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Abstract

The coverage path planning (CPP) problem is the task
of determining a path that passes over all points of
an area or volume of interest while avoiding obstacles.
This task is integral to many robotic applications, such
as vacuum cleaning robots, painter robots, autonomous
underwater vehicles (AUVs), demining robots, lawn
mowers, automated harvesters and window cleaners,
just to name a few. A considerable body of research
has addressed the CPP problem. However, no updated
surveys on CPP reflecting the recent advances in the
field have been presented in the past ten years. In
this paper, we present a review of the most success-
ful CPP methods, focusing on the achievements made
in the past decade. Furthermore, we discuss reported
field applications of the CPP methods described. This
work aims to become a starting point for researchers
who are initiating their endeavors in CPP. Likewise,
we aim to present a comprehensive review of the recent
breakthroughs in the field, providing links to the most
interesting and successful works.

1 Introduction

The coverage path planning (CPP) problem is the task
of determining a path that passes over all points of
an area or volume of interest while avoiding obsta-
cles. This task is integral to many robotic applications,
such as vacuum cleaning robots (Yasutomi et al., 1988),
painter robots (Atkar et al., 2005b), autonomous un-
derwater vehicles (AUVSs) (Hert et al., 1996; Englot
and Hover, 2012), demining robots (Gage, 1994; Na-
jjaran and Kircanski, 2000; Acar et al., 2003), lawn
mowers (Cao et al., 1988; Bosse et al., 2007), auto-
mated harvesters (Ollis and Stentz, 1997) and window

cleaners (Farsi et al., 1994), just to name a few.

In one of the earliest works on CPP found in the litera-
ture, Cao et al. (1988) defined the requirements a robot
must meet to perform a coverage operation. Albeit the
target application in the aforementioned paper is a mo-
bile robot moving in a flat 2-dimensional environment,
the same criteria are applicable to other coverage sce-
narios. The requirements are as follows:

1. robot must move through all the points in the tar-
get area covering it completely.

2. robot must fill the region without overlapping
paths.

3. continuous and sequential operation without any
repetition of paths is required.

4. robot must avoid all obstacles.

5. simple motion trajectories (e.g., straight lines or
circles) should be used (for simplicity in control).

6. an “optimal” path is desired under available con-
ditions.

However, it is not always possible to satisfy all these
criteria in complex environments. Therefore, some-
times a priority consideration is required.

The CPP problem is related to the covering salesman
problem, a variant of the well-known traveling sales-
man problem where, instead of visiting each city, an
agent must visit a neighborhood of each city (Arkin and
Hassin, 1994). However, in CPP, the agent must pass
over all points in the target area in contrast to visiting
all the neighborhoods. Since the traveling salesman
problem is NP-hard, the computational time required
to solve the problem increases drastically when the di-
mension of the problem increases. Actually, finding a
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path to cut all the grass of a given region covered by
grass, which is known as the “lawnmower problem”, is
proven to be NP-hard (Arkin et al., 2000). Notice that
the lawnmower problem does not account for obstacles.
In fact, even the basic path planning problem, known
as the “piano mover’s problem”, of finding a collision-
free path from a start configuration to a goal config-
uration is shown to be PSPACE-hard, which implies
NP-hard (LaValle, 2006; Reif and Sun, 2001). Two
additional, similar problems related to CPP are the
art gallery problem and the watchman route problem.
The art gallery problem calls for the minimum num-
ber of guards needed to station in a polygonal gallery
so that each point in the gallery is visible to at least
one guard (Shermer, 1992). The watchman route prob-
lem calls for the shortest route from a given point back
to itself so that each point in a given space is visible
from at least one point along the route (Li and Klette,
2008). Simple cases of the watchman route problem
such as covering the interior of simple polygons can be
achieved in polynomial time (Chin and Ntafos, 1991).
But, in general, both the art gallery problem and the
watchman route problem are NP-hard (Shermer, 1992;
Li and Klette, 2008). Some coverage algorithms we
discuss in Subsec. 8.6 approach CPP as the art gallery
problem and the watchman route problem.

Coverage algorithms can be classified as heuristic or
complete depending on whether or not they provably
guarantee complete coverage of the free space. In-
dependently, they can be classified as either off-line
or on-line. This classification was originally proposed
by Choset (2001). Off-line algorithms rely only on sta-
tionary information, and the environment is assumed
to be known in advance. However, assuming full prior
knowledge of the environment might be unrealistic in
many scenarios. On the other hand, on-line algorithms
do not assume full prior knowledge of the environment
to be covered and utilize real-time sensor measure-
ments to sweep the target space. Thus, these later
algorithms are also called sensor-based coverage algo-
rithms.

In certain scenarios, a valid approach to solve the
problem is to randomize. This is an approach that
some floor-cleaning robots rely on: if the floor is swept
randomly for long enough, it should become cleaned.
Examples of commercial floor-cleaning robots based
fully or partially on this strategy are the RC3000
by Karcher, Trilobite by Electrolux and Roomba by
iRobot (Palacin et al., 2005). There are advantages to
this approach, the main one being that no complex
sensors for localization nor expensive computational
resources are needed. However, for covering vast ar-
eas, and especially for underwater or aerial robotics op-

erations which deal intrinsically with a 3-dimensional
space, it is difficult to think that a randomized “algo-
rithm” could be usable, as the cost of operating the
vehicle (energy and time) would be unaffordable.

A considerable body of research addressing the CPP
problem can be found in the literature. Choset (2001)
presented a survey on the field. However, no updated
surveys on CPP reflecting its recent advances have
been presented in the past ten years. In this paper,
we present a review of the most successful CPP meth-
ods, focusing in the achievements made in the past
decade. Furthermore, we discuss reported field appli-
cations of the CPP methods described. This work aims
to become a starting point for researchers who are ini-
tiating their endeavors in CPP. Likewise, we aim to
present a good review of the recent breakthroughs in
the field, providing links to the most interesting and
successful works.

Since most CPP algorithms decompose the target
space in sub-regions (called cells) to achieve coverage,
Choset (2001) classified coverage algorithms according
to the type of decomposition used. Hence, his taxon-
omy comprises heuristic and randomized approaches
(which typically do not use a representation of the en-
vironment and therefore neither use a decomposition),
and approximate, semi-approximate and exact cellu-
lar decompositions. However, we argue that qualita-
tively different approaches can be distinguished among
these categories. Thus, the outline of this article does
not bear a one-to-one correspondence with Choset’s
taxonomy, but rather reflects the common underlying
ideas used in the discussed approaches. Nonetheless,
Choset’s taxonomy is commonly used throughout the
literature, and hence we also provide the corresponding
Choset’s classification for the methods reviewed.

