spanned by a set of functions called wavelets:

ψj,k = 2j/2ψ(2jx− k). (4.92)

Given the concept of scaling and wavelet function, a wavelet expansion is defined as

follows:

f(x) =
∑
k

aj0,kϕj0,k(x) +
inf∑
j=j0

∑
k

dj,kψj,k(x), (4.93)

where the first term represents the approximation of the function at the first scale level

j0, which is a linear combination of scaling functions ϕj0,k(t), and the second term rep-

resents its details, by using a linear combination of wavelet functions from higher scales.

Following this nomenclature, aj0,k are the approximation coefficients, while dj,k are the

detail coefficients.

132 CHAPTER 4. STATE-OF-THE-ART REVIEW

Notice that ψj,k and ϕj,k are the same, so we can express Equation (4.93) as:

f(x) =
∑
k

cj0,kψj0,k(x) +
inf∑
j=j0

∑
k

dj,kψj,k(x), (4.94)

where each coefficient cj,k is given by:

cj,k =

∫
R3

f(x)ψj,k(x)dx. (4.95)

The extension to 3D is based on the displacement k. The displacement must be

performed in each of the possible directions of k. Thus, keeping in mind that we pretend

to do a Discrete Wavelet Transform (DWT), displacement k should be applied in 8 possible

directions. These 8 directions, which coincide with the set of vertices of a cube in [0, 1]3,

are the ones where we can apply Equation (4.94). If we mark this displacement with a

superindex, the formula is extended as follows:

cej,k =

∫
R3

f(x)ψj,k(x)dx, (4.96)

where e is the mentioned direction.

Back in the surface reconstruction method, our function f(x) is the indicator function

χ of the volume M , so substituting it in Equation (4.96), the formulation can be derived

in the following form:

cej,k = 23j/2
∫
M ψe1(2jx1 − k1)

ψe2(2jx2 − k2)

ψe3(2jx3 − k3)dx.

(4.97)

As in the previous FFT proposition above, we do not have samples from the interior

of the solid defined by χ, only samples from its boundary. Again, the solution consists

of using the divergence theorem to represent the volume integral as a surface integral,

following Equation (4.83). Also using a Monte Carlo approximation, the coefficients can

be expressed in terms of the input point samples:

cej,k = 23j/2
∑
i

~F ej,k(px), ~npxai, (4.98)

where ai is an approximation of the differential surface area at pi. This ai approximation

is obtained from an octree representation where the points are splatted, and is shown in

the following:

ai = 2−2di/l, (4.99)

where di is the depth of the octree cell, and l is the number of points falling in that leaf.

In order to fulfill the equality in Equation (4.83), and again as in the FFT case, the

vector-valued function ~F ej,k(px) has to accomplish:

∇ ~F ej,k(px) = ψe1(2jx1 − k1)ψe2(2jx2 − k2)ψe3(2jx3 − k3). (4.100)

4.5. APPROXIMATION-BASED METHODS 133

The authors provide a way of computing ~F ej,k(px) for each compactly supported wavelet.

Compact support computation of the coefficients provides less computational effort than

the FFT method, where each coefficient is described by all the input points. Notice that,

despite the wavelet coefficients having compact support, the coefficient c
(0,0,0,)
0,k , correspond-

ing to the approximation scaling function, does require a summation over all the input

points.

It is worth notice that the selection of the wavelet function to use affects the quality

and the speed of the reconstruction. Obviously, the more compact support the wavelet

has, the faster the method is in computing the coefficients. On the contrary, the more

support, the more quality of the final χ. For this reason, and in order to maintain a fast

reconstruction, the authors propose using compactly supported wavelet functions, and

then smoothing the output χ using a method optimized for octrees before obtaining the

surface from it.

Their implementation provides a way to compute the indicator function in a streaming

fashion, allowing the recovery of models that do not fit in memory by processing small

parts one at a time. First, the input points are sorted following a given direction, e.g.,

the Z of the reference frame. Then, a low resolution version of χ up to some octree depth

dm is built in memory using the above mentioned methodology. Next, the method is

applied in slices, advancing in the previously defined direction. The coefficients cej,k of χ

for dm < j < dmax are built, dmax being the maximum depth we want to achieve. At each

slice, points are inserted and the tree is refined if its resulting coefficient has a non-zero

value.

Poisson The most representative method of this part of the classification is the Poisson

method of [118]. Having the gradient of the indicator function being defined by the input

points with normals, one can cast the surface reconstruction process as the problem of

finding the indicator function whose gradient approximates the vector field ~N defined by

the input oriented samples:

minχ

∥∥∥∇χ− ~N
∥∥∥ . (4.101)

By means of applying the divergence operator, this can be cast to a Poisson problem:

∆χ = ∇∇χ = ∇ ~N, (4.102)

that is, compute the scalar function χ whose divergence of gradients, i.e., its Laplacian:

∇∇, equals the divergence of the vector field ~N defined by the input samples, which we

already consider as an approximation of the gradient of χ. As noticed by the authors,

the relationship between ∇χ and ~N is not direct. The indicator function χ is a piecewise

constant function, so its gradient is not well defined at the interface between χ(px) = 1

134 CHAPTER 4. STATE-OF-THE-ART REVIEW

and χ(px) = 0. For this reason, instead of assuming the perfect χ, they assume to be

working with its smoothed version. They use a Gaussian smoothing function φ to obtain

the smoothed indicator χ ∗ φ, leading to the following approximation:

∇(χ ∗ φ)(px) ≈
∑
pi∈P

area(pi)φpi(px)ni ≡ ~N(px). (4.103)

The presented equality mainly verges from the divergence theorem, and a Monte Carlo

approximation of the surface integral using the point samples weighted by an approxima-

tion of the area area(p) corresponding to that patch. This approximation of the surface

area at a given point is given by a procedure similar to the one executed in the FFT

method: splatting + convolution of the points using a Gaussian kernel. This procedure

produces a set of implicit weights w(px), which are directly considered as an approximation

of area(pi).

When building this approximated vector field ~N , the requirements of being accurate

near the surface is used to build it into an octree representation. As usual, this represen-

tation provides an alleviation in the memory requirements to perform the computations.

Each node o forming the octree has an associated function φo(q) centered on it and scaled

to fit its extension:

φo(px) = φ

(
px − centroid(o)

w(o)

)
1

w(o)3
. (4.104)

In this way, functions of deeper nodes are associated with finer and more precise

representations of the surface. The contribution of the functions of each node is distributed

to the eight neighbors on the same octree level using trilinear interpolation. As previously

mentioned, the contribution of each point is weighted by their approximation of the area

they cover, so the ~N field computation remains as follows:

~N(px) =
∑
pi∈P

1

w(pi)

∑
ON8,odepth(pi)

(pi)

αo,piφo(pi), (4.105)

where α are trilinear interpolation weights. Once the vector field is constructed, the

divergence operator is applied in order to obtain ∇ ~N .

All the information needed to solve the problem ∆χ = ∇ ~N is now available. If we

write the system with a matrix L so that Lx returns the dot product of the Laplacian

with each φo, the minimization can be written as follows:

min
x∈R|O|

‖Lx−M‖2 , (4.106)

being |O| the number of nodes in the octree, and M is an |O|-dimensional vector so

that mo = 〈∇ ~N, φo〉. In order to solve this system of equations, the sparseness and

symmetry of L (provided by the compact support and symmetry of φ) are taken into

4.5. APPROXIMATION-BASED METHODS 135

account. Furthermore, the inherent multiresolution of the octree and, consequently of φo,

is exploited to use a multigrid approach when solving Equation (4.106). Finally, and in

order to limit the amount of memory required to solve the system, the authors propose

using a block Gauss-Seidel solver for depths larger than a user’s defined threshold.

The final extraction of the isosurface follows the same proposal as FFT, i.e., find the

isovalue as the mean of the recovered indicator function at the input points. This procedure

is again motivated by the fact that χ is only recovered up to an unknown multiplicative

factor.

As the authors demonstrate in the appendix, the results obtained by the Poisson

method and the FFT method are equivalent, but the Poisson method requires far less

computational effort and memory requirements to be computed, allowing the method

to cope with larger datasets. Furthermore, a streaming out-of-core implementation to

ameliorate its complexity under large datasets has been proposed [31], along with further

GPU implementations [218] to speed up its execution.

However, a major improvement in this technique has been presented in the Screened

Poisson method [119]. Motivated by the oversmoothing that the original method provides

under some configurations, this extension accounts for a user’s parameter that imposes

a soft constraint on the resulting isosurface to pass through the input points, i.e., the

method behaves closer to an interpolative approach. Knowing that in the ideal indicator

function, the energy to minimize becomes then:

E(χ) =

∫ ∥∥∥ ~N(px)−∇χ(px)
∥∥∥2
dpx + λ

∑
pi∈P
‖χ(pi)− 0‖2 , (4.107)

where the first term is the same as in the original implementation, Equation (4.101), and

the second imposes a value-fitting constraint, λ being the user’s parameter guiding the

importance of this interpolatory weighting. As further improvements, the approximation

of χ is done in this case using B-splines as basis functions, the screened Poisson changes

boundary conditions from Dirichlet to Neumann, and alleviates the algorithmic complexity

of the solver.

Smooth Signed Distance Inspired by the fair applicability of the Poisson method, the

proposal by Calakli and Taubin [41] aims at recovering a signed distance function instead

of an indicator one. Taking again the points with normals as samples of the surface and

its gradient, they propose a variational formulation minimizing in a least-squares sense

the signed distance function induced by these oriented points:

136 CHAPTER 4. STATE-OF-THE-ART REVIEW

E(f) = λ0

[
1

N

N∑
1

f(pi)
2

]
+ λ1

[
1

N

N∑
1

‖∇f(pi)− ni‖2
]

+ λ2

[
1

M

∫
M
‖H(x)‖2 dx

]
,

(4.108)

where each term to minimize is under square brackets and the λx weights are used to tune

their weights in the minimization. As we can see, the first and second terms account for

the minimization of discrepancies between values of the function at points, which should

be zero, and between gradients of the function and normals at points respectively. The

final term accounts for regularization, where H(x) stands for the Hessian matrix of f at

x, integrated over the whole volume M .

This minimization is solved in an octree structure. More precisely, for each cell in

the octree, a trilinear interpolation of f(x) is used, while finite differences are used to

compute both ∇f(x) and H(x). By fixing a basis function, the whole minimization can

be expressed in terms of the parameter vector F , which reduces to a minimization of the

form E(F) = F TAF − 2bTF + C, having a global minimum at AF = b.

4.5.7 Integration

As the title of this section suggests, the methods in this category are similar in nature

to those in Section 4.4.1.3, but provide an approximate result as output. Thus, local 2D

connectivity is again assumed to be known for different shots or sets of points, and these

local reconstructions are merged together into a single model.

Volumetric Range Image Processing The most widely known and used approach is

the Volumetric Range Image Processing (VRIP) by Curless and Levoy [60]. It provides a

simple idea for merging local scans into a single voxel grid, by updating a distance function

one range image at a time. Each range image is transformed to a distance function and

added to the global distance function, following a weighted addition scheme.

More specifically, the global signed distance function ID is the signed distance from

each voxel vi to the nearest range measure along the line-of-sight of the sensor. Each

range image is transformed to a local signed distance function ILDi (vi), and a local weight

function ILWi (vi) is also computed for each of them. Then, each single distance and

weight function is placed in their correspondent positions in the global frame, since, as

usual, we assume the scans are registered in a global frame. Each voxel in ID(vi) has

an accumulated distance and an accumulated weight value IW (vi), computed with the

following simple additive scheme:

IDi (vi) =
IWi (vi)I

D
i (vi)+I

LW
i (vi)I

LD
i (vi)

IWi (vi)+ILWi (vi)

IWi (vi) = IWi (vi) + ILWi (vi).
(4.109)

4.5. APPROXIMATION-BASED METHODS 137

(a) Sample of range scans

(b) VRIP

Figure 4.18: Sample of the VRIP [60]. The top row shows a sample of 3 range scans (from a total

of 10) forming the Stanford Bunny dataset, while the second row shows the result of the algorithm.

Weights are used to represent the uncertainty of the measurements. For example, a

small weight should be given to points on the boundaries of the range image, since they

are more likely to be erroneous.

Range images are transformed to local signed distance functions by using ray casting.

In order to alleviate the computational effort required to create these local functions, the

distance is only computed at a given range before and after the local surface, i.e., distance is

only defined near the surface. The authors also propose a hole filling procedure, consisting

of carving the empty outer space using lines-of-sight, and then considering the interface

between carved and non-carved space as surface. For a sample of the behaviour of this

algorithm, see Figure 4.18.

138 CHAPTER 4. STATE-OF-THE-ART REVIEW

Scale Space Fusion Following the volumetric idea of VRIP, the proposal by Fuhrmann

and Goesele [83] extends the method to work in scale space. Thus, the scale of each scan

(i.e., detail or resolution) is taken into account while merging them, thus enforcing the

preservation of fine details.

In this case, each of the levels in an octree structure represents a scale value. In fact,

finer levels in an octree naturally coincide with higher resolution in space. Thus, having

into account the footprint of a triangle, namely its size, its contribution to the signed

distance is added at its corresponding scale.

Then, starting with the coarser level, the voxel value of a lower scale is combined to

that in the higher scale by interpolation of its distance/weight. At a second step, a fine-

to-coarse traversal is performed to retain for each duplicated voxel at different scales just

the one containing finer information.

Having a set of voxels with a given distance value, voxel positions are used to create a

Delaunay triangulation. By doing so, for each required query point, the distance function

can be retrieved by linear interpolation inside the corresponding tetrahedra. This arbi-

trary evaluation of the distance function allows using the conventional surface meshing

approaches to extract the final surface.

Lifted Constrained Delaunay In the method proposed by Salman and Yvinec [180]

the 2D triangulation of the points in their local image plane is used as the approximation.

That is, it is considered as a local range image, as in the cases above. However, the global

merging of these local contributions is not implicit.

The approach is devised to work with the output of a feature-based computer vision 3D

reconstruction system. The processing starts with the gathering of the points themselves.

The points are first tracked through the sequence, and a point is considered to be the same

as another if its Euclidean distance is below a threshold. Then, the resulting points are

filtered by using two criteria. The first one takes into account the distance of the nearest

neighbors of a point, discarding it if the distance is too large (threshold). The second one

considers the baseline of the views that have generated that point. A cone with its apex at

the point and containing all the input cameras is computed. If the cone’s angle is small, it

is considered an outlier. Finally, a smoothing step is computed by fitting a quadric surface

to the k-nearest neighbors of a point, which is then projected to this surface.

Once the point cloud is built, the surface can be extracted. This algorithm relies on the

2D planes to do most of the triangulation work. First, contours of the input 2D images are

extracted, and the projections of the tracked points that lie near a contour pixel are marked

as contour points. Then, connectivity between these points following the contours is built,

taking into account the avoidance of finding intersections between edges of the resulting

4.5. APPROXIMATION-BASED METHODS 139

planar graph. Then, a 2D Delaunay triangulation constrained by these points/edges is

computed for each frame using the 2D projections of the points seen from each view. The

2D triangles are then lifted to 3D, where they form a partially-disconnected, and possibly

self-intersecting, set of 3D triangles.

Not all the triangles of this set lie on the surface, so they have to be further refined.

Three filtering steps are applied:

1. Line-of-sight constraint: Triangles in conflict, i.e., intersected, by n lines-of-sight are

removed.

2. Triangles seen by glancing lines-of-sight: Triangles are removed when their normal

defines a large angle with the line-of-sight.

3. Shape criteria: It filters all triangles having a large ratio between the radius of its

circumcircle and that of its shortest edge.

4. Photoconsistency criteria: A triangle is photoconsistent if its projections to all im-

ages where their vertices are visible correspond to similar image regions, taking the

NCC as the similarity measure. This last criteria is only applicable to triangles with

a relatively large area, enough to contain relevant texture information.

Once the triangle set has been filtered, they approximate the overall shape of the object,

but they lack a globally coherent connectivity, i.e., they do not form a single mesh. For this

reason, this set is only used as input for the surface mesh generation algorithm described

in Boissonnat and Oudot [30]. Since the algorithm only needs an oracle structure that,

given a line segment, detects whether it intersects the surface, the triangle soup is used

directly for this purpose. That is, the intersections between the query segment and the

triangles is computed, and the average of these intersections is returned as the intersection

point for the query.

Figure 4.19 exhibits an overview of the different filtering stages of the process, along

with the resulting surface, when applied to a multi-view stereo dataset of a skull object.

Note however, that, in this case, constraining the triangulation to the apparent contours

in the image makes little sense, since the object does not have any sharp edges.

4.5.8 Local Primitives

Finally, the approaches in this section are based on computing the surface using local

primitives around the input points that are later used to build a global surface. It is worth

mentioning that these approaches do not perform the merging of the local primitives in

a global framework, such as using a global implicit function as some of the RBFs’ cases.

140 CHAPTER 4. STATE-OF-THE-ART REVIEW

(a) Point set (b) Triangle soup (c) Lines-of-sight filter (d) Shape filter

(e) Surface mesh (f) Textured surface mesh

Figure 4.19: Lifted Constrained Delaunay method [180]. Figure (a) shows the point cloud. The

initial triangle soup made by joining the constrained 2D triangulations in 3D is depicted in (b).

This initial triangle soup is filtered using lines-of-sight (c) and shape constraints (d). This last

triangle soup (d) is used to obtain the final surface through Delaunay refinement, resulting in the

surface in (e) - with its textured version in (f).

4.5. APPROXIMATION-BASED METHODS 141

Instead, the merging of these primitives is also performed locally using a close vicinity

around them following an explicit approach.

Spherical Cover This method, proposed by Ohtake et al. [168], is based on covering

the input points using spheres, and then connecting some auxiliary points in these spheres

to create the final surface mesh. By allowing the user to tune the accuracy of this spherical

cover, it provides the creation of surfaces of multiple resolution with the same point set.

In a first step, each point is assigned an unoriented normal through PCA [104], along

with a measure of density consisting of the distance to its k-nearest neighbors.

Then, a spherical cover of the point set is constructed by selecting at each iteration

a non-covered point pi as the center of the sphere. Next, the radius is optimized locally,

along with an auxiliary point inside the sphere. The points falling inside the optimized

sphere are projected onto the local tangent plane at pi, and the points lying inside their

convex hull in 2D are marked as covered. The process continues iteratively until there

are no more points to cover. Finally, the auxiliary points are joined in triplets to form

triangles if their corresponding spheres intersect.

Obviously, the key step is to find the optimal radius and auxiliary point for each sphere.

The function to minimize is the following:

EQ(pi, r, pa) =
∑
j

wj · φi,rφ(‖pj − pi‖)(ni(pa − pi))2, (4.110)

where pa is the auxiliary point, and r the radius of the sphere. In fact, the influence radius

rφ of the spline RBF φ plays an important role in the reconstruction accuracy, and is given

proportional to r as rφ = Tqr, Tq being a user’s parameter. Assuming r is known, the only

parameter to optimize is the auxiliary point px, which is obtained by solving a system of

linear equations. Thus, in order to optimize for both r and pa, the final minimization uses

the following equation:

Er(r) =
1

d

√
EQ(pi, r, pamin), (4.111)

d being the diagonal of the bounding box enclosing P . Thus, several values of r are tested

in order to obtain a user defined error Er = e, solved using a bisection method.

Finally, after joining auxiliary points to form triangles, a procedure forcing the ex-

traction of a manifold surface and some filtering steps are needed in order to recover a

coherent mesh. Figure 4.20 shows the results obtained by this algorithm, and how the

method allows for different complexities of the surface to be retrieved by changing a user’s

parameter.

142 CHAPTER 4. STATE-OF-THE-ART REVIEW

Figure 4.20: Spherical Cover method [168] applied on the Max Planck bust dataset (leftmost

figure). The value of the parameter guiding the approximation quality (Tq in the original article)

is increased from left to right, leading to an increasing level of complexity for the resulting surface

mesh.

4.6 Conclusions

We have presented a review of the available methods to tackle the problem of surface

reconstruction from an unorganized cloud of points. The different contributions in this

field have been classified by the nature of the resulting surface according to the input

point cloud. This selection is not arbitrary, and accounts for the further processing to be

applied after processing. Of course, for visualization purposes, all methods serve as long as

they provide a correct representation of the object. However, there are some cases where

it is important to generate an interpolative surface passing through the input points. To

give some examples, points may be known to be part of the true surface, i.e., the data

is regarded as ideal, or they may have some associated information that may be required

in further processing, as is the case of points reconstructed from a computer vision 3D

reconstruction system, where each point contains which views from the original sequence

of images have generated it. Besides, it has also been shown that it is easier to talk about

the correctness of a method (i.e., propose theoretical guarantees) if the vertices of the

resulting surface are part of the input points.

Additionally, methods inside each category have been divided according to common

procedures and methodologies, despite that they may use common concepts or data struc-

tures. It has been our intention to provide a self-contained comprehensive review of the

main procedures and steps conforming the algorithms. A common nomenclature has been

used to help the reader relate the common procedures and structures used across the

methods.

4.6. CONCLUSIONS 143

We have seen that the main concern of surface reconstruction is to find a heuristic able

to solve this inherently ill-posed problem. A common approach is to rely on the sampling

concept as the main indicator of where the surface is. The main property of sampling is

its density or sparseness. Densely sampled areas are regarded by the majority of methods

as indicators of the presence of a surface patch. However, sampling does not need to be

regular over the entire surface, since smooth areas do not need to be described by many

samples, as opposed to sharp features of the object or scene, which need a more detailed

sampling to be represented. We can then conclude that a good sampling of a surface is

highly dependant on its curvature, and this concept is also exploited by many methods.

While most approximation-based approaches provide an implicit noise correction to

some extent, they rarely cope with outliers. Because of their global nature, methods such

as Poisson reconstruction [118] achieve resilience to small quantities of outliers, but fail

with a large number of them. Only a few methods exhibit robustness to both noise and

outliers, and more importantly, very few of them are specifically designed to tackle both

problems at the same time.

It should be noted that an important requirement of many surface reconstruction

methods is knowing the normals at each input point. Since not all scanning systems

provide normals, they must be computed prior to using one of these surface reconstruction

methods. However, computing the normals is also an ill-posed problem, since estimating

the normals requires inferring the surface locally. While some of the presented methods

have tried to compute normals (i.e., local tangent planes) during the surface reconstruction

process [104, 169, 8], it is worth noticing that all of them further require another heuristic to

achieve a globally consistent orientation for all these normals. This consistent orientation

is needed in order to be able to infer from these primitives a signed distance field, or a

notion of inside/outside the object.

We also observe that the literature is considerably thinner on the question of robustness

to outliers. While some interpolation-based methods are able to deal with outliers to

some extent, they are not able to deal with noise. Thus, devising methods that are

simultaneously resilient to both noise and outliers and that do not depend on a priori

knowledge (such as normals) is direly needed. Our end goal in this thesis is to devise more

general methods applicable to inputs coming from a wider variety of measurement devices

and processes.

Another important, but commonly overlooked, problem is the reconstruction of sur-

faces with boundaries. Real datasets, not gathered in a laboratory environment, do not

normally represent a simple closed object, but a possibly large, arbitrary scene. It is

then usual to find bounded surfaces, and the watertight assumption is too restrictive in

those cases. We have seen that a majority of methods assume watertightness to further

144 CHAPTER 4. STATE-OF-THE-ART REVIEW

restrict the computation of the surface. Consequently, these methods cannot be applied

directly to real (e.g., outdoor) datasets, at least not without a post-processing to detect

such boundaries.

Finally, a fair comparison of the methods presented is difficult to achieve because of the

lack of implementation of the majority of them and also the parameter tweaking required

for each method to achieve its best performance with a given dataset. A first benchmark

solution has recently been presented by Berger et al. [22], where they present a framework

for quality assessment in surface reconstruction approaches. In their article, they only

surveyed the behaviour of some approximation-based methods, obviating the available

implicit based methods. Furthermore, while the benchmark is designed towards testing

the methods under different noise conditions, they do not take into account outliers. Thus,

it would also be interesting to extend the qualitative review of this work to also allow for

interpolation-based methods, and study further the behaviour of the methods with outliers

present in the data.

4.6. CONCLUSIONS 145

Table 4.3: Surface reconstruction methods classification, interpolation based. Columns refer to the

ability of the method to deal with boundaries, noise, outliers, if it provides theoretical guaranties, if

it uses additional information rather than the point cloud and its complexity overview, if provided by

the authors.

Properties

Methods B
o
u
n
d
a
r
ie
s

N
o
is
e

O
u
tl
ie
r
s

G
u
a
r
a
n
ti
e
s

A
d
d
it
io
n
a
l
In

fo
1

C
o
m

p
le
x
it
y
2

In
te

r
p
o
la
ti
o
n

B
a
se

d

S
u
r
fa
c
e
O
r
ie
n
te

d

Delaunay

Triangle

Selection

α-shape [72, 98] Y N N N - O(n2)

Normalized mesh [15] N N N Y - O(n4)

Crust [10] N N N Y - O(n)

Cocone [12, 62, 63] Y N N Y - -

Gabriel [171] Y N N Y - O(n2)

Umbrella Filter [3] N N N N - -

Flow Complex [88] Y N N N - -

Surface

Growing

Boissonnat’s Greedy [28] N N N N - O(n logn)

Graph Greedy [156] Y N N N - -

Ball-Pivoting [23] Y N N N - O(n)

Spiraling Edge [58] Y N N N N -

Lower Dimensional Delaunay [92] Y N N Y - -

Smooth Greedy [54, 129, 142, 108, 140] Y N N N - O(n2)

Medial Scaffold Transform [48] Y Y N N - -

Integration
Zipper [204] Y N N N LC, SP -

Venn Zipper [199] N Y N N LC, SP -

V
o
lu

m
e
O
r
ie
n
te

d

In/Out

Separation

Power Crust [13] Y Y N Y - -

Robust Cocone [65] N Y N Y - -

Sculpting

Boissonnat’s Sculpting [28] N N N N - O(n2 logn)

Tight Cocone [64] N N N Y - -

Convection [47] Y N N N - -

Wrap [71, 70] Y N N N - -

Peel [66] Y N N Y - -

Graph

Partition-

ing

Eigencrust [125] N Y Y N - O(n
√
n)

Graph Cuts Stereo [132, 99, 112] Y Y Y N SP -

Graph Cuts Range [133] N Y Y N SP -

1 N = Normals / LC = Local Connectivity / SP = Sensor Position.
2 n refers to |P |.

146 CHAPTER 4. STATE-OF-THE-ART REVIEW

Table 4.4: Surface reconstruction methods classification, approximation based. Columns refer to the

implicit/explicit nature of the resulting surface, the ability of the method to deal with boundaries,

noise, outliers, if it provides theoretical guaranties, if it uses additional information rather than the

point cloud and its complexity overview, if provided by the authors.

Properties

Methods Im
p
li
c
it
/
E
x
p
li
c
it

B
o
u
n
d
a
r
ie
s

N
o
is
e

O
u
tl
ie
r
s

G
u
a
r
a
n
ti
e
s

A
d
d
it
io
n
a
l
In

fo
.1

Complexity2

A
p
p
r
o
x
im

a
ti
o
n

B
a
se

d

Tangent

Planes

Hoppe’s Method [104] I Y N N N - O(n logn))

Natural Neighbors [29] I N N N Y - -

Markov Random Field [169] I N Y N N SP -

Voronoi-Based Variational [8] I N Y N N - -

Unsigned

Distance

Unsigned Graph Cut [107] I N Y Y N N -

Signing the Unsigned [159, 90] I N Y Y N - -

Radial

Basis

Functions

Blobby [160] I N N N N N -

Fast RBF [43] I N Y N N N -

Multilevel Partition of Unity [165] I Y Y N N N -

MPU+RBF [166, 167] I Y Y N N N -

Smooth PU [161] I Y Y N N N -

Voronoi Centered RBF [181] I N Y N N - -

Cone Carving RBF [189] I N Y N N - -

Eigen RBF [206] I N Y N N - -

Support Vector Machines [186, 74] I N Y N N - -

Support Vector Regression [200] I N Y N N N -

Moving

Least

Squares

Point Set Surfaces [6, 2] I Y Y N N N -

Algebraic PSS [97] I Y Y N N - -

Implicit MLS [124] I Y Y N Y N -

Hermite MLS [4] I Y Y N N N -

Deformable

Surfaces

Level Set [216] I N N N N - O(n+m)

Coulomb Potentials [111] I N Y Y N - O(o log2 o)

Touch-Expand Graph Cuts [135] I N Y N N - -

Discrete Membrane Shrinking [76] I N N N N - -

Self-Organizing Map [212] E N N N N - -

Growing Cell Structure [110, 109] E Y N N N - -

Implicit SOM [211] I N Y N N N -

Coarse-to-Fine Explicit [190] E N N N N - -

Gradient

Enforce-

ment

Fourier Transform [117] I N Y Y N N O(m3 logm+ n)

Wavelets [153] I N Y Y N N -

Poisson [118, 119] I N Y Y N N -

Smooth Signed Distance [41] I N Y Y N N -

Integration

VRIP [60] I Y Y N N LC, SP -

Scale Space Fusion [83] I Y Y N N LC, SP -

Lifted Constrained Delaunay [180] E Y N N N SP -

L. Primitives Spherical Cover [168] E Y Y N N - -

1 N = Normals / LC = Local Connectivity / SP = Sensor Position.
2 n refers to |P |, m to the size of a regular grid, k to K(p) and o to the maximum depth of an octree.

Chapter 5

Direct Point Set Surface

Reconstruction

5.1 Introduction

After applying the pipeline described in Chapter 2, the scene is described in the form of a

point set. However, due to the nature of the underwater medium, the retrieved point set

is noisy and contains a large number of outliers.

After reviewing the state of the art in the previous chapter, we have identified the

weaknesses of present methods when dealing with the surface reconstruction problem on

raw corrupted point sets, possibly representing a bounded surface. Starting with this

chapter, we propose four methods that try to solve our specific problematic of recovering

the surface of an object from a set of points describing it while getting rid of outliers and

noise and also trying to recover its boundaries. Furthermore, in order to provide a generic

methodology, we do not rely on any additional information other than the input points

themselves to reconstruct the surface.

In this chapter, we present a novel method for surface reconstruction able to provide

a smooth surface approximation from a point set. This method can handle noise and

cope with a large percentage of outliers, which, as mentioned above, is often the case with

underwater datasets. Moreover, additional information such as per-point normals or local

connectivity is not required. Despite the fact that this procedure focuses on applying this

method to point sets coming from a computer vision pipeline, it is worth mentioning that

its generality makes it applicable to all kinds of point set data. For instance, we report

results of applying the method to a multibeam sonar dataset surveying an underwater 3D

structure by registering different scans in a common frame, and then using this data as

input for our method.

147

148 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Our method was inspired by the RDT Delaunay refinement meshing paradigm. We

propose answering the segment intersection queries required by the RDT mesher on-line

by constructing a local surface in a neighborhood around the query segment and returning

the intersection between both. The method takes into account possible aberrations in the

data by using RANSAC in order to recover the local surface with the highest support.

Furthermore, noise is not considered constant, and an automatic scale computation algo-

rithm is used in order to guess the best RANSAC distance-to-model threshold to apply at

each step. The main advantage of using the mesher algorithm as a base is to be able to

tune the desired resolution of the resulting surface, a parametrization that is not available

in most of the state of the art approaches. Besides, our method also provides the ability to

recover surfaces with borders. This is desirable in an underwater scenario where normally

a part of the seafloor is observed, and thus the retrieved point set does not represent a

watertight surface.

When compared to other state-of-the-art methods, our proposal has the advantage of

being able to process highly corrupted point sets without additional information. The

loose requirements for the input and its low memory footprint make this method suitable

for completing the modelling pipeline in the complex underwater environment.

5.2 Overview and Contributions

We base our method on the RDT Delaunay refinement meshing algorithm. This method

only requires the user to provide an intersection detection between line segments and

the surface in order to approximate the object with a mesh of triangles. Normally, a

given approximation of the surface is devised, using, for example, some of the techniques

described in Section 4.5, and then this approximation is meshed using RDT in order to

get a surface whose triangles follow a given quality. However, what we aim to do is obtain

an on-line answer to this kind of query, thus transforming a (re)meshing method into a

surface reconstruction method. Given the query segment required by the mesher, a small,

local part of the surface is computed using the points falling at a given distance from it.

Then, this local surface is tested for intersection with the segment. Our local operator

works directly on the raw, and possibly corrupted, point cloud, by using robust statistic

techniques in order to avoid outliers when building the small surface patch. In this sense,

we use a RANSAC method whose threshold is locally adaptive to the scale of the noise

in the area. Thus, when compared to the state of the art, the main contribution of our

method is the ability to deal with point sets corrupted with both variable noise and outliers

without any kind of additional information.

Using the surface mesher as a base provides our method with the ability of specifying

5.2. OVERVIEW AND CONTRIBUTIONS 149

(a) (b) (c)

Figure 5.1: Schematic overview of the proposed on-line segment intersection query computation.

(a) presents the input points, and (b) the query segment and its capsule neighborhood. As depicted

in (c), a local surface is fitted to the points inside the capsule neighborhood and the intersection

is computed.

Figure 5.2: On the right are three examples of query segments required by the RDT algorithm to

mesh the surface represented by the highly corrupted set of points on the left (a sphere), and the

recovered local surfaces computed by our method used to solve the intersection computation. The

results of our method applied to this point set can be found in Section 5.5.1.

the quality and properties of the resulting mesh in terms of shape and density of triangles.

This allows having multiple resolutions of the same object by just tuning the parameters.

Furthermore, it is worth noticing that the meshing algorithm works in a coarse to fine

way, while our operator works with only a small part of the data at a time, in this way

providing low memory requirements, which is the cornerstone for meshing large 3D maps.

Figure 5.1 shows a schematic idea of our method, and in Figure 5.2 one can find some

examples of segment queries applied to a synthetic dataset. Note how even in the presence

of outliers and noise, the local procedure is able to generate a correct local surface suited

to answering the intersection query.

150 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

5.3 Online Intersection Computation

As already stated, the basis of our method is a surface meshing algorithm based on the

concept of RDT and Delaunay refinement [30]. Recall from section 3.4.2 that the RDT

refers to the subcomplex inside the 3D Delaunay triangulation formed by those triangles

whose dual Voronoi edge intersect the surface the triangulation is restricted to. In our

context, the most interesting property of this meshing approach is that it only requires

devising an oracle that, given a Voronoi edge (i.e., a line segment query), computes its

intersection with the inferred surface (if any).

This means that, as long as you have an approximation of the shape that you can query

for line segment intersection detection, this representation can be meshed. In this chapter,

our approach takes advantage of this property and answers the intersection queries locally

by using local approximations of the surface built on demand using a small set of the input

points at a time.

We use a local operator to answer the segment intersection queries required by the

RDT mesher algorithm directly from the point set. Given the required query segment, we

select the points that fall in a local neighborhood and compute a local low-degree surface

with them. Then, the intersection between the local surface and the query segment is

computed as the answer to the query.

Even if local, the mechanisms used ensure the correct generation of these surface

patches when the data is corrupted with outliers and noise. Furthermore, the noise scale

is not assumed to be fixed through the whole dataset, but locally adaptive to the area of

interest at each local computation.

It is worth noting that, in order to compute the initial set of points for the RDT

algorithm, random segments are generated inside the bounding sphere containing the

points and apply the local intersection detection until we find a user defined number of

initial points (20 in the presented results).

In the following section, our local operator is analyzed by defining the neighborhood

around the query segment where the computations will be made. Then, in Section 5.3.2,

the local surface we aim to extract inside the neighborhood is defined. Furthermore,

Section 5.3.3 presents how we manage to compute this local surface in the presence of

outliers, and Section 5.3.4 presents how we adapt to the measure of the noise for different

parts of the dataset. Finally, the actual intersection between the segment and our local

surface is described in Section 5.3.5.

5.3. ONLINE INTERSECTION COMPUTATION 151

5.3.1 Capsule Neighborhood

Let us name the input point set P . Given a query segment s, just the set of points near the

segment are needed to compute the local intersection. This local neighborhood comprises

all the points at a given distance from the query segment:

C(s) = {pi ∈ P |dist(pi, s) < c} , (5.1)

where dist(pi, s) is the Euclidean distance, and c is the radial threshold describing the

interest region. Thus, the points to take into account are those that fall inside a capsule

(a.k.a. sweeping sphere or capped cylinder) of a given size around the segment. Note that

this neighborhood may contain multiple structures as well as outliers. Throughout this

section, we work with the case of a single C(s). However, it is worth remembering that

this computation is required several times inside the meshing algorithm.

5.3.2 Local Bivariate Quadric

Using the points in C(s), we compute the intersection query required by the mesher

algorithm. This is done by a Least-Squares fitting of a local surface patch using the points

in this neighborhood. More precisely, we compute a Local Bivariate Quadric (LBQ). An

LBQ is the quadratic approximation of a height function in a local reference frame:

f(x, y) = Ax2 +By2 + Cx+Dy + Exy + F. (5.2)

Equation (5.2) can be computed from a minimum of 6 points using least-squares.

In order to define the reference frame for the fitting, we observe that the Voronoi edge

intersecting the surface defined by the RDT is close to being orthogonal to it. In fact, some

authors have taken advantage of this observation in order to compute approximations of

the normals of point sets using the Voronoi edges dual to their Delaunay triangulation

(e.g., [10, 68, 8]). Based on this observation, it seems natural to fix the normal of the

fitting plane to follow the direction of s. Thus, the fitting plane where the surface is

computed has an orthonormal basis perpendicular to this direction. Finally, we construct

the origin of the fitting frame to be also in the segment, by computing a centroid from all

the points used for the fitting and project it orthogonally on s.

Furthermore, in order to rank the contribution of each point to the solution, they are

given a weight proportional to their distance from s. As adopted in many other approaches,

the weighting is defined by the well-known Gaussian function:

w(pi) = wi = e−
dist(pi,s)

2

σ2 , (5.3)

where σ is a parameter that we decided to fix at σ = c in all our tests.

152 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Having all these components defined, we aim to solve the following minimization prob-

lem:

min
n∑
i=1

|wif(xi, yi)− wizi|2 , (5.4)

which yields the following system of equations:

n∑
i

wi

x4
i x2

i y
2
i x3

i x2
i yi x3

i yi x2
i

y2
i x

2
i y4

i xiy
2
i y3

i xiy
3
i y2

i

x3
i xiy

2
i x2

i xiyi x2
i yi xi

x2
i yi y3

i xiyi y2
i xiy

2
i yi

x3
i yi xiy

3
i x2

i yi xiy
2
i x2

i y
2
i xiyi

x2
i y2

i xi yi xiyi 1

A

B

C

D

E

F

=

n∑
i

wizi

x2
i

y2
i

xi

yi

xiyi

1

. (5.5)

5.3.3 Outlier Rejection

In order to deal with outliers robustly, we do not use all the points in C(s) to retrieve the

LBQ. Instead, we use the LBQ as the model to compute inside a RANSAC procedure

[79]. We chose the RANSAC method given its proven robustness in outlier rejection when

used in the field of computer vision.

Each RANSAC iteration instantiates a candidate LBQ using 6 random points from

C(s) (the minimum number of points needed to compute the model). Then, the remaining

points in C(s) are tested for compatibility with the current model; that is, they are checked

to fall at a distance smaller than a given threshold δd from the model. Each of the points

falling inside this distance give a vote to this model, and after several iterations, the model

that achieves the greatest support is the one selected. As a final step, the obtained model

is refined by using least-squares with all the agreeing points. Note that since solving the

Euclidean distance from a point to a quadric is a non-linear problem, we use the algebraic

distance instead, which is faster to compute and proved to work well in the present case

for all our scenarios. Another important problem to take into account is that, given a set

of points, there will always be a candidate LBQ. Thus, we have to make sure that the

selected LBQ has enough support to be considered correct. This is done through the δm

parameter, which is the minimum number of points that have to agree with the computed

model in order to trust this result.

Regarding the number of iterations needed to compute the model, we will use the

probabilistic approach:

N = log(1− ϕ)/log(1− (1− ε)w), (5.6)

where N is the number of iterations, ϕ is the desired probability for RANSAC to pick a

sample of size w (w = 6 in the case of an LBQ) from a C(s) free of outliers, and ε is the

percentage of outliers inside C(s) (see Hartley and Zisserman [103] for a detailed expansion

5.3. ONLINE INTERSECTION COMPUTATION 153

of Equation (5.6)). We chose to fix ϕ = 0.99, and since ε is unknown, we initialize it with

a worst-case estimate, and update it at each RANSAC iteration if the current computed

model has greater support.

5.3.4 Locally Adjusted Noise Scale

When dealing with real datasets, it is not feasible to assume the noise scale at every part

of the model to be constant. There are many factors that promote the non-uniformity of

noise across P during its scanning. For the optical case, some examples of these factors

might be the variable distance from the object at each frame, different conditions in

illumination, visibility or turbidity, etc. Consequently, P presents variable noise measures

for different parts of the dataset. We deal with this problem by using an automatic noise

scale estimator.

As previously presented, the RANSAC method uses a distance threshold δd in order to

decide, at each iteration, if a given point agrees with the current model under consideration.

Obviously, δd is directly related to the amount of noise in a given C(s): noisier parts require

a bigger δd and viceversa. Thus, we aim to compute a scale which adapts to the needs of

each specific neighborhood. Assuming the noise in the data to be Gaussian, the scale of

this noise refers to its standard deviation σ. We use this measure of noise to automatically

tune the RANSAC threshold as δd = 2.5σ.

The model estimation problem is then enlarged: apart from seeking the parameters

of our model, we need to compute its scale. The noise scale estimation is extracted from

the residuals ri of a point pi. A residual is basically the difference between this point and

its estimated value using the computed model. In our case, we do not know the model of

our data, so it is a “chicken and egg problem”. In order to compute a scale estimation

of our data, we will use the Modified Selective Statistical Estimator (MSSE) method [16].

This random sampling algorithm uses the Least K-th Squares (LKS) technique in order to

obtain a reliable model, and then uses the residuals generated by this model to compute

the scale of the noise.

Similar to the previously presented RANSAC algorithm, the LKS method generates at

each iteration a candidate model Q using the minimum number of points possible. Then,

using this model, it computes the residuals di for all points and sorts them. The idea

is to keep track of the model with the minimum jth residual dj , where j is selected as

the minimum number of expected inliers. At the end of the LKS procedure, the model

minimizing dj is selected. In fact, the LKS method is a variant of the well-known LMedS

method [176]. Selecting a j = 0.5n, n being the number of residuals, the LKS keeps track

of the median, thus reproducing the LMedS method. We believe that the LKS method is

preferable over the LMedS method because the latter has a breakdown point of 50%, and

154 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

we do not want to assume at least half of our neighborhood being part of the inliers of

our model. Note that more than a single model can be contained in our neighborhood,

and thus, j has to represent the minimum number of points that are part of a structure

inside the neighborhood. This minimum number of inliers is defined as the quantile, which

we denote by o, and is a fraction of the k nearest neighbors. The number of iterations

to complete is ruled again by Equation (5.6). Note however that the ε value has to be

fixed in this case, as we cannot update it inside the method. We decided to use f = 0.99

and ε = 0.5 as a balance between computational effort and robustness, having to generate

N = 293 iterations to select a probably good model to compute the scale from.

Given a model computed by the LKS, its residuals can be computed and a scale

measure can be extracted from them. There are many possible algorithms for solving

the automatic scale estimation problem, two of the most well known are the Median

and the Median Absolute Deviation (MAD) [177]. While simple to compute, these two

methods again have a known breakdown point of 50%. This can be seen in the simple

tests reproduced in Table 5.1. Since we want to be weaker when imposing the minimum

number of points forming an LBQ inside our neighborhood, we keep following the idea

proposed by MSSE, which consists of iteratively refining the scale measure. Starting from

the j-th sorted residual corresponding to j = ok, the noise scale estimate is computed as

follows:

σj =

∑j
i=1 r

2
i

j −D
. (5.7)

MSSE is based on the idea that incrementally taking into account more residuals (in-

creasing j) generates σj measures that increase progressively, and a big jump will happen

when the added residual comes from a point of a different model or an outlier:

r2
j > T 2σ2

j , (5.8)

where T is a constant factor, which can be set to T = 2.5 if we assume Gaussian noise

(98% of inliers will be identified as such). From Equations (5.7) and (5.8), the following

inequation can be formulated:

σ2
j+1

σ2
j

>
T 2 − 1

j −D + 1
. (5.9)

Thus, the first outlier can be identified by checking the validity of this inequality, and

the scale measure will be the σj−1; that is, the scale estimation previous to finding the big

jump.

While it could be possible to compute the noise scale locally inside each C(s), the

computational effort it requires would make the method unfeasible. Consequently, a scale

5.3. ONLINE INTERSECTION COMPUTATION 155

Table 5.1: Noise scale computation example for points sampled on a plane, corrupted with noise

and outliers. The number of input points is 1000, but a percentage of them (1st column) are

generated following a unifom random distribution inside a slightly enlarged bounding box, and

the inlier points are corrupted with Gaussian noise with varying amounts of standard deviation

(2nd column). Using the LKS selection for the best model (o = 0.2), the scale is computed using

MedianSE, MAD and MSSE. Due to the random nature of LKS, the procedure has been computed

100 times and the mean (x̂) and standard deviation (σ) of the results are shown. Note how MSSE

provides a close approximation of the original noise even in the case where the number of outliers

is larger than 50%.

Data Scale Estimation

Outliers(%) Noise (σ)
MedianSE MAD MSSE

x̂ σ x̂ σ x̂ σ

0 0.03 0.03110 0.00126 0.01902 0.00108 0.02951 0.00113

20 0.01 0.01367 0.00051 0.00883 0.00052 0.01023 0.00049

40 0.05 0.07635 0.00333 0.05457 0.00230 0.05236 0.00247

75 0.03 0.06482 0.00275 0.05376 0.00224 0.03184 0.00172

value for each point is computed, previous to the meshing procedure, in order to alleviate

the computational cost. We use a fixed k neighborhood around each point, and compute

a scale measure using the procedure defined above. Then, during the meshing, from all

the scale values corresponding to the points inside the current C(s), a representative value

is computed. In order to do this, we again apply MSSE, but to the set of scale measures

associated to the points in C(s). Consequently, this second MSSE step is not computed on

residuals. Instead, we seek the first big jump in scales, which also corresponds to finding

scales generated from another structure or from any outliers.

5.3.5 Local Bivariate Quadric - Segment Intersection

With the procedure presented so far, we are able to provide a local surface for each query

segment. Thus, the last step needs to find the intersection with this LBQ surface. In order

to compute the intersection between s and the LBQ, we cast the segment in its ray form

and use its parametric equation:

s(d) = so + srd, (5.10)

where so = (xo, yo, zo) is the starting point of the segment and sr = (xr, yr, zr) its direction.

Substituting Equation (5.10) in (5.2) results in:

(5.11)Ax2
o +Ax2

rd
2 + 2Axoxrd+By2

o +By2
rd

2 + 2Byoyrd+ Cxo + Cxrd+Dyo

+Dyrd+ Exoyo + Exoyrd+ Exryod+ Exryrd
2 + f − z0 − zrd = 0.

156 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Taking into account the general quadratic equation:

αd2 + βd+ γ = 0, (5.12)

we can deduce its parameters from Equation (5.11):

α = Ax2
r +By2

r + Exryr

β = 2Axoxr + 2Byoyr + Cxr +Dyr + Exoyr + Exryo − zr
γ = ax2

o +By2
o + Cxo +Dyo + Exoyo + F − zo,

(5.13)

and then obtain the two possible solutions for d using the general method. In order to

ensure that the solution falls within the segment, we have to verify that d < length(s).

The equations presented so far solve the general segment-LBQ intersection problem.

Note however that we have fixed the normal of the fitting plane of the LBQ to coincide

with the direction of the segment. Thus, the segment coincides with the fitting axis, and

thus just a single intersection may occur. Having xo = yo = xr = yr = 0, the problem

formulated in Equation (5.13) simplifies to:

d = − 1

F − zo
. (5.14)

The presented framework provides the intersections against correctly computed LBQs.

However, during the computation of the LBQs, some problems may arise. The most

obvious is that the structure in C(s) might not be represented using an LBQ. This is

the case for the example in Figure 5.3 (a), where the structure inside C(s) could be too

complex to be captured by an LBQ. Another problem emerges from the fact that RANSAC

always returns an LBQ regardless of the number of points involved. As mentioned above,

one of the parameters used to test the correctness of this surface is to impose a minimum

number of points δi agreeing with it. However, there might be a case like the one depicted

in Figure 5.3 (b), where C(s) comprises some points, but clearly the surface they define

is not supposed to intersect the segment since it is a hole. In order to deal with these

cases, we only consider as valid the intersection points that are supported. This means

that some inlier points must lay close to the intersection point in order to validate it.

Thus, a user-defined minimum number of inlier points γi is required to fall inside a sphere

centered on the intersection point and with a radius γfc where 0 ≥ γf ≥ 1, i.e., a fraction

of c. Obviously, tunning γi and γf depends on the sparseness of the data compared to

the desired c parameter. This simple heuristic also allows the method to return a null

intersection in cases where the local surface represented by the points in C(s) does not

intersect the segment, but is close enough so that an LBQ intersecting the segment can

be generated in C(s). This is the problem shown in Figure 5.3 (c), and note that in

this specific case, the most supported surface does not intersect the segment but there is

5.4. POST-PROCESSING 157

(a) (b)

(c)

Figure 5.3: Problematic segment-LBQ intersection configurations: LBQ in grey, inliers in green

and outliers in red. In (a), the part of the surface contained in C(s) cannot be represented by an

LBQ. In (b), the LBQ returned by RANSAC is filling a hole in the data, which is not desirable in

most cases. Finally, in (c), the most supported LBQ is constructed from points falling far from the

segment, and the computed LBQ is not correct. Note however that, on a second iteration, another

LBQ will be generated from the set of outlier points, which in this case will clearly intersect the

segment.

another cluster of points defining another local surface that intersects the segment. As

presented above, we have to take into account that more than a single structure or LBQ

may be contained inside the C(s). For this reason, the model creation / intersection

computation process is not unique: if the segment does not intersect the model, another

model is computed from the set of remaining points (the outliers of the current model),

and an intersection test is carried out again. The process stops when a valid intersection

is detected, when no more models can be generated, or when a given number of trials is

reached (3 in our implementation).

5.4 Post-processing

Although the proposed method provides satisfactory results in most cases, variability

during intersection computation caused by noise may result in inconsistencies in the re-

constructed mesh. It is obvious that we are not imposing any continuity on the surface by

just performing local intersection computations. In this sense, the local surface computed

158 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) Non-manifold edge (1) (b) Non-manifold edge (2) (c) Non-manifold vertex

Figure 5.4: Non-manifold structures, highlighted in red.

in a given part of the model is not continuous with a local surface computed nearby, even

if most of the points taken into account are the same. Thus, the RDT mesher may not

provide a manifold surface. For this reason, the non-manifold configurations that may

arise in the mesh need to be filtered. In the following we present the filtering steps applied

to solve these non-manifold cases:

• Non-manifold edges: Edges where more than two triangles meet generated by wrong

intersection points detected near the surface. In most cases this aberration can be

eliminated by removing the facets incident to the non-manifold edge whose three

edges are not shared by another triangle (see Figure 5.4(a)). However, this test

becomes invalid in the situation where the RDT includes a connected set of 4 facets,

forming the boundary of a flat tetrahedron that shares four non-manifold edges with

the reminder of the surface (as in Figure 5(b)). The special case is filtered out by

selecting, out of these 4 facets, one of the two pair of facets incident along manifold

edges.

• Non-manifold vertices: Vertices not surrounded by topological fans. In this case,

since is difficult to tell locally which triangles are more likely to be eliminated, all

the triangles incident to this vertex are removed.

Examples of these aberrations are illustrated in Figure 5.4. After filtering all the non-

manifold configurations, some small sets of triangles may remain unconnected to the global

surface. For this reason we remove the small connected components that are not likely to

be part of the final surface.

Obviously, the presented manifoldness cleaning step will result in small holes in the

surface that need to be filled. Furthermore, due to the large and variate possible cases of

intersection between local surface and segment that can occur inside a given C(s), some

of the intersection queries may get a wrong result, as detailed in Section 5.3.5. This

also produces some holes in the surface that need to be filled for aesthetic purposes. In

5.5. RESULTS 159

order to do so, we use the method presented in [141]. This method provides the resulting

filling to fairly interpolate the missing shape, using triangles with sizes similar to those

on the border of the hole. The method applies 3 sequential steps to each hole. First, a

minimum weight triangulation is devised in order to fill the hole linearly. Then, this initial

hole-filling triangulation is refined following the apparent density and sizing of the border

triangles of the hole. Finally, the triangulation is faired in a way so that the triangulation

filling the hole smoothly approximates the shape based on the other parts of the surface

surrounding the hole. The small holes to fill in our meshes are automatically detected

as the set of border edges forming a closed loop, where this number of edges is smaller

than a threshold. This threshold avoids filling large holes corresponding to undersampled

parts or the borders of the recovered shape. Note that a procedure similar to the one

proposed here (non-manifold configurations removal and hole filling) has shown to provide

satisfactory results in Ohtake et al. [164].

In case of heavy noise, the surface retrieved by our method also presents some rough-

ness. In order to alleviate these artifacts, we apply a Laplacian smoothing technique [101].

This method basically consists of moving each vertex on the mesh to the mean position

defined by its neighbors. This smoothing procedure was not used on all the presented re-

sults, but only on a few of them (see Table 5.2) and, when applied, only a single iteration

of Laplacian smoothing was enough to reduce the noise.

5.5 Results

We prove the validity of the presented pipeline on challenging real underwater datasets

from different application areas. To better illustrate the excellent performance of the

method, we briefly overview its behaviour when applied to standard range scan datasets.

Then, we rigorously test the method on underwater datasets, focusing on the problems

that optically generated 3D point clouds present in underwater environments and how they

affect our method. In Table 5.2, one can find the parameters used in each execution. Note

that there is a variability of values depending on the properties of each dataset. The more

noise the dataset contains, the larger the number of k neighbors required for noise scale

estimation. Moreover, for the intersection computation, the number of RANSAC inliers

δi increases with larger noise and a greater quantity of outliers, while the number and

localization of inliers near the detected intersection (governed by γf and γi parameters)

becomes more restrictive. Besides, the radius c required for the capsule neighborhood is

smaller for densely sampled point sets, and larger for sparser data. Finally, Table 5.3

shows the running times for each of the tested datasets.

160 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) (b) (c) (d)

Figure 5.5: The Sphere dataset (10,242 points) shown in (a) is corrupted in (c) by adding a

Gaussian displacement of σ = 0.01 (w.r.t. the bounding box diagonal) to all the points and adding

100% of randomly uniform distributed outliers inside its slightly enlarged bounding box. The

surface for the clean version and the corrupted one are shown in (b) and (d) respectively.

5.5.1 Synthetic Dataset

Two small synthetic datasets are reported in this section to show the capabilities of the

method under variable noise and outliers. The first dataset consists of a uniform sampling

of a unit sphere. The results of our method under ideal conditions are illustrated in Figure

5.5 (a,b). In order to test the method with more realistic conditions, we decided to corrupt

the original point set by adding a Gaussian noise with standard deviation σ = 0.01BBD

where BBD stands for the Bounding Box Diagonal of the input points. Additionally, we

added 100% of outlier points by generating uniformly distributed points inside a slightly

enlarged bounding box containing the original point set. Both the data points and the

result of our method can be seen in Figure 5.5 (c,d), where the resulting surface has been

faithfully recovered, despite not being as smooth as in the previous case.

The second synthetic dataset has been generated by sampling a torus, but this time

non-uniformly sampled. The point set and its surface retrieved by our method are shown in

Figure 5.6 (a,b). In order to test the behaviour of our method, not only under non-uniform

sampling but also under non-uninform noise, we added noise to this dataset that varies

from left to right in Figure 5.7 (a), from σ = 0BBD to σ = 0.005BBD. The behaviour

of our method can be seen in Figure 5.7 (b), where one can appreciate that the surface is

hole ridden and quite bumpy. In this situation, the hole filling procedure, followed by the

Laplacian smoothing, allows the method to recover a more pleasant representation of the

torus. The results of these two steps can be seen in Figure 5.7 (c) and (d) respectively.

5.5.2 Range Scans

Range scanning technology has become a tool of great importance in land robotics systems.

High-resolution indoor object reconstruction has also benefitted from the new achieve-

5.5. RESULTS 161

(a) (b)

Figure 5.6: Using the noise free version (a) of the Torus dataset (10,000 points), the surface on (b)

is generated using our method.

(a)

(b) (c) (d)

Figure 5.7: The noise corrupted version of the Torus dataset (a), causes the surface recovered by

our method (b) to be bumpy and defected with holes. The hole filling (c) and smoothing (d)

procedures allow the recovery of a more faithful approximation of the original object.

162 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) (b)

Figure 5.8: Results of our method applied to the Max Planck point set (199,169 points).

ments in range finders. We illustrate the behaviour of our system when applied to some

of the benchmark datasets from this kind of sensor. Let us start with the Max Planck

model, a close-to-ideal dataset which is regularly sampled and not corrupted by noise. We

can see in Figure 5.8 how in this case the reconstructed surface faithfully represents the

object. It is worth noticing that when no noise is present in the data the smoothing step

is not required.

On the other hand, the effect of the cleaning and hole filling post-processing methods

is shown in Figure 5.9. Figure 5.9 (b) presents the raw surface as extracted by our method,

where some holes (black spots) are visible. After the non-manifold configurations cleaning

step, Figure 5.9 (c), even more holes appear. After the hole filling, the final surface is

presented in Figure 5.9 (d).

As previously shown, since the quality of the resulting mesh is user-defined, our method

is able to create multiple resolution versions of the same object. Figure 5.10 shows an

example of this property applied to the Elephant dataset.

Finally, we apply our method to a noisy dataset, namely the Stanford Bunny, where

measurement variability and registration errors are present. In this case, and due to the

lack of continuity enforcement on the surface retrieved by our method, the result obtained

shows a bumpy surface in the areas where the mentioned errors are more emphasized

(Figure 5.11 (b)). Here, as seen in the Torus point set, the optional smoothing step can

be applied to correct the results.

In order to demonstrate the resilience to outliers of our method, and given that these

range scans do not usually contain many outliers, we corrupted the Stanford Bunny dataset

by adding 100% of outliers. These outliers have been added by generating a set of random

points uniformly distributed inside the bounding box of the original dataset slightly en-

larged by 5%. The results can be seen in Figure 5.12, where one can see that the method

5.5. RESULTS 163

(a) Point set (b) Surface (c) Cleaned surface (d) Hole filled surface

Figure 5.9: The application of our method to the Gargoyle point set (863,210 points) shown in (a)

raises the surface in (b), where holes are directly visible as black spots. After the non-manifoldness

cleaning step in (c), even more holes appear. By using the hole filling procedure, these small

imperfections are corrected, as can be observed in (d).

(a) (b) (c) (d)

Figure 5.10: The Elephant dataset (1,537,283 points), shown in (a), is used as input for our method

to create multiple surfaces, shown from (b) to (d), at increasing resolution.

164 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) (b) (c)

Figure 5.11: In (a), the Stanford Bunny dataset (362,272 points) is presented. Note in (b) how

the recovered surface is quite bumpy near noisier areas. In (c), one can see the usefulness of the

smoothing step in these cases.

(a) (b)

Figure 5.12: (a) shows the Stanford Bunny dataset, corrupted with 100% of uniform randomly

distributed outliers (724,544 points), while (b) presents the resulting surface as retrieved by our

method.

is still able to provide a correct reconstruction. Note how even in the presence of this

vast amount of outliers, the result provided by our method is quite similar to those ones

presented in Figure 5.11 (b) and (c).

In underwater robotics, range sensors come in the form of multibeam sonar. In order

to demonstrate the versatility of the presented method, we show the behaviour of the

method when applied to multibeam sonar scans. Contrary to most multibeam surveys,

it is not that obvious in this case whether there is a plane proxy where this raw point

set could be approximated using a 2.5D heightmap (check the structure in Figure 5.13,

left). Thus, a method working on unconstrained 3D like the one presented might be more

desirable in order to reconstruct a surface mesh from these points. The applicability of

our method is demonstrated in the right part of Figure 5.13, where the recovered surface

5.5. RESULTS 165

Figure 5.13: Multibeam sonar reconstruction (413,873 points). Instead of the standard downward-

looking configuration, the transponder was installed laterally, giving rise to a full 3D dataset.

is presented. This application sets the path for the development of sonar scanning of

underwater structures in more general configurations than the typical downward/forward

viewing with respect to the scene.

5.5.3 Underwater Multi-view Stereo Datasets

Finally, in this section we present the results of our method when applied to optical multi-

view seafloor reconstruction. The optical reconstruction technique used to retrieve the

point set used as input for our method is a common multi-view plane sweeping technique

similar to the one in Yang and Pollefeys [209]. This kind of technique provides a dense

representation of the scene, as each image contributes to the point set with a dense depth

map. However, the outliers of each depth map accumulate for each view. Furthermore,

reconstructing each depth map separately for each view does not enforce coherence between

them, which translates into double contours when registration errors are present. Finally,

in order to take advantage of the richness provided by the texture in the images, we also

present for each dataset its texture-mapped version. For each triangle in the model, we

use the texture corresponding to the view that maximizes the projected area in image

space. This simple technique has proven to be useful in the underwater media [87], as it

offers a good tradeoff between the orthogonality of the view direction with respect to the

orientation of each triangle and promotes views taken closer to the scene, i.e., less affected

by the absorption and scattering of the medium.

Consider the behaviour of our method with this type of dataset, starting with a simple

dataset acquired in shallow waters. This shallow-water dataset presents an almost ideal

scenario, as the common challenges appearing in underwater imaging are not present. As

can be seen in Figure 5.14, our method is able to extract a smooth surface under these

166 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Figure 5.14: Shallow Water dataset reconstruction. From first to last row: point set (1,856,271

points), meshed surface, and textured surface.

conditions, preserving the fine details of the scene.

A more complicated dataset, also covering a larger area, is presented in Figure 5.15.

This dataset consists of a survey of a coral reef, acquired at a relatively low depth. Even

if the illumination conditions are not a problem, the retrieved point set presents a clear

example of non-uniform sampling. This poses a challenge to our algorithm, as no sampling

means more holes in our surface. In this case, we decided not to fill them in the final

surface, as the hole is not closed and would require filling the entire border where the

sampling of the surface ends. Taking a closer look at the places where the sampling is

unsatisfactory, one can see that they correspond to vertical walls. These vertical walls were

only shallowly observed during the survey, since a downward-looking camera configuration

was used. This resulted in fewer samples covering those areas, promoting the dramatic

change in the sampling rate between the top of these mound-like shapes and their lateral

parts.

In the cases shown so far, the survey of the scene has been carried out with a downward-

looking configuration. This does not demand the application of our method, as an ap-

5.5. RESULTS 167

Figure 5.15: Coral Reef dataset reconstruction. From first to last row: point set (1,656,413 points),

meshed surface, and textured surface.

proximation in the form of a height map could also be provided, preserving more or less

the overall shape of the scene. However, the case presented in Figure 5.18 presents a more

general camera configuration for the survey of an underwater hydrothermal vent. This

hydrothermal vent, called the Tour Eiffel, has been the target of many geological, chemical

and biological studies in the last decade [134]. It is located on the Mid-Atlantic Ridge, at

around 1700m depth, and is more than 15m high. Obviously, the details of this intrincate

shape cannot be recovered using the common downward-looking configuration. In this

case, the survey was carried out using a forward-looking camera configuration, with the

robot going around the object several times (see the camera trajectory in Figure 2.13).

Note in Figure 5.16, how the input sequence is more challenging than in the other cases,

as the attenuation of the light with distance is strong, and the high depths at which it was

collected forced the use of artificial lightning, causing non-uniform illumination across the

images and emphasizing the blurring and scattering produced by suspended particles in

the medium. Due to these phenomenons, the point set retrieved is noisier and presents

several outliers, as depicted in more detail in Figure 5.17. However, in Figure 5.18 we

can see that even in this case our method obtains a correct surface following the main

shape, at the same time disregarding the outliers. In order to validate the output of our

method, we compared our results with those of some of the methods in the state of the

168 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Figure 5.16: Three sample images of the Tour Eiffel sequence (from a total of 928). This challenging

sequence presents common problems in underwater imaging: blurring, attenuation of light with

distance and scattering.

art. The first row in Figure 5.19 shows the resulting surfaces after applying the most

relevant methods. The selected methods were MPU [165], Robust Cocone [65], APSS [97]

(its MeshLab implementation [53]), and Poisson [118]. Given the global view of these

methods, they are able to deal with outliers to some extent. However, the vast number of

outlier points posed by this dataset doomed them to failure. The result obtained by MPU,

illustrated in Figure 5.19 (a), shows a spiky surface that does not resemble the object vis-

ible in the original image sequence, and also some hallucinated off-surfaces created due to

outliers. In Figure 5.19 (b), we can see that the surface retrieved by the Robust Cocone

method encloses most of the points (including the outliers), giving rise to a hull whose

triangles do not pass near the denser parts of the original point set, where the surface is

actually described. All the same, the results of the APSS method in 5.19 (c) are similar

to the MPU case, presenting again a bumpy mesh that does not resemble the expected

surface. Finally, in Figure 5.19 (d), one can find the results for the Poisson method [118],

a widely used and cited method nowadays. Compared to the other methods, it achieves

a better reconstruction in the sense that most of the object’s shape is correctly recovered

as a smooth surface. However, it also shows a non-existent off-surface at the back of the

model that should be filtered manually. It is worth noting that, except for the Robust

Cocone method, all the presented methods require oriented point sets, i.e., a normal for

each point must be known. For all the cases presented, normals have been computed using

the method of Hoppe et al. [104] using a k = 100, which we found to be a good tradeoff

given the number of points in the dataset and its noise. On the contrary, our method

works directly with the raw point sets.