Resulting from these considerations, the remainder of
this article is organized as follows. Sec. 2 reviews clas-
sical cellular decomposition algorithms which set the
fundamentals of the cellular decomposition approach.
Sec. 3 discusses the cellular decomposition based on
critical points of Morse functions, which can deal with a
more general class of obstacles. Sec. 4 presents a cover-
age approach based on detection of natural landmarks.
A coverage algorithm for robots equipped with only
contact sensors operating in rectilinear environments
is discussed in Sec. 5. Methods based on a grid rep-
resentation of the space are reviewed in Sec. 6. Work
addressing the coverage problem in environments that
can be represented as a graph, such as a street or road
network, is briefly reviewed in Sec. 7. In Sec. 8 sev-
eral methods for covering 3-dimensional environments
are presented. Sec. 9 reviews some methods for achiev-



ing optimal coverage, and Sec. 10 focuses on methods
that intend to reduce the accumulation of localization
error while planning a coverage path. In Sec. 11 sev-
eral multi-robot CPP methods are reviewed. Finally,
concluding remarks including a summary table and di-
rections for further research are given in Sec. 12.

2 Classical Exact Cellular De-
composition Methods

Exact cellular decomposition methods break the free
space (i.e., the space free of obstacles) down into sim-
ple, non-overlapping regions called cells. The union
of all the cells exactly fills the free space. These re-
gions, which contain no obstacles, are “easy” to cover
and can be swept by the robot using simple motions.
For instance, each cell could be covered using a zigzag,
“mowing the lawn” pattern like the one shown in Fig. 1.
Generation of these zigzag motions, also called seed-
spreader motions, is well documented in the litera-
ture (Lumelsky et al., 1990; Choset and Pignon, 1997;
Acar et al., 2002).

Figure 1: Typical “mowing the lawn” path. The
shaded area indicates the area already covered (darker)
and the area that will be covered (lighter) when the
robot finishes following the path.

Two cells are said to be adjacent if they share a com-
mon boundary. An adjacency graph can be used to
represent the cellular decomposition, where a node rep-
resents a cell and an edge represents an adjacency re-
lationship between two cells (see Fig. 2). Exact cell
decompositions can be generated by sweeping a line
through the space (e.g. from left to right). The cell
boundaries are then formed when some event is en-
countered by the sweep line. For instance, a change
on the number of times the sweep line intersects with
obstacle boundaries can be used as an event.

Typically, a planner based on exact cellular decompo-

sition generates a coverage path in two steps. First, it
decomposes the free space into cells and stores the de-
composition as an adjacency graph. Next, it computes
an exhaustive walk through the adjacency graph (i.e.,
a sequence that visits each node in the graph exactly
once). It is worth noting that the exhaustive walk ob-
tained is a sequence of nodes (i.e., a sequence of cells),
and not an actual coverage path. Therefore, an ex-
plicit path for covering each cell must be derived using
simple motions as discussed above.

Next, two popular off-line cellular decomposition ap-
proaches (Subsec. 2.1 and Subsec. 2.2) that laid down
the foundations for more advanced methods are dis-
cussed.

2.1 Trapezoidal Decomposition

One of the simplest exact cellular decomposition tech-
niques which can yield a complete coverage path is
the trapezoidal decomposition (Latombe, 1991; Choset
et al., 2005), which handles only planar, polygonal
spaces. Given that it uses no sensor information, this
method can be classified as off-line. In the trapezoidal
decomposition, each cell is a trapezoid, as shown in
Fig. 2. Thereby, simple back-and-forth motions can be
used to cover each cell. Complete coverage is guaran-
teed by finding an exhaustive walk through the adja-
cency graph associated to the decomposition (overlaid
on the decomposition in Fig. 2). Finally, a specific
zigzag path to cover each cell is generated. The ex-
haustive walk determines the order in which the cells
are visited to achieve complete coverage. Finally, spe-
cific paths to cover each cell are generated, typically
using back-and-forth motions in a “mowing the lawn”

manner.
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Figure 2: Trapezoidal decomposition of an example
workspace with its corresponding adjacency graph.

As an application example, Oksanen and Visala (2009)
proposed an off-line algorithm based on the trapezoidal



decomposition for coverage path planning in the case
of agricultural fields. Their algorithm applies a trape-
zoidal decomposition of the field followed by a cell
merging procedure. The resulting cells are similar to
those produced by the boustrophedon decomposition,
introduced in the next section (2.2). To optimize the
path, they use a path-based cost function to assess the
largest cell arising in six different trapezoidal decom-
positions obtained by using a sweep line inclined at
30° intervals. Then, the three most favorable direc-
tions are selected and the process is repeated, with
additional decompositions at 15° either side of the se-
lected headings. The process continues iteratively un-
til the improvement per step falls below a threshold,
which for their application was achieved after 5 steps
(about 1° accuracy), requiring 36 separate decomposi-
tions. Then, the largest cell in the minimum-cost de-
composition is removed from the target area, and the
process is repeated for the remainder of the field until
all the area is covered by the path. This scheme pro-
duces effectively optimal coverage paths for a convex
field and high-quality paths for a field whose bound-
aries consist of long, straight segments as well.

2.2 Boustrophedon Decomposition

A drawback of the trapezoidal decomposition is that it
generates many cells that, intuitively, can be merged
together to form bigger cells. This is clearly incon-
venient, as the more cells are present, the longer the
final coverage path becomes, as shown in Fig. 3. This
happens because the trapezoidal decomposition creates
only convex cells. However, non-convex cells can also
be completely covered by simple motions. To overcome
this limitation, Choset & Pignon proposed the bous-
trophedon cellular decomposition (Choset and Pignon,
1997; Choset et al., 2000a). The word “boustrophe-
don” comes from ancient Greek, and literally means
“the way of the ox”, signifying the pattern in which an
ox drags a plow back and forth. The boustrophedon
decomposition is similar to the trapezoidal decomposi-
tion introduced above, but it only considers vertices in
the environment where a vertical segment can be ex-
tended both above and below the vertex. The vertices
where this occurs are called critical points.

By adhering to this strategy, the boustrophedon de-
composition effectively reduces the number of cells in
trapezoidal decomposition. Hence, shorter coverage
paths are obtained. Notice that, as the trapezoidal
decomposition, this method assumes polygonal obsta-
cles and the terrain to be known a priori, and thus
classifies as an off-line method.

N4
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Figure 3: A decomposition with less cells allows for
shorter coverage paths. Note how an extra strip is
needed in the trapezoidal decomposition in 3(a) with
respect to the boustrophedon decomposition in 3(b).