We present next an even noisier dataset corresponding to a survey of a shipwreck of

the XVIIth century located near the coast of Toulon (France) at around 70m depth. The

ship, called La Lune, belonged to the fleet of King Louis XIV, and the good conditions

of its remainings presents a rich and important archeological source of information. This

dataset is part of a detailed survey around the cannons that are still preserved on the ocean

floor. The data represents a cannon, with two cauldrons nearby. The survey followed a

5.5. RESULTS 169

Figure 5.17: Close-up on the point set of the Tour Eiffel dataset (1,368,115 points). Note the high

number of outliers.

Figure 5.18: The Tour Eiffel dataset, reconstruction of an underwater hydrothermal vent. From

first to last row: point set, meshed surface, and textured surface. Note how the surface is correctly

reconstructed even in presence of a high number of outliers.

170 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) MPU [165] (b) Robust Cocone [65] (c) APSS [97]

(d) Poisson, 3 views [118]

Figure 5.19: Results of some of the state-of-the-art surface reconstruction methods applied to the

Tour Eiffel dataset. With the exception of Robust Cocone, all the methods tested require per-point

normals, while our method does not. In all cases, we compute them using the method of [104] with

a k = 100. Note how the original defect-ladden point set prevents the reconstruction of a correct

surface in (a)(b) and (c), while producing artifacts in (d).

5.5. RESULTS 171

configuration similar to the one presented before, with a slightly slanted forward-looking

camera configuration, and performing several turns over the object of interest. However,

the conditions of the data acquisition were even worse than in the Tour Eiffel case in

terms of scattering and visibility. In this case, the imaging data was extracted from an

interlaced PAL camera capturing at grey scale. Some of the images in the sequence can

be seen in Figure 5.20. The problems depicted resulted in a bad estimation of the camera

positions during the structure-from-motion process. The error during the registration

of the cameras propagates in subsequent steps, giving rise to a point set with a lot of

outliers and registration errors between depth maps. These problems can be seen in more

detail in Figure 5.21. Note that while our method has been designed to deal with outliers

and variable noise across the same point set, registration errors are not solved using our

pipeline. Thus, double contours rising from incorrect registration of the cameras are likely

to be reconstructed separately. This means that the surface we are trying to mesh is

inherently non-manifold. Thus, the surface mesher also returns a non-manifold surface

in those parts where the registration errors are more pronounced. These problems are

alleviated if the required resolution for the model is decreased. The results obtained show

an incomplete model with holes and low resolution. Despite this fact, our method obtains

the overall shape of the model, with holes in large undersampled areas and recovering the

borders of the surface. The overall shape of the cannon is clearly visible and note how

the open top of the cauldron seen in the second image of Figure 5.20 has been correctly

reconstructed. The quality and resolution of our result is not as fine as one would desire,

but the dataset is complicated enough to also pose problems to the most relevant methods

in the state of the art. In Figure 5.23 one can see the results of the Poisson method [118],

is also having problems reconstructing this scene. As previously mentioned, this method

relies on knowing per-point normals, which had to be computed in our case following the

method of [104]. The critical parameter of Hoppe’s method depends on the k-neighborhood

required and the correctness of these normals will influence the results of the Poisson

method. The first row in Figure 5.23 shows the results of applying an increasing k for the

same octree depth for Poisson, which returns a surface similar in resolution to ours. Even

in the case of using a k = 50 neighborhood, note the nonexistent off-surfaces created by

the outliers. Also, the top of the cauldron is closed, as this method seeks a water-tight

surface. In the case of using a higher depth for the octree, as in the second row in Figure

5.23, the surface is more detailed, but the surface is also highly extrapolated in parts where

not enough samples are taken (e.g., under the cannon) or in parts where borders should

be present (the top of the cauldron or the limits of the area surveyed).

Finally, the last dataset comes again from an archeological survey, in this case including

two pottery elements. Obviously, the conditions during image capture were far better than

172 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Figure 5.20: Three sample images of the La Lune sequence (from a total of 981). Note how

the blurriness of the scene, the moving objects, light attenuation with distance, and non-uniform

lightning make the processing of this sequence difficult.

Figure 5.21: Close-up of the noisy point set of the La Lune dataset (1,137,820 points).

5.5. RESULTS 173

Figure 5.22: La Lune dataset reconstruction, a cannon and cauldrons on a shipwreck. From first

to last row: point set, meshed surface, and textured surface.

174 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

(a) D = 6, k = 20 (b) D = 6, k = 30 (c) D = 6, k = 40 (d) D = 6, k = 50

(e) D = 8, k = 50

Figure 5.23: La Lune dataset, results using the Poisson method [118]. In each figure, D stands

for the octree depth required for Poisson, and k for the number of neighbors to take into account

during Hoppe’s normal computation method. Note in the top row how different k values during

normal inferring modify the output of the Poisson method.

in the previous case, leading to clear images of high quality. These images allowed us to

recover a less noisier point cloud. Using this point set we are able to retrieve a smooth point

cloud, which is suitable for surface reconstruction using our method. Figure 5.24 shows

these results and demonstrates how, under less noisier conditions, our method retrieves

smooth surfaces that faithfully resemble the observed object.

5.6 Conclusions and Future Work

We have presented a surface reconstruction method applied to raw point sets able to

provide smooth approximations of surfaces in the form of triangle meshes. Its applicability

to fields such as biology, geology and archeology has been demonstrated, providing a

detailed representation of an area of interest. We tested the results against those of

the state of the art, proving that it can provide reconstructions of similar quality while

presenting the advantage of being able to deal with outliers and noise in the data, common

situations in underwater datasets.

The applicability of our method has been demonstrated against a variety of datasets

presenting different characteristics, and including synthetic data, range scans and optical

reconstructions. In all cases, the method achieves a faithful reconstruction of the surface

5.6. CONCLUSIONS AND FUTURE WORK 175

(a) Sample Images

(b) Point Set (c) Textured Surface

(d) Surface

Figure 5.24: Pottery dataset. The first row (a) shows some input images (from a total of 39).

We present the input point set (1,278,499 points) in (b), the reconstructed surface in (d) and its

texture mapped version in (c). Note how, given less noisier conditions, the retrieved surface is

smooth and faithfully represents the geometry of the observed object.

176 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

Table 5.2: Table showing the parameters used to generate the results presented in Section 5.5.

Footnotes clarify the meaning of each column.

Datasets Noise Intersection Meshing

Name Num. Points Figure k∗ o† δi
‡ c§ γf γi αr/αd

¶ S‖

Sphere 10,242 5.5(b) 500 0.3 6 0.1 0.5 3 0.1 N

Corrupted Sphere 20,484 5.5(d) 500 0.3 75 0.1 0.5 3 0.1 N

Torus 10,000 5.6(b) 500 0.3 6 0.1 0.5 3 1 N

Corrupted Torus 10,000 5.7(d) 500 0.3 15 0.1 0.5 5 1 Y

Max Planck 199,169 5.8(b) 500 0.5 6 0.02 0.5 3 2.25 N

Gargoyle 863,210 5.9(d) 500 0.5 6 0.01 0.5 2 0.5 N

Elephant 1,537,283 5.10(d) 200 0.3 6 0.01 0.5 2 1 N

Stanford Bunny 362,272 5.11(c) 500 0.3 20 0.02 0.5 3 0.001 Y

Corrupted Stanford Bunny 724,544 5.12(b) 1000 0.3 30 0.02 0.5 3 0.001 Y

Multibeam 413,873 5.13 500 0.3 6 0.01 0.5 3 0.5 N

Shallow Water scene 1,856,271 5.14 2000 0.3 50 0.015 0.3 5 0.1 N

Coral Reef 1,656,413 5.15 2000 0.3 50 0.01 0.3 5 0.1 N

Tour Eiffel 1,368,115 5.18 2000 0.3 50 0.01 0.5 10 0.07 N

La Lune 1,137,820 5.22 2000 0.3 50 0.02 0.3 15 0.5 N

Pottery 1,278,499 5.24 2000 0.3 50 0.015 0.3 5 0.1 N

∗Number of nearest neighbors taken into account.
†Quantile.
‡Minimum number of inliers for RANSAC.
§Radius to take into account when generating C(s), w.r.t. Bounding Sphere’s Radius.
¶Meshing parameters, fixed to be the same to achieve a more isotropic result. We omit αa, as we fix it

to αa = 0.
‖Smoothing performed? (Y = yes / N = no).

5.6. CONCLUSIONS AND FUTURE WORK 177

Table 5.3: Table showing the running times for the two main steps in the algorithm. All the

experiments have been performed on a machine with an Intel i7-3770 CPU at 3.4 GHz with 32 GB

of RAM.

Datasets Timings (s)

Name Figure Scale Meshing

Sphere 5.5(b) 248.57 12.11

Corrupted Sphere 5.5(d) 511.84 288.60

Torus 5.6(b) 250.36 81.76

Corrupted Torus 5.7(d) 243.09 67.54

Max Planck 5.8(b) 4872.52 573.30

Gargoyle 5.9(d) 21842.40 4652.49

Elephant 5.10(d) 27450.20 4616.36

Stanford Bunny 5.11(c) 8544.38 78.95

Corrupted Stanford Bunny 5.12(b) 25941.20 7253.89

Multibeam 5.13 10496.10 6639.78

Shallow Water scene 5.14 120014.00 3486.59

Coral Reef 5.15 107785.00 6804.23

Tour Eiffel 5.18 89091.20 1817.42

La Lune 5.22 74888.50 1497.01

Pottery 5.24 83453.90 36269.40

178 CHAPTER 5. DIRECT POINT SET SURFACE RECONSTRUCTION

of the object even in the presence of high levels of noise and outliers, without requiring

any pre-processing step to alleviate these aberrations, nor any additional information than

the position of the points themselves. Of special interest are the datasets of Tour Eiffel

and La Lune, where the poor quality of the imagery used to construct the point cloud led

to massively corrupted data. Nonetheless, our method has proven to handle such data

and retrieve surfaces reconstructing the surveyed objects, outperforming the methods on

the state of the art.

Despite the fact that the method presented has proven to work well in a wide range

of scenarios, it can still be improved. On one hand, its computational complexity is

higher than that of its counterparts. On the other hand, the method uses a fixed radial

neighborhood size. While this is enough for the datasets presented, this assumes a close-

to-regular sampling, which may not always be the case. In this direction, a radius adaptive

to the local sampling density would be more desirable in cases of variable sampling.

Furthermore, our method is not able to deal with the problem of double contours.

Even if the scale of the noise is computed adaptively, each part of a badly registered scan

will most likely have its own noise scale, and consequently, each scan will be reconstructed

separately.

A further improvement could be done on the texture mapping step. For multiple-view

datasets, we used a simple scheme in order to provide the mesh with texture extracted

from the input images. However, due to illumination changes and registration errors, the

texture on the triangles needs to be blended in order to achieve a continuous representation

between neighboring triangles. There are many proposals in this direction [136, 85], but

none of them have been applied underwater. Due to the aforementioned problems being

very specific to underwater imaging, the seamless texture mapping problem also requires

a tailored solution.

Chapter 6

Splat-based Surface

Reconstruction

6.1 Introduction

While the method proposed in the previous chapter has proven to be useful in our area of

application, we identified some drawbacks that should be solved.

First, the number of intersection queries during the RDT Delaunay refinement meshing

process is quite high. This added to the fact that the intersection test requires the iterative

RANSAC part, dooms the method to be quite slow. Therefore, alleviating the intersection

computation cost is direly needed.

Second, in some cases the scale of the noise can be considered as constant, or at least

a worst-case estimate may be enough to represent it. This is the case with our scenario,

where the camera needs to be at a conservatively short distance from the object of interest

in order to be able to obtain clear images amenable to reconstruction. When reconstructing

the point cloud, this results in the retrieved samples having bounded noise values.

Additionally, even if the RDT surface meshing procedure allows the user to tune the

quality measures on the retrieved surface, obtaining different parametrizations of the out-

put surface would require running the whole algorithm again. In contrast, it would be

desirable to maintain intermediate results between executions, to provide the user with

the ability to test different configurations regarding the quality of the output surface mesh

without having to perform all the computations again.

In this chapter, we introduce a method able to cope with the aforementioned problems.

First, a splat-based representation is computed from the point set. A robust local 3D

RANSAC-based procedure is used to filter the point set for outliers, then a local jet

surface (a low-degree surface approximation) is fitted to the inliers. Second, we extract the

179

180 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

reconstructed surface in the form of a surface triangle mesh through the RDT Delaunay

refinement. In the present case, intersection queries are solved from the set of splats

through a 1D RANSAC procedure.

6.2 Overview and Contributions

Our method is based on computing a global surface approximation using local surfaces.

Instead of producing a consistent global representation of the surface through a memory-

intensive global solver , such as solving for a signed distance or indicator function, and

then using an isosurface meshing approach, our approach performs the merging of the

different local surfaces at the meshing step.

We denote as splats these local surfaces, which may not be just planar but higher-

degree approximations instead. A splat, computed using a local neighborhood of the

input points, takes into account the fact that the input point set may be corrupted with

noise and outliers. From the local neighborhood of an input point, we use the RANSAC

method to determine which points are most likely to be a part of the surface. The splat

is then computed using least-squares fitting of a differential jet. Thus, the differential jet

approximation handles the effects of noise in the data, while RANSAC ensures using only

inlier data in their computation.

The set of splats provides a global approximation of the shape sampled, amenable

to coarse-to-fine meshing through Delaunay refinement [30]. The main advantage of the

Delaunay refinement method is that it only requires computing intersections between line

segment queries and the surface to be meshed. In our case, the surface-segment intersection

queries are robustly solved by computing splats-segment intersections and running another

1D RANSAC procedure along the segment query. Even if small inconsistencies are present

in the splat representation, RANSAC takes advantage of the redundancy between splats

so as to be able to answer correctly the intersection query required by the surface meshing

method. Figure 6.1 depicts an overview of our method.

It is worth noting that coherent orientation between splats is not required, since only

intersection points are considered during the meshing regardless of their orientation. Thus,

the method works on raw point sets, avoiding the requirement of per-point normals in

most of the approximation-based methods of the state of the art. This makes the method

amenable to point sets coming from a wider range of sources.

In addition to a low memory footprint, our two-step proposal allows us to generate

the final mesh at different resolutions given the same splat-based representation by only

changing the parameters of the meshing algorithm. Besides, the splat-based procedure

allows the user to select the fitting degree of the splat as a means to trade smoothness for

6.3. CREATING THE SPLATS 181

Figure 6.1: Overview of our method. (a) Input raw point set. (b) Splat representation (discretized

using triangle fans for visual depiction). (c) Output surface triangle mesh generated through RDT

Delaunay refinement.

fitting accuracy to the input data.

Finally, because of the limited support of the splats, this method does not find a

surface over areas that are not sampled, allowing the recovery of surfaces with boundaries.

Although hole filling capabilities are desirable in some cases, guessing the surface of large,

undersampled areas often leads to artifacts on the final surface.

This chapter is structured as follows: Section 6.3 details the creation of the splat-based

representation from the input point set. Then, Section 6.4 describes the surface meshing

step through robust merging of the splats. Next, Section 6.5 illustrates the robustness and

versatility of our method. Finally, Section 6.6 presents some conclusions and future work.

6.3 Creating the Splats

Given the input point set P , we compute a splat-based representation in which each splat

is a local approximation of the surface. In its simplest form, a splat is a disk tangent

to the surface and with a radius adapted to the local density of the point set. However,

our method allows higher-degree approximations through so-called jet surfaces. We next

explain how these jet surfaces are computed and how we combine them with RANSAC in

order to achieve robustness to outliers.

6.3.1 Local Jet Surfaces

For each point pi ∈ P , we pick its k nearest neighbors K(pi). In each local neighborhood

we then compute a local smooth jet surface as introduced by Cazals and Pouget [45].

A jet surface is defined as a least squares approximation of a height function in a local

182 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

reference frame. Coherence between neighboring splats is achieved through overlapping

neighborhoods, and robustness to noise is achieved through least squares approximation.

More specifically, given a subsample of the points K(pi), and a local coordinate frame-

work, the jet surface is defined as the Taylor expansion of a height function (truncated to

a given degree). It is represented as:

z(x, y) = JB,d + h.o.t., (6.1)

where h.o.t. stands for higher order terms, and JB,d is a jet surface of degree d (a d-jet)

corresponding to:

JB,d =

k=d∑
k=0

(
i=k∑
i=0

Bk−i,ix
k−iyi

i! (k − i)!

)
. (6.2)

Such a local representation of a smooth surface is valid as long as the z-axis of the local

coordinate framework is not included in the surface tangent plane. It may be computed

from K(pi) by least square fitting. To get an accurate estimate of the jet surface at pi we

use a local coordinate framework obtained from K(pi) by principal component analysis

(see Figure 6.2(a)).

From the jet surface we extract another representation, referred to as the Monge form.

The Monge form is the Taylor expansion of the height function in the coordinate system

whose axis are aligned aligned with the normal and the principal curvature directions of

the surface.

z(x, y) = 1
2(k1x

2 + k2y
2)

+1
6(b0x

3 + 3b1x
2y + 3b2xy

2 + b3y
3)

+ 1
24(c0x

4 + 4c1x
3y + 6c2x

2y2 + 4c3xy
3 + c4y

4) + h.o.t.

(6.3)

In the original method [46], this Monge form is used to evaluate differential properties

of the surface at a query point, such as principal curvatures and directional derivatives. In

our framework, we use it because it describes the local surface using fewer terms and will

reduce the cost of computing intersections with segments during the Delaunay refinement

meshing phase. Observe indeed that for a jet surface of degree d = 2, the number of

coefficients in the jet surface is a priori Nc = (d+ 1)(d+ 2)/2 = 6, while the Monge form

involves only two coefficients.

We now point out the difference between our approach and the MLS surfaces, since

both approaches involve local computations around a query point. The second part of

the projection operator presented by Alexa et al. [5] is also a local bivariate surface

computation. However, the jet surface definition is explicit: it defines a fixed surface

around a given query point, while MLS projection operators vary depending on the query

6.3. CREATING THE SPLATS 183

point, which requires an iterative procedure for each intersection query with line segments.

Section 6.4 explains how our framework takes advantage of the fact that the intersection

query between a segment and a local surface of degree up to 2 can be computed more

directly.

6.3.2 Outlier Rejection

For outlier rejection we use an approach based on 3D RANSAC [79]. The RANSAC

method computes models from data corrupted with large quantities of outliers. At each

iteration, it instantiates a model using a random sample of u points, where u is the

minimum number of points needed to compute the model. All remaining points are tested

against the current model, i.e., they are considered to be compatible with the model when

they are within a maximum tolerance error from the model. Each point agreeing with

the model votes so as to consolidate a consensus defined by the number of points agreeing

with the model. After repeating the process a number of iterations, the model having

largest consensus (support) is selected and a refined least-squares solution for the model is

computed from all agreeing data. The intuition is that models generated from points that

include outlier data should have little (weak) support while those generated from inlier

data should have greater support.

In our algorithm, the jet surface computation is used as the model that RANSAC fits

to K(pi). At each iteration inside the RANSAC procedure, a minimum set of points from

K(pi) is selected and a model is computed from that. Then, the votes for this model are the

number of points closer than δr from it. Note that since the surface can be of an arbitrary

degree, we use the algebraic distance instead of the common Euclidean one, provided that

it is more efficient to compute. Furthermore, a minimum number of inliers (δm) is required

to accept the computed jet, otherwise the model is too weakly supported, and thus the

points defining it should be considered as outliers. At the end of the RANSAC method,

if a point pi does not fit the best local jet (with the largest support), or the computed jet

is too weakly supported, it is considered as an outlier and no further processing is carried

out.

We will use a probabilistic approach to determine the number of iterations RANSAC

needs to generate a model. As it is computationally too expensive to try each possible set

of samples to build a model, we instead aim at finding the minimum number of iterations

(Niter) that ensures that, with probability q, RANSAC will pick at least one sample of size

s free from outliers. If we define w as the probability that any point inside the currently

selected sample is an inlier, the probability of this point being an outlier is ε = 1−w [103].

Thus, the number of iterations is bounded by:

184 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

Niter = log(1− q)/log(1− (1− ε)u). (6.4)

We choose to fix q = 0.99 in our experiments. Since we do not know beforehand

the percentage of outliers inside a given K(pi), we initialize ε with a worst-case estimate,

which has been fixed to ε = 0.5 for all experiments shown. Then, at each iteration, we

update this estimate if the current computed model has greater support. The minimum

number of points required to generate the jet surface depends on the degree of the jet.

The number of coefficients c of a jet surface, and consequently the minimum number of

points for the fit, is defined by Nc = (d+ 1)(d+ 2)/2.

From the K(pi) set of points, the RANSAC procedure extracts its subset of inliers,

which are referred to as M(pi). In a final step, RANSAC computes the final jet-surface

using all the points in M(pi).

6.3.3 Splat Sizing

Although each of the splats has finite support, we favor redundancy between neighboring

splats since we take advantage of this property during meshing. The size of the splat is

simply computed from M(pi) as the mean distance from each sample pj ∈M(pi) to pi so

that the size of the splat depends on the local point set density.

6.4 Meshing

We have generated one splat for each input point where RANSAC was successful, and

because of the redundancy between them, the same area may be covered by more than

one splat. In order to obtain the final surface triangle mesh from the splats, we use

again the coarse-to-fine meshing algorithm based on the concept of RDT and Delaunay

refinement [30]. Thus, as we did in the previous chapter, we basically need to infer a line

intersection test for our splat representation.

Calculating the intersection between a line segment query and a jet surface of d > 1

has a high computational cost. For this reason, we use a planar disk version of the splat

as the first approximation for efficient intersection detection. This planar approximation

is defined by the origin of the splat and the normal at this origin (both defined by the

computed Monge form of the jet surface), and the radius computed in section 6.3.3.

Prior to meshing, we insert all the disks into a hierarchical AABB tree data structure

(Axis-Aligned Bounding Boxes) in order to further accelerate the intersection detection.

Once we detect the disks intersected by a segment query, we proceed as follows for each

disk. We move the intersection points along the segment query in order to refine the

intersection points with the associated local higher degree jet surfaces. Note that when

6.4. MESHING 185

(a) (b)

Figure 6.2: Intersecting a splat with a line segment. (a) A jet surface (in gray) is fitted to the

neighborhood of the red point. The limit of the splat support is depicted with a red circle. Blue

points depict the input points. Observe how the approximation of the splat is faithful closer

to its center. (b) Several disks are intersected by the query segment. The contribution of each

intersection point is weighted by a function of its distance from the center of the splat. The lines

over the disks depict the Gaussian weights used.

the local surface has degree d = 2, there is a closed form solution [143], and local surfaces

of degree d > 2 require solving a non-linear minimization along the segment. Starting from

the intersection point with the disk approximation, the intersection point is moved towards

the first intersection point along the segment using Levenberg-Marquardt optimization.

We observe that higher order local surfaces are useful in undersampled datasets in which

local changes in the surface are more abrupt and thus require more complex local surfaces.

However, we also observe that using local surfaces of high degree produces surfaces that

capture the noise instead of correcting it.

For initialization an initial subset of the centers of the computed splats, 20 in all results

shown, are used to create the initial triangulation required to seed the mesh refinement

process.

6.4.1 Merging Local Intersections

If the input point set is dense enough, it is very likely that each intersection query returns

not just one but a set of intersection points. Assuming for the moment that there are

no outliers among these intersection points, we need to provide a single intersection point

summarizing the local splats intersected. We first observe that the local surface computa-

tion is “variability centered”, i.e., more reliable when close to the center of the splat. We

compute a weighted mean to reflect this observation (Figure 6.2(b)).

Each splat is assigned a Gaussian weight function located at its center. Each intersec-

tion point is then given a weight according to its distance from the center of the splat:

186 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

w(x) =
1

σ
√

2π
e−

x2

2σ2 , (6.5)

where σ = riγg, and ri denotes the radius of the splat i (its size) and γg denotes a user

parameter used to adjust the scale of the Gaussian. The final merged intersection point

pint is computed as:

pint =

∑
i∈Qw(‖pi − ci‖)pi∑
i∈Qw(‖pi − ci‖)

, (6.6)

where Q denotes the set of intersected splats, and pi and ci denote the intersection point

and the origin of the intersected splat, respectively.

6.4.2 Robust Intersection Query

Despite our efforts for achieving coherence between neighboring local splats, the weighted

averaging process described above is not appropriate for high levels of noise. In addition,

the local approximations of the surface are computed from a given center (an input point),

thus their accuracy decreases with their distance from this center. Furthermore, depending

on parameter δr, the RANSAC procedure described above is not able to detect outliers

that are far from the true inlier points yet close to the jet surface approximation. For these

reasons, we need an intersection test robust to both low-conformity among neighboring

splats and remaining outliers.

We have one splat for each input point, hence, due to splat overlaps, the surface is

locally represented by more than a single splat. Intuition tells us that, in general, most of

the splats are local faithful approximations of the surface, except for a few outliers. Figure

6.3(a) depicts this general configuration: most intersection points are within one cluster,

very close to one another, while outlier intersection points are isolated. We thus aim at

extracting the final intersection point by taking into account the cluster of points with the

largest support.

In order to extract this cluster, a 1D RANSAC procedure is applied along the inter-

section query where the model is a weighted centroid. At each iteration of the RANSAC

procedure, two points are randomly selected, the minimum to define a centroid, and a

model is instantiated from them. Then, we rank this model according to the number of

points being closer to the centroid than a distance parameter δi. Two sample iterations of

the algorithm are illustrated in Figures 6.3 (b,c). At the end, the centroid having largest

support is selected, providing the cluster of points used to compute the weighted averaging

as described above. A percentage of the length of the segment query is used to define the

δi parameter.

6.5. RESULTS 187

Cluster to

take into

account

Outlier

Query Segment

(a)

0 inliers

supporting

this model

Query Segment

(b)

4 inliers

supporting

this model

Query Segment

(c)

Figure 6.3: Robust intersection. (a) The splats that are coherent among each other generate a

cluster of intersection points, while a non-coherent splat generates an isolated intersection point,

classified as an outlier. (b) and (c) illustrate two possible iterations of the RANSAC algorithm,

centroids (green) generated from outliers have weaker support than the ones generated from inliers.

Note that this procedure requires at least two splats overlapping a given area. If a

single splat is intersected, we return no intersection as no consensus can be established

locally. Redundancy among splats is thus central to provide robustness in our approach.

6.5 Results

We implemented our method using components from the CGAL library [1]. Our current

implementation is sequential. Table 6.1 lists all the parameters used by the two steps of

our algorithm. Note that some parameters are not critical and thus have been set once

for all experiments shown. The data-dependent parameters are k (nearest neighbors) and

those driving the splat-RANSAC procedure. There are 3 additional parameters required

for meshing. All the parameters used to generate the results are listed in Table 6.3, along

with the running times for the two steps of the algorithm. Note that we choose similar

values for αr and αd, because this leads to surfaces with triangles of similar size.

As illustrated in Figure 6.4, our method works well in the ideal scenario, with no noise

or outliers. The Stanford Bunny dataset is chosen to illustrate the behavior of our method

under harder noise conditions (Figure 6.5). Figure 6.6 (a) confirms that our method is

already able to deal with noise with local surfaces of degree 1. The other sub-figures show

the results obtained when increasing the degree. The timings listed in Table 6.3 confirm

a rapid decrease in performance for degrees higher than 2, without visible increase in the

quality of the results. In the remainder we report results only for local surfaces of degree

d = 2.

Robustness to unstructured outliers is illustrated in Figure 6.7. We artificially add

outliers to the Stanford Bunny point set by adding uniform random points inside a loose

bounding box (enlarged by 5% of its diagonal) of the original point set. The second row

188 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

Table 6.1: Parameters used by the two steps of our algorithm. We also specify the constant values

used in all the experiments shown in Section 6.5. BBD denotes the Bounding Box Diagonal and

QSL denotes the Query Segment Length.

Parameters

Splats

Name Description Default Value

k Number of neighbors to take into account (variable)

d Degree of the splat fit 2

δr RANSAC distance to plane threshold 0.01BBD

δm RANSAC minimum number of inliers (variable)

Meshing

Name Description Default Value

αa Surface meshing angle bound 10

αr Surface meshing radius bound (variable)

αd Surface meshing distance bound (variable)

δi RANSAC threshold for the intersection query 0.05QSL

γg Gaussian deviation factor 0.25

Figure 6.4: Elephant dataset: 1,537,283 points, both noise and outlier free. Left: input pointset

with closeup. Right: reconstructed surface with closeup.

6.5. RESULTS 189

Figure 6.5: Stanford Bunny: 362,272 points with a high level of noise.

(a) d = 1 (b) d = 2 (c) d = 3 (d) d = 4

Figure 6.6: Stanford Bunny. Reconstructed surfaces with a gradual increase of the degree of the

splats.

190 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

Figure 6.7: Robustness to outliers. The first row shows the outlier-ridden point sets. The percent-

ages of outliers added, with respect to the number of points on the original point set, are 50%,

100%, 150% and 200%, added inside its bounding box (enlarged by 5%). The last 2 rows show the

results when applying our method to its vertically corresponding point set. The second row uses

δr = 0.005BBD, while the third row uses a more restrictive δr = 0.0025BBD.

shows the results when applying our method with a less restrictive δr. In the presence of

outliers, this parameter becomes relevant as it is the one defining the inlier set at each

RANSAC iteration. Using a looser threshold leads to outlier points close to the surface,

which generate outlier splats. These outlier splats produce holes in the final surfaces since

they are not coherent with the other splats, and they are not detected for intersection by

our robust intersection query. The third row in Figure 6.7, where δr is set to be more

restrictive, shows that the results are quite similar for all outlier-ridden datasets. When

taking a look at the running times of these datasets in Table 6.3, we note that there is

a noticeable decrease in performance during the creation of the splats. This is due to

the RANSAC procedure being unable to obtain a result with enough inliers to estimate

the number of iterations ruled by Equation (6.4) to decrease. This means that RANSAC

reaches the maximum number of iterations to decide finally that there is no valid jet

surface possible at a given outlier point.

In order to measure the accuracy of our method for variable amounts of noise and

6.5. RESULTS 191

Table 6.2: Robustness on the synthetic sphere point set. The 1st column shows the added noise

(standard deviation), the 2nd, the percentage of outliers added according to the original point set.

The 3rd and 4th columns indicate the vertices and edges of the resulting surface. The columns

from the 5th to the 7th show the mean/min/max error of the points on the surface from the

original unit sphere, while the last two columns correspond to the number of non-manifold edges

and vertices in the resulting surface.

Noise Outliers Vertices Edges Mean Error Min Error Max Error NM Edges NM Vertices

0 0 840 1676 2.33e-05 1.86e-05 4.16e-05 0 0

0.01 0 829 1654 0.001438 1.86e-06 0.005201 0 0

0.01 25 818 1632 0.001620 3.80e-07 0.006418 0 0

0.01 50 837 1670 0.001926 8.77e-06 0.007822 0 0

0.01 100 824 1646 0.002120 3.25e-06 0.010432 4 0

0.025 0 830 1664 0.004195 6.16e-06 0.016708 16 0

0.025 25 830 1662 0.004322 1.10e-05 0.022721 12 0

0.025 50 821 1642 0.004567 2.17e-06 0.023205 8 0

0.025 100 829 1666 0.004980 1.27e-05 0.023553 23 0

0.05 0 864 1749 0.013898 5.82e-05 0.063856 117 8

0.05 25 868 1752 0.013898 1.51e-06 0.093498 123 11

0.05 50 868 1769 0.013716 1.93e-05 0.074861 162 11

0.05 100 864 1708 0.015326 1.04e-05 0.090198 133 16

outliers, a synthetic dataset consisting of a unit sphere has been generated. Table 6.2

and Figure 6.8 show the results for added Gaussian noise and outliers. Table 6.2 shows

that noise makes the accuracy of the final surface decrease incrementally and adds non-

manifoldness caused by the non-conformity between neighboring splats. For a high level of

noise, the method is not able to recover a good splat approximation and starts degrading.

However, even in this case the effect of outliers is not noticeable.

Despite a high resilience to noise and outliers, and given the local nature of the prim-

itives used to approximate the inferred surface locally, our method is not always able to

fill in holes in the resulting surface. This is bad in some cases where it would be desirable

to fill small holes in the surface due to missing data, but it is also useful to get no recon-

struction in some parts when the goal is to reconstruct surfaces with boundaries. The foot

dataset depicted in Figure 6.9 illustrates this dilemma.

Our mesh generation procedure provides an easy way to obtain different resolutions for

the final surface mesh by changing the RDT Delaunay refinement parameters (see Figure

6.10). Methods relying on variants of the marching cubes commonly require re-creating

the voxel grid at the desired resolution in order to modify the properties of the output

mesh, while our splat-based representation is unchanged.

So far, the method has been tested against regularly and densely sampled datasets.

Figure 6.11 shows the results of the method for a sparse dataset. After applying the

method with k = 25, the resulting surface contains some holes; they can be seen in Figure

6.11 (b). This is due to undersampled areas. Observe that it makes no sense to apply

the RANSAC method presented in Section 6.4.2 when there is only one intersected splat,

192 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) N = 0.01 / O = 0 (b) N = 0.025 / O = 0 (c) N = 0.05 / O = 0

(d) N = 0.01 / O = 25 (e) N = 0.025 / O = 25 (f) N = 0.05 / O = 25

(g) N = 0.01 / O = 50 (h) N = 0.025 / O = 50 (i) N = 0.05 / O = 50

(j) N = 0.01 / O = 100 (k) N = 0.025 / O = 100 (l) N = 0.05 / O = 100

Figure 6.8: Synthetic unit sphere dataset. Results for increasing levels of noise and outliers. The

original point set was made out of 10, 242 points. N stands for noise (standard deviation) and O

stands for outliers (percentage). These results correspond to the data in Table 6.2.

Figure 6.9: Foot dataset (10, 010 points). The first column shows the point set. The second and

third columns show two views of the model with boundary triangles depicted in blue.

6.5. RESULTS 193

(a) (b)

(c) (d)

Figure 6.10: Different resolutions and quality of the final surface can be achieved by changing the

parameters of the surface meshing without changing the splats approximation. (a) presents the

point set (863, 210 points), while (b), (c) and (d) show incremental levels of resolution with respect

to the size of the triangles and the approximation bounds.

194 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) (b)

(c) (d)

Figure 6.11: Horse dataset, (a) example of a very sparsely sampled point set, 100,000 points. We

then show the results of our method for different values of the k parameter. (b) corresponds to

k = 25, (c) to k = 50 and (d) to k = 100.

since it is impossible to tell whether this intersection point is an outlier or not. Thus, at

least two splats are required to tell if an area is correctly represented (intersection points

are close to one another), and three or more are needed to run the RANSAC procedure.

One may think that increasing k would also make the resulting splats bigger and cover

the holes. This is what happens in Figure 6.11 (c), when we use k = 50, although there

are still some holes left. Note however that increasing k too much, as depicted by Figure

6.11 (d), leads to bad local fitting and hence bad fitting between neighboring splats. As

a consequence, more holes are generated because of our RANSAC intersection test. This

issue, left for future work, suggests that a fixed k may not be a correct solution for non-

uniformly sampled datasets, and should be adaptive to sampling density.

Figure 6.12 shows how some of the state-of-the-art methods behave when applied to the

Stanford Bunny dataset. They can be compared with the ones presented in Figure 6.6. We

6.5. RESULTS 195

(a) MPU (b) Poisson (c) APSS

(d) VRIP (e) Robust Cocone (f) Power Crust

Figure 6.12: Reconstructions for the Stanford Bunny dataset using some of the methods from the

state of the art. (a) Multi-level Partition of Unity [165], (b) Poisson [118], (c) Algebraic Point Set

Surfaces [97], (d) Volumetric Range Image Processor [60], (e) Robust Cocone [65] and (f) Power

Crust [13].

observe that the interpolatory methods, Robust Cocone [65] and Power Crust [13], are not

able to deal with noise. Regarding the methods based on approximating the surface, they

all achieve smoother results. The results obtained by APSS [97], Poisson [118], VRIP [60]

and MPU [165] are comparable, but MPU returns an over smoothed surface in some parts.

Regarding the APSS method, it depends on the scale parameter. If this scale parameter

is too low, it generates a fitting too tight to the input points and causes some noise to be

captured in the surface. Our method recovers a surface very similar to that obtained by

Poisson and VRIP, but does not require any additional information. Poisson, MPU and

APSS require oriented normals at input points, while VRIP requires the knowledge of the

individual scans forming the point set.

Finally, to test our method to its limit in terms of robustness, we ran it on point sets

obtained from images (outdoor, aerial and underwater) through dense computer vision

photogrammetry methods.

Depending on the method used to obtain the dense point set, the data has different

196 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

properties. For this reason, we evaluate our method against the two approaches described

in Section 2.6 for dense point set reconstruction. On the one hand, we use the Patch-

based Multi-View Stereo (PMVS) method [84]. This greedy method has the advantage

of providing a smooth point set, with low noise and outliers. However, its disadvantages

include a lower coverage of the area (due to failures during propagation) and the creation

of structured outliers (i.e., outliers are not single points, but clusters of points). On the

other hand, we use a plane sweeping method [55, 209], where each image in the sequence

contributes a dense depth map to the model. This fact induces a huge sampling rate for

a given dataset. However, the lack of a coherence check between depth maps leads to the

creation of a huge amount of both outliers and noise. Furthermore, if the cameras are not

well registered, the model also contains doubled contours, that is, parts of the model that

are repeated more than once, but their positioning does not match.

We start with two outdoor datasets generated using PMVS. The first one consists of

an old Farm (Figure 6.13), and the second is the Fountain dataset from the multi-view

stereo benchmark of Strecha et al. [201] (in Figure 6.14). As expected, the point sets are

a very smooth representation of the object with few outliers. Consequently, our method

has no problem in reconstructing both cases faithfully. Note in the case of the Farm, small

structures like trees have disappeared because of their small support that made the splat

generation step consider them as outliers.

In order to test the application of PMVS along with our surface reconstruction method

on an underwater scenario, we use three of the datasets presented in the last chapter:

Shallow Water (Figure 6.15), Coral Reef (Figure 6.16) and Tour Eiffel (Figure 6.17). We

have seen that both the Shallow Water and Coral Reef datasets are examples of areas

observed from a downward-looking camera. The results of the Shallow Water dataset in

Figure 6.15 show a noise-free point set with few outliers (black points). Our method is able

to recover the surface of these areas without any further difficulties. For the Coral Reef

dataset in Figure 6.16, the resulting point set is also smooth, but the fact that the camera

was held at a constant altitude lead to the small details in the scene to be undersampled.

For this reason, the small mound-like parts in the middle of the shape have not been

recovered correctly, and several non-manifold parts were produced. Nonetheless, the rest

of the surface is correctly recovered.

A key aspect of the PMVS method in front of plane sweeping is that it provides per-

point normals. Thus, the results of this method are suitable for application on surface

reconstruction algorithms requiring an oriented point set as input. Consequently, we

tested the Tour Eiffel dataset not only with our method but also with the Poisson [118]

and APSS [97] methods, both requiring this type of input. Figure 6.17 shows these results,

where we can observe that Poisson provides a smoother closed surface, omitting some of

6.5. RESULTS 197

(a) Point Set

(b) Surface

Figure 6.13: Farm dataset, 1,136,957 colored points, obtained using PMVS [84]. (a) shows the

point set, (b) presents the surface. While the overall structure is recovered, small structures like

trees are eliminated.

198 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) Point Set

(b) Surface

Figure 6.14: Fountain dataset, 1,886,489 colored points, obtained using PMVS [84]. (a) shows the

point set, and (b) the reconstructed surface.

6.5. RESULTS 199

(a) Point Set

(b) Surface

Figure 6.15: Shallow Water dataset, 863,162 points, (a) obtained through PMVS [84], and (b) the

reconstructed surface using our method.

the details of the shape. On the other hand, the APSS is able to recover a bounded surface

when there is a lack of sampling on the dataset, and fits tighter to the input points, thus

preserving the details of the surface. Finally, our method yields a mixture of both results,

by recovering a bounded surface and obtaining a smooth surface a bit more detailed than

that of Poisson.

After overviewing the results with the smooth point sets provided by PMVS, we test

our method against point sets retrieved using a plane sweeping algorithm. Due to the

large quantity of noise and the high number of outliers they present, these point sets pose

a greater challenge to our method. Furthermore, many of the outliers are structured (e.g.,

they are located on the same plane), and not uniformly spread as assumed previously.

Starting again with a pedestrian example, Figure 6.18 shows the results obtained with

a column capital. Despite the structured outliers present in the input data, our method is

able to remove the vast majority of them, generating a few wrong splats in the areas near

the inferred surface, which then translate into wrong off-surfaces.

Figure 6.19 depicts a large scale aerial measurement of the abbey of Cluny (France).

The point set presents even more difficulties, since in addition to the large number of

structured outliers, the sampling is both widely variable and anisotropic. These differences

in sampling are due to the variable distance from the buildings to the camera: buildings

closer to the camera are reconstructed with higher resolution and vice-versa. Given this

non-uniform sampling, we use a small neighborhood parameter k to recover parts of the

200 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) Point Set

(b) Surface

Figure 6.16: Coral Reef dataset, 215,809 points, (a) obtained through PMVS [84], and (b) the

reconstructed surface using our method.

6.5. RESULTS 201

(a) Point Set

(b) Our method

(c) Poisson

(d) APSS

Figure 6.17: Tour Eiffel dataset, 168,502 colored points, (a) obtained using PMVS [84]. We used

the point set in (a) with our method (b) and with Poisson [118] (c) and APSS [97]. One can observe

that our method provides a smooth representation like Poisson, while recovering boundaries as with

APSS.

202 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) (b) (c)

Figure 6.18: Column Capital optical dataset, 419,488 colored points. (a) Shows the full set of

input points, (b) a closeup of the inlier area and (c) the surface obtained by our method.

surface with few representative points. However, as using a small neighborhood is less

robust to outliers, we need to enforce the splats for greater support by increasing parameter

δm. Figure 6.19 (c,d) illustrate the reconstructed surfaces when using a small support

(k = 50, δm = 25): our method is able to reconstruct parts at the back of the scene but

also creates many wrong small surfaces at the front (the church building), where the point

set contains many structured outliers. Figure 6.19 (e,f) illustrate how our method achieves

better robustness when enlarging the support of the splats (same k, but δm = 40) at the

price of fewer parts of the scene covered in the reconstruction. This suggests that the

two parameters k and δm are our means to trade robustness for coverage. An automatic

parameter selection for adjusting the neighborhood k to the local sampling density is left

for future work. Finally, note that since our method seeks a smooth surface, the sharp

creases of buildings are not accurately reconstructed.

Regarding underwater datasets, we test the previously presented for PMVS. Note that

the input point sets have all been presented in Chapter 5, and consequently, we refer the

reader to the Figures 5.14 (page 166), 5.15 (page 167) and 5.17 (page 169) in that chapter

for their observation. Recall from the previous chapter that, due to the clear visibility of

the first dataset, Shallow Water, the resulting point set does not present high levels of

noise or many outliers. Consequently, the results shown in Figure 6.20 present a smooth

representation of the object. Also, due to the above mentioned larger coverage of plane

sweeping methods, the surface recovered is more complete than in the PMVS case.

In the case of the Coral Reef and Tour Eiffel datasets, the surface presents some non-

manifold structures. This is due to the double contours present in the original datasets.

6.5. RESULTS 203

(a) (b)

(c) (d)

(e) (f)

Figure 6.19: Cluny dataset. (a) Top view of input point set: 987,190 colored points with noise and

many structured outliers, obtained through aerial photography and dense photogrammetry. (b)

Slanted view of input point set. The high anisotropy in sampling density is mainly caused by the

camera’s position. Buildings closer to the camera, such as the church, are densely sampled, while

the houses in the rear part are more sparsely sampled. (c) and (d); reconstructed surfaces with a

small value for parameter δm (k = 50, δm = 25). (e) and (f); reconstructed surfaces with a larger

value for parameter δm (k = 50, δm = 40).

204 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

(a) Shallow Water

(b) Coral Reef

(c) Tour Eiffel

Figure 6.20: The results of our method when applied to underwater datasets whose point sets have

been obtained through plane sweeping (point sets in Figures 5.14, 5.15 and 5.17, on pages 166, 167

and 169 respectively).

Note in Figure 6.21 how the splat representation in the case of outliers close to the

inlier data is far from perfect. Near the surface, and specially in those places where there

is higher curvature, outliers near the surface get captured by splats, which makes them

larger and not coherent with their neighbors. Fortunately, the robust intersection detection

eliminates most of the aberrations that these erroneous splats introduce. This is thanks

to the redundancy check, so that at least two splats must contribute to an intersection

test to consider it valid. Note that this is also accomplished in the parts where two splats

intersect, which explains some remaining off-surfaces visible in Figure 6.21 (b).

Unfortunately, the dataset of La Lune, presented in the previous chapter, could not be

recovered using our methodology. The low quality of the images led to a wrong registration

of the cameras, which in turn led to the creation of lots of double contours, which add to

the great number of outliers and the inherent noise of the dataset. In our current frame-

6.5. RESULTS 205

(a)

(b) (c)

Figure 6.21: Splat representation (a), and close-up of the top part of the Tour Eiffel dataset,

showing the splat representation (b) and the recovered surface (c). Note how the surface is almost

completely recovered even with the erroneous splats generated by the outliers near high curvature

areas.

206 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

Figure 6.22: Best splat representation extracted from La Lune dataset. The self-intersection

between splats prevents our method from working on this dataset. Note however that, when

comparing this with the original point set in Figure 5.21 (page 172), a lot of gross outliers have

been eliminated using our method.

work, in order to alleviate double contours, the only solution is to loose the δr threshold.

With a permissive δr, the double contours are treated as noise, and thus generated splats

merge the information on multiple contours and they consequently remove the double

contour problem. However, in addition to double contours, we have a lot of outliers. This

introduces the problem that, if we increase δr, we also loose the robustness to outliers,

and thus the outliers close to the surface are not eliminated. This produces a splat rep-

resentation where the splats do not fit one another, with multiple self-intersections. As

previously noted, if there is no coherence between neighboring surfaces, our robust inter-

section detection fails. To illustrate this problem, we show the best splat representation

achieved in Figure 6.22, where you can see that most of the splats self-intersect. However,

it is worth noticing that gross outliers, those further from the true surface, are eliminated

using our procedure. Note that the problem of self-intersecting splats is also pronounced

in areas of high curvature. In these areas, if we have a sufficiently large query segment, the

intersection computation can merge the contributions of various splats into a single one.

However, given a smaller query segment resulting of requiring a small αd, the intersection

test may fail, as it may not intersect any splat, or only with one, thus making our robust

intersection test fail. Figure 6.23 shows this phenomenon with the Shallow Water dataset,

where we can see that inconsistencies arise in high curvature areas. Thus, it is obvious

that in some cases we have a limitation on the smallest distance threshold αd that we can

require.

6.5. RESULTS 207

Figure 6.23: Problems of the method when the query segment becomes small enough to not

merge contributions of more than a single splat. Since our robust intersection detection requires

redundancy, i.e., more than a single one, to consider an intersection as valid, the intersection

becomes invalid when the query segment becomes too small to intersect more than one splat.

Note how this happens in areas of high curvature, where splats have less coherence between one

another. Nevertheless, a more permissive δd results in fewer problems in these areas, as shown in

Figures 6.15 (b) and 6.20 (a).

Table 6.3: Values of the parameters and running times used in each of the presented figures, r

stands for row and c stands for column. Values in rows δr and αr/αd multiply the BBD of the

input point set. All computations were performed on an Intel Core i7-2600 CPU @ 3.40GHz, 16Gb

RAM. Running times are in seconds. Note that Figure 6.8 does not have running times since the

parameters shown were used on all the corrupted sphere datasets.

Splats

Figure 6.4 6.6(a) 6.6(b) 6.6(c) 6.6(d) 6.7r2c1 6.7r2c2 6.7r2c3

k 100 50 50 50 50 100 100 100

δr (BBD) 0.005 0.01 0.01 0.01 0.01 0.005 0.005 0.005

δm 50 15 15 15 15 75 75 75

Run time 412.92 43.96 76.79 164.75 599.70 3919.69 9684.95 11695.6

Figure 6.7r2c4 6.7r3c1 6.7r3c2 6.7r3c3 6.7r3c4 6.8 6.9 6.10(b)

k 100 100 100 100 100 100 25 100

δr (BBD) 0.005 0.0025 0.0025 0.0025 0.0025 0.015 0.005 0.005

δm 75 75 75 75 75 50 15 50

Run time 15339.2 4975.37 10637 15369.8 19925.1 - 2.31 261.99

Figure 6.10(c) 6.10(d) 6.11(b) 6.11(c) 6.11(d) 6.13(b) 6.14(b) 6.15(b)

k 100 100 25 50 100 100 200 200

δr (BBD) 0.005 0.005 0.005 0.005 0.005 0.01 0.01 0.01

δm 50 50 15 25 25 15 50 100

Run time 261.99 261.99 17.46 22.68 35.22 285.54 816.77 377.435

Figure 6.16(b) 6.17(a) 6.18(c) 6.19(c)(d) 6.19(e)(f) 6.20(a) 6.20(b) 6.20(c)

k 100 50 250 50 50 100 25 100

δr (BBD) 0.01 0.01 0.0002 0.00003 0.00003 0.05 0.0239 0.0024

δm 50 15 150 25 40 25 5 90

Run time 68.922 35.05 18309.7 10083.2 9987.67 490.01 230.83 914.41

Meshing

Figure 6.4 6.6(a) 6.6(b) 6.6(c) 6.6(d) 6.7r2c1 6.7r2c2 6.7r2c3

αr/αd (BBD) 0.0025 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Run time 211.19 43.83 50.03 69.84 74.15 94.49 118.42 98.527

Figure 6.7r2c4 6.7r3c1 6.7r3c2 6.7r3c3 6.7r3c4 6.8 6.9 6.10(b)

αr/αd (BBD) 0.003 0.003 0.003 0.003 0.003 0.028 0.001 0.02

Run time 107.94 109.74 116.35 114.04 114.72 - 13.48 15.32

Figure 6.10(c) 6.10(d) 6.11(b) 6.11(c) 6.11(d) 6.13(b) 6.14(b) 6.15(b)

αr/αd (BBD) 0.01 0.005 0.005 0.005 0.005 0.002 0.0013 0.0034

Run time 30.46 84.13 10.54 17.46 30.8 195.14 1973.50 342.22

Figure 6.16(b) 6.17(a) 6.18(c) 6.19(c)(d) 6.19(e)(f) 6.20(a) 6.20(b) 6.20(c)

αr/αd (BBD) 0.0029 0.0044 0.001 0.0002 0.0002 0.0045 0.0024 0.0024

Run time 277.69 62.32 82.66 214.63 49.09 194.283 223.78 231.26

208 CHAPTER 6. SPLAT-BASED SURFACE RECONSTRUCTION

6.6 Conclusions and Future Work

In this chapter we have presented a surface reconstruction method that is able to recover

smooth representations of a surface under a large quantity of outliers and noise. The

separation of the splat creation and the surface meshing steps makes the method modular,

and provides re-usability of the results obtained at each intermediate step. Our method

works without further information other than the raw point set, and the local nature of

the individual splats makes the method recover, to some extent, the boundaries of the

reconstructed shape.

Our approach has some limitations: the reconstructed surfaces are limited to being

smooth and may be non-manifold as the surface meshing does not enforce generating

manifold surfaces (in the case of requiring manifold results, a post processing method like

that in Section 5.4 should be applied). Furthermore, our method is not able to reconstruct

largely undersampled parts, resulting in holes in areas with missing data. Additionally, a

uniform k parameter is clearly not sufficient when dealing with widely non-uniform point

sets. Finally, we have seen that we cannot solve the problem of double contours along

with the outlier problem in both are present in a dataset.

Future work points towards an automatic adaptive selection for k, and a parallelization

of all the steps for modern multi-core architectures.

Chapter 7

Surface Reconstruction through

Minimum Cuts in Graphs

7.1 Introduction

Taking a look back to the results discussed in Section 6.5, and despite the method having

been proven useful in a wide range of scenarios, the reconstruction results still have some

flaws. At first glance, we can detect two obvious problems.

First, splats may not fit completely with their neighbors. Moreover, in areas of high

curvature, the splats are likely to self intersect. This method, as defined, works with

smooth surfaces, but even in cases where a surface can be considered smooth, highly curved

parts may distort the splat representation. Furthermore, the self intersection problem is

aggravated by the naive splat sizing mechanism, which may lead to larger splats in these

sharper areas. In both cases, the result is a non manifold surface. Recall that having

a non-manifold surface is non-realistic and complicates further processing applied to the

resulting mesh.

Second, it is difficult to remove outliers that fall too close to the surface with respect

to the desired RANSAC distance threshold. The robust computation of splats has proven

successful in removing the so called gross outliers, i.e., outliers far from the true surface,

and whose distance to their nearest neighbors is large. Only in cases where the outliers

are close enough to the surface with respect to the RANSAC threshold are they used to

generate splats. Obviously, using these near-by outliers leads to a jagged, self-intersecting

splat representation. However, if we take the outliers that fall very close to the true surface

as part of the noise, the problem translates into a noise reduction issue.

In the local setup proposed so far in both Chapters 5 and 6, these problems were

complex to solve, requiring a post processing of the resulting surface in order to recover

209

210 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

from the non-manifold configurations. In this chapter, we change our proposal to a global

implicit setup, from which a manifold surface can be extracted from the vicinity between

two sub-volumes.

7.2 Overview and Contributions

We again base our method on the splat representation presented in the previous chapter.

As stated above, gross outliers are supposed to be eliminated when constructing the splats,

but this representation may still be noisy, in terms of self-intersecting splats refraining from

obtaining a manifold surface. Considering the review of the state of the art presented in

Chapter 4, and specially those in Section 4.5, we can see how, in the case of having the

surface represented by local primitives, the common approach is to merge or blend them

into a global Signed Distance Function (SDF). Merging different contributions in a global

representation leads to significant noise reduction, i.e., the contributions of the possibly

self-intersecting splats are merged, providing a smooth distance function.

Note, however, that in most cases the orientation of the local primitives is supposed to

be known, usually derived from the assumption of known normals at input points, or other

additional information like the sensor position is on hand. However, our splats are not

coherently oriented through the surface they define. This prevents a direct computation

for the distance function to be signed.

We could cast the problem as trying to orient the splats coherently. For this purpose,

and up to the moment of writing this thesis, the approaches dealing with this subject are

mainly variants of Hoppe’s method [104]. Hoppe’s method consists of propagating the

orientation between neighboring primitives following an MST. In noise-free cases where

there are small variations in curvature, Hoppe’s method has proven to provide satisfactory

results. However, in real-world data, the approach is likely to fail. Take for example the

application of Hoppe’s orientation method to our splat representation. In the first row of

Figure 7.1, you can see how the unoriented splats (where inverted orientation w.r.t. the

viewer is denoted with darker areas) are coherently oriented through Hoppe’s method.

From this consistent orientation, we can extract an SDF using a merging of primitives

similar to the one that will be introduced in Section 7.3. However, the second row of

Figure 7.1 shows a model where this orientation propagation mechanism fails. While a

large part of the splats have been correctly oriented, the orientation flips at some point,

leading to a globally non-coherent orientation, and consequently an incorrect SDF.

Despite this lack of coherence in orientation, we can still use the non-oriented splats to

produce an Unsigned Distance Function (UDF). Unfortunately, we cannot extract a sur-

face mesh from an UDF. Figure 7.2 shows a schematic representation of this phenomenon.

7.2. OVERVIEW AND CONTRIBUTIONS 211

(a) Unoriented Splats (b) Oriented Splats (c) Meshed surface

Figure 7.1: Example of Hoppe’s MST orientation method applied to our splat representation.

From left to right, the splats (with a randomly forced orientation), the oriented splats and the

reconstructed surface. The surface reconstruction is performed in a way similar to the proposal of

Hoppe [104], i.e., computing the SDF as the distance to the splat whose center is closest to the

query point. The implicit distance function is evaluated at the vertices of an irregular mesh, as

presented in Section 7.3, and then meshed through the RDT surface mesher.

212 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

0

(a) Signed

ε

0

(b) Unsigned

Figure 7.2: The problem of contouring a UDF. Imagine we cut a 2D slice near the surface of the

signed (a) and unsigned (b) versions of the distance function defined in Equation (7.1). In the

signed version (a), there is a clear zero value to isocontour located at the inflection point between

positive and negative values. Whereas for the unsigned version, due to roundoff errors, an absolute

zero value is never found, but only a local minima of ε. Note, however, that this ε changes for

different parts in the 3D distance function, and thus cannot be fixed. If we try to isocontour the

surface at a value close to zero (green line), we will obtain two valid isovalues, defining not just

one surface but two, thus capturing not a surface but a band of volume.

Due to roundoff errors, the exact 0 value may never exist, and the surface is defined by

local minima on the implicit function. Thus, if we mesh for a given isovalue close to zero,

we will not obtain one 2D manifold, but two. This is so because we need the isovalue to

be a clear inflexion point in the SDF. Referring again to Chapter 4, we can see that our

problem falls within Section 4.5.2, i.e., we have an unsigned distance field from which we

need to extract the surface. After discarding the orientation propagation in the splats,

the best chance is to try to recover the sign of the SDF out of the UDF. Basically, the

process consists of dividing the object into its inside and outside parts.

Note that we can refer to this subdivision as a clustering or a segmentation. In

fact, the problem of inside/outside labelling is a binary segmentation problem. Inspired

by the great results achieved in the computer vision community for this task, we propose

using a graph formulation and use minimum cut algorithms for solving the inside/outside

labelling and, consequently, the surface reconstruction problem.

We considered two approaches differing in the cutting procedure and the graph con-

struction. However, the computation of the UDF is the same in both cases. Thus, in

7.3. UNSIGNED DISTANCE FUNCTION 213

Section 7.3 we start by presenting the construction of the UDF. Then, Sections 7.4 and 7.5

present two different proposals to solve the binary labelling problem. Next, Section 7.6

shows the results and discussion on the advantages and disadvantages of both methods.

7.3 Unsigned Distance Function

The purpose of building a distance function is to blend the local contributions into a global

distance field. This permits the otherwise non-coherent related local surfaces to contribute

to a consistent global surface represented as the zero isolevel in the distance field.

We use a variant of the implicit MLS definition [124], presented in Section 4.5.4. This

method blends together the local SDF generated by the oriented points regarded as planes.

We update the formula by adding support for splats of degree 2 (i.e., LBQs), and by taking

into account the unsigned distance to the local surfaces instead of the signed one. The

UDF at a given query point p is computed as follows:

u(p) =

∑
si∈S φsi(p)fsi(p)∑

si∈S φsi(p)
, (7.1)

where S is the set of splats si, fsi(p) is the projection of p onto si, and φsi is a Gaussian

of the following form:

φsi(p) =
e−
‖p−ci‖2

σ2

Ns
, (7.2)

ci being the center of si, and Ns the total number of splats involved in the computation.

In fact, for each query point p, u(P) is computed using the splats whose centers fall at a

radial neighborhood of size σ. These neighborhood relationships are efficiently obtained

through the use of a KD-Tree data structure. Consequently, this distance function has a

bounded support, that is, it is only defined on a tubular volume around the splats, at a

distance of σ at most.

Basically, this UDF is a weighted mean of the individual distance contributions of the

splats falling near a given query point. It is obvious that the distance function presented

does not take into account gross outliers, which are supposed to be eliminated by the

splats creation procedure. Note also that we just use the centers of the splats and do not

take into account their size in the distance computation. Thus, we call them splats just

for coherence with the previous chapter, but in reality we use either points with normals

or LBQs, corresponding to splats of d = 1 and d = 2 respectively, and unoriented in both

cases.

Despite the use of a KD-Tree for a rapid query of neighborhood relationships, comput-

ing the function at an arbitrary point in space is a costly operation. In order to alleviate

the computational burden of intensively querying this implicit function, which is likely to

214 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

be required during the surface extraction step, we discretize our domain. At each of the

vertices in the partitioned domain, we compute the UDF using Equation (7.1). Then, for

an arbitrary query point in R3, the function value is returned using a linear interpola-

tion of the values stored in those vertices. Moreover, instead of following the traditional

approach of using a regular grid, we lean toward using an irregular tetrahedral grid that

adapts to the density of the input points.

Up to this point, in this thesis we have seen the Delaunay refinement associated to

the RDT meshing. In this case, we use the Delaunay refinement in order to obtain the

tetrahedral grid discretizing our working space. Starting from a Delaunay triangulation

containing the centers of the splats, new vertices are inserted iteratively until the given

criteria are fulfilled. In this case, we force the ratio between the edge of the minimum length

and the circumradius of the tetrahedra to be lower than the threshold αre (also referred as

the radius-edge ratio). Note that we are aiming at having a faithful approximation of the

distance function near the centers of the splats (which are located near the original points

in the input P). By forcing the radius-edge bound to be relatively low, the tetrahedra

become larger when far from the points, giving a rough approximation, and smaller when

closer to the input data, providing a more precise approximation.

As previously stated, the values of the distance function are computed at the vertices

of the triangulation. Thus, for an arbitrary query point, the tetrahedra containing it is

localized and the function value is interpolated using the values at the vertices of the

tetrahedra along with the barycentric coordinates of the point. Obviously, if the query

point is outside the band, the value is undefined. We refer to the vertices of this data

structure as U , and to its refined Delaunay structure as Del(U).

7.4 S-T Cut

Given the unsigned function described above, our goal is to recover its sign. That is, we

want to distinguish between the part of the volume inside the object from the part outside,

and then simply apply the corresponding sign to each part to convert the original UDF

into a SDF. Certainly, this problem can be considered as a binary labelling problem: we

want to partition the vertices U in the above mentioned tetrahedralization into the two

labels in and out. Given the extensive use of the S-T cut methods in binary optimization,

our first proposal is to adapt this method to perform the partition on our scenario.

7.4.1 Theoretical Bases

An S-T cut divides a set of nodes in a specific type of graph into two disjointed sets mini-

mizing the cost associated with the removed edges. Commonly referred to in the literature

7.4. S-T CUT 215

with the rather confusing name of Graph Cuts or, alternatively, the min-cut/max-flow al-

gorithm, this method obtains an exact minimization for binary optimization problems.

This technique has been extensively used in a wide range of applications in computer

vision and graphics [95, 178, 126, 127, 131, 175, 135, 132, 133, 99, 112, 107].

We start by presenting the graph terminology that will be used throughout this chapter.

A graph G = 〈V,E〉 is composed of a set of vertices V and the set of edges E joining them.

In the specific case of S-T cut algorithms, the set of nodes V contains two special nodes,

s (source) and t (sink), referred to as the terminal nodes, so that V = P ∪ {s, t}, P being

the rest of non-terminal nodes. Each edge joining vertices vi and vj stores a given weight

w(ei,j). We differentiate between these edges by calling them terminal edges M, if they join

a terminal vertex with a non-terminal one, or non-terminal edges N, which only describe

interactions between non-terminal vertices.

An S-T cut of the presented graph is a partitioning of the graph nodes into two subsets,

S and T, so that s ∈ S and t ∈ T. The cost of cutting a graph equals the sum of weights on

the severed edges w(ei,j), so that vi ∈ S and vj ∈ T. Thus, the problem is then to find the

minimum S-T cut from all the possible cuts in the graph. A useful result in combinatorial

optimization is that the minimum S-T cut is dual to the problem of finding a maximum

flow from source s to sink t [81].

From the binary optimization point of view, the terminal nodes s and t represent our

possible labels. Suppose we can define a cost for assigning each node to a given label. Also,

assume the labelling problem does not depend only on the nodes themselves, but also on

the labels of their neighbors. Thus, our problem basically requires an optimization of

the labels for each vertex in the graph, by enforcing spatial coherence between neighbors.

This results in the minimization of an energy function composed of a data term and a

smoothing term:

E(l) =
∑
p∈P

Tp(lp) +
∑

ei,j∈N
Vi,j(li, lj), (7.3)

where Tp(x) is the data penalty term, Vi,j(x) is the interaction potential, and l is the

binary labelling to optimize, defined as follows:

lp =

{
0 if vp ∈ S

1 if vp ∈ T.
(7.4)

Note that, in our case, the 0 and 1 labels correspond to the inside and outside of the

object to be reconstructed.

Related to the above mentioned interaction potentials, Tp(x) indicates per-vertex la-

belling preferences, while Vi,j(x) encourages spatial coherence and penalizes discontinuities

between neighboring labels. Kolmogorov and Zabin [128] proved that a globally optimal

216 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

labelling for the energy in Equation (7.3) can be found using the minimum cut on an S-T

graph, as long as the following regularity condition applies:

Vi,j(0, 1) + Vi,j(1, 1) ≤ Vi,j(0, 1) + Vi,j(1, 0). (7.5)

In our case, presented in the following section, all the edges have undirected weights,

but the general method is described for the case of directed weights. As suggested in many

other approaches [107, 132, 133, 99], we use Boykov and Kolmogorov algorithm [37] to

solve for the minimum cut.

7.4.2 Our Approach

We define our graph G using the same connectivity of Del(U), that is, the vertices P of

the graph correspond to U , and the edges in the adaptive structure containing the UDF

also define the relationships between vertices in G. Additionally, some of the vertices in

the graph have a pair of edges joining them to both the s and t nodes. This leads to the

graph definition depicted in Figures 7.3 (b,c) for the 2D case.

In order to apply the above defined optimization method to the U nodes in our space

partition, we need two main ingredients. On the one hand, we have to infer a confidence

for each pi ∈ U to be inside or outside the shape. On the other, we need to devise an

inter-nodes weighting. Equivalently, we need to define both terminal and smooth weights.