3 Morse-based Cellular Decom-
position

Later, Acar et al. (2002) generalized the boustrophedon
decomposition by proposing a novel cellular decompo-
sition approach based on critical points of Morse func-
tions (Milnor, 1963). In fact, they show that the bous-
trophedon decomposition is a particular case of Morse
decomposition. With respect to the original bous-
trophedon decomposition, the Morse-based decomposi-
tion has the advantage of handling also non-polygonal
obstacles. By choosing different Morse functions, dif-
ferent cell shapes are obtained, e.g. circular or spiked
cells. Theoretically, Morse-decompositions can be ap-
plied to any n-dimensional space. Moreover, they pre-
sented a method to perform coverage of planar spaces
by detecting the critical points using sensory range
information, and a motion-template-based algorithm
that ensures to encounter all the critical points in the
target area. Therefore, this method allows complete
coverage on-line (Acar and Choset, 2001, 2002a).

The Morse decomposition is based on a roadmap
method for start-to-goal path planning proposed by
Canny (Canny, 1988, 1993). Critical points of a Morse
function restricted to the obstacle boundaries are used
to determine the cell decomposition. Recall that, given



a real-valued function h: R™ — R, its differential at
p € R™is dh(p) = [%(p) . £—hm(p)]. A critical point
is a value p € R™ where either the function is not

differentiable or all its partial derivatives are 0, i.e.,

. . 2
%(p) =...= 62:1 (p) = 0, and its Hessian (83_6’1% (p))

is non-singular. For instance, in the case of a single
variable function, a critical point corresponds either to
a local maximum, a local minimum or an inflection.
A Morse function is one whose critical points are non-
degenerate (Milnor, 1963). Practically speaking, this
means that critical points are isolated from one an-
other.

To determine the cell decomposition, a slice is swept
through the target space. Formally, the slice is a codi-
mension one manifold defined in terms of the preimage
of a real-valued Morse function, h: W — R, where
W is the robot’s workspace, i.e., the space to be cov-
ered. For instance, in the plane (W = R?), choosing
h(z,y) = x will make the slice be effectively a vertical
line. Changes on the connectivity of the slice occur at
critical points of the Morse function restricted to the
obstacle boundaries. To put it more simply, at a criti-
cal point the sweep line encounters an obstacle whose
surface normal is perpendicular to the sweep line, as
shown in Fig. 4. Morse theory guarantees that, be-
tween critical points, the connectivity of the slice re-
mains unchanged. Thus, as no obstacles lay between
critical points, the space between them can be covered
easily by simple motions, and critical points can be
used to determine the cell boundaries.

Choosing different Morse functions produces different
slice shapes and hence different cell decomposition pat-
terns. For simplicity, we will describe the Morse-based
boustrophedon decomposition (Choset, 2000), which
happens in the plane. Later, we will give examples
of different decomposition patterns obtained using dif-
ferent Morse functions.

In the boustrophedon decomposition, a vertical slice,
defined in terms of the Morse function h(x,y) = x, is
swept from left to right in the workspace, i.e., along the
abscissae axis. Thus, the vertical slice is determined by
the pre-image of this Morse function, Wy = h=1(})).
The slice is parametrized by A € R, which fixes its
location in the target space. Increasing the value of
the slice parameter, A\, sweeps the slice from left to
right through the workspace.

As the slice sweeps the space it intersects (or stops in-
tersecting) obstacles, which divide it into smaller pieces
as the slice first encounters an obstacle, that is, the con-
nectivity of the slice in the free space increases. Also,
immediately after the slice leaves an obstacle, smaller
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Figure 4: Cell boundaries in Morse decomposition are
placed at critical points, where the surface normal of
the obstacle is perpendicular to the sweep slice, and
parallel to the sweep direction.

slice pieces are merged into larger pieces (the connec-
tivity of the slice in the free space decreases). The
points where these connectivity changes occur are the
critical points. (Recall that critical points are always
located on the obstacle boundaries.) Thus, at critical
points, the slice is used to determine the cells in the
decomposition. Notice that within a cell, the slice con-
nectivity remains constant. Fig. 5(a) shows how, at
the critical point, the connectivity of the slice changes
from one to two, and hence the old cell is closed and
two new cells are created. In Fig. 5(b), at the critical
point, the connectivity of the slice changes from two to
one, and hence two old cells are closed and a new cell
is created.

Once the cell decomposition is constructed, an exhaus-
tive walk through its associated adjacency graph is de-
termined by the planner. Then, it generates the ex-
plicit coverage path in each cell. The coverage pattern
within each cell has three parts: motion along a slice,
motion orthogonal to the slice, and motion along the
cell boundary, as shown in Fig. 6. First, the robot laps
along the current slice, W,. Then the robot steps out-
ward of the slice by going orthogonally to it by an inter-
lap distance, typically by a distance of one robot sensor
range; A is also increased by this distance to form a new
slice. If the robot encounters an obstacle (i.e., the cell
boundary) while moving along the slice, the planner
directs the robot to follow the obstacle boundary until
it has moved an inter-lap distance and then a new lap
along a new slice is started. The process repeats until
the cell is completely covered.

Fig. 7 shows the Morse-based boustrophedon cell de-
composition of an example workspace with its associ-
ated adjacency graph overlaid.
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Figure 5: Cell determination with the Morse-based
boustrophedon cell decomposition method.

)
X N
+  +
< < <
Motion along
the slice [~
Motion along
Motion orthogonall the boundary
to the slice S
o AV

Figure 6: Boustrophedon path construction process,
where § is the inter-lap spacing and A is the slice pa-
rameter

Figure 7: Morse decomposition of an example
workspace with its associated adjacency graph.

A key point of Morse decompositions is that, by choos-
ing different Morse functions to define the slice that
is swept through the space, different decomposition
and coverage path patterns can be generated, like the
spiral pattern (Acar et al., 2002). Figure 8 shows
a spiral pattern obtained using the morse function
h(z,y) = V/a? +y?. Allowing different coverage pat-
terns is useful for vehicles with kinematic constraints.
For instance, a spiral path can be easily followed by
an underactuated car-like vehicle unable to make hard
turns (Bosse et al., 2007).

Figure 8: Spiral Morse decomposition obtained using
the Morse function h(z,y) = /22 + y2.

A limitation of the Morse decomposition method is
that it cannot handle rectilinear environments. This
is because it is not possible to determine critical points
in those environments which correspond to a change in
the topology of the space (the critical points are said
to be degenerate in this case (Milnor, 1963)).

(Galceran and Carreras, 2012) presented a CPP
method based on Morse decomposition to minimize re-
dundant coverage for AUVs and autonomous surface
vehicles (ASVs) imaging the ocean floor. To this aim,
this method determines a sweep direction on each cell
of the decomposition and adjusts the inter-lap spacing
of the boustrophedon path on a lap by lap basis accord-
ing to the ocean depth. The efficacy of the method is



demonstrated in simulation using a real-world dataset.