In the case of the smooth weights, these are derived directly from the unsigned distance

function values. Thus, each ei,j ∈ N has a weight ws(ei,j) which corresponds to the direct

evaluation of the unsigned distance function along the edge. Note that, since our vertices

in the graph coincide with those in Del(U), the UDF along the edge is constant, and thus

the weight simplifies to:

wn(ei,j) =

(
u(pi) + u(pj)

2

)β
, (7.6)

which is basically the mean value of the function value at the endpoints of the edge, and

where the power β is a user parameter allowing the emphasis of the minimum of the

distance function as suggested in Hornung and Kobbelt [107, 106]. Using this definition

for the smooth weights enforces the minimum cut to pass through the minimum of the

unsigned distance function. Note that our distance function definition is defined just on

a narrow sigma-band near the centers of the splats. Thus, smooth weights wn(ei,j) are

only defined inside this band. For the rest of the edges, a default constant value is added,

enforcing the propagation of labels from the neighbors in the band.

For the terminal weights, we take advantage of our splat representation. Recall that

this representation is already a good approximation of the surface of the object, and that

we have defined a robust intersection method using RANSAC in Section 6.4.2. Thus,

7.4. S-T CUT 217

(a) UDF

(b) Graph (smooth weights) (c) Graph (terminal weights)

(d) Optimized

(e) SDF

Figure 7.3: 2D depiction of the pipeline followed in this chapter. Starting from an UDF evaluated

in an adaptive grid (a), a graph structure is built using the connectivity defined by the triangulation

(b). Additionally, for the case of S-T cut, some of the vertices in the graph are connected to two

special nodes; s and t (c). After the graph optimization, we obtain a binary partition of the vertices

in the graph (d), which is used to sign the original UDF (e). Using the SDF, we can extract the

surface, the curve in this case, at its zero level set.

218 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

we use a procedure similar to that presented in Mullen et al. [159], but adapted to our

representation. Basically, we induce the confidence of a point as being inside or outside

the object by throwing random rays originating from that point in multiple directions,

and counting the number of intersections with the splat representation.

An intuitive approach to knowing whether an arbitrary point in space is inside or

outside an object is to count the number of intersections between a ray with its origin at

this point and the surface of the object. When the number of intersections is odd, the

point is inside the object, and when even, outside.

Since we do not know the surface of the object, we substitute it with the splat rep-

resentation. For each vertex/point p in the triangulation, we throw a given number of

rays, Nrays, with a starting point at p in random directions, and count the number of

intersections. Given all these intersections, we count those resulting in an even number,

ieven, and those giving an odd number, iodd. Note that we do not throw a single ray,

taking into account that the ray-splats intersection query may fail in some cases. Using

all these tests, the confidence for a given point to be part of the inside or the outside, and

consequently its weight with the s and t nodes is:

ws = ieven/Nrays

wt = iodd/Nrays.
(7.7)

Note that here, without loss of generality, we have fixed the s node, and consequently

the S set of the cut, to represent the inside of the object, while t (resp. T) represents the

outside.

Note, however, that the robust ray-splats intersection query has been proven to work

on large scales, i.e., far from the splats, but to be not so reliable with small scales, i.e.,

near the splats. Consequently, the vertices in U outside the σ-band are more suitable for

reliable stochastic ray signing as presented above. Furthermore, despite the fact that the

ray-splats intersection query is optimized using Axis-Aligned Bounding Boxes (AABB)

trees, its repeated use could lead to a drop in time performance for the method. In

order to alleviate computational complexity, we simply apply the stochastic ray confidence

computation to the points at the interphase of the σ-band. That is, we just compute the

confidence for a vertex if at least one of its adjacent neighbors is inside the band (see

Figure 7.3 (c)). This means that only a small subset of vertices has a terminal weight

and, for the rest of the vertices, no terminal edge is added. Thus, points with no terminal

weights obtain the final label due to the propagation ruled by the smooth weights.

In order to get a visual depiction of the pipeline described here, refer to Figure 7.3.

7.4. S-T CUT 219

(a) (b) (c)

Figure 7.4: 2D Schematic of the extension for the S-T cut method to handle bounded surfaces. The

curve in (a) is not closed, and consequently it does not define an inside or an outside. We compute

a global frame using PCA, and use it to chop the surface into two spherical caps, as depicted in

(b). One of the spherical caps is used to virtually close the surface as presented in (c), so that we

can disambiguate the inside/outside computation.

7.4.3 Extension to Open Surfaces

It is obvious that the above presented S-T cut approach has a clear flaw in the scenario

of this thesis. We have seen that the majority of objects retrieved from the seabed de-

scribe bounded surfaces. In these cases, there is no inside notion, and consequently the

inside/outside confidence procedure as previously presented does not work. We adapt our

method to work in this scenario by simulating the surface to be closed.

We start by computing a global plane using PCA with the centers of the splats. Then,

we compute the bounding sphere containing these centers and use the previously computed

plane to chop it off into two spherical caps. This way, one of the caps is used as the

reference to virtually define an inside/outside part of the shape. In order to do so, during

the inside/outside labelling through stochastic ray throwing, we count any intersection

with the selected spherical cap as a valid intersection. This process is intuitively depicted

in the schematic in Figure 7.4.

Note that we do not distinguish which part is which, i.e., we randomly label one of

the two spherical caps resulting from stabbing the bounding sphere by the global plane

as inside or outside. Since just the surface is required, the retrieved solution is valid up

to a possible global orientation change of the resulting triangle mesh after the surface

extraction step. Nevertheless, due to the insertion of this virtual spherical cap into the

system, the retrieved surface is closed. Thus, we create some parts of the surface that

are obviously not part of the real bounded surface. These parts of the surface should

be eliminated, using the approach that will be presented for the Normalized cut case in

subsequent sections.

220 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

7.5 Normalized Cut

We have seen that the S-T cut technique requires providing a notion of some of the points

to be inside or outside the shape. This procedure is necessary with several state-of-the-art

methods which also try to find the optimal separation of inside/outside volumes. However,

in our specific case, this knowledge is just a byproduct, since the final goal is to recover

the interface between the two volumes, i.e., the surface of the object. Given that we are

just interested in this separating surface, in this section we propose a method to partition

the volume into two, but disregarding which part is the inside or the outside. For this

purpose, we use another commonly referred to graph-based technique applied in solving

the binary segmentation problem: the Normalized cut.

Spectral methods are extensively used in clustering and segmentation in image process-

ing [193, 151, 56, 75, 121, 150]. It is also worth noticing that, even if originally described

using graph theory, Normalized cuts have a direct formulation as a Random walk [149], or

as a separation using hyperplanes (similar to SVM) [173], among other interpretations.

It is also worth noticing that the Normalized cut has been used with minor changes

in surface reconstruction by Kolluri et al. [125]. Note, however, that their method is

interpolation-based, and thus its definition is completely different from ours. While they

were concerned with the outlier rejection problem, we are more concerned with the atten-

uation of noise. That is, in their approach, the spectral cut was used to disregard outliers,

while, in our case, we use it to partition a volume from an implicitly defined UDF.

7.5.1 Theoretical Bases

All in all, the question we want to answer is: can we solve the partitioning problem without

having to rely on a specific labelling? Taking a look back at Equation (7.3), this results

in removing the data term, leaving the energy to minimize as follows:

E(l) =
∑

ei,j∈N
Vi,j(li, lj). (7.8)

Thus, we have to deal with the general definition of a minimum cut: the graph has to

be partitioned into two groups , regardless of their label, so that the edges of the same

group have a high weight, and, on the contrary, edges between different groups have low

weights. Since they do not have a specific meaning in this case, we rename our binary

regions as A and B, so that the cut can be defined as follows:

cut(A,B) =
∑

i∈A,j∈B
w(ei,j), (7.9)

7.5. NORMALIZED CUT 221

which basically means that the minimum cut corresponds to the one minimizing the total

weight of the edges removed.

However, as pointed out by Wu et al. [208], minimizing the cut directly, as described

in Equation (7.9), favours the cut of a small set of edges, i.e., severing a few edges often

leads to a minimization of the cut. Conceptually, we want the groups in this partition to

be relatively large with respect to the total number of nodes. The normalized cut method

tries to overcome this problem by forcing the sum of weights in both parts to be similar.

This is obtained by normalizing the cost of the cut relative to the cost of all the edges in

each region:

NCut(A,B) =
cut(A,B)

cost(A)
+

cut(A,B)

cost(B)
, (7.10)

where cost(X) is a sum of the weights of the edges contained in the set X. This definition

promotes the two sets A and B to be larger and of similar cost.

As pointed out in the original article by Shi and Malik [193], solving this problem is

NP-hard. However, if we change the labelling from pure binary to continuous, the problem

can be reformulated into a minimization that can be solved exactly.

A key ingredient for the minimization is the Laplacian matrix L, containing at L(i, j)

the similarity measure between vi and vj. Also, the matrix D, commonly referred to

in graph theory as the degree matrix, having the same size as L and containing on its

diagonal elements di the sum of all weights for a given vertex (i.e., the sum of weights of

its associated edges).

Let us define our labelling to be contained in the vector l:

li =

{
1 if vi ∈ A
−1 if vi ∈ B.

(7.11)

Then, we define the following ratio for a given labelling:

b =

∑
li>0 di∑
li<0 di

. (7.12)

Using the b value, a slightly different version of l can be defined as m = (1+l)−b(1−l).
Note that this change only reduces the labelling to be reformulated as:

mi =

{
2 if vi ∈ A
−2b if vi ∈ B,

(7.13)

which is equivalent to the previous one (Equation 7.11). However, by using this new

labelling definition, we can cast the minimization of Equation (7.10) as follows (for a

throughout derivation, the reader is referred to the original paper [193]):

min
l
NCut(L) = min

m

mT (D − L)m

mTDm
. (7.14)

222 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

Since the m labelling is still binary, the problem remains NP-hard. However, if we relax

the problem by allowing the solution to be continuous, the minimization in Equation (7.14)

can be converted to a Rayleigh quotient. Using z = D
1
2m, the problem becomes:

min
m

zTD−
1
2 (D − L)D−

1
2 z

zT z
, (7.15)

which is, indeed, a Rayleigh quotient, and can be minimized by z corresponding to the

smallest eigenvector satisfying:

D−
1
2 (D − L)D−

1
2 z = λz. (7.16)

Since the Laplacian matrix is positive semidefinite, its smallest eigenvalue is zero, with

an associated eigenvector whose components are all 1. Thus, we do not use the first, but

the second smallest eigenvalue to minimize Equation (7.16). Therefore, the solution is the

second smallest eigenvector λ2 of D−
1
2 (D − L)D−

1
2 .

Since this solution gives continuous values, they have to be discretized somehow into

the desired binary labelling l. This is easily achieved by looking at the sign of each value:

li =

{
1 if λ2,i ≥ 0

−1 if λ2,i < 0.
(7.17)

7.5.2 Our Approach

Note that the underlaying graphs of the two techniques proposed in this chapter are very

similar, just the links to S-T sites are missing in the Normalized cuts case. Thus, the

filling of the graph and the creation of the weights is exactly the same. In this case, since

there is no additional labelling hint, the parameter δ, used to stress the unsigned distance

function minimum, has more relevance than in the case of the S-T cut.

Note, however, that the small σ-band used in the S-T cut case may not be sufficient

for the present case. If this band is too small, the cut criterion could lead to problems like

the one posed in Figure 7.5. Since the σ band is too narrow, the cut that minimizes the

cost, and also balances the sum of edge weights in each partition, separates the edges into

two parts that do not necessarily pass through the minimum of u(x). In order to force

the cut to pass through the minimum of the UDF, we need a larger σ band, so that the

weights on each side of the band take greater importance in the balancing factor (i.e., the

term cost(X) in Equation 7.10).

Unfortunately, increasing the σ value leads to an increase of the computational cost.

For this reason, we propose constructing a secondary band governed by the parameter σ2.

In this σ2-band, we compute a coarser approximation of the function defined in Equation

(7.1) by not taking into account the full radial neighborhood around the query point, but

7.5. NORMALIZED CUT 223

(a) Point set (b) Smaller band result (c) Larger band result

Figure 7.5: Relevance of the σ band size for the Normalized Cut method. When applied to a

narrower σ band (b), the Normalized cut may be minimized by a cut that does not pass through

the minimum of the UDF. By enlarging the σ band (c), the weight of the edges on each side of

the partition increases, forcing the cut to pass through the minimum in UDF.

only the first kσ-nearest neighbors. This reduces the computational effort and provides an

acceptable approximation. Note that having a coarser approximation of the UDF when far

from the input points is not important in our case, since we are interested in the minimum

of the function, and this is located inside the finer σ-band. We only use this secondary

band to increase the importance of cost(X) for each part of the partition, in this way,

promoting the cut to pass nearer the minimum of our UDF. It is also worth mentioning

that it may be interesting in some cases to use this low-quality version of the distance

function in the S-T cuts case, for instance when a small σ results in holes appearing on

the surface and we want our global function to fill them smoothly. Obviously, the larger

the band we consider, the larger the global implicit function support, and consequently

the larger the reconstructed surface area.

Also, note that the Normalized cut procedure described in Section 7.5.1 assumes the

Laplacian to contain a single connected component. In cases where more than one single

object is represented in the scene, and given that the graph is only defined inside a limited

extent of the σ2-band, the graph may contain more than one single connected component.

Thus, once the graph Laplacian matrix is built, we separate it into connected components,

and apply the method to the largest set. Notice that by just applying it to the largest one,

we assume that there is only one object in the scene, and that other connected components

224 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

are formed by some remaining outlier splats. When allowing for multiple objects in a scene,

the cut should be computed on each connected component, to obtain a separate surface

for each of them. Finally, in order to compute the required eigenvalues and eigenvectors,

we exploit the high sparsity of our Laplacian by using the Lanczos algorithm [91].

After obtaining the cut, we flip the sign of one of the regions, A or B (it does not matter

which), and extract the surface using a surface mesher on the resulting SDF. Finally, the

results presented in the Results section demonstrate that the differences between the S-T

cut and the Normalized cut methods are not that great. What is important is to emphasize

that, in the second case, we do not use labelling hints at all. Thus, we prove that solving the

surface reconstruction by partitioning the working volume does not require the knowledge

of a specific labeling, but just the partition itself.

7.5.3 Removing Hallucinated Triangles

Note that the partition presented above takes place only in the σ band. Thus, we give a

sign to a slab of volume, and consequently, the retrieved surface mesh does not contain

only the part we are interested in, i.e., near the input splats, but also some hallucinated

triangles corresponding to the closing of this volume (see Figure 7.6 (d)). Following the

nomenclature proposed by Jancosek and Pajdla [113], we refer to hallucinated triangles

as those which are part of the reconstructed surface obtained so far, but that do not

correspond to the real surface (i.e., they are far from the input splats in this case). In

order to remove these artifacts, we eliminate the hallucinated triangles by using the u(x)

value of their vertices in the original UDF. An example of the reconstructed surface before

and after removing hallucinated triangles is presented in Figure 7.6.

Obviously, we have a large number of vertices having a u(x) close to zero, corresponding

to the part of the mesh close to the surface, and another large part having u(x) values

that progressively increase the farther away from zero they are, corresponding to the

hallucinated part. Basically, we need to infer if a vertex is part of the surface by checking

if its u(x) is close enough to zero. However, this notion of close is not defined for a given

dataset. For this purpose, we use the MSSE method to detect such a gap between u(x)

values close to zero and the rest. We compute the scale d of the variance for the values

close to zero, i.e., we compute the MSSE procedure starting from the sorted u(x) value

located at a very low quantile, fixed to o = 0.1 in all the presented cases. Then, we simply

remove the triangles having a vertex whose u(x) > 2.5d from the surface mesh. Note that,

as previously mentioned, we also apply this method when using the S-T cut method in the

case of bounded surfaces. Another possible solution to this problem not explored in this

thesis would be to modify the isosurface extraction method directly to work just in the

parts where the UDF is below a threshold, however, automatically setting this threshold

7.6. RESULTS 225

remains an open issue.

7.6 Results

In this section we exhibit the results obtained using the two graph cutting techniques

presented above. We list the parameters used to obtain the presented results for each

method in Tables 7.1 and 7.2, along with the running times required for each experiment.

It is worth noticing that the σ and σ2 parameters are computed with respect to the average

spacing between the input centers of the splats, calculated using the mean distance to

the 6-nearest neighbors. The present section follows the structure presented in previous

chapters: we start by validating both methods on range scan data to then focus on their

application in a multiple view stereo scenario, and we finalize by reviewing their application

in underwater datasets.

A relevant property to notice is that, since we are contouring a generalized SDF,

we drop the dependency that the methods in Chapters 5 and 6 had of using the RDT

surface mesher. Instead, we can use any contouring algorithm from those presented in

Section 3.4.1, like for instance, the widely used marching cubes as proved in Figure 7.7

(a). However, given the aforementioned advantages of RDT meshing in terms of the quality

of triangles (observable in Figure 7.7 (b)), we use this for all the results contained in this

section.

Additionally, when compared to the method presented in the previous chapter, we

are able to obtain manifold surfaces, amenable to further post processing. Take, for

example, the complex Stanford Dragon dataset, presented in Chapter 6, and note that the

differences between the results obtained by both the S-T and Normalized cut algorithms

are imperceptible. Further examples validating the application of both methods to several

range scans datasets can be seen in Figure 7.9.

As pointed out in Section 7.3, we also open the door to the use of directed points (i.e.,

points with unoriented normals) in our framework. Many proposals in the literature deal

with the problem of finding robust but unoriented normals [104, 10, 158, 68, 8, 139]. In

each of these cases, the problem is what to do with this directed but unoriented point set

in order to obtain the surface. Using our Normalized cut for this purpose, we can retrieve

a manifold surface. For the case of the S-T cuts method, we would require splats of a

limited extension to use this approach. This reduces to using the linear approximation of

the directed point as local surface, and compute its extent, for instance, as explained in

Section 6.3.3. An example of of the algorithms’ behaviour when used with linear primitives

can be seen in Figure 7.10.

Regarding range scanning applied underwater, it is well known that acoustic range

226 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) Point Set (b) UDF Slice (c) SDF Slice

(d) Hallucinated Triangles (e) After Filtering

Figure 7.6: The effect of hallucinated triangles on the Normalized Cut method. Note how the

reconstruction in (d) is covered by the meshed part of one of the volume slabs that has been

meshed. This is due to our procedure giving a coherent sign only inside the σ2 band. This

phenomenon can be seen in (b) and (c), showing a 2D slice of the unsigned and signed versions of

the 3D distance function respectively. After the automatic hallucinated triangle removal, we can

see the underlying surface in (e).

7.6. RESULTS 227

(a) Marching cubes (b) RDT surface mesher

Figure 7.7: Comparison between Marching cubes (a) and RDT surface mesher (b) for the extraction

of a surface. Note in (a) how the number of triangles is larger and their shape highly non-uniform,

while they are better shaped (i.e., closer to regular) when using the RDT surface mesher. In both

cases, the SDF used to extract the surface was constructed using the Normalized Cut method.

sensing is the preferred tool for mapping large underwater areas, thanks to their long

working distance. For this reason, we test our methods against some datasets of this

modality.

Problems like reflections and the inherent low resolution of acoustic sensors result

in the point cloud retrieved using this technology being quite noisy. Additionally, the

poor navigation readings used to align all the range scans into a single reference frame

causes several double contours in unprocessed point sets. As pointed out in Section 6.5,

having outliers and double contours generally creates a noisy splat representation with

self-intersecting splats not amenable to our robust segment-splats intersection procedure.

Thus, in these cases the S-T cut method, which uses this feature, cannot be used. For this

reason, we only test acoustic range datasets using the Normalized cut method.

The first acoustic dataset presents a point set obtained using a multibeam sonar scan-

ning a small underwater Mound rising from a 40 to 27 m depth located near the harbour of

Sant Feliu de Gúıxols, on the Costa Brava of Catalonia, Spain (see Figure 7.11). With the

sonar located in a slanted orientation towards the object, the point set was automatically

obtained with an adaptive replanning strategy that uses stochastic trajectory optimization

to reshape the nominal path to cope with the actual target structure perceived in real time

during the exploration [86]. As can be observed in Figure 7.11, despite the outliers and

double contours present in the final data retrieved, the Normalized cut is able to obtain a

consistent surface, although some parts of the surface are not reconstructed.

The second acoustic dataset corresponds to a profiling sonar survey of the interior

of an underwater cave located in L’Escala, also on the Costa Brava. During the survey,

228 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) Splats (b) Splats Mesher

(c) S-T Cut (d) Normalized Cut

Figure 7.8: Using the same splat representation shown in (a), we present a comparison of the

splats mesher (b) and the two methods proposed in this chapter – (b) for S-T cut, and (c) for

Normalized cut. Note that in the lower part of (b), we have emphasized the triangles containing

some non-manifold edges in red.

7.6. RESULTS 229

(a) Amphora (from Aim@Shape)

(b) Gargoyle

(c) Stanford Bunny

(d) Stanford Armadillo

Figure 7.9: Examples of the methods’ behaviour when applied to range scan datasets. From left to

right, input points, generated splats, and the results of the S-T cut and Normalized cut methods.

How both methods retrieve similar surfaces in all the experiments can be observed.

230 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) Point Set (b) S-T Cut (c) Normalized Cut

Figure 7.10: Elephant dataset (a). The results of both S-T cut (b) and Normalized cut (c) were

created using only undirected normals. However, for the S-T cut case, an extention for each linear

contribution had to be defined, i.e., they are splats using a jet surface of d = 1 approximation, as

defined in Chapter 6.

(a) Point Set

(b) Normalized Cut

Figure 7.11: Underwater Mound retrieved with a multibeam survey (a), and the reconstructed

surface using Normalized cuts (b).

7.6. RESULTS 231

the mono-beam rotating sonar head was positioned orthogonally to the cave, so that a

single scan provides a 360O view of its walls. Additionally, in this case the trajectory was

optimized a posteriori through a SLAM approach [152]. Figure 7.12 shows the dataset

along with the reconstruction and a cross section intersecting the reconstructed model,

which allows the viewer to understand the shape of the interior of the cave. Note that

small details, like the small tunnel visible in the upper part of Figures 7.12 (b,c), are

faithfully recovered despite the sparse sampling.

Focusing now on multi-view stereo datasets, we test the presented methods against

the point sets obtained using a plane sweeping methodology. We have seen in previous

chapters that these point sets present a larger quantity of aberrations, and that their

processing was problematic for the methods proposed in the previous chapters. We will

see how the change from a local view (splats creation and intersection) to a global view

(signed distance function) introduces robustness into the surface reconstruction approach.

More precisely, since the surface is defined as the interphase between two well-defined

volumes, we obtain the advantage of being able to extract perfectly manifold surfaces,

which was not ensured in the previous methods without post processing steps. Note,

however, that here we only confront the noise reduction problem, since gross outliers are

eliminated during the splat creation step. Unfortunately, as mentioned above, the S-T

cut method cannot be used in some of the cases because of the noisy splat representation

retrieved.

Let us start with the Column Capital dataset. Note in Figure 7.13, how by using

the methods proposed in this chapter, we can recover a larger part of the surface than

when using the method from Chapter 6. Another example of a pedestrian dataset is that

of the Fountain. As opposed to Chapter 6, the point set was generated using a naive

plane sweeping algorithm (note the large quantity of outliers in the data). In this case,

the splats generation step eliminated most of the outliers in the point set, but some of

them were structured following the same plane, thus generating some erroneous splats

(note how these splats are larger in Figure 7.14 (b)). Despite the aberrations in the splat

representation, the Normalized cut method is able to extract a manifold surface in both

cases (Figures 7.13 (b) and 7.14 (c)).

Regarding underwater datasets, we again use the ones presented in previous chapters,

starting with those containing fewer outliers: the Shallow Water (Figure 7.15) and Coral

Reef (Figure 7.16) datasets. In both cases, given the low number of outliers mixing up

with the noise and double contours in the dataset, the splat representation obtained is

suitable for both S-T cut and Normalized cut methods, and the results are similar in both

cases. One may observe a slightly larger reconstructed area in the Normalized cuts case,

as well as some small holes that appear in the S-T cut result. Observe in Table 7.1 that

232 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) Point Set (b) Cut Section

(c) Normalized Cut

Figure 7.12: Profiling sonar survey of an underwater cave (a). In (c) one can see the reconstruction

obtained by the Normalized cut algorithm, with close-ups of the two main tunnels highlighted. The

view direction is also marked on the right part. Additionally, in (b) one can see a cross section of

the cave to better understand the complexity of the area.

7.6. RESULTS 233

(a) Splats (b) Normalized Cut

Figure 7.13: Column Capital (see the original point set on Figure 6.18, page 202). Splat represen-

tation in (a) and Normalized cut surface in (b).

(a) Point Set (b) Splats

(c) Normalized Cut

Figure 7.14: Fountain dataset, obtained using plane sweeping, obviously containing a larger number

of aberrations than in the PMVS case visible in Figure 6.14 (page 198). The surface retrieved using

our Normalized cut method is shown in (b).

234 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) S-T Cut

(b) Normalized Cut

(c) Normalized Cut, with Texture Mapping

Figure 7.15: Results of the S-T cut and Normalized cut methods for the Shallow Water dataset

in figures (a) and (b) respectively. For an improved visualization of the reconstructed area, we

provide the texture mapped version of the Normalized cut result in (c).

these two examples are the only ones using the secondary σ2 for the S-T cut case, since a

small σ leads to an overly incomplete reconstruction with many holes in the surface. As

previously mentioned, by using a larger secondary band σ2, we obtain a larger coverage

of the area.

In the case of the Tour Eiffel dataset, we are also able to retrieve a perfectly manifold

surface approximating the shape of this underwater chimney. However, we can see in

Figure 7.17 how a larger part of the object is retrieved in the Normalized cut case. This

is due to the sparse sampling of the left-most part of the input point set, presented in

Figure 5.17 (page 169), which results in a complex splat representation, visible in Fig-

ure 6.21 (a) (page 205). Consequently, this non-conforming splat representation causes

the inside/outside guess to fail in some cases for the S-T cut method, dooming the global

7.6. RESULTS 235

(a) S-T Cut

(b) Normalized Cut

(c) S-T Cut, with Texture Mapping

Figure 7.16: Coral Reef dataset, using S-T cut (a) and Normalized cut (b) algorithms. A texture

mapped version of the S-T cut result is shown in (c).

236 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) S-T Cut

(b) Normalized Cut

(c) Normalized Cut, with Texture Mapping

Figure 7.17: Results for the Tour Eiffel dataset. From left to right: top, front and back views

of the reconstructed models. We show the results of the S-T cut (a) and the Normalized cut (b)

algorithm, along with its texture mapped version (c).

optimization to consider this area as part of the outside of the shape and thus not recon-

structed. Nevertheless, there is a high level of detail in both cases, outperforming those

obtained by methods in previous chapters.

Finally, we end this section with the dataset of the survey of La Lune shipwreck [93].

Recall the high level of corruption and the difficulties of previous methods to obtain a

faithful reconstruction of this specific dataset. In addition to the one already presented in

Figure 7.18, we include a survey from a different part of this same interest area, presenting

another cannon and some cauldrons (Figure 7.19). In both cases, the shapes of the objects

in the scene are indistinguishable either in the point set or in the splat representation

(Figures 5.21 and 6.22 on pages 172 and 206, and Figure 7.19 (a,b)), but they are clearly

visible in the surface reconstruction obtained with the Normalized cut (Figures 7.18 (b)

and 7.19 (c)). Obviously, as previously noted, our robust intersection test fails when

7.7. CONCLUSIONS AND FUTURE WORK 237

(a) Normalized Cut

(b) Normalized Cut, with Texture Mapping

Figure 7.18: La Lune, the first dataset (presented in previous chapters). We show the reconstructed

surface using Normalized cut in (a), and its texture mapped version in (b).

applied to highly non-conforming splats, which prevents the use of the S-T cut method in

this case. Note also, in Figure 7.18, that we attain a far finer scale and, consequently, a

more detailed model than using the method from Chapter 5.

7.7 Conclusions and Future Work

We have presented two volumetric surface reconstruction methods based on minimum

cuts on graphs. By making an analogy with a binary partitioning problem, we use the

minimum cut along an unsigned distance function to promote its signing. This UDF is

defined from the splat representation presented in the previous chapter, and is discretized

in a tetrahedral grid adapted to the density of the input points. Merging the different

contributions of the splats in a global view allows the mitigation of spurious splats that may

remain near the surface, and extracting the surface as the zero isovalue in a well-defined

volume results in the retrieved surface being manifold. Furthermore, and as opposed to

most methods in the state of the art, both our proposals are designed to handle bounded

surfaces.

While sharing the distance function definition, we divided the methods according to

their graph representation and cutting technique. In both cases, the base graph repre-

238 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

(a) Point Set

(b) Splats

(c) Normalized Cut

(d) Normalized Cut, with Texture Mapping

Figure 7.19: La Lune, second dataset. The point set in (a), and its splat representation in (b)

show how this dataset reproduces the same level of corruption of the first dataset. The Normalized

cut surface (c), and its texture mapped version (d), reveal two cauldrons located on either side of

a cannon.

7.7. CONCLUSIONS AND FUTURE WORK 239

Table 7.1: Table showing the parameters used and the running times required to generate the

results for the S-T cut algorithm in this section. Some of the parameters presented in the text

have been fixed for all the datasets: β = 4, αre = 1.5, Nrays = 50, and for experiments having

σ2 > 0, the number of neighbors in the secondary band taken into account is kσ = 25. All results

were generated on a Quad-Core AMD Opteron Processor 8378 with 128 Gb of RAM.

Name Figure
Parameters Run Times (s)

σ ∗ σ2 δr † αr/αd
‡ UDF § SDF ¶ Mesh ‖

Stanford Dragon 7.8(c) 6 0 0.001 0.001 6055.22 8568.24 72.37

Amphora 7.9(a)c3 3 0 0.7 0.5 1455.03 11271.80 176.55

Gargoyle 7.9(b)c3 3 0 0.7 0.5 2307.44 5051.47 196.26

Stanford Bunny 7.9(c)c3 2 0 0.001 0.001 498.88 6645.00 42.10

Stanford Armadillo 7.9(d)c3 3 0 0.7 0.5 118.72 297.23 102.01

Elephant 7.10(b) 6 0 1 1 6805.52 1953.43 142.54

Shallow Water 7.15(a) 3 15 1 0.05 3331.84 1921.37 429.87

Coral Reef 7.16(a) 3 15 0.7 0.7 2945.02 1999.66 846.76

Tour Eiffel 7.17(a) 7 0 0.05 0.05 7381.79 7315.10 170.85

∗Here σ and σ2 are expressed in terms of the average spacing between points (with k = 6).
†RANSAC distance threshold, as defined in Section 6.3.2.
‡Meshing parameters, as described in section 3.4.2. We omit αa, as we fix it to αa = 0.
§Creating the UDF.
¶Signing the UDF.
‖Surface meshing of the SDF.

sentation is derived from the adaptive grid storing the UDF. On the one hand, we have

presented the S-T cut method, which needs an initial guess for inside/outside for some of

the vertices in the graph to then propagate these labels following the smooth weights gov-

erned by the UDF. On the other hand, we have introduced the Normalized cut method,

which only uses the smooth weights to define a minimum cut balancing the cost of the

two volumes after the partition. In both cases, we have shown with many examples that

the retrieved surfaces are similar.

When comparing both proposals, we have proven that the Normalized cut method is

more versatile, as it does not require any additional knowledge such as the inside/outside

guess for the S-T cut case. We have noticed that when using Normalized cut, we can

overcome the limitation posed by noisy self-intersecting splats that prevented the method

in Chapter 6 to provide a coherent surface. However, this type of data is still not solvable

using the S-T cut method, as it depends on the same RANSAC-based robust intersection

detection procedure. On the contrary, parameter tuning is more sensible for Normalized

cuts than for S-T cuts (as depicted in Tables 7.1 and 7.2).

A drawback of both methods when compared to the ones presented in previous chapters

is their increase in memory requirements. Despite the fact that we use an adaptive grid,

in both cases the storage of the distance function in a tetrahedralization represents a

240 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

Table 7.2: Table showing the parameters used and the running times required to generate the

results of the Normalized cut algorithm in this section. As in the S-T cut case, we fix αre = 1.5

for all the experiments. All results were generated on a Quad-Core AMD Opteron Processor 8378

with 128 Gb of RAM.

Name Figure
Parameters Run Times (s)

σ ∗ σ2 kσ † β ‡ αr/αd
§ UDF ¶ SDF ‖ Mesh ∗∗

Risu3 7.6(c) 5 10 5 4 0.1 64.50 18.45 70.87

Max Planck 7.7(b) 3 15 15 4 1 182.22 112.00 303.79

Stanford Dragon 7.8(d) 5 50 15 4.5 0.001 4884.76 9501.42 140.35

Amphora 7.9(a)c4 3 25 5 4 0.5 1674.40 4194.13 273.96

Gargoyle 7.9(b)c4 3 25 5 4 0.5 2236.00 5157.33 252.52

Stanford Bunny 7.9(c)c4 3 15 5 4 0.001 658.79 1244.07 77.43

Stanford Armadillo 7.9(d)c4 3 15 5 5 0.5 137.78 105.41 141.80

Elephant 7.10(c) 6 50 50 4 1 6579.27 7450.58 151.56

Cave 7.12(c) 3 20 5 8 0.5 96.91 177.27 31.57

Column Capital 7.13(b) 6 35 5 4 0.01 1773.45 820.85 53.07

Fountain 7.14(c) 6 50 25 6 0.025 1874.52 1268.59 435.09

Shallow Water 7.15(b) 6 50 25 8 0.05 7842.29 7611.70 305.19

Coral Reef 7.16(b) 6 100 25 8 0.05 7059.53 4831.83 1203.25

Tour Eiffel 7.17(b) 6 150 25 8 0.05 8288.46 2847.91 89.58

La Lune (1) 7.18(a) 15 50 50 9 0.05 72418.50 3762.58 533.44

La Lune (2) 7.19(c) 15 50 50 8 0.05 34296.80 2036.20 317.51

∗Here σ and σ2 are expressed in terms of the average spacing between points (with k = 6).
†The number of nearest neighbors taken into account to compute the UDF in the σ2 band.
‡Smooth prior power.
§Meshing parameters, as described in section 3.4.2. We omit αa, as we fix it to αa = 0.
¶Creating the UDF.
‖Signing the UDF.
∗∗Surface meshing of the SDF.

7.7. CONCLUSIONS AND FUTURE WORK 241

large amount of memory. Furthermore, there is an inherent redundancy of splats in our

representation, inherited from the redundancy requirements of the algorithm in Chapter 6.

For the methods presented in this chapter, redundant splats could be simplified in order

to alleviate the computational cost of computing the UDF. Thus, simplification measures

for the splat representations should be proposed as future work.

242 CHAPTER 7. SURF. RECON. THROUGH MINIMUM CUTS IN GRAPHS

Chapter 8

Quantitative Evaluation

8.1 Introduction

Through this thesis, we have encouraged the visual evaluation of surface reconstruction

methods by presenting different views of the resulting mesh. While a qualitative evaluation

can give a straightforward overview of the behaviour of each method, the comparison of

its performance against other methods in the state of the art requires a more objective

estimation. The present chapter goes in this direction by providing a numerical comparison

between the results obtained by the methods presented in this thesis and those in the state

of the art.

It is worth noting that quantitative evaluations are not usually discussed in the surface

reconstruction literature. This is due to the lack of a consistent ground truth against

which the authors could evaluate the results of their methods. This situation may have

changed recently due to the creation of the reconstruction benchmark by Berger et al.[22],

which provides a set of tools to both generate ground truth data and evaluate the results

obtained by each method. Given its recent release, and to the best of our knowledge, the

only method using it in its evaluation is the Screened Poisson by Kahzdan and Hoppe [119].

Several tests are performed with a representative set of methods from the state of

the art. We start by using real data gathered using the principal scanning technologies

tested in previous chapters, namely range scanning and dense photogrammetry. These

datasets are used to evaluate the methods’ behaviour when applied to different scanning

methodologies. Then we use synthetic data generated with the benchmark by Berger et

al. [22]. The original evaluation is enriched by adding not only the methods presented in

this thesis to the comparison, but also other methods in the state of the art. We begin

by evaluating the methods against the synthetic datasets provided by the authors and

used in the original evaluation. Afterwards, we test the methods’ resilience to noise by

generating point sets with varying noise levels. Finally, we check the performance of the

243

244 CHAPTER 8. QUANTITATIVE EVALUATION

methods against outliers.

8.2 Tested Algorithms

To start with, we enumerate the algorithms tested in this chapter. In the original bench-

mark, only approximation-based algorithms requiring oriented point sets were evaluated.

The methods presented in this thesis work on raw point sets, so it is important to com-

pare them against a broader spectrum of inputs. Fortunately, the benchmark of Berger et

al. [22] is defined in a way that does not forbid its evaluation with algorithms working with

raw (non-oriented) point sets. In the following we present the 19 methods evaluated (in

brackets, when different from the original, we write the acronym appearing in the figures

and referred to in the text):

1. Point Set Mesher (PSM): The algorithm presented in Chapter 5.

2. Splats Mesher (SM): The algorithm presented in Chapter 6.

3. Splats Distance S-T (SD S-T): The S-T cut variant of the graph-based algorithm

presented in Chapter 7.

4. Splats Distance Normalized Cut (SD N): The Normalized cut variant of the

graph-based algorithm presented in Chapter 7.

5. Poisson [118].

6. Screened Poisson [119] (SPoisson).

7. Fourier Transform [117] (FFT).

8. Wavelets [153].

9. Smooth Signed Distance [41] (SSD).

10. Point Set Surfaces [6, 2] (PSS).

11. Implicit MLS [124] (IMLS).

12. Algebraic PSS [97] (APSS).

13. Markov Random Field [169] (MRF).

14. Multilevel Partition of Unity [165] (MPU).

15. Smooth PU [161] (SPU).

8.3. REAL DATA 245

16. Multilevel Compact RBF [166] (Multi-RBF).

17. Spherical Cover [168] (SC).

18. Robust Cocone [65] (RC).

19. Power Crust [13] (PC).

Note that the ten algorithms tested in the original evaluation [22] are also presented

here. However, we enrich the original evaluation by adding three approximation-based

techniques (SPoisson, SSD and MRF), and two more interpolation-based methods (RC

and PC). Even though the difference in nomenclature between the algorithms might be

misleading when compared to that of the original reference [22], we decided to give the

algorithms a name more coherent with their presentation in Chapter 4.

8.3 Real Data

We start by evaluating the behaviour of the algorithms when applied to real datasets.

For this purpose, we reproduce the experiments proposed by Kazhdan and Hoppe [119],

consisting of randomly dividing the input points into two equally-sized sets. Given this

partition, one of the sets is used for evaluation while the second is used for validation. In

this way, we use the evaluation set as input to the algorithms, and the validation set to

compute the distances to this reconstructed surface.

Note that, since we are using real data, the input point sets contain some noise,

which depends on the scanning methodology used to retrieve the point set. However,

we filter outliers out of these datasets, since including them would corrupt the distance

computation. Obviously, the tests measure how good the reconstruction is when compared

to the original data. Thus, we evaluate the overall behaviour of the method against the

input data, but we cannot draw global conclusions as no ground truth is available.

Regarding the tested datasets, we use two range scans –Bunny and Amphora–, acquired

in a controlled environment, and two point sets retrieved using dense photogrammetry –

Tour Eiffel and Shallow Water–, obtained using different methodologies. On the one

hand, the Bunny and Amphora datasets denote the behaviour of the methods under good

scanning conditions. Despite the datasets containing some noise, they present a dense

sampling, easing the reconstruction of the surface. However, they differ in noise scale

and complexity. The Tour Eiffel and Shallow Water datasets provide a notion of the

application of the methods on the type of input expected in this thesis, i.e., point sets

obtained through dense multi-view stereo methods. However, in the Tour Eiffel dataset

case, the point cloud was generated through a greedy dense reconstruction process [84],

246 CHAPTER 8. QUANTITATIVE EVALUATION

which results in a less noisy point set, but with large undersampled parts (i.e., holes in

the surface). On the other hand, the Shallow Water dataset was obtained through a plane

sweeping algorithm [209], providing a denser but also noisier point set. Note that, since

the plane sweeping method does not provide normals on the point sets, we compute them

for the methods required using Hoppe’s algorithm [104], with a neighborhood of k = 100.

8.3.1 Results

We present the results with respect to the mean distance obtained from the validation set

of points to the reconstructed surface, computed using the tools available in MeshLab [53].

As noticed in Kazhdan and Hoppe [119], the fact that the validation points are noisy makes

the commonly used Hausdorff distance unreliable. Given the variable scale of the data,

all the results are depicted with respect to the BBD of the model. Along with the mean

distance measures, we also show a view of the resulting surface.

The Stanford Bunny is an ubiquitous model in surface reconstruction articles, so it has

been most frequently used to assess a qualitative comparison between algorithm results.

This is coherent with the results obtained, where we can observe how all the methods

behave similarly. The mean distance obtained is comparable for most of the methods,

with the exception of the larger values with the MRF and the RC method. On the one

hand, the MRF results are caused by the oversmoothed results obtained. On the other

hand, the RC recovers a correct global shape but did not preserve fine details, as highly

curved regions are closed.

For the Amphora dataset, the model is a bit more complex and presents more noise

than the Bunny dataset. Consequently, the results obtained are more variate. On the

one hand, the best mean distance is obtained by the SM, SPoisson, MRF and Multi-RBF.

However, these best scores are closely followed by those of many other methods with no

significant differences. On the other hand, the ones obtaining worse results are FFT, PSS

and SPU. While the FFT results are mainly caused by the closing of the handles on the

bottle, those of PSS and SPU are caused by oversmoothing.

The Tour Eiffel dataset has the added complexity of having large undersampled areas.

Note in Figure 8.3 that, since most of the methods force the shape to be closed, the

resulting surfaces present some approximated parts in places with no data. Depending

on the method, these surface parts may be far from realistic. However, recall that the

validation points are obtained from the original point set, and thus the non-sampled areas

are not taken into account in the mean distance computation. Furthermore, the sparse

sampling has caused some of the parts to be unreconstructed. This is reflected in the mean

distance measures, where we can see that the SD S-T, SD N, FFT and Wavelets attain

a high value because of missing parts of the shape. On the other hand, oversmoothing

8.4. SURFACE RECONSTRUCTION BENCHMARK 247

is also penalized in the Poisson case. Nevertheless, a large number of methods, including

SPoisson, SSD, PSS, IMLS, APSS and PC, attain good results in this case.

Finally, the Shallow Water dataset describes a bounded surface, and consequently some

results on Figure 8.4 also present made-up parts as a consequence of the above mentioned

reason. Nevertheless, all mean distances are very similar. This is caused by the good

sampling provided by the point set. As in previous cases, the ones obtaining the worst

measures are FFT, Wavelets and RC. On the contrary, the best results are obtained by

SPoisson and PC.

To sum up, it is obvious that the best results are obtained by SPoisson, and that the

ones obtaining worse results are FFT, Wavelets and RC. The results of the rest of the

methods vary depending on the dataset, but in all cases the ranges are within the same

scale. This experiment shows that the results obtained for each method greatly depends

on the properties of the input point set. Nevertheless, and even if variable, it is clear that

the results obtained in these tests by our methods are within the ranges of those in the

state of the art.

8.4 Surface Reconstruction Benchmark

The tools provided by Berger et al. benchmark [22] simulate a real triangulation-based

laser range scan system. More precisely, it generates a set of samples from an implicit

reference surface, simulating the impact of a virtual laser on this surface and its further

projection onto the image plane of a camera. Then, given the known laser source position

and its projection onto the image, the position can be triangulated. This reference implicit

surface, which is a mixture of local surfaces (a variant of the MPU procedure extracted

from a triangulated surfaces), is the ground truth of our object. Through ray-tracing,

this MPU implicit surface is scanned from uniformly sampled positions over an enlarged

bounding sphere of the object with the camera oriented towards its center of mass. A

wide variety of scanning parameters can be changed during the creation of the test point

sets, including varying resolution, number of range scans, the laser’s field of view, the

magnitude of the measurement/registration error or missing data. Unfortunately, outlier

data cannot be generated with the tools provided.

Once the test samplings are created, the different reconstruction algorithms can be

applied. Then, the evaluation is computed using a bidirectional distance map. First, both

the MPU implicit reference shape and the reconstructed surface are densely sampled with

a dynamic particle system ensuring a close-to-uniform sampling rate. Then, a bidirectional

distance map is created, mapping a set of sample points on the reconstructed surface to

its closest point on the sampled original implicit surface (i.e., the ground truth), and

248 CHAPTER 8. QUANTITATIVE EVALUATION

Eval Pts PSM SM SD S-T SD N

Poisson SPoisson FFT Wavelets SSD

PSS IMLS APSS MRF MPU

SPU Multi-RBF SC RC PC

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

P
S

M

S
M

S
D

 S
-T

S
D

 N

P
o

is
so

n

S
p

o
is

so
n

F
F

T

W
a

v
e

le
ts

S
S

D

P
S

S

IM
L
S

A
P

S
S

M
R

F

M
P

U

S
P

U

M
u

lt
i-

R
B

F

S
C

R
C

P
C

M
e

a
n

Mean Distance

Figure 8.1: Real data tests, results for the Bunny dataset. Values with respect to the BBD.

8.4. SURFACE RECONSTRUCTION BENCHMARK 249

Eval Pts PSM SM SD S-T SD N Poisson SPoisson

FFT Wavelets SSD PSS IMLS APSS MRF

MPU SPU MultiRBF SC RC PC

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

P
S

M

S
M

S
D

 S
-T

S
D

N

P
o

is
so

n

S
p

o
is

so
n

F
F

T

W
a

v
e

le
ts

S
S

D

P
S

S

IM
LS

A
P

S
S

M
R

F

M
P

U

S
P

U

M
u

lt
i-

R
B

F

S
C

R
C

P
C

M
e

a
n

Mean Distance

Figure 8.2: Real data tests, results for the Amphora dataset. Values with respect to the BBD.

250 CHAPTER 8. QUANTITATIVE EVALUATION

Eval Pts PSM SM SD S-T SD N

Poisson SPoisson FFT Wavelets SSD

PSS IMLS APSS MRF MPU

SPU Multi-RBF SC RC PC

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,0016

0,0018

0,002

P
S

M

S
M

S
D

 S
-T

S
D

 N

P
o

is
so

n

S
P

o
is

so
n

F
F

T

W
a

v
e

le
ts

S
S

D

P
S

S

IM
L
S

A
P

S
S

M
R

F

M
P

U

S
P

U

M
u

lt
i-

R
B

F

S
C

R
C

P
C

M
e

a
n

Mean Distance

Figure 8.3: Real data tests, results for the Tour Eiffel dataset. Values with respect to the BBD.

8.4. SURFACE RECONSTRUCTION BENCHMARK 251

Eval Pts PSM SM SD S-T SD N

Poisson SPoisson FFT Wavelets SSD

PSS IMLS APSS MRF MPU

SPU Multi-RBF SC RC PC

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0,0009

0,001

P
S

M

S
M

S
D

 S
-T

S
D

 N

P
o

is
so

n

S
p

o
is

so
n

F
F

T

W
a

v
e

le
ts

S
S

D

P
S

S

IM
LS

A
P

S
S

M
R

F

M
P

U

S
P

U

M
u

lt
i-

R
B

F

S
C

R
C

P
C

M
e

a
n

Mean Distance

Figure 8.4: Real data tests, results for the Shallow Water dataset. Values with respect to the BBD.

252 CHAPTER 8. QUANTITATIVE EVALUATION

viceversa, and a set of error measures are computed. These error measures are Mean

distance, Hausdorff distance and Mean angle deviation, all of which are computed

bidirectionally (i.e, from the reconstructed surface to the ground truth and viceversa).

However, note that only the largest connected component is taken into account for

distance evaluation, since some of the algorithms may tend to return more than a single

component (usually due to noise). Furthermore, anomalies on the surface, such as non-

manifold components, are included as separate parts, and thus are not contained in the

largest connected component used in the validation. Obviously, this penalizes the methods

promoting these configurations.

From the four experiments proposed in the original paper, we reproduce two of them:

the error distributions and the noise tests. Additionally, we provide an evaluation ac-

counting for the resilience to outliers.

Regarding the other two experiments presented in the original article [22], the sparse

sampling and missing data experiments were not taken into account in our evaluation.

The reason behind this decision is our focus on retrieving a bounded surface. In both

experiments, they force a lack of data in the models, in the first case as a lack of sampling,

and in the other as deliberate holes in the sampled surface. The objective of these experi-

ments is to evaluate the approximative behaviour of the algorithms in parts with low or a

total lack of data. From our point of view, the lack of data also indicates a lack of surface,

i.e., we do not want the surface to be approximated on these parts. Consequently, these

evaluations make little sense for our purposes.

8.4.1 Parameter Tuning

All the algorithms were tuned in order to provide a fair comparison. The parameters

were carefully selected to provide a similar resolution for all the reconstructed shapes. For

all the algorithms, we have respected the parameters recommended by the authors, when

available, and tuned them when necessary to achieve a better reconstruction quality, based

on visual examination of the results. In the following, we describe some specific decisions

taken for some of the algorithms reviewed.

A key parameter for all the methods is the resolution of the output surface. For

the methods working with implicit surfaces evaluated on a regular grid, we fixed it to a

size of 350 (this includes PSS, IMLS, APSS, MRF, MPU, SPU and Multi-RBF), with the

exception of the FFT method, for which we used a grid of 512. For those methods requiring

an octree (i.e., Poisson, SPoisson, Wavelets and SSD), we fixed the depth to 10. Then,

for our methods (PSM, SM, SD S-T and SD N), working with an RDT surface mesher,

the resolution was tuned to qualitatively mimic that obtained by the other methods. For

the rest of the algorithms, which are basically interpolation-based (SC, RC and PC), the

8.4. SURFACE RECONSTRUCTION BENCHMARK 253

resolution cannot be tuned.

Regarding algorithm-specific parameterizations, while we described a cleaning step

containing a hole filling process in Section 5.4, we did not include it in the PSM case,

leaving all the holes in the data. Additionally, as mentioned above, the SD S-T and SD

N methods (presented in this chapter) depend on the splat representation, generated as

part of the SM method. In the smooth surfaces case, the splats used for both SM and SD

S-T/N are the same. On the contrary, the splats are different for the noise and outliers

tests.

The tuning of other parameters available in the algorithms, which are usually related to

noise attenuation, have been treated differently depending on the test performed. For the

smooth surfaces test, all the reconstructions have been obtained in a batch process, and

consequently, the set of parameters is fixed for a given algorithm and shape. Contrarily,

for the noise and outliers test, we fine-tuned all the algorithms to produce the best results

for each point set tested.

8.4.2 Smooth Surfaces

We evaluate the algorithms against the data generated for the smooth surfaces error

distribution test of the original paper by Berger et al. [22]. For each algorithm applied

to a single shape, 48 point sets are generated by modifying various parameters, thus

simulating the variability of sampling that may appear when scanning the same object

using different methodologies and conditions. Since we use the original models, already

provided in the benchmark, we refer the reader to the original article [22] for a more

detailed description of the parameters used to generate them.

Even though shapes/point clouds and graphical depictions of the results are provided

by the authors, the numerical results are not available. Thus, we recomputed the results

for all the tested algorithms. The possible variance in parameters used to reconstruct the

surfaces may result in slightly different results when compared to the original evaluation.

Nevertheless, overall, the results and conclusions obtained for the methods already tested

in the original reference are very similar (if not the same).

Obviously, using multiple shapes with varying scanning requirements gives a global

view of the behaviour of an algorithm, as it prevents obtaining biased evaluations, which

may happen when a method is applied to a single point set having some specific properties

favoring its performance.

More precisely, we use the three smooth sampled surfaces provided in the original

paper, referred to as Gargoyle, Dancing Children and Quasimoto. The authors also provide

two other shapes, named Anchor and Daratech, that were not taken into account. The

reason is that they represent piecewise-smooth surfaces (i.e., sharp features are present in

254 CHAPTER 8. QUANTITATIVE EVALUATION

the models), which are clearly beyond the scope of this thesis.

8.4.2.1 Results

We divide the results according to each dataset using a box plot representation to describe

the effectiveness of each method. As suggested in the original article, the median in those

box plots is a good estimator for the overall performance of the algorithm, while the

quartiles indicate the variability in the results. Please observe that, in cases where the

box plot is too large and would consequently occlude the scale of the rest of the data, we

cut this box. In these cases, we explain the reason behind this poor behaviour in the text.

From a global point of view, after reviewing Figures 8.5, 8.6 and 8.7, we can conclude

that, in general, the methods that achieve a better (similar) overall score in the distance

tests (mean/maximum distance) are SM, SPoisson, SSD, SPU and Multi-RBF. The last

three also attain a good score for the mean angle deviation, but this is not the case for

the SM method, where the score is higher (and consequently, worse). In fact, all the

approaches proposed in this thesis (PSM, SM, SD S-T and SD N) score very badly for

the mean angle deviation. However, recall that, as opposed to algorithms with a better

score on this measure, our algorithms do not use oriented point sets. Consequently, none

of our algorithms tries to enforce normal coherence between the oriented point sets and

the recovered surface, which is what produces this decrease in performance. The same

happens for the RC and PC methods, which also work with raw data and neither provides

consistency of normals.

From the methods working with raw point sets not proposed in this thesis, the one

scoring the best in general (but specially in the angle deviation measure) is SC, while the

one obtaining the worst results is RC. We can also observe that the methods using MLS

score similarly in all cases, with the APSS method performing slightly better. The PSM,

SD S-T, MRF and MPU behaviours vary depending on the dataset, but still obtain good

overall results. The Wavelets method tends to perform well in the Hausdorff distance

case, but obtains worse results in the mean distance case, meaning that surfaces are less

smooth. On the contrary, Poisson and FFT provide smooth surfaces, indicated by the

higher values in the mean distance, but relatively low values in the Hausdorff distance.

Finally, we can see how the method obtaining the worst overall results is the SD N. As

mentioned above, the SD N method is more sensitive to parameter tuning than the rest of

our proposals. Since we fixed a generic set of parameters for all the test point sets, some of

the shapes have not been correctly recovered, resulting in some missing parts of the shape.

Nevertheless, if we could tune the parameters for the specific shapes failing, the results

would improve. Obviously, we did not try to fine tune each of the shapes separately in

order to provide a fair comparison between algorithms.

8.4. SURFACE RECONSTRUCTION BENCHMARK 255

While some methods score similarly for all the tested shapes, some of them obtain

different marks depending on the kind of dataset they are applied to. The obvious case is

the SD N case, where results are comparable to the other methods for the Gargoyle point

sets, which is not the case for any other shape. Note that the scores are not that good in

this case, since even if it achieves coherent results in most cases, the reconstructed surfaces

may be incomplete. The SD S-T method has a larger variance in results for the Dancing

Children shape, because of a problem similar to the SD N case, that is, in some situations

the global parametrization failed and parts of the shape were missing in the reconstructed

surface.

Disregarding the special case of the SD N method, we can conclude that the perfor-

mance of our proposals PSM, SM and SD S-T is comparable to the methods in the state

of the art. On the one hand, it is important to notice how our methods, working on raw

point sets, obtain distance scores comparable to those methods in the state of the art

using oriented points (methods with indexes 5 to 16). This evidences that normals are

not necessary to obtain faithful surfaces. On the other hand, if we compare them to other

methods not using normals (SC, RC and PC), we can see how our methods outperform

both RC and PC. This is because there is no noise correction in these cases, and conse-

quently, the results with noisy point sets are doomed to be worse. For this same reason,

our results compare favorably with the SC case, as this method is concerned with noise

attenuation.

Similarly to the original reference, we provide additional information regarding the

connected components, length of boundaries and manifoldness in Table 8.1.

8.4.3 Noise Test

All the algorithms tested in this chapter claim resilience to noise to some extent. However,

a clear quantization of the noise levels admitted for each method is never provided by

the authors. For this purpose, we use the same noise test proposed in Berger et al. [22].

However, instead of using a simple shape like the one in the original article, we synthetically

scan the more realistic shape of the Max Planck Bust (obtained from the aim@shape

repository).

Starting from the original triangle mesh, we generate the reference MPU surface. Then,

we synthetically scan this shape using the simulated laser-based triangulation scanner,

using a consistent number of views (20) and scanner resolution (200×200) at each scan to

adequately sample the shape, and enforcing no registration error or missing data. However,

we do manipulate the two parameters affecting the noise on the resulting shape: the noise

magnitude and the laser’s field of view. On the one hand, the noise magnitude relates to

a corruption in the laser projection. On the other hand, the laser’s field-of-view refers to

256 CHAPTER 8. QUANTITATIVE EVALUATION

Figure 8.5: Benchmark by Berger et al.[22], results for the Gargoyle dataset. We show the mean

and maximum (i.e., Hausdorff) distances, and the mean angle deviation for each method when

applied to 48 synthetic scans generated using various scanning parameters.

8.4. SURFACE RECONSTRUCTION BENCHMARK 257

Figure 8.6: Benchmark by Berger et al.[22], results for the Dancing Children dataset. We show

the mean and maximum (i.e., Hausdorff) distances, and the mean angle deviation for each method

when applied to 48 synthetic scans generated using various scanning parameters.

258 CHAPTER 8. QUANTITATIVE EVALUATION

Figure 8.7: Benchmark by Berger et al.[22], results for the Quasimoto dataset. We show the

mean and maximum (i.e., Hausdorff) distances, and the mean angle deviation for each method

when applied to 48 synthetic scans generated using various scanning parameters.

8.4. SURFACE RECONSTRUCTION BENCHMARK 259

Table 8.1: Table showing additional information on the meshes retrieved for the smooth surfaces

experiments in this chapter. The number of connected components (CC), length of boundaries (B)

and the binary flag indicating whether the surface is manifold or not (M) are averaged across all

the meshes retrieved.

Algorithm
Gargoyle Dancing Children Quasimoto

CC B M CC B M CC B M

PSM 2298.60 0.8680 0 893.81 7.07 0 322.23 8.14 0

SM 1661.80 181.22 0.15 1525.02 9.34 0 538.69 13.70 0

SD S-T 10.90 126.70 1 41.27 1.25 1 9.10 87.83 1

SD N 1.40 139.69 1 1.38 107.07 1 1.27 1.14 1

Poisson 1.14 0.3044 1 1.10 0.125 1 1.60 0.09 1

SPoisson 1.13 0 1 1.02 0 1 1.06 0 1

FFT 16.9792 0 1 60.65 0 1 8.38 0 1

Wavelets 1.5 0.0402 1 2079.93 0.07 1 3533.77 0.02 1

SSD 2.08 0.35 0.98 2.27 0.60 1 1.44 0.25 1

PSS 73.97 68.60 0.02 131.85 1.59 0 41.62 95.01 0

IMLS 21.5 72.90 0 27.42 1.99 0 8.75 104.98 0

APSS 57.15 99.62 0.04 65.17 1.41 0 26.58 1.05 0

MRF 1.04 0 1 1.60 2.35 1 1 0 1

MPU 3.65 0.32 1 4 11.34 0.97 3.04 0.91 1

SPU 2.04 0.29 0.85 2.21 0.35 0.93 1.37 0.11 1

Multi-RBF 1.15 0 1 1.13 0.04 1 1.13 0 1

SC 2.33 354.97 1 2.08 531.68 1 1.69 1.76 1

RC 89291.93 5.84 0 77476.89 8.77 0 225.83 4.06 0

PC 1.77 0.17 1 1.92 0.16 1 1.94 1 1

260 CHAPTER 8. QUANTITATIVE EVALUATION

(a) n=0.2, f=2.5 (b) n=0.45, f=5 (c) n=0, f=7.5 (d) n=0.5, f=10

Figure 8.8: Four sample point sets of the Max Planck shape, from a total of 44. Under each figure,

we detail the level of noise magnitude (n) and laser’s field-of-view size (f). Normals are used to

apply shadow casting to the model.

the thickness of the laser beam, with smaller beams being able to detect smaller details.

In both cases, these parameters disturb the peak detection process when computing the

projection of the laser onto the camera’s image plane, thus producing triangulation errors

and, consequently, noisy point clouds.

More precisely, we modify the noise magnitude from 0 to 0.5, with increments of 0.05,

and the laser’s field of view from 2.5 to 10, with increments of 2.5. This gives a total of

44 test point sets. By taking into account the difference between our results and those

presented in the article by Berger et al. [22], we can conclude that we are considering a

larger amount of noise than in the original comparison (they do not clearly state the values

of noise used in their work). We present some samples of noisy point clouds in Figure 8.8.

8.4.3.1 Results

First, we present the results following the approach presented in the original article, i.e.,

using the error distribution plots previously presented in the above section. Using these

plots, depicted in Figure 8.9, one can see the overall behaviour of the methods under

varying noise levels.

Regarding mean/max errors, clearly the MPU method is the one obtaining the worst

results, and seems unable to handle large amounts of noise. Nevertheless, the SPU method,

which is a broad smoothing on the primitives of the original MPU approach, obtains very

good estimations. Additionally, the SC, RC and PC methods, all working with raw point

sets, do not achieve good results. The gradients-based methods (i.e., Poisson, SPoisson,

FFT, Wavelets and SSD), as well as the Multi-RBF, all behave similarly. However, the

SSD method attains a larger variability in this case. Additionally, due to its stiffness to

8.4. SURFACE RECONSTRUCTION BENCHMARK 261

the input points, the SPoisson variant reproduces a box a little wider (i.e., more variable

errors) than the original Poisson method, since its known smoothing resolves the noise

issue better. From the MLS methods, the one behaving the worst is the IMLS. Regarding

the methods presented in this thesis, we can see how the PSM and SM methods behave

erratically, both obtaining a wide box despite having a low median. On the contrary,

the SD S-T and SD N methods behave favorably, achieving the best results in terms of

variance in the plots, with SD N obtaining values a bit larger for the Hausdorff distances.

As previously mentioned, all the parameters have been tuned to obtain the best results

for each point set. Thus, it is worth mentioning that we used different configurations for

the SM, SD S-T and SD N methods for this results. As mentioned in previous chapters,

the advantage of the SD S-T and SD N methods over the SM algorithm is their ability

to further reduce the inconsistencies in the splat representation (i.e., the noise on the

splats). Thus, for the SM case, we tuned the parameters according to each point set. On

the contrary, for the SD S-T/N case we obtained the splats required using a fixed set of

parameters able to contain the noise level, but also generating inconsistent splats that

would greatly disturb the results in the SM case. Thus, the final noise reduction in the SD

S-T/N cases is twofold: on the one hand, we have the inherent reduction provided by the

splats creation, and on the other hand, the one provided by the global cut on the UDF.

This explains the good results obtained by these methods.

If we then focus on the mean angle deviation, our methods, working on raw point sets,

SD S-T and SD N obtain a surprisingly good measure, comparable to those of Poisson,

Wavelets, PSS, APSS and SPU, all of which work with the additional knowledge of per-

point normals. Contrarily, the methods achieving larger variation in this error measure

are our other two methods, PSM and SM, along with MPU, SC and PC.

Despite providing a global view of the methods’ behaviour, the error distribution plots

do not bring information on the amount of noise that a given method is able to assess.

For this reason, we additionally show the individual mean and maximum distance for each

result, sorted by the increasing noise level. We show a separate chart for each field of view

value, and we plot the increasing magnitude of added noise. This allows us to observe

under how much noise a given method fails, and also provides more detailed information

regarding the method’s stability. We provide a macro view of these results in Figure 8.10,

where the original values are shown. Then, since details are precluded by large values, we

also show a more detailed view of the results in Figure 8.11, by focusing on the smaller

values on the plot.

Using these plots, we can clearly see how an increase in noise progressively degrades

the results obtained, which is worsened at each incremental step of the laser’s field of

view. Surprisingly enough, we can see how some specific configurations cause some of

262 CHAPTER 8. QUANTITATIVE EVALUATION

Figure 8.9: Error distribution plots for the noise test of the Max Planck dataset, using the

benchmark by Berger et al.[22]. We show the mean and maximum (i.e., Hausdorff) distances, and

the mean angle deviation for each method when applied to 44 synthetic scans with varying noise

scales.

8.4. SURFACE RECONSTRUCTION BENCHMARK 263

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

Noise magnitude (fov = 2.5)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

Noise magnitude (fov = 2.5)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

Noise magnitude (fov = 5)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

Noise magnitude (fov = 5)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

Noise magnitude (fov = 7.5)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

Noise magnitude (fov = 7.5)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

Noise magnitude (fov = 10)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

Noise magnitude (fov = 10)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

Figure 8.10: Individual results for the noise test on the Max Planck dataset. The laser beam’s

field of view is incremented from top to bottom. Line charts on the left show the mean distance

results and the maximum distance on the right.

264 CHAPTER 8. QUANTITATIVE EVALUATION

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2

0.3

0.4

0.5

Noise magnitude (fov = 2.5)

M
e

a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

Noise magnitude (fov = 2.5)

M
a

x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2

0.3

0.4

0.5

Noise magnitude (fov = 5)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

Noise magnitude (fov = 5)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5

1

1.5

2

Noise magnitude (fov = 7.5)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

Noise magnitude (fov = 7.5)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5

1

1.5

2

Noise magnitude (fov = 10)

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

4

6

8

10

Noise magnitude (fov = 10)

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

Figure 8.11: Close-up view of the individual results for the noise test on the Max Planck dataset.

This restricted visualization allows us to observe the details of the results presented. Again, the

laser beam’s field of view is incremented from top to bottom, and the line charts on the left show

the mean distance results, while the ones on the right depict the maximum distance.