3.1 On-line Morse-based Boustrophe-
don Decomposition

To face the sensor-based coverage problem, Acar and
Choset (2002a, 2000) gave a method to detect the crit-
ical points of a Morse-based boustrophedon decompo-
sition on-line using range sensor information. Further-
more, they presented an algorithm that ensures to en-
counter all the critical points while performing cover-
age. To detect the critical points, they use an omni-
directional range sensor to look for points where the
surface normals Vm(z) of obstacles and the sweep di-
rection are parallel. Given a robot located at point z,
let ¢g be the closest point to z on the surface of obstacle
Cit

(1)

¢o = argmin ||z — ¢||,
ceC;

and let d;(x) be the distance between point = and the
obstacle C;. Now, the gradient of d;(x), Vd;(z) can be
calculated as

Tr — Co

Vd;(x) (2)

e —coll’

Recall that, by definition, a gradient is a unit vector
normal to a surface at a given point. In Eq. 2, as ¢y is
a point laying on the surface of the obstacle C;, x — ¢q
is a vector pointing outward from ¢y towards x. Given
that ¢q is the closest point to z on the obstacle surface,
the vector x — ¢q is hence normal to the surface of the
obstacle. By dividing by its norm, ||z — ¢g||, the result
is turned into a unit vector.

A detection of a critical point occurs when Vd;(z) is
parallel to the sweep direction. Or, in other words,
when the sweep direction and the obstacle surface nor-
mal are parallel. Fig. 9 graphically shows this situa-
tion.

Notice the fact that critical points can only be detected
when they are the closest point on the obstacle surface
from the robot compared to all other points on the
obstacle surface. This implies that they can only be
detected when the robot is performing wall following.
Therefore, using a simple zigzag can result in some
critical points being missed, as those shown in Fig. 10.

To address this issue, (Acar et al., 2002) presented an
algorithm that uses repeated rectangular motion cycles

Sweep direction

4

dy(z)

Vi,(x)

Sweep line

Figure 9: Critical point detection occurs on the side
of the range sensing robot, whose heading is indicated
by the rectangular mark on the circle representing the
robot.

v

Missed critical points

Figure 10: With Morse decomposition, a range sensing
robot following a simple zigzag path will miss the criti-
cal points in the figure unless it performs wall following
both on the top and the bottom of a cell.



with wall following on both ends of a lap, as shown in
Fig. 11. The algorithm is termed “Cycle Algorithm”.
Notice that this cyclic path includes retracing, and
hence is longer than the simple zigzag path.

Critical points detected

Figure 11: A path composed of rectangular cycles al-
lows detection of all the critical points. This pattern
is used in on-line Morse decomposition and the CCg
algorithm as well.

The cycle path generation process of their proposed al-
gorithm is shown in Fig 12. Initially (Fig 12(a)), the
robot starts a forward phase at point S; and moves
downward. When it encounters an obstacle, it per-
forms wall following until it has reached the next strip
or until a critical point is detected. If a critical point
is detected, the robot then enters in a reverse phase
where it moves upward (see Fig 12(b)). In this phase,
if an obstacle is detected, the robot wall-follows it. If
a critical point is detected on the obstacle boundary,
the next strip is moved to where the critical point is.
The motion continues until S; is reached again on the
current strip. Then, the robot starts a new cycle at
point S;4+1. The algorithm is proven to detect all the
critical points.

Current Next Current
Stl“ip Stl"ip Stl“ip
|
5; 5,095
( i G .

New next strip

> New|critical
-:'—&Point detected

(a) Forward phase

m—

(b) Reverse phase

Figure 12: Critical point detection using the cycle al-
gorithm.

In order to store and incrementally construct the
Morse decomposition on-line, it is stored as a Reeb
graph (Reeb, 1946). The Reeb graph is dual to the ad-
jacency graph in that the nodes of the Reeb graph are
the critical points and the edges connect neighboring
critical points, i.e., correspond to cells. An example
Morse decomposition with its associated Reeb graph is
shown in Fig. 13.

Figure 13: Morse decomposition of an example
workspace with its associated Reeb graph. Cl1...Cpg
are the critical points.

Whenever a critical point is encountered, the robot up-
dates the Reeb graph. When a cycle path where critical
points were found is finished, the robot looks for uncov-
ered cells at the last encountered critical point. If the
critical point is associated with two uncovered cells, the
robot picks one of the cells associated as the next cell
to cover. If there are no uncovered cells associated with
the last encountered critical point, a depth-first search
is performed on the Reeb graph. To travel to the se-
lected uncovered cell, the robot follows the Reeb graph
and plans a path that passes through cells and critical
points. When no uncovered cells (edges) remain in the
Reeb graph, the environment is completely covered.

The Cycle algorithm just described, however, may fail
to detect critical points on certain non-convex obsta-
cles. In particular, concave critical points such as C'p2
in Fig. 14 cannot be detected by range data when the
boundary’s curvature is smaller than the robot’s pe-
riphery (Garcia and de Santos, 2004). However, the
closest convex critical point (Cp3 in the example shown
in Fig. 14) to a critical point like Cp2 in Fig. 14 will
indeed be detected. This leads to adding a spurious
edge to the Reeb graph that does not correspond to
any existing cell. As a result, the algorithm will fail
to detect the closing critical point for the newly added
edge. Garcia and de Santos (2004) proposed a solu-
tion to this issue which involves associating each crit-
ical point with its obstacle and defining unique entry
and exit critical points for each obstacle. Additionally,
their paper discusses several implementation details of
the Cycle algorithm.
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Figure 14: A concave critical point will not be detected
if the boundary’s curvature is smaller than the robot’s
periphery and will lead to an incoherent Reeb graph.
This is the case of C'p2 in this example environment,
which does not get detected and produces an incorrect
edge emanating from Cp3.

Acar et al. (2003) discussed coverage path planning in
relation to a demining application. In this article, they
show that Morse decomposition overcomes the random
coverage approach in this task, which used to be con-
sidered the state of the art on demining operations.

3.2 Morse-based Cellular Decomposi-
tion Combined with the General-
ized Voronoi Diagram

(Acar et al., 2001, 2006) presented a sensor-based cov-
erage approach with extended range sensors. As they
point out, “prior work in coverage tends to fall into one
of two extremes: coverage with an effector the same
size of the robot, and coverage with an effector that
has infinite range.” In this work, they consider cov-
erage in the middle of this spectrum: coverage with a
detector range that goes beyond the robot, and yet is
still finite in range. They term these sensors extended
range sensors. In this work, coverage is achieved in
two steps: the first step considers vast, open spaces,
where the robot can use the full range of its detector;
the robot covers these spaces as if it were as big as its
detector range (see Fig. 15, on the right). Here pre-
vious work in using Morse cell decompositions (Acar
et al., 2002) is employed to cover unknown spaces. As
explained above, cells in this decomposition can be cov-
ered via simple back-and-forth motions, and coverage
of the vast space is then reduced to ensuring that the
robot visits each cell in the vast space. The second

step considers the narrow or cluttered spaces where ob-
stacles lie within detector range, and thus the detector
“fills” the surrounding area. In this case, the robot can
cover the narrow space by simply following the Gener-
alized Voronoi Diagram (GVD) of that space, which
are sets of points equidistant to two obstacles (Choset
and Burdick, 2000; de Berg et al., 2008) (see Fig. 15, on
the left). The GVD can be constructed on-line using
range sensor information and has been previously used
for sensor-based exploration (Choset et al., 2000b) and
inspection of 3D structures (Choset and Kortenkamp,
1999). A hierarchical decomposition that combines the
Morse decompositions and the GVDs is introduced to
ensure that the robot indeed visits all vast, open, as
well as narrow, cluttered, spaces. In their article, it
is shown how to construct this decomposition on-line
using sensor data accumulated while the robot covers
the environment.

Figure 15: Combination of Morse decomposition and
GVD for extended range sensor coverage. In cluttered
spaces (left) the robot just follows the GVD of that
space. In vast areas (right), the robot follows the pat-
tern generated using a Morse decomposition scheme.

4 Landmark-based Topological
Coverage

Wong and MacDonald (2003) presented an on-line
topological coverage algorithm for mobile robots based
on detection of natural landmarks. This work is in-
tended for simple planar environments. As in Morse
decomposition, their method also uses concepts in-
troduced by boustrophedon decomposition. However,
the topological algorithm proposed here uses different
events to determine cell boundaries. Morse decompo-
sition places cell boundaries on the critical points on
the obstacles surface. However, as commented before,
rectilinear environments cannot be handled by Morse
decomposition, as the critical points in such environ-
ments are degenerate. On the other hand, as critical



points can only be discovered on the side of the robot
while performing wall following, a rectangular coverage
pattern which includes retracing is needed. In contrast,
the topological approach presented here uses simpler
landmarks to determine an exact cellular decomposi-
tion termed “slice decomposition”. Due to the use of
simpler landmarks, slice decomposition can handle a
larger variety of environments, including those with
polygonal, elliptical and rectilinear obstacles. More-
over, obstacles can be detected from all sides of the
robot, allowing a simpler zigzag pattern without re-
tracing to be used. As a result, the generated coverage
path is shorter with this method.

4.1 Slice Decomposition

The slice decomposition is constructed by sweeping a
line through the space. It uses five different events to
determine the cell boundaries:

. Split event: A free space segment in the previous
strip is split into two by the emergence of an ob-
stacle, as in Fig. 16(a).

. Merge: Two free space segments in the previous
strip are merged into one by the disappearance of
an obstacle, as in Fig. 16(Db).

. Lengthen: The current strip is much longer than
the previous strip, as in Fig. 16(c).

. Shorten: The current strip is much shorter than
the previous strip, as in Fig. 16(d).

. End: The previous free space segment is the final
one in the current cell, as in Fig. 16(e).

All these events or landmarks can be detected us-
ing a combination of range measurements thresholding
and temporal sequence comparisons (comparing cur-
rent sensor reading with previous ones) and odometry
(comparing length of consecutive strips). An alterna-
tive solution that uses a neural network to detect the
events is also presented in this work (Wong, 2006).

Whenever one of the stated events occur, a cell bound-
ary is placed along the sweep line where the event takes
place. The slice decomposition can be encoded as a
topological map. A topological map is represented as
a planar graph, where the nodes represent landmarks
(i.e., split, merge, end, lengthen or shorten events) and
edges indicate the types of motion required to travel
between nodes they are incident upon. For example,
whether the edge is next to a wall and which side the
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(e) End event

Figure 16: Events (landmarks) in the slice decompo-
sition. In all the events shown c¢; is the current cell
(shaded) and s; is the current strip. The dashed arrow
indicates the sweep direction.



wall is on. They also store estimated distances sepa-
rating the two nodes they connect.

4.2 On-line Topological Coverage Algo-
rithm

An algorithm that constructs the slice decomposition
on-line while performing coverage is presented in Wong
et al.’s work. The algorithm guarantees complete cov-
erage. It iteratively constructs the topological map
associated to the slice decomposition of the environ-
ment using a finite state machine with three states —
boundary, normal, and travel. Fig. 17 shows its state
transition diagram. The algorithm starts in the bound-
ary state, as it is assumed that the robot is initially
located in a corner of the environment. This assump-
tion is not a shortcoming as it is easy to program a
robot to look for a corner by following simple forward
and wall following motions. In the boundary state, the
robot explores the current cell boundary. The aim of
the boundary exploration is to expose all cells neigh-
boring the current border. Whenever the robot arrives
at a landmark or at an end of the cell boundary, the
topological map is updated. When the boundary ex-
ploration has finished, the algorithm switches to the
travel state. In the travel state, the robot searches the
topological map for an uncovered cell and it is directed
to that cell. Then, the robot enters the normal state,
where it follows a zigzag pattern to cover the current
cell. Again, whenever a landmark is found the topo-
logical map is updated and the algorithm switches to
the boundary state. The algorithm finishes when there
are no more uncovered cells in the topological map.

Event occurred Start

New landmark reached

—

‘: Nony | Boundary :‘
Arrived at / \
sovered [
uncoverec ‘ Travel
cell \

Exit
\\ All
— covered

Figure 17: State transition diagram of the topological
coverage algorithm.
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5 Contact Sensor-based Cover-
age of Rectilinear Environ-
ments

Butler et al. (1999) proposed CCg, an exact cell de-
composition algorithm for contact sensing robots (i.e.,
robots without range sensing capabilities) covering un-
known rectilinear environments on-line. Their moti-
vating application for coverage of rectilinear environ-
ments is calibration of an automated assembly system
in which planar linear motors operate on table-like sur-
faces to transfer products through a factory.

In CCr (for contact-based coverage of rectilinear en-
vironments), the robot follows a cyclic path with re-
tracing as shown in Fig. 11. At the same time, it iter-
atively constructs a cellular decomposition of the en-
vironment. An example rectilinear decomposition pro-
duced by CCp is shown in Fig. 18. In fact, the decom-
position constructed by CCr can be seen as the case of
Morse decomposition where all the critical points are
degenerate, as this is the case in rectilinear environ-
ments.

Figure 18: C'Cg uses an exact cell decomposition for
rectilinear environments.

Normally, CCg follows the cyclic path. An event (and
hence a cell boundary) occurs whenever the robot is
prevented from successfully executing a full path cy-
cle. When such an event occurs, CCr chooses a new
trajectory based only the robot’s environment and its
current position. The next trajectory is determined by
a list of rules that are designed to continue coverage in
all possible cases.

A proof of completeness for CCg is given by creating a
finite state machine (FSM) that describes all possible
events encountered by the robot, and demonstrating
that the FSM has no infinite loops and that it stops
only when coverage is complete.