8.4. SURFACE RECONSTRUCTION BENCHMARK 265

the reconstruction methods to fail for a given point set, to then obtain more favorable

results in even noisier datasets. This is depicted in the peaks visible for some methods

in the line charts. For the smaller laser field-of-view values, the decrease in performance,

i.e., the increase in mean/maximum error values, tends to increase steadily for most of

the methods (obviously, disregarding the previously mentioned peaks). This raising in

the curves step matches the previously mentioned results for the above presented error

distribution plots: more variable error distribution plots grow faster in these line charts.

Finally, another important point to observe is the noise level due to which some methods

totally fail. This is shown with a large step in the error measures.

In the macro view depicted in Figure 8.10, and ignoring the previously mentioned

peaks, we can see how the PSM and SM methods have more or less the same resilience

to noise. With the exception of the laser’s smallest field-of-view value, both methods

present a dramatic increase in errors after the same noise level. When the noise scale is

too large, and given that these methods are local, the final surface contains non-manifold

components that are not included in the reconstruction, thus penalizing the distance score

(this can be seen in Table 8.2). We can also see the SPoisson and RC methods having

a larger steady increase in both mean/max errors. Also, the SPU method obtains bad

results with large noise scales.

Nevertheless, the global view of most of the methods surveyed causes them to be more

resilient to noise. Thus, to see the differences between them, we focus on the close-up

view of Figure 8.11. In this figure, we can see the methods whose error increases more

rapidly. For example, and discarding the previously mentioned methods, the SC, based

on raw point sets, is the one with the largest mean/maximum error as the noise increases.

However, it is clear that, in terms of noise correction, our SD S-T and SD N algorithms

obtain the best results, at the current visualization scale, they are indistinguishable for

the means, and the different lines are visible only in the Hausdorff distance charts. The

rest of the methods obtain similar curves of progression as the noise increases.

Additional information on the meshes retrieved is again summarized in Table 8.2.

8.4.4 Outliers Test

In this last test, we evaluate the resilience of the state-of-the-art methods against outliers.

Note, however, that most of the algorithms tested were not designed to be resilient to

outliers. Nevertheless, the global view presented by some of the methods should make them

resilient to small amounts of outliers, even if not specifically designed for this problem.

Consequently, on the one hand, this evaluation will serve as a demonstration of the poor

performance of the current methods in the state of the art to deal with outliers, which is an

ubiquitous problem in real data. On the other hand, this evaluation will also quantitatively

266 CHAPTER 8. QUANTITATIVE EVALUATION

Table 8.2: Table showing additional information on the meshes retrieved for the noise experiments

in this chapter. The number of connected components (Conn. Comp.), boundaries and the binary

flag indicating whether the surface is manifold or not are averaged across all the meshes retrieved.

Algorithm
Max Planck

Conn. Comp. Boundaries Manifold

PSM 26293.88 2.46 0

SM 331640.65 0 0

SD S-T 1 1 1

SD N 1 1 1

Poisson 1.81 0.28 1

SPoisson 41.5 5.08 1

FFT 99.18 42.07 1

Wavelets 3.32 0.12 1

SSD 830.22 24.45 0.5

PSS 2.02 52.75 0.11

IMLS 1.52 89.23 0.14

APSS 1.27 50.36 0.12

MRF 474.09 73.07 1

MPU 1453.66 127.39 0.30

SPU 428.84 16531.61 0.63

Multi-RBF 41.18 9.28 0.95

SC 1010.57 4543.36 1

RC 5.09 5.76 0.20

PC 47.63 0.21 1

8.4. SURFACE RECONSTRUCTION BENCHMARK 267

validate the methods’ resilience to outliers presented in this thesis, which are specifically

required to deal with this type of defect.

Unfortunately, the original code does not provide specific parameterizations to generate

outliers in the system. For this reason, we scan the Fertility shape (obtained from the

aim@shape repository) using parameters tuned to produce a sufficiently dense point set,

with increasing levels of noise magnitude, though we left out the laser’s field of view

parameter in this case. Then, we corrupt the point sets generated by adding random

points, following a uniform distribution, inside a bounding box containing the point set,

slightly enlarged by augmenting its diagonal by a 10% in both directions. Also, each of

these added outlier points is assigned a random unit vector as its normal. The number

of outlier points ranges from 0 to 100% of the outlier-free point cloud count, with an

incremental step of 10%.

Obviously, and as previously stated in this thesis, assuming the outliers to follow a

uniform distribution may not be realistic. However, it is also the easiest form of outliers:

if the points do not follow any structure, they should not be confused with part of the

shape. Thus, if the methods are resilient to outliers, they should be able to eliminate these

artificially added points.

Again, note that the resilience to outliers for the SD S-T/N case is mainly provided by

the splat generation step, and that the results should present only a better performance

in noise correction for the SD S-T/N cases with respect to the SM method.

8.4.4.1 Results

We provide the mean and maximum error measurements for each point set in Figure 8.13.

We plot the results for increasing levels of outliers for the different levels of noise tested.

In this case, we decided not to use the error distribution plots, as the main aim of this

test is to find the breaking point for the level of outliers accepted by each method.

When interpreting these results, one has to take into account that the evaluation takes

place with the largest connected component on the resulting mesh. This means that, even

if the presence of outliers generates small components, the reconstruction results may still

be good, as the largest connected component may remain close to the true surface (e.g., see

the SPoisson result on Figure 8.12). Additionally, it is difficult to assess when a method

has failed to reconstruct a shape by just looking at the error measurements. Note that,

even when failing, each method produces a different shape after reconstruction. However,

since the noise level is fixed for each graphic, the results obtained for the point set with

zero outliers should not differ much after the addition of outliers. Thus, the maximum

number of outliers a method can handle is usually reflected in the results as a big jump

in the error magnitudes, followed by a stabilization or a steady increase.

268 CHAPTER 8. QUANTITATIVE EVALUATION

Point set

SM SD S-T SD N

SPoisson FFT SC

Figure 8.12: Sample results for the outliers case with 50% of outliers. We can see how, even when

providing similar results in the comparison, the retrieved surfaces differ qualitatively.

8.5. CONCLUSIONS 269

We start by mentioning that the MPU method simply crashes with most of the tested

shapes. Moreover, the Wavelets, SSD, PSS, Multi-RBF, RC and PC methods are not

even able to handle 10% of outliers. Regardless of the noise level, the Poisson method is

able to handle 10% of outliers. Additionally, the IMLS and APSS methods do provide

resilience to 10% of outliers for all the noise levels, but they break after that point. The

MRF method obtains reasonable results up to 20% of outliers at all but the largest noise

level. Also, depending on the point set, the SPU is also able to deal with up to 20% of

outliers. The SPoisson method behaves quite well for all the outlier levels without noise,

but degrades with increasing noise levels. Finally, FFT and SC perform very well in all

cases, although they fail in some specific cases (see the peaks in Figure 8.13). Note that,

as expected, the methods presented in this thesis are the ones that perform better under

all configurations of both noise and outliers.

In order to stress the qualitative differences in results, even when attaining similar

results in the quantitative evaluation, Figure 8.12 shows a view of the shape reconstructed

with the methods previously reported to behave correctly for 50% of outliers added. Note

the differences in the form of the surfaces retrieved, and their extent, non-manifoldness

and missing parts. As in the previous sections, Table 8.3 shows additional information

on the presented results, which provides more information regarding the final form of the

surface.

Finally, we use Figure 8.14 in order to evaluate the results obtained by our methods.

We disregard some peaks for the PSM case for better visualization, but in all cases these

peaks are on a small scale, as seen in Figure 8.13. We can observe that the PSM and SM

provide the worst results, indicating a lesser noise correction. Additionally, the SD S-T

always achieves smaller errors than the SD N case, but they both stay very close to the

results obtained for the outlier-free point set for all levels of noise. This proves the added

value provided by the methods proposed in this thesis to the outlier rejection problem.

8.5 Conclusions

In this chapter, we provided a quantitative evaluation, not only proving the performance

of the methods presented in this thesis, but also of a representative selection of methods

from the state of the art.

We started by performing an evaluation of the behaviour of the methods when applied

to real datasets arising from different scanning methodologies. This test provides an overall

review of the specific performance for the methods against the properties of each point set.

Moreover, it serves as a first evidence that the results obtained by the methods presented

in this thesis are comparable with those of the state of the art.

270 CHAPTER 8. QUANTITATIVE EVALUATION

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

No noise

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

No noise

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

Additive noise 0.1

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

M
a
x
 D

is
ta

n
c
e
 (

m
m

)
Additive noise 0.1

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

Additive noise 0.2

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

Additive noise 0.2

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

Additive noise 0.3

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

Additive noise 0.3

Figure 8.13: Results for the outliers test. Line charts on the left show the mean distance results,

and on the right, the maximum (i.e., Hausdorff) distance. Big jumps in the mean/maximum

measures clearly point out the break down point of the methods for a given level of noise and

outliers.

8.5. CONCLUSIONS 271

0 10 20 30 40 50 60 70 80 90 100
0.01

0.02

0.03

0.04

0.05
No noise

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8
No noise

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0.02

0.04

0.06

0.08

0.1
Additive noise 0.1

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6
Additive noise 0.1

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25
Additive noise 0.2

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
Additive noise 0.2

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
Additive noise 0.3

M
e
a
n
 D

is
ta

n
c
e
 (

m
m

)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40
Additive noise 0.3

M
a
x
 D

is
ta

n
c
e
 (

m
m

)

Figure 8.14: Results for the outlier test, showing only the results obtained by the methods proposed

in this thesis.

272 CHAPTER 8. QUANTITATIVE EVALUATION

Table 8.3: Table showing additional information on the meshes retrieved for the outliers experi-

ments in this chapter. The number of connected components (Conn. Comp.), boundaries and the

binary flag indicating whether the surface is manifold or not are averaged across all the meshes

retrieved.

Algorithm
Fertility

Conn. Comp. Boundaries Manifold

PSM 5517.70 5.03 0

SM 6317.65 0.57 0

SD S-T 1 0 1

SD N 1.22 23.83 1

Poisson 3.86 187.08 0.95

SPoisson 198.27 208.40 1

FFT 401.84 0.30 1

Wavelets 42.38 2.83 1

SSD 3086.22 392.65 0.07

PSS 48.39 128840.26 0.02

IMLS 45.54 252.31 0

APSS 40.95 163.55 0.07

MRF 831.48 6366.20 1

MPU 1931.75 1048.85 0.33

SPU 492 182039.85 0.20

Multi-RBF 314.82 383.21 0.66

SC 53.45 3398.39 1

RC 3.16 10.61 0.27

PC 52.61 0.73 1

8.5. CONCLUSIONS 273

The benchmark by Berger et al. [22] was then used to provide a global quantitative

positioning of our methods in comparison to the state of the art. We decided to test more

methods than in the original reference by including algorithms working with raw point

sets. We think that by including these methods we have provided a more complete view

of the contributions of the state of the art to the problem of surface reconstruction.

Also, the smooth surfaces test allowed us to state that our methods (PSM, SM, SD

S-T and SD N), which work with raw point sets, compare favorably to those in the state of

the art requiring normals, which are a clear majority in the review provided in Chapter 4.

Nevertheless, the tests revealed a lack of robustness of the parameterizations for the case

of SD N, and to a lesser extent SD S-T. Nevertheless, we have proven with the qualitative

results on this chapter, that this does not forbid our methods from attaining good results

when correctly tuned for a specific dataset.

The noisy tests allowed us to review the robustness to highly corrupted point sets. In

concordance with the theory, the approximation-based method, and specially those having

a global implicit view of the surface, are the ones that obtain better results. This is in

contrast to interpolation-based techniques (SC, RC and PC), which have the worst perfor-

mance. However, our methods, working with raw point sets, are able to obtain comparable

error measures to those methods using oriented point sets as input. Furthermore, the re-

sults regarding noise correction obtained by our SD S-T and SD N methods outperform

the rest of the methods in the state of the art.

For the outliers test, we found that, even if not specifically designed for this purpose,

the FFT and SC methods are surprisingly robust to outliers, even with different noise

levels. Also, the outliers’ test has proven that our methods are successful in recovering

surfaces disregarding these wrong measurements. Using this evaluation, we tried to get a

notion of the ability to deal with outliers for the methods of the state of the art. However,

we found the error measurements used in other approaches to be quite confusing in this

case. These measurements disregard the aberrations of the final shape produced by the

further structures that the outliers use to generate. This is due to the use of the largest

connected component for the errors. A possible further comparison would be to compute

not just the distances between the reference shape and the largest connected component,

but also the distances from the outliers to the closest triangle in the reconstructed mesh,

including all the components.

Moreover, the variability of user parameters for each method causes the reconstruction

results to vary depending on who uses the method and how it is parameterized. It would

be desirable for the original authors to test their algorithms against a fixed set of base

shapes, so that the best parameters are used, and new methods only have to compare

their results against theirs.

274 CHAPTER 8. QUANTITATIVE EVALUATION

To conclude, the work in this chapter has proved that our methods obtain comparable

results to those in the state of the art, even when they require an estimation of the normals.

Chapter 9

Conclusions and Future Work

9.1 Summary of the Thesis

The aim of the present thesis was to develop techniques to solve the surface reconstruction

problem on highly corrupted point sets, specially on those generated using optical recon-

struction techniques in underwater scenarios. We started by reviewing the reconstruction

pipeline in the optical case, and the the properties of the resulting point clouds. Then, we

surveyed the state of the art in surface reconstruction from unorganized point sets, which

threw into sharp relief the lack of approaches working on real non-filtered data, which is

likely to contain aberrations such as noise and outliers. With this in mind, we proposed

four methods to deal with the problem of surface reconstructions with corrupted data and

possibly containing boundaries.

More precisely, in Chapter 4, we have seen how methods in the state of the art can

be divided according to whether the surface reconstruction is based on interpolation or

approximation. In the first case, the input points or a subset of them are part of the vertices

of the output surface. Obviously, if there is noise present in the input data, this will not be

corrected by the method, as input points remain unmodified. Nevertheless, a few methods

in this category have proven successful in detecting and rejecting outliers. On the other

hand, approximation-based techniques deal with the noise attenuation problem implicitly,

providing smoother surfaces. However, again few methods try to deal with the outlier

rejection problem. Moreover, we should differentiate between methods using raw data

(i.e., only the 3D coordinates of the point samples) or additional data, such as per-point

normals or the position of the sensor at capture time. In fact, very few proposals work with

noisy data without assuming any other kind of additional information associated with the

3D points. Obviously, using additional data eases the construction of robust methods, but

restricts their application to their availability. Furthermore, a large majority of methods

assume the surface to reconstruct to be closed (i.e., watertight).

275

276 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

After reviewing the state of the art, we decided to provide a generic framework for

surface reconstruction by proposing methods that work with raw point sets, but, at the

same time, deal with the possible aberrations of noise and outliers that usually appear

in real-world datasets. Additionally, all our methods are defined taking into account

that the surface may have boundaries, as this case naturally appears when surveying

the seafloor. Despite devoting the present thesis to solving the surface reconstruction

problem in underwater scenarios, requiring no additional data of any kind makes the

proposed methods generic enough to be used with point sets from various types and

sources. Accordingly, we proved their application on input data coming from synthetic,

range scans, sonar data and computer vision optical reconstruction sources – in this last

case, applied to both land and underwater scenes. With respect to our classification of the

state of the art, the first two methods proposed in this thesis fall within the Local Primitives

methods (Section 4.5.8, page 139), while the last two correspond to the Unsigned Distance

type (Section 4.5.2, page 96).

In Chapter 5, we presented our first proposal based on building on-demand local sur-

faces to answer intersection queries required by an RDT surface mesher based on Delaunay

refinement. In order to mesh an object through RDT surface meshing, the only require-

ment is to be able to answer a segment intersection query against its surface. In order to

provide such a test for raw point sets, given a query segment required by the RDT mesher,

we build a local surface using all the points falling at a given radial distance from the query

segment. Using the points falling in this capsule-shaped neighborhood, we use a RANSAC

procedure to construct the most likely local portion of the surface contained in it in the

form of a Local Bivariate Quadric. Additionally, we use an automatic scale selection al-

gorithm to compute the scale of the noise around each point set, and consequently, adapt

the RANSAC distance-to-model threshold depending on where the query is made. The

method is able to recover bounded surfaces from highly corrupted datasets. However, the

computational effort is huge, and recovered surfaces may contain non-manifold structures

that may be corrected if needed through a post-processing step.

Then, Chapter 6 proposed an extension over the flaws of the previous method, focusing

on diminishing its computational burden by generating an intermediate representation

approximating the surface before meshing. We proposed building a splat representation

from the point set, where each splat is basically a small surface patch of low degree

representing the shape around a given input point. In this way, a set of local splats together

in the same frame provides a global approximation of the object. The generation of these

splats uses a least squares mechanism which attenuates the noise in the data. Furthermore,

and as opposed to the previous approach, we allow the degree of the local approximation to

be a user parameter by using jet-surfaces as the parameterized surface the splats are based

9.1. SUMMARY OF THE THESIS 277

on. Moreover, these splats are also given an area of influence based on the distance from the

generating point to its nearest neighbors. Additionally, in order to ensure using just inlier

data in the least-squares minimization, and to reject the outlier points, the jet surfaces are

computed as the model of a RANSAC procedure. This intermediate splat representation

provides the ability of tuning the quality of the output triangle-based surface at meshing

time, providing reusability of the splat representation to obtain multiple resolutions of the

same object. In order to mesh the splat representation, we again adapt the RDT mesher

by using the splats as a proxy surface to answer the segment intersection queries.

However, the approximation of the object provided by the splat representation is dis-

continuous and, in order to be meshed through the RDT surface mesher, we provided a

mechanism to answer segment intersection queries robustly. We exploit redundancy be-

tween splats to answer the intersection test using a 1D RANSAC procedure, so that only

intersections supported by two or more splats are reconstructed. Despite still not ensuring

the manifoldness of the output meshes, the reconstructed area tends to be larger than in

the previous case, and we managed to reduce the computational cost.

Finally, Chapter 7 overviews two proposals that change the local view of previously

presented methods into a global formulation. The splat generation procedure has proven

successful in removing gross outliers, i.e., those far from the input points. However, we

observed that in cases where both double contours and noise are mixed in the data, or

when the RANSAC distance-to-model threshold is set too loose, neighboring splats in

the representation may become inconsistent with one another. This results in the splats

not representing a reasonable approximation of the surface, which is not amenable to

the robust intersection detection provided above. Thus, we proposed merging the local

contributions of the splats in the above mentioned representation together into a global

Unsigned Distance Function (UDF). This UDF is evaluated at the vertices of an adaptive

tetrahedral grid which mimics the distribution of the input points, being finer when close

to the input data, and coarser otherwise. Furthermore, the function is defined in just a

small band around the input points.

Using this distance function, we propose two approaches based on graph cuts to give

it a sign, so that the surface can be extracted at its zero level set. The graph structure

is inherited from the previous tetrahedralization, and each edge is assigned a weight ac-

cording to the distance function. Then, the two proposals differ in the partition procedure

used.

On the one hand, we use a S-T cut technique, by adding for some vertices in the graph

two additional edge links to two virtual nodes s (source) and t (sink), representing the

inside and outside of the shape respectively. In order to compute a confidence for a vertex

in the graph to be inside or outside, we again use the approximation provided by the splats.

278 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

For each of the vertex needing a labeling cost, we throw rays emanating from the point

in random directions and compute the number of intersections with the splats using our

robust RANSAC intersection test. Then, given the number of intersections being even or

odd, we can tell if the point is inside or outside the shape. Since the ray-splats intersection

test may not be perfect, we throw more than one ray and merge the different guesses into

one weight to connect the vertex to the s/t nodes. Obviously, the method works with

the same data as the method in Chapter 6, since it depends on the same intersection

procedure. Also, we defined a variation on the method to handle open surfaces within this

framework. Basically, we virtually close the surface by also considering for intersection

the spherical cap resulting from cutting the bounding sphere of the object with a plane

computed by PCA using the centers of the input splats.

On the other hand, the graph can also be partitioned using the Normalized cut method.

In this case, the Laplacian matrix, representing the weights in the graph, is used to define

a spectral cut in the graph that tries to enforce that edges in the same group have a high

weight, edges between different group have a low weight, and that the sum of the costs of

the edges in each group have similar weights. In this case, the band in which the distance

is defined has to be extended in order to favour the balancing of costs on each partition to

cause the cut to pass near the input points. In this case, the partition is only defined in

the band, and using this volume partition for meshing, we retrieve a surface of the band

of volume. We remove the triangles generated away from the input points by computing

the scale of the UDF values at vertices of the mesh near the samples, and remove triangles

containing vertices having a too large UDF measure.

We have proven that changing into a global implicit function allows the surface to be

coherently defined as the interphase between two volumes in space, ensuring its extraction

as a manifold surface, as opposed to previous methods. However, the computational effort

and memory requirements increase in comparison to previous proposals.

To conclude this thesis, we applied a quantitative evaluation of the results posed by

our methods with respect to those of the state of the art. These results, in addition to

the qualitative evaluation performed for each method, allows us to determine that our

methods compare favorably to those of the state of the art, while requiring no additional

information other than the raw point sets to work.

9.2 Contributions

In the following we highlight the main contributions of this thesis:

• An extensive review of the state of the art on solving the surface reconstruction

problem. A global classification of the most relevant methods in the literature is

9.2. CONTRIBUTIONS 279

proposed and their main properties are compared and discussed.

• A new method for surface reconstruction, based on building local surfaces on request

of the RDT surface mesher. Basically, our main contribution is to transform a pure

surface mesher into a surface reconstruction algorithm. By providing the construc-

tion of local surfaces on demand, we allow the answering of the intersection queries

required by the mesher. Another important improvement over the state of the art

is to deal with variable noise scales explicitly. We compute the scale of the noise for

each point, and use it to adapt the noise scale during the computation of the local

surfaces.

• A two-step method for surface reconstruction, where we decouple the surface approx-

imation and its reconstruction. In the first step, the main contribution is to present

the new splat representation, which is a discrete way to approximate the shape of

an object using local bounded surfaces as primitives. We propose an innovative use

of RANSAC to generate jet surfaces, which allows a remarkable outlier rejection

rate while, at the same time, provides noise smoothing. In the second step, the main

contribution is to propose a methodology to mesh the new splat representation using

RDT Delaunay refinement.

• The proposal of a UDF, merging the local contributions of the splat representation

in a global frame. We adapted the implicit MLS definition of Kolluri [124] to allow

for LBQs in addition to linear primitives. Furthermore, the UDF is discretized in

an adaptive tetrahedral grid, providing rapid evaluation.

• A new method to extract the surface from the UDF, by partitioning the volume

using S-T cuts. The main contribution is to define a graph retrieved from the

tetrahedralization of the UDF and to partition its vertices into inside/ouside to

correctly sign the function. Another remarkable contribution is to use the splat

approximation to answer inside/outside queries, and in this way define a confidence

for the points in the graph as to being inside or outside the shape.

• A new method to extract the surface from the UDF, by partitioning the volume

using Normalized cuts. Using just the smooth weights derived from the UDF, we

are able to partition a band of volume by maintaining a similar weight on both sides

of the division.

• A qualitative evaluation of the methods under a wide range of input types and

sampling conditions presented in the corresponding results section of each chapter.

280 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• A quantitative evaluation of the methods against a wide variety of algorithms in the

state of the art. Furthermore, the only benchmark available for surface reconstruc-

tion has been extended by including more methods in the evaluation, presenting in

this way a global comprehension of the properties of current methodologies, as well

as providing a more precise positioning of our proposals with respect to the state of

the art.

9.3 Future Work

The work presented in this thesis can be improved and extended in several ways. The

following list details future research lines and actions that derive from this thesis:

Reduce the number of splats While we enforced the redundancy of splats in Chap-

ter 6, having a splat for each inlier point may be too complex to define the UDF in

Chapter 7. An error based splat reduction scheme may be used at a previous step

to reduce the complexity of the splat representation before the creation of the UDF.

Reduce the computational effort When compared to the state of the art methods,

our proposals require a far larger amount of computation time. Obviously, we add

complexity to the problem, since, as opposed to us, most methods in the state of the

art do not assume raw point sets, and do assume an almost clean input. This increase

in the complexity of the problematic also translates in an increase in computational

effort. Nevertheless, it is worth noting that the implementations of the methods are

sequential, and in most cases we can parallelize one or several parts of the algorithms.

For instance, the generation of splats is local, and can be easily parallelized once the

neighbors of each point are located. Additionally, we would like to explore new data

structures that may result in an increase in the performance of the algorithms.

Extension with additional data Even if the methods have been proposed to work with

raw point sets, the inclusion of additional data, when available, could help in sim-

plifying some of the steps of the algorithms.

More underwater datasets As mentioned in Section 2.8, the typical mapping tech-

niques for underwater exploration tend to position the scanning sensor in a downward-

looking configuration, which prevents the observation of the scene in full 3D. For-

tunately, in recent years this has changed to a more general configuration, where

the sensor is located at arbitrary positions and with arbitrary orientations in the

exploratory vessels. Thus, we expect new datasets to be available in the foreseeable

future, so that we can use them to further validate our methods.

9.3. FUTURE WORK 281

Texture mapping Even if we presented some examples using a naive texture mapping

approach, it is obvious that the problems arising from using optical imaging in

the underwater medium cause the texture mapping problem to require a tailored

solution. The most relevant problem in the presented cases is the great change

in illumination between different images of the scene, which is clearly visible in

Figures 7.18 and 7.19.

Explore further applications The retrieved surfaces are intended to be a tool for fur-

ther calculus to be applied in this areas. Thus, it would be important to know how

geologists, archaeologists or biologists need to manipulate these data, and provide

tools for the exploration and further processing of the retrieved surface mesh.

Extension to large scale While the methods shown a successful performance under the

presented datasets, the ubiquity and rapid evolution of scanning technologies makes

the scanned point sets to become increasingly larger with time. We plan to adapt

the presented methodologies to work on these large scale scenarios. A possible idea

is to use divide-and-conquer approaches, where the point set is divided into small

portions of data, amenable to reconstruction in memory, and then joined together

in a global representation.

Release source code It is also important to release the code for the methods presented

in this thesis, so the community can benefit from our methods, as well as for providing

tools for comparisons in further references to come.

282 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[2] A. Adamson and M. Alexa. Approximating bounded, non-orientable surfaces from

points. In Shape Modeling International, pages 243–252. IEEE Computer Society,

2004.

[3] U. Adamy, J. Giesen, and M. John. Surface reconstruction using umbrella filters.

Computational Geometry: Theory and Applications, 21(1):63–86, January 2002.

[4] M. Alexa and A. Adamson. Interpolatory point set surfaces convexity and hermite

data. ACM Transactions on Graphics, 28(2):20:1–20:10, May 2009.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point set

surfaces. In Proceedings of the Conference on Visualization, VIS ’01, pages 21–28,

Washington, DC, USA, 2001. IEEE Computer Society.

[6] M. Alexa, S. Rusinkiewicz, Marc Alexa, and Anders Adamson. On normals and

projection operators for surfaces defined by point sets. In In Eurographics Symposium

on Point-Based Graphics, pages 149–155, 2004.

[7] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Computing and rendering point set surfaces. IEEE Transactions

on Visualization and Computer Graphics, 9(1):3–15, January 2003.

[8] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based variational

reconstruction of unoriented point sets. In 5th Eurographics Symposium on Geometry

Processing, pages 39–48, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics

Association.

[9] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing

of surfaces. In Leila Floriani and Michela Spagnuolo, editors, Shape Analysis and

Structuring, Mathematics and Visualization, pages 53–82. Springer Berlin Heidel-

berg, 2008.

283

284 BIBLIOGRAPHY

[10] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. In 14th Annual

Symposium on Computational Geometry, SCG ’98, pages 39–48, New York, NY,

USA, 1998. ACM.

[11] N. Amenta, M. Bern, and D. Eppstein. The crust and the beta-skeleton: Com-

binatorial curve reconstruction. In Graphical Models and Image Processing, pages

125–135, 1998.

[12] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeomor-

phic surface reconstruction. In 16th Annual Symposium on Computational Geometry,

SCG ’00, pages 213–222, New York, NY, USA, 2000. ACM.

[13] N. Amenta, S. Choi, and R. Kolluri. The power crust. In 6th ACM Symposium on

Solid Modeling and Applications, SMA ’01, pages 249–266, New York, NY, USA,

2001. ACM.

[14] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM Transactions on Graph-

ics, 23:264–270, August 2004.

[15] D. Attali. r-regular shape reconstruction from unorganized points. In 13th Annual

Symposium on Computational Geometry, SCG ’97, pages 248–253, New York, NY,

USA, 1997. ACM.

[16] A. Bab-Hadiashar and D. Suter. Robust segmentation of visual data using ranked

unbiased scale estimate. Robotica, 17(6):649–660, November 1999.

[17] S. Barkby, S. Williams, O. Pizarro, and M. Jakuba. Bathymetric particle filter SLAM

using trajectory maps. The International Journal of Robotics Research, 2012.

[18] J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm. Nature,

324(6096):446–449, 1986.

[19] T. Barreyre, J. Escartin, R. Garcia, M. Cannat, E. Mittelstaedt, and R. Prados.

Structure, temporal evolution, and heat flux estimates from the lucky strike deep-sea

hydrothermal field derived from seafloor image mosaics. Geochemistry, Geophysics

and Geosystems, 13(4):1–29, 2012.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF).

Computer Vision and Image Understanding, 110(3):346–359, June 2008.

[21] P.A. Beardsley, A. Zisserman, and D.W. Murray. Navigation using affine structure

from motion. In Jan-Olof Eklundh, editor, Computer Vision - ECCV, volume 801 of

Lecture Notes in Computer Science, pages 85–96. Springer Berlin Heidelberg, 1994.

BIBLIOGRAPHY 285

[22] M. Berger, J.A. Levine, L.G. Nonato, G. Taubin, and C.T. Silva. A benchmark

for surface reconstruction. ACM Transactions on Graphics, 32(2):20:1–20:17, April

2013.

[23] F. Bernardini, J. Mittleman, H. Rushmeier, Cláudio Silva, and Gabriel Taubin. The

ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualiza-

tion and Computer Graphics, 5(4):349–359, October 1999.

[24] R. Bhotika, D.J. Fleet, and K.N. Kutulakos. A probabilistic theory of occupancy and

emptiness. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen,

editors, European Conference on Computer Vision (ECCV), volume 2352 of Lecture

Notes in Computer Science, pages 112–130. Springer Berlin Heidelberg, 2002.

[25] B. Bingham, B. Foley, H. Singh, R. Camilli, K. Delaporta, R. Eustice, A. Mallios,

D. Mindell, C. N. Roman, and D. Sakellariou. Robotic tools for deep water ar-

chaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle.

Journal of Field Robotics, 27(6):702–717, 2010.

[26] S. Bischoff, D. Pavic, and L. Kobbelt. Automatic restoration of polygon models.

ACM Transactions on Graphics, 24(4):1332–1352, October 2005.

[27] H. Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant W.

Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380.

MIT Press, Cambridge, 1967.

[28] J.-D. Boissonnat. Geometric structures for three-dimensional shape representation.

ACM Transactions on Graphics, 3(4):266–286, October 1984.

[29] J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour

interpolation of distance functions. In 16th Annual Symposium on Computational

Geometry, SCG ’00, pages 223–232, New York, NY, USA, 2000. ACM.

[30] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces.

Graphical Models, 67:405–451, September 2005.

[31] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Multilevel streaming for out-

of-core surface reconstruction. In 5th Eurographics/ACM SIGGRAPH symposium

on Geometry processing, pages 69–78, Aire-la-Ville, Switzerland, Switzerland, 2007.

Eurographics Association.

[32] R. M. Bolle and B. C. Vemuri. On three-dimensional surface reconstruction methods.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(1):1–13, 1991.

ID: 1.

286 BIBLIOGRAPHY

[33] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. State

of the art in quad meshing. In Eurographics STARS, 2012.

[34] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. Polygon Mesh Processing.

AK Peters / CRC Press, September 2010.

[35] J.-Y. Bouguet. Calibration toolbox for matlab. http://www.vision.caltech.edu/

bouguetj/calib_doc/index.html.

[36] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 26:359–374, 2001.

[37] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max- flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), 26(9):1124–1137, 2004.

[38] Duane C. Brown. Close-range camera calibration. Photogrammetric Engineering,

37(8):855–866, 1971.

[39] M. Brown and D.G. Lowe. Unsupervised 3D object recognition and reconstruction

in unordered datasets. In 5th International Conference on 3D Digital Imaging and

Modeling (3DIM), pages 56–63, 2005.

[40] M. Bryson, M. Johnson-Roberson, O. Pizarro, and S.B. Williams. Colour-consistent

structure-from-motion models using underwater imagery. In Robotics: Science and

Systems, 2012.

[41] F. Calakli and G. Taubin. SSD: Smooth signed distance surface reconstruction.

Computer Graphics Forum, 30(7):1993–2002, 2011.

[42] R. Campos, N. Gracias, R. Prados, and R. Garcia. Merging bathymetric and optical

cues for in-detail inspection of an underwater shipwreck. Instrumentation Viewpoint,

2013.

[43] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-

lum, and T. R. Evans. Reconstruction and representation of 3D objects with radial

basis functions. In 28th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’01, pages 67–76, New York, NY, USA, 2001. ACM.

[44] F. Cazals and J. Giesen. Delaunay triangulation based surface reconstruction: Ideas

and algorithms. In Effective Computational Geometry for Curves and Surfaces, pages

231–273. Springer, 2006.

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

BIBLIOGRAPHY 287

[45] F. Cazals and M. Pouget. Estimating differential quantities using polynomial fit-

ting of osculating jets. In Eurographics/ACM SIGGRAPH symposium on Geometry

processing, SGP ’03, pages 177–187, Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[46] F. Cazals and M. Pouget. Jet fitting 3: A Generic C++ Package for Estimating

the Differential Properties on Sampled Surfaces via Polynomial Fitting. Research

Report RR-6093, INRIA, 2007.

[47] R. Chaine. A geometric convection approach of 3-d reconstruction. In Eurograph-

ics/ACM SIGGRAPH symposium on Geometry processing, SGP ’03, pages 218–229,

Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[48] M.-C. Chang, F. F. Leymarie, and B. B. Kimia. Surface reconstruction from point

clouds by transforming the medial scaffold. Computer Vision and Image Under-

standing, 113(11):1130–1146, NOV 2009.

[49] F. Chazal and A. Lieutier. The λ-medial axis”. Graphical Models, 67(4):304–331,

July 2005.

[50] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay refinement for piecewise

smooth complexes. In 18th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’07, pages 1096–1105, Philadelphia, PA, USA, 2007. Society for Industrial

and Applied Mathematics.

[51] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray. Sampling and meshing a surface

with guaranteed topology and geometry. SIAM Journal on Computing, 37(4):1199–

1227, November 2007.

[52] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In 9th Annual

Symposium on Computational Geometry, SCG ’93, pages 274–280, New York, NY,

USA, 1993. ACM.

[53] Visual Computing Lab ISTI CNR. Meshlab. http://meshlab.sourceforge.net/.

[54] D. Cohen-Steiner and F. Da. A greedy Delaunay-based surface reconstruction algo-

rithm. The Visual Computer: International Journal of Computer Graphics archive,

20(1):4–16, April 2004.

[55] R.T. Collins. A space-sweep approach to true multi-image matching. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 358–363,

1996.

288 BIBLIOGRAPHY

[56] T. Cour, F. Benezit, and Jianbo Shi. Spectral segmentation with multiscale graph

decomposition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 2, pages 1124–1131 vol. 2, 2005.

[57] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengle-

ichungen der mathematischen physik. Mathematische Annalen, 100:32–74, 1928.

10.1007/BF01448839.

[58] P. J. Crossno and E. S. Angel. Spiraling edge: Fast surface reconstruction from

partially organized sample points. In 10th IEEE Visualization Conference (VIS),

VISUALIZATION ’99, pages –, Washington, DC, USA, 1999. IEEE Computer So-

ciety.

[59] G. Cuccuru, E. Gobbetti, F. Marton, R. Pajarola, and R. Pintus. Fast low-memory

streaming MLS reconstruction of point-sampled surfaces. In Graphics Interface,

GI ’09, pages 15–22, Toronto, Ont., Canada, Canada, 2009. Canadian Information

Processing Society.

[60] B. Curless and M. Levoy. A volumetric method for building complex models from

range images. In 23rd Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’96, pages 303–312, New York, NY, USA, 1996. ACM.

[61] B. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matem-

aticheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[62] T. K. Dey and J. Giesen. Detecting undersampling in surface reconstruction. In

17th Annual Symposium on Computational Geometry, SCG ’01, pages 257–263, New

York, NY, USA, 2001. ACM.

[63] T. K. Dey, J. Giesen, and J. Hudson. Delaunay based shape reconstruction from large

data. In IEEE Symposium on Parallel and Large-Data Visualization and Graphics,

PVG ’01, pages 19–27, Piscataway, NJ, USA, 2001. IEEE Press.

[64] T. K. Dey and S. Goswami. Tight cocone: a water-tight surface reconstructor. In

8th ACM Symposium on Solid Modeling and Applications, SM ’03, pages 127–134,

New York, NY, USA, 2003. ACM.

[65] T. K. Dey and S. Goswami. Provable surface reconstruction from noisy samples.

Computational Geometry Theory and Applications, 35(1):124–141, August 2006.

[66] T. K. Dey, K. L., E. A. Ramos, and R. Wenger. Isotopic reconstruction of surfaces

with boundaries. In Eurographics/ACM SIGGRAPH symposium on Geometry pro-

BIBLIOGRAPHY 289

cessing, SGP ’09, pages 1371–1382, Aire-la-Ville, Switzerland, Switzerland, 2009.

Eurographics Association.

[67] T. K. Dey, J. A. Levine, and A. Slatton. Localized Delaunay refinement for sampling

and meshing. Computer Graphics Forum, 29(5):1723–1732, 2010.

[68] T. K. Dey and J. Sun. An adaptive MLS surface for reconstruction with guarantees.

In Eurographics/ACM SIGGRAPH symposium on Geometry processing, SGP ’05,

Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[69] J. Digne, J.-M. Morel, C.-M. Souzani, and C. Lartigue. Scale space meshing of raw

data point sets. Computer Graphics Forum, 30(6):1630–1642, 2011.

[70] H. Edelsbrunner. Surface reconstruction by wrapping finite sets in space. Discrete

and Computational Geometry - The Goodman-Pollack Festschrift, pages 379–404,

2003.

[71] H. Edelsbrunner, M. A. Facello, P. Fu, J. Qian, and D. V. Nekhayev. Wrapping 3D

scanning data. In Proc. SPIE, volume 3313, pages 148–158, 1998.

[72] H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. In Workshop

on Volume Visualization, VVS ’92, pages 75–82, New York, NY, USA, 1992. ACM.

[73] H. Edelsbrunner and E.P. Mücke. Simulation of simplicity: a technique to cope

with degenerate cases in geometric algorithms. ACM Transactions on Graphics,

9(1):66–104, January 1990.

[74] M. Eigensatz, J. Giesen, and M. Manjunath. The solution path of the slab support

vector machine. In The 20th Canadian Conference on Computational Geometry,

pages 211–214. CCCG, 2008.

[75] A.P. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformula-

tion for segmentation with linear grouping constraints. In 11th IEEE International

Conference on Computer Vision (ICCV), pages 1–8, 2007.

[76] J. Esteve, P. Brunet, and A. Vinacua. Approximation of a variable density cloud of

points by shrinking a discrete membrane. Technical report, Universitat Politècnica

de Catalunya, Dept. L.S.I., 2002.

[77] G. E. Farin. Curves and Surfaces for Computer-Aided Geometric Design: A Practical

Code. Academic Press, Inc., Orlando, FL, USA, 4th edition, 1996.

290 BIBLIOGRAPHY

[78] J. Ferrer, A. Elibol, O. Delaunoy, N. Gracias, and R. Garcia. Large-area photo-

mosaics using global alignment and navigation data. In IEEE Oceans, pages 1–9,

2007.

[79] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communi-

cations of the ACM, 24(6):381–395, June 1981.

[80] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open

image sequences. In European Conference on Computer Vision, pages 311–326.

Springer-Verlag, 1998.

[81] L. Ford and D. Fulkerson. Flows in networks. Princeton University Press, 1962.

[82] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for

finding best matches in logarithmic expected time. ACM Transactions on Mathe-

matical Software, 3(3):209–226, sep 1977.

[83] S. Fuhrmann and M. Goesele. Fusion of depth maps with multiple scales. ACM

Transactions on Graphics, 30(6):148:1–148:8, December 2011.

[84] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376, Au-

gust 2010.

[85] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or. Seamless montage for

texturing models. Computer Graphics Forum, 29(2):479–486, 2010.

[86] E. Galceran, R. Campos, M. Carreras, and P. Ridao. 3D coverage path planning with

realtime replanning for inspection of underwater structures. In IEEE International

Conference on Robotics and Automation (ICRA), page to appear, 2014.

[87] R. Garcia, R. Campos, and J. Escart́ın. High-resolution 3D reconstruction of the

seafloor for environmental monitoring and modelling. In IROS Workshop on Robotics

for Environmental Monitoring, September 2011.

[88] J. Giesen and M. John. Surface reconstruction based on a dynamical system. In

23rd Annual Conference of the European Association for Computer Graphics (Eu-

rographics), Computer Graphics Forum 21, pages 363–371, 2002.

[89] J. Giesen and M. John. The flow complex: a data structure for geometric model-

ing. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03,

BIBLIOGRAPHY 291

pages 285–294, Philadelphia, PA, USA, 2003. Society for Industrial and Applied

Mathematics.

[90] S. Giraudot, D. Cohen-Steiner, and P. Alliez. Noise-Adaptive Shape Reconstruction

from Raw Point Sets. Computer Graphics Forum, 32(5):229–238, 2013.

[91] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins

University Press, Baltimore, MD, USA, 1996.

[92] M. Gopi, S. Krishnan, and C. T. Silva. Surface reconstruction based on lower dimen-

sional localized Delaunay triangulation. Computer Graphics Forum, 19(3):C467–+,

2000.

[93] N. Gracias, P. Ridao, R. Garcia, J. Escartin, M. L’Hour, F. Cibecchini, R. Campos,

M. Carreras, D. Ribas, N. Palomeras, L. Magi, A. Palomer, T. Nicosevici, R. Prados,

R. Hegedus, L. Neumann, F. de Filippo, and A. Mallios. Mapping the moon: Using

a lightweight AUV to survey the site of the 17th century ship ‘la lune’. In IEEE

Oceans, June 2013.

[94] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of

Computational Physics, 73:325–348, December 1987.

[95] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori

estimation for binary images. Journal of the Royal Statistical Society. Series B

(Methodological), 51(2):271–279, 1989.

[96] G. Guennebaud, M. Germann, and M. Gross. Dynamic sampling and rendering of

algebraic point set surfaces. Computer Graphics Forum, 27(2):653–662, 2008.

[97] G. Guennebaud and M. Gross. Algebraic point set surfaces. ACM Trans.Graph.,

26(3):23.1–23.9, July 2007.

[98] B. I. Guo, J. Menon, and B. Willette. Surface reconstruction using alpha shapes.

Computer Graphics Forum, 16(4):177–190, OCT 1997.

[99] Vu H. H., R. Keriven, P. Labatut, and J.-P. Pons. Towards high-resolution large-scale

multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1430–1437, 2009.

[100] M. Habbecke and L. Kobbelt. A surface-growing approach to multi-view stereo

reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1 –8, june 2007.

292 BIBLIOGRAPHY

[101] G.A. Hansen, R. W Douglass, and A. Zardecki. Mesh Enhancement: Selected Elliptic

Methods, Foundations and Applications. London: Imperial College Press, 2005.

[102] C. Harris and M. Stephens. A combined corner and edge detector. In 4th Alvey

Vision Conference, pages 147–151, 1988.

[103] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[104] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-

struction from unorganized points. SIGGRAPH Computer Graphics, 26(2):71–78,

July 1992.

[105] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimiza-

tion. In 20th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’93, pages 19–26, New York, NY, USA, 1993. ACM.

[106] A. Hornung and L. Kobbelt. Hierarchical volumetric multi-view stereo reconstruc-

tion of manifold surfaces based on dual graph embedding. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 1, pages 503–510, 2006.

[107] A. Hornung and L. Kobbelt. Robust reconstruction of watertight 3D models from

non-uniformly sampled point clouds without normal information. In 4th Eurograph-

ics/ACM SIGGRAPH Symposium on Geometry Processing, SGP’06, pages 41–50,

Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[108] J. Huang and C. H. Menq. Combinatorial manifold mesh reconstruction and opti-

mization from unorganized points with arbitrary topology. Computer-Aided Design,

34(2):149–165, 2 2002.

[109] I. Ivrissimtzis, W. Jeong, S. Lee, Y. Lee, and H.-P. Seidel. Surface reconstruction

based on neural meshes. In Mathematical Methods for Curves and Surfaces, 2004.

[110] I. V. Ivrissimtzis, W.-K. Jeong, and H.-P. Seidel. Using growing cell structures for

surface reconstruction. In Shape Modeling International, page 78, may 2003.

[111] A. C. Jalba and J. B. T. M. Roerdink. Efficient surface reconstruction using gen-

eralized coulomb potentials. IEEE Transactions on Visualization and Computer

Graphics, 13(6):1512–1519, November 2007.

[112] M. Jancosek and T. Pajdla. Multi-view reconstruction preserving weakly-supported

surfaces. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3121–3128, 2011.

BIBLIOGRAPHY 293

[113] M. Jancosek and T. Pajdla. Hallucination-free multi-view stereo. In 11th European

Conference on Trends and Topics in Computer Vision, ECCV’10, pages 184–196,

Berlin, Heidelberg, 2012. Springer-Verlag.

[114] M. Johnson-Roberson, O. Pizarro, and S. Willams. Towards large scale optical and

acoustic sensor integration for visualization. In IEEE Oceans - Europe, pages 1–4,

2009.

[115] M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. Mahon. Generation and vi-

sualization of large-scale three-dimensional reconstructions from underwater robotic

surveys. Journal of Field Robotics, 27(1):21–51, 2010.

[116] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.

ACM Transactions on Graphics, 21(3):339–346, July 2002.

[117] M. Kazhdan. Reconstruction of solid models from oriented point sets. In Euro-

graphics/ACM SIGGRAPH symposium on Geometry processing, pages 73–82, Aire-

la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[118] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Eu-

rographics/ACM SIGGRAPH symposium on Geometry processing, SGP ’06, pages

61–70, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[119] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. ACM Trans-

action on Graphics, 32(3):29:1–29:13, July 2013.

[120] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Unconstrained isosurface extraction

on arbitrary octrees. In Eurographics/ACM SIGGRAPH Symposium on Geometry

Processing, SGP ’07, pages 125–133, Aire-la-Ville, Switzerland, Switzerland, 2007.

Eurographics Association.

[121] T. H. Kim, K. M. Lee, and S. U. Lee. Learning full pairwise affinities for spectral

segmentation. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2101–2108, 2010.

[122] D.G. Kirkpatrick and J.D. Radke. A framework for computational morphology. In

Computational Geometry, Machine Intelligence and Pattern Recognition, 1985.

[123] L.P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface

extraction from volume data. In 28th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’01, pages 57–66, New York, NY, USA, 2001.

ACM.

294 BIBLIOGRAPHY

[124] R. Kolluri. Provably good moving least squares. ACM Transactions on Algorithms,

4:18:1–18:25, May 2008.

[125] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien. Spectral surface reconstruction from

noisy point clouds. In Eurographics/ACM SIGGRAPH symposium on Geometry

processing, SGP ’04, pages 11–21, New York, NY, USA, 2004. ACM.

[126] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions

using graph cuts. In IEEE International Conference on Computer Vision (ICCV),

volume 2, pages 508–515 vol.2, 2001.

[127] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts.

In 7th European Conference on Computer Vision (ECCV), ECCV ’02, pages 82–96,

London, UK, UK, 2002. Springer-Verlag.

[128] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph

cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–

159, 2004.

[129] C.-C. Kuo and H.-T. Yau. A delaunay-based region-growing approach to surface

reconstruction from unorganized points. Computer-Aided Design, 37(8):825–835,

July 2005.

[130] K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages

307–314 vol.1, 1999.

[131] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image

and video synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH

2003, 22(3):277–286, July 2003.

[132] P. Labatut, J.-P. Pons, and R. Keriven. Efficient multi-view reconstruction of large-

scale scenes using interest points, delaunay triangulation and graph cuts. 2007 Ieee

11th International Conference on Computer Vision, Vols 1-6, pages 504–511, 2007.

[133] P. Labatut, J. P Pons, and R. Keriven. Robust and efficient surface reconstruction

from range data. Computer Graphics Forum, 2009.

[134] C. Langmuir, S. Humphris, D. Fornari, C. Van Dover, K. Von Damm, M.K. Tivey,

D. Colodner, J.-L. Charlou, D. Desonie, C. Wilson, Y. Fouquet, G. Klinkhammer,

and H. Bougault. Hydrothermal vents near a mantle hot spot: the lucky strike

vent field at 37Â◦n on the mid-atlantic ridge. Earth and Planetary Science Letters,

148(1–2):69–91, 1997.

BIBLIOGRAPHY 295

[135] V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2007.

[136] V. Lempitsky and D. Ivanov. Seamless mosaicing of image-based texture maps. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–6,

2007.

[137] D. Levin. The approximation power of moving least-squares. Mathematics of Com-

putation, 67:1517–1531, 1998.

[138] F. F. Leymarie and B. B. Kimia. The medial scaffold of 3D unorganized point

clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:313–

330, February 2007.

[139] Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Jin

Shiyao. Robust normal estimation for point clouds with sharp features. Computers

& Graphics, 34(2):94–106, April 2010.

[140] X. Li, C.-Y. Han, and W. G. Wee. On surface reconstruction: A priority driven

approach. Computer-Aided Design, 41(9):626–640, September 2009.

[141] P. Liepa. Filling holes in meshes. In Eurographics/ACM SIGGRAPH symposium on

Geometry processing, SGP’03, pages 200–205, Aire-la-Ville, Switzerland, Switzer-

land, 2003. Eurographics Association.

[142] H.-W. Lin, C.-L. Tai, and G.-J. Wang. A mesh reconstruction algorithm driven by

an intrinsic property of a point cloud. Computer-Aided Design, 36(1):1–9, 1 2004.

[143] C. A. Lindley. Practical ray tracing in C. John Wiley & Sons, Inc., New York, NY,

USA, 1992.

[144] S.K. Lodha and R. Franke. Scattered data techniques for surfaces. In Scientific

Visualization Conference, page 181, june 1997.

[145] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. SIGGRAPH Computer Graphics, 21:163–169, August 1987.

[146] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse

Bundle Adjustment. ACM Transactions on Mathematical Software, 36(1):1–30,

2009.

[147] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, November 2004.

296 BIBLIOGRAPHY

[148] I. Mahon, O. Pizarro, M. Johnson-Roberson, A. Friedman, S.B. Williams, and J.C.

Henderson. Reconstructing pavlopetri: Mapping the world’s oldest submerged town

using stereo-vision. In IEEE International Conference on Robotics and Automation

(ICRA), pages 2315–2321, 2011.

[149] M. Maila and J. Shi. A random walks view of spectral segmentation. In AI and

STATISTICS (AISTATS), 2001.

[150] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 0:2057–2064, 2011.

[151] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image

segmentation. International Journal of Computer Vision, 43(1):7–27, June 2001.

[152] A. Mallios, P. Ridao, D. Ribas, and E. Hernández. Scan matching SLAM in under-

water environments. Autonomous Robots, 35(1):1–20, 2013.

[153] J. Manson, G. Petrova, and S. Schaefer. Streaming surface reconstruction using

wavelets. Computer Graphics Forum (SGP), 27(5):1411–1420, 2008.

[154] S. Marras, F. Ganovelli, P. Cignoni, R. Scateni, and R. Scopigno. Controlled and

adaptive mesh zippering. In International Conference in Computer Graphics Theory

and Applications (GRAPP), 2010.

[155] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust wide baseline stereo from

maximally stable extremal regions. In British Machine Vision Conference (BMVC),

volume 1, pages 384–393, London, 2002.

[156] R. Mencl and H. Müller. Graph-based surface reconstruction using structures in

scattered point sets. In Proceedings of the Computer Graphics International, CGI

’98, page 298, Washington, DC, USA, 1998. IEEE Computer Society.

[157] R. Mencl and H. Müller. Interpolation and approximation of surfaces from three-

dimensional scattered data points. In Dagstuhl ’97, Scientific Visualization, pages

223–232, Washington, DC, USA, 1999. IEEE Computer Society.

[158] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point

cloud data. In Special issue of International Journal of Computational Geometry

and Applications, volume 14(4-5), pages 261–276, 2004.

[159] P. Mullen, F. De Goes, M. Desbrun, D. Cohen-Steiner, and P. Alliez. Signing the

unsigned: Robust surface reconstruction from raw pointsets. Computer Graphics

Forum, 29(5):1733–1741, 2010.

BIBLIOGRAPHY 297

[160] S. Muraki. Volumetric shape description of range data using blobby model. SIG-

GRAPH Computer Graphics, 25(4):227–235, July 1991.

[161] Y. Nagai, Y. Ohtake, and H. Suzuki. Smoothing of partition of unity implicit surfaces

for noise robust surface reconstruction. In Eurographics/ACM SIGGRAPH Sympo-

sium on Geometry Processing, SGP ’09, pages 1339–1348, Aire-la-Ville, Switzerland,

Switzerland, 2009. Eurographics Association.

[162] T. Nicosevici, N. Gracias, S. Negahdaripour, and R. Garcia. Efficient three-

dimensional scene modeling and mosaicing. Journal of Field Robotics, 26:759–788,

October 2009.

[163] F.S. Nooruddin and G. Turk. Simplification and repair of polygonal models using

volumetric techniques. IEEE Transactions on Visualization and Computer Graphics,

9(2):191–205, April 2003.

[164] Y. Ohtake, A. Belyaev, and M. Alexa. Sparse low-degree implicit surfaces with appli-

cations to high quality rendering, feature extraction, and smoothing. In Eurograph-

ics/ACM SIGGRAPH symposium on Geometry processing, SGP’05, Aire-la-Ville,

Switzerland, Switzerland, 2005. Eurographics Association.

[165] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition

of unity implicits. ACM Transactions on Graphics, 22(3):463–470, July 2003.

[166] Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale approach to 3D scattered data

interpolation with compactly supported basis functions. In Proceedings of the Shape

Modeling International, page 153, Washington, DC, USA, 2003. IEEE Computer

Society.

[167] Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3D scattered data approximation with

adaptive compactly supported radial basis functions. In Proceedings of the Shape

Modeling International, pages 31–39, Washington, DC, USA, 2004. IEEE Computer

Society.

[168] Y. Ohtake, A. Belyaev, and H.-P. Seidel. An integrating approach to meshing scat-

tered point data. In ACM Symposium on Solid and Physical Modeling, SPM ’05,

pages 61–69, New York, NY, USA, 2005. ACM.

[169] R. R. Paulsen, J. A. Baerentzen, and R. Larsen. Markov random field surface recon-

struction. IEEE Transactions on Visualization and Computer Graphics, 16(4):636–

646, July 2010.

298 BIBLIOGRAPHY

[170] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A pde-based fast local

level set method. Journal of Computational Physics, 155:410–438, November 1999.

[171] S. Petitjean and E. Boyer. Regular and non-regular point sets: properties and

reconstruction. Computational Geometry, 19(2-3):101–126, 2001.

[172] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, London, UK, UK, 1995.

[173] A. Rahimi and B. Recht. Clustering with normalized cuts is clustering with a hyper-

plane. In Statistical Learning in Computer Vision, Prague, Czech Republic, 2004.

[174] C. Roman and H. Singh. A self-consistent bathymetric mapping algorithm. Journal

of Field Robotics, 24(1-2):23–50, 2007.

[175] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut”: Interactive foreground ex-

traction using iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314,

August 2004.

[176] P. J. Rousseeuw. Least median of squares regression. Journal of the American

Statistical Association, 79:871–880, 1984.

[177] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. John

Wiley & Sons, Inc., New York, NY, USA, 1987.

[178] S. Roy and Ingemar J. Cox. A maximum-flow formulation of the n-camera stereo

correspondence problem. In Sixth International Conference on Computer Vision,

pages 492–499, 1998.

[179] H. Saito and T. Kanade. Shape reconstruction in projective grid space from large

number of images. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 1999.

[180] N. Salman and M. Yvinec. Surface reconstruction from multi-view stereo. 9th Asian

Conference on Computer Vision, 2009.

[181] M. Samozino, M. Alexa, P. Alliez, and M. Yvinec. Reconstruction with Voronoi

centered radial basis functions. In Eurographics/ACM SIGGRAPH symposium on

Geometry processing, SGP ’06, pages 51–60, Aire-la-Ville, Switzerland, Switzerland,

2006. Eurographics Association.

[182] S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring. IEEE Transactions

on Visualization and Computer Graphics, 13(3):610–619, May 2007.

BIBLIOGRAPHY 299

[183] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual grids.

In 12th Pacific Conference on Computer Graphics and Applications, PG ’04, pages

70–76, Washington, DC, USA, 2004. IEEE Computer Society.

[184] O. Schall, A. Belyaev, and H.-P. Seidel. Error-guided adaptive fourier-based surface

reconstruction. Computer Aided Design, 39:421–426, May 2007.

[185] O. Schall and M. Samozino. Surface from scattered points: A brief survey of recent

developments. In Bianca Falcidieno and Nadia Magnenat-Thalmann, editors, 1st

International Workshop on Semantic Virtual Environments, pages 138–147, Villars,

Switzerland, 2005. MIRALab.

[186] B. Schölkopf, J. Giesen, and S. Spalinger. Kernel methods for implicit surface mod-

eling. In Advances in Neural Information Processing Systems 17, pages 1193–1200.

MIT Press, 2005.

[187] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel coloring.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR

’97, pages 1067–, Washington, DC, USA, 1997. IEEE Computer Society.

[188] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and

evaluation of multi-view stereo reconstruction algorithms. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 1, pages 519–528, 2006.

[189] S. Shalom, A. Shamir, H. Zhang, and D. Cohen-Or. Cone carving for surface recon-

struction. ACM Transactions on Graphics, 29(6):150:1–150:10, December 2010.

[190] A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt, and D. Cohen-Or. Competing fronts for

coarse-to-fine surface reconstruction. In Computer Graphics Forum, pages 389–398,

2006.

[191] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolating and approximating

implicit surfaces from polygon soup. ACM Transactions on Graphics, 23:896–904,

August 2004.

[192] J. R. Shewchuk. Constrained delaunay tetrahedralizations and provably good bound-

ary recovery. In 11th International Meshing Roundtable, pages 193–204, 2002.

[193] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[194] H. Singh, C. Roman, O. Pizarro, R. Eustice, and A. Can. Towards high-resolution

imaging from underwater vehicles. The International Journal of Robotics Research,

26(1):55–74, 2007.

300 BIBLIOGRAPHY

[195] G.G. Slabaugh, W.B. Culbertson, T. Malzbender, M.R. Stevens, and R.W. Schafer.

Methods for volumetric reconstruction of visual scenes. International Journal of

Computer Vision, 57(3):179–199, 2004.

[196] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics

and Computing, 14:199–222, August 2004.

[197] N. Snavely, Steven M. Seitz, and R. Szeliski. Photo tourism: exploring photo col-

lections in 3D. ACM Transactions on Graphics, 25:835–846, July 2006.

[198] O. Sorkine and D. Cohen-Or. Least-squares meshes. In Shape Modeling Interna-

tional, pages 191–199, Washington, DC, USA, 2004. IEEE Computer Society.

[199] M. Soucy and D. Laurendeau. A general surface approach to the integration of a set

of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(4):344–358, April 1995.

[200] F. Steinke, B. Schölkopf, and V. Blanz. Support vector machines for 3D shape

processing. Computer Graphics Forum, pages 285–294, 2005.

[201] C. Strecha, W. Von Hansen, L. Van Gool, P. Fua, and U. Thoennessen. On bench-

marking camera calibration and multi-view stereo for high resolution imagery. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8,

2008.

[202] T. Svoboda, D. Martinec, and T. Pajdla. A convenient multicamera self-calibration

for virtual environments. Presence: Teleoperators and Virtual Environments.,

14(4):407–422, August 2005.

[203] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral ap-

proximation. In 5th International Conference on Computer Vision, ICCV ’95, pages

902–, Washington, DC, USA, 1995. IEEE Computer Society.

[204] G. Turk and M. Levoy. Zippered polygon meshes from range images. In 21st An-

nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’94, pages 311–318, New York, NY, USA, 1994. ACM.

[205] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Journal für die Reine und Angewandte Mathematik, 133:97–178, 1908.

[206] C. Walder, O. Chapelle, and B. Schölkopf. Implicit surface modelling as an eigenvalue

problem. In 22nd International Conference on Machine Learning, ICML ’05, pages

936–939, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 301

[207] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM

Transactions on Graphics, 11(3):201–227, July 1992.

[208] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory

and its application to image segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 15(11):1101–1113, 1993.

[209] R Yang and M. Pollefeys. Multi-resolution real-time stereo on commodity graph-

ics hardware. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 1, pages I–211–I–217 vol.1, 2003.

[210] D. R. Yoerger, D. S. Kelley, and J. R. Delaney. Fine-scale three-dimensional mapping

of a deep-sea hydrothermal vent site using the jason rov system. The International

Journal of Robotics Research, 19(11):1000–1014, 2000.

[211] M. Yoon, I. Ivrissimtzis, and S. Lee. Self-organising maps for implicit surface recon-

struction. In Theory and Practice of Computer Graphics, pages 83–90, Manchester,

UK, June 2008.

[212] Y. Yu. Surface reconstruction from unorganized points using self-organizing neural

networks. In IEEE Visualization, pages 61–64, 1999.

[213] G. Zeng, S. Paris, L. Quan, and F. Sillion. Progressive surface reconstruction from

images using a local prior. In 10th IEEE International Conference on Computer

Vision - Volume 2, ICCV ’05, pages 1230–1237, Washington, DC, USA, 2005. IEEE

Computer Society.

[214] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[215] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to

multiphase motion. Journal of Computational Physics, 127:179–195, August 1996.

[216] H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set

method. In IEEE Workshop on Variational and Level Set Methods (VLSM), VLSM

’01, page 194, Washington, DC, USA, 2001. IEEE Computer Society.

[217] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit and nonparametric

shape reconstruction from unorganized data using a variational level set method.

Computer Vision and Image Understanding, 80(3):295–314, December 2000.

[218] K. Zhou, M. Gong, X. Huang, and B. Guo. Data-parallel octrees for surface recon-

struction. Visualization and Computer Graphics, IEEE Transactions on, 17(5):669–

681, 2011.

302 BIBLIOGRAPHY

[219] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh edit-

ing. In 24th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’97, pages 259–268, New York, NY, USA, 1997. ACM Press/Addison-

Wesley Publishing Co.

	Acknowledgments
	Publications
	Contents
	Resum. Resumen. Abstract
	Introduction
	Motivation
	Objectives
	Contributions
	Organization of the Document

	3D Optical Modelling
	Introduction
	Overview
	Camera Calibration
	Correspondence Search
	Detection
	Description and Matching
	Epipolar Constraints
	Robust Matching

	Structure from Motion
	Dense Reconstruction
	Post-processing
	Underwater 3D Modelling

	Related Concepts
	Introduction
	Surfaces
	Surface Representation
	Implicit
	Explicit
	Representation Selection

	Surface Classification

	Computational Geometry
	Simplicial Complex
	Convex Hull
	Delaunay Triangulation
	Voronoi Diagram
	Delaunay/Voronoi Duality
	Delaunay/Voronoi Related Concepts
	Poles
	Delaunay Subcomplexes
	Constrained Delaunay
	Power Diagram/Regular Triangulation

	Medial Axis
	Local Feature Size and -Sampling

	Surface Meshing
	Isosurface Extraction
	Marching Cubes
	Dual Contouring

	Restricted Delaunay Meshing

	State-of-the-Art Review
	Introduction
	Challenges of Point Set Data
	Classification
	Proposed Classification

	Interpolation-based Methods
	Surface Oriented
	Delaunay Triangle Selection
	Surface Growing
	Integration

	Volume Oriented
	In/Out Separation
	Sculpting
	Graph Partitioning

	Approximation-based Methods
	Tangent Planes
	Unsigned Distance
	Radial Basis Functions
	Moving Least Squares
	Deformable Surfaces
	Gradient Enforcement
	Integration
	Local Primitives

	Conclusions

	Direct Point Set Surface Reconstruction
	Introduction
	Overview and Contributions
	Online Intersection Computation
	Capsule Neighborhood
	Local Bivariate Quadric
	Outlier Rejection
	Locally Adjusted Noise Scale
	Local Bivariate Quadric - Segment Intersection

	Post-processing
	Results
	Synthetic Dataset
	Range Scans
	Underwater Multi-view Stereo Datasets

	Conclusions and Future Work

	Splat-based Surface Reconstruction
	Introduction
	Overview and Contributions
	Creating the Splats
	Local Jet Surfaces
	Outlier Rejection
	Splat Sizing

	Meshing
	Merging Local Intersections
	Robust Intersection Query

	Results
	Conclusions and Future Work

	Surface Reconstruction through Minimum Cuts in Graphs
	Introduction
	Overview and Contributions
	Unsigned Distance Function
	S-T Cut
	Theoretical Bases
	Our Approach
	Extension to Open Surfaces

	Normalized Cut
	Theoretical Bases
	Our Approach
	Removing Hallucinated Triangles

	Results
	Conclusions and Future Work

	Quantitative Evaluation
	Introduction
	Tested Algorithms
	Real Data
	Results

	Surface Reconstruction Benchmark
	Parameter Tuning
	Smooth Surfaces
	Results

	Noise Test
	Results

	Outliers Test
	Results

	Conclusions

	Conclusions and Future Work
	Summary of the Thesis
	Contributions
	Future Work