6 Grid-based Methods

Grid-based methods use a representation of the en-
vironment decomposed into a collection of uniform
grid cells. This grid representation was first proposed
by Moravec and Elfes (1985) to map an indoor envi-
ronment using a sonar ring mounted on a mobile robot.
In this representation, each grid cell has an associated
value stating whether an obstacle is present or if it is
rather free space. The value can be either binary or a
probability (Elfes, 1987). Typically, each grid cell is a
square, but also different grid cell shapes can be used,
such as triangles. As grid representations only approx-
imate the shape of the target region and its obstacles,
Choset classified grid-based methods as approximate
cellular decompositions (Choset, 2001). As a result
of this approximate representation, most grid-based
methods are “resolution-complete”, that is, their com-
pleteness depends on the resolution of the grid map.
Fig. 19 shows an example grid map.

Figure 19: An example grid map. Grid cells with ob-
stacles present are shaded.

It is easy to create a grid map, as it can be repre-
sented as an array where each element contains occu-
pancy information associated with a cell. On the other
hand, it is simple to mark covered areas in a grid map.
As a result, grid-based representations are the most
widely used for coverage algorithms. Nonetheless, grid
maps suffer from exponential growth of memory us-
age because the resolution remains constant regardless
of the complexity of the environment (Thrun, 1998).
Also, they require accurate localization to maintain
the map’s coherency (Castellanos et al., 1997; Thrun,
2003).

For these reasons, grid-based coverage methods are
suited for indoor mobile robot operations, as the size
of the area to be covered is typically relatively small.

Usually, cells in a grid map are square in shape and
robot-sized. Oh et al. (2004) proposed a coverage al-
gorithm that uses a grid map in which the cells are
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triangles instead. The rationale behind the choice of
triangular cells is that they offer a higher resolution in
comparison to rectangular cells of similar size. How-
ever, the resolution of the grid can also be augmented
by using finer-grained squared cells. In mobile robotics,
field for which the mentioned algorithm is intended,
most mobile robots are not capable of making very fine
movement adjustments, and hence there is no need for
ultra high resolution in coverage path planning. There-
fore, the extra effort devoted to implementing a trian-
gular grid seems not to be worthwhile.

6.1 Grid-based Coverage wusing the
Wavefront Algorithm

Zelinsky et al. (1993) presented the first grid-based
method for CPP. In their off-line method, they use
a grid representation and apply a complete coverage
path planning algorithm to the grid. The method re-
quires a start cell and a goal cell. A distance transform
that propagates a wave front from goal to start is used
to assign a specific number to each grid element. That
is, the algorithm first assigns a 0 to the goal and then
a 1 to all its surrounding cells. Then, all the unmarked
cells neighboring the marked 1 are labeled with a 2.
The process repeats incrementally until the start cell
is reached by the wavefront. Fig 20(a) illustrates this
procedure on an example environment.

Once the distance transform is calculated, a coverage
path can be found by starting on the start cell and se-
lecting the neighboring cell with the highest label that
is unvisited. If two or more unvisited neighbors share
the same label, one of them is selected randomly. This
process to find a coverage path is equivalent to using
pseudo-gradient descent from the start point on the
numeric potential function constituted by the labeling,
that is, following the equipotential curves from top to
bottom. Fig. 20(b) shows the generated coverage path
for the example environment on Fig. 20(a). A unique
feature of this coverage algorithm is that a start and a
goal point can be specified.

Shivashankar et al. (2011) introduced a generalization
of the wavefront algorithm to unknown environments
to achieve on-line coverage with a mobile robot.

6.2 Grid-based Coverage using Span-
ning Trees

Gabriely and Rimon (2002) proposed the Spiral-STC
(Spanning Tree Coverage) algorithm, an on-line ap-



10

10

oo | =

s o e | =
= o o | =

110

o |© |||

» |oe e |e|e

a1 1 1

413]12(1 1123456

ol|lo|la|lo|lo|~w|w|o |n
—lQl~|v|lw|s]|lala]|~
S|~ |~ | |©

[STON IRSTHN RIS

413121 11234 6

5

(a) Wavefront distance transform for the selec-
tion of the start position (S) goal position (G).
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(b) Coverage path generated using the wave-
front distance transform with the selection of the
start position (S).

Figure 20: Coverage path planning using the wavefront
algorithm for an example environment.
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proach for mobile robots which consists in subdividing
the workspace into a grid map and following a system-
atic spiral path. This systematic spiral path is gener-
ated by following a spanning tree of the partial grid
map that the robot incrementally constructs using its
onboard sensors. The robot is able to cover every grid
cell precisely once, and travel a complete coverage path.
They validate the proposal in simulation. The Spiral-
STC algorithm works as follows. Two different grid cell
sizes are used. Bigger cells (so called mega cells) are
divided in four smaller cells, which are the same size
as the robot. This is shown in Fig 21(a). To perform
coverage, the robot executes the following procedure.
Starting at the current cell, the robot chooses a new
travel direction by selecting the first new mega cell in
the free space in anti-clockwise direction. Then, a new
spanning-tree edge is grown from the current mega cell
to the new one. The algorithm is called recursively.
The recursion stops only when the current cell has no
new neighbors (a mega cell is considered old if at least
one of its four smaller cells is covered, it is consid-
ered new otherwise). As a result of this recursion, the
robot moves along one side of the spanning tree until
it reaches the end of the tree. At that point, the robot
turns around to traverse the other side of the tree. It is
worth noticing that, when coverage is completed, the
robot returns to the start cell, facilitating its collec-
tion and storage. On the other hand, STC never visits
any small cell twice and thus minimizes the coverage
time. Fig 21(b) shows an example of a coverage path
generated by the Spiral-STC algorithm.

An extension to the Spiral-STC is the Backtracking
Spiral Algorithm (BSA) (Gonzalez et al., 2005), which
is also an on-line approach intended for mobile robots.
As an advantage in regard to the Spiral-STC algo-
rithm, they proposed an extension to cover not only
unoccupied cells, but also the partially occupied ones.
This extension is based on the idea that the partially-
occupied cells are part of the external ring of the spi-
ral path. These cells are covered by a wall-following
procedure. The proposed extension can be applied to
most grid-based coverage algorithms. Simulation ex-
periments validate the proposed algorithm.

Choi et al. (2009) proposed an on-line complete cov-
erage path planning solution based on the ideas intro-
duced by the Spiral-STC algorithm and the BSA algo-
rithm. They also use systematic spiral paths to achieve
coverage, based on active wall finding. Nonetheless,
they introduce a map coordinate assignment scheme
based on the history of sensor readings to improve the
time-to-completion by reducing the number of turns
on the generated path. The generated spiral paths are
then linked by an inverse distance transform they intro-
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Figure 21: Coverage path planning using Spiral-STC
algorithm.
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duce. This proposal is validated in simulation and also
with real-world experiments conducted inside a room
with a mobile robot.

6.3 Neural Network-based Coverage on
Grid Maps

Luo et al. (2002) and, in a latter work, Yang and Luo
(2004) propose to use a neural network to achieve CPP
on-line targeted to a floor cleaning application. They
discretize a 2D space in a grid map where the diagonal
length of each grid cell is equal to the robot sweeping
radius, and then a neuron is associated to each and
every grid cell. Each neuron has connections to its
immediate 8 neighbors. These concepts are shown in
Fig. 22.

Uncovered area neuron

@ Obstacle neuron

Covered area neuron @ Robot

Figure 22: Schematic of the neural network used by
Luo, Yang and others to achieve coverage.

A shunting equation based on the membrane equation
by Hodgkin and Huxley (1952) determines the dynam-
ics of each neuron in the network. The activity land-
scape (i.e., the output value of all neurons at a given
instant) of the shunting model used attracts the robot
to unclean areas, while the robot is repulsed by already
cleaned areas and obstacles.

The next position of the robot is determined by the cur-
rent position of the robot and the activity of the neu-
ron associated to its current position, without any prior
knowledge about the environment. It is assumed that
the current state of the robot (if it’s in a clean or dirty
area, or in front of an obstacle, and its location) can be
determined via sensory information. The state of the
robot is an input to the neural network. The model
used has 6 parameters that can be tuned in a wide
range of values at the neural network design phase,
and hence coverage is achieved without any learning
procedures. An advantage of this method is that it can
handle non-stationary environments (i.e., dynamically



changing obstacles). The proposed neural network ap-
proach is validated in simulation. In (Luo and Yang,
2008) further simulation results are presented as well as
a method to perform mapping on-line simultaneously
with coverage navigation. In this later work, they con-
sider a typical grid-based map and also a triangular
mesh representation of the space, such as the one used
by Oh et al. (2004).

An application of this neural network-based method
to an AUV covering a 2-D workspace in the seabed
is proposed in (Yan and Zhu, 2011). The proposal
is validated in simulation. However, a 2-D underwa-
ter workspace is rather unrealistic. Furthermore, dis-
cretization in a grid map of a vast environment such
as the seabed presents a tough challenge in terms of
computational burden.

Qiu et al. (2006) added a local path planning tech-
nique on top of the biologically inspired neural net-
work approach discussed above. In their approach, the
next robot position is not determined immediately but
rather a local path planning occurs in a window com-
prising a determined vicinity of the robot. By using
this technique, they reduce the computational burden
in comparison with the neural-network-only approach.

In a similar approach, Guo and Balakrishnan
(2006) present a neural network-based method to gen-
erate continuous steering control for a robot to com-
pletely cover a bounded region over a finite time. First,
they discretize the space in a regularly spaced, disk-
shaped grid. Then, a neural network based on the
same biologically inspired shunting equation as in the
works discussed above is used to provide continuous
steering to the robot. The algorithm works for car-like
robots which have non-holonomic motion constraints.
The approach is validated in simulation.

6.4 Hexagonal Grid Decomposition for
Robots Equipped with Side-looking
Sensors

Paull et al. (2010, 2012) presented an on-line cover-
age method for robots equipped with side-looking sen-
sors. Their target application is mine countermeasure
operations using an AUV equipped with a side-scan
sonar. This coverage method continuously directs the
vehicle’s heading using multi-objective optimization to
maximize the information gain produced by the sen-
sor measurements. The optimization procedure uses
a grid decomposition composed of uniform hexagonal
cells. The advantage of using a hexagonal grid is two-
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fold. On one hand, distance does not need to be taken
into account in the objective functions, because the
distance from a given cell to its neighboring cells is
the same. On the other hand, assuming the hexagons
are small enough, visiting one cell guarantees cover-
age of two neighboring cells by the side-looking sensor,
minimizing the amount of partially covered cells. Al-
though the proposed method is able to cover target ar-
eas with non-convex shapes, obstacles present amidst
the workspace are not considered. The efficacy of this
method is demonstrated in simulation and experimen-
tally on an AUV conducting mine countermeasure op-
erations.

7 Graph-based Coverage

Xu (2011) presented coverage algorithms for environ-
ments that can be represented as a graph, such as a
street or road network. In particular, this work ad-
dresses the following issues in the coverage problem.
First, it takes into account that the prior map infor-
mation provided as a graph might be incomplete. Sec-
ond, it accounts for environmental constraints in the
environment, such as restrictions in certain directions
in the graph (corresponding to a one-way street, for
example). Third, it provides strategies for on-line re-
planning when changes in the graph are detected by
the robot’s sensors when performing coverage. Finally,
strategies for coverage using multiple robots are pro-
vided.

Graph search algorithms are proposed to solve the cov-
erage problems considered. Optimality is addressed by
assigning a cost to each edge in the graph and either
looking for the optimal solution when deliberation time
allows or rather quickly finding an approximated solu-
tion when time constraints apply.

8 3D Coverage

Most coverage path planning methods, and in partic-
ular the methods reviewed so far in this article, as-
sume that the environment can be modeled as a sim-
ple planar surface. This assumption is valid for floor
cleaning, land mine detection, lawn mowing, etc. How-
ever, some surfaces in nature are 3-dimensional, and
3-dimensional coverage path planning is required in-
stead to cover these surfaces. This is the case of an
AUV covering the seabed (Hert et al., 1996) or a robot
spray-painting vehicle parts (Atkar et al., 2005b), for



instance. Next, we review several 3-dimensional cover-
age methods. It is worth noticing that, except the algo-
rithm discussed in Subsec. 8.1, the methods discussed
below actually focus on coverage of a surface of lower
dimension than the robot’s workspace. Indeed, in 3-
dimensional coverage, covering 2-dimensional surfaces
embedded in 3-dimensional space such as the bound-
aries of automotive parts, the boundaries of buildings,
the ocean floor, rugged agricultural fields or the bound-
aries of the in-water part of a ship hull are the main
focus. This contrasts with the standard CPP problem,
in which all the free space must be covered.

8.1 3D Coverage using a Planar Cover-
age Algorithm in Successive Hori-
zontal Planes

Hert et al. (1996) presented a 3D coverage algo-
rithm that is based on a planar 2-dimensional terrain-
covering algorithm (Lumelsky et al., 1990). Their tar-
get application is an AUV imaging the sea bottom.
Their solution applies to a 3D projectively planar en-
vironment by applying the planar terrain-covering al-
gorithm in the successive horizontal planes laying at
different depths. The restriction to projectively planar
environments means that elements such as caves are
not handled by this method. Their 2D terrain-covering
algorithm uses a partial discretization of the space in
where the space is divided in vertical slices of the same
width, but where the top and bottom of each slice can
have any shape. This discretization is classified as a
semi-approximate cellular decomposition according to
Choset’s taxonomy (Choset, 2001). A robot following
this algorithm may start at an arbitrary point in the en-
vironment and will zigzag along parallel straight lines
(grid lines) to cover the given area. Portions of the
area that either would not be covered or would be cov-
ered twice using the zigzag procedure are detected by
the robot and covered using the same procedure; that
is, the procedure is applied recursively. These smaller
areas, called inlets, are covered as soon as they are de-
tected and inlets within inlets are treated in the same
way. Hence, the inlets are covered in a depth-first or-
der. By requiring the robot to remember the points at
which it enters and exits every inlet it covers (which
define the inlet doorways), the algorithm assures that
each inlet is covered only once.

When entering or exiting a certain type of inlet, the
robot may cover the same area more than once, or miss
some area at the inlet. Those inlets are called diversion
inlets, and special procedures are necessary for covering
them effectively. The robot enters a diversion inlet
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by moving along its boundary. After covering a given
diversion inlet, the robot exits it by resuming its path
as if the diversion inlet did not exist. When the area to
be covered is not simply connected and contains islands
as well as inlets, the same basic procedures are used,
but with minor modifications to ensure that the area
surrounding every island is covered. The robot is able
to convert the part of the area around each island that
would normally not be covered into an artificial inlet
by remembering certain points along its path. Artificial
inlets are covered in the same way that real diversion
inlets are. Fig. 23 illustrates this procedure. It is worth
noticing, however, that details on how to detect the
inlets used by the algorithm using sensor information
are not provided.

The work of Hert et al. (1996) was extended later
by Lee et al. (2009) to cover only areas that are close
to the sea bottom surface. In this latter work, it is as-
sumed that the regions of interest in underwater envi-
ronments are the ones close to the sea bottom. There-
fore, aiming to make the robot navigate only in ar-
eas close to the surface, artificial obstacles (artificial
islands) are introduced in the robot’s map of the envi-
ronment. This way, the volume of water at a certain
distance from the seafloor surface is discarded and a
more exploration of the sea bottom is achieved.

A theoretical proof of correctness of the algorithm is
given in (Hert et al., 1996) and the extension proposed
in (Lee et al., 2009) is validated in simulation.

8.2 3D Cellular Decomposition

Atkar et al. (2001) considered the problem of trajec-
tory generation for spray-painting robots. In their ini-
tial work, they proposed an on-line, 3-dimensional CPP
method for closed, orientable surfaces embedded in R3.
The method extended the ideas of Morse decomposi-
tion to non-planar spaces. However, obstacles on the
target surface are not considered in this work. Address-
ing their spray-painting target application, the method
does not plan a coverage path on the target surface, but
the coverage path is rather planned in an offset surface
from which the end effector will spray the target sur-
face. That is, the path is planned on a “virtual” surface
that wraps the target object at a fixed offset distance.
The coverage path is generated by intersecting a slice
plane with the offset surface at equally spaced inter-
vals. At each interval, the intersection of the slice plane
with the offset surface forms a closed one-dimensional
loop around the object. The robot traces this loop
and moves to the next slice plane, and iteratively re-
peats the process. If the target surface is convex, the



Figure 23: The path a robot R follows in a non-simply
connected environment when applying the algorithm
proposed in (Hert et al., 1996). First (a), the robot
detects an inlet at di and starts to cover it following
a depth-first order. A second inlet is detected at ds,
and the robot starts covering it likewise. The robot
continues to cover the rest of the inlets until it goes
back to d; (b). Here, the robot continues to cover the
main region until it detects an inlet at ds. This inlet
corresponds to an island, and hence the robot continues
to circumnavigate it completely (c¢). Then, the robot
will eventually pass through ds again and there it will
resume the covering of the main area.
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described process will achieve complete coverage. How-
ever, if the surface is non-convex and includes elements
such as a bifurcation, the planner will use the critical
points occurring in such shape changes to divide the
surface in cells that will be covered individually. As
in the on-line Morse decomposition for planar spaces,
a Reeb graph is used to encode the topology of the
target surface. When all edges in the graph are cov-
ered, the coverage task is successfully completed. The
method was validated in simulation using target sur-
faces constituted by polyhedra. It is worth noting that
this method requires a robot equipped with a 2D om-
nidirectional range sensor in order to detect the critical
points.

In later work (Atkar et al., 2003, 2005a,b), they pre-
sented an off-line CPP method specifically targeted for
spray-painting of automotive parts. They term such
surfaces pseudo-extruded surfaces. In contrast with
their initial work, the problem tackled here is the uni-
form coverage problem, where the target surface not
only needs to be completely covered but also the re-
sulting paint deposition must meet certain uniformity
requirements. To achieve uniform coverage, their pro-
posed method takes a CAD model of the target auto-
motive parts as input and segments their surface into
topologically simple cells of similar curvature. Then,
individual, optimal paint-deposition coverage paths in
each cell are determined. Simulations as well as exper-
iments with real robots validate their proposal.

8.3 3D Urban Structure Coverage

Cheng et al. (2008) presented an off-line approach
for planning time-optimal trajectories for unmanned
aerial vehicles (UAVs) performing 3D urban struc-
ture coverage. First, they simplify the structures to
be covered, namely buildings, into hemispheres and
cylinders. Then, trajectories are planned to cover
these simpler surfaces. Their proposal is validated
in hardware-in-the-loop simulations using a fixed-wing
aircraft. Fig. 24 illustrates this method.

8.4 Coverage of Bathymetric Surfaces

Bathymetric maps are elevation maps of the ocean
floor. Such maps are used for planning of ocean sur-
vey missions for AUVs. A typical survey consists of
a lawnmower-like pattern which follows the elevation
profile of the terrain, imaging the bottom from an over-
head point of view with some sensor. However, rugged,
high-relief terrain cannot be properly imaged from such



(a) Simplified model of an urban envi-
ronment.

(b) Illustration of a coverage path.

Figure 24: Coverage scheme presented in (Cheng et al.,
2008).

point of view since the imaging angle is too large on ver-
tical protrusions. In contrast, an imaging angle close
to the surface normal is desired. To address this is-
sue, Galceran and Carreras (2013) presented a CPP
method that plans a coverage path on a bathymetric
map. The method determines regions that cannot be
properly imaged using a traditional survey according to
the terrain’s gradient. Then, on each identified region,
it plans a 3D coverage path that follows the horizon-
tal contours of the surface, in a similar fashion as the
method discussed in 8.2. On the remaining, effectively
planar regions, it uses a standard lawnmower-like path
for coverage. As a result, the entire target bathymetric
surface is covered and a fair imaging angle is provided
throughout the coverage path. The method is vali-
dated on a real-world bathymetric map comprising a
large underwater volcanic area at 350 m. depth.

8.5 3D Coverage for Arable Farming

Jin and Tang (2011) presented coverage algorithms for
arable fields represented as elevation maps. Previous
work in coverage for agricultural fields dealt with pla-
nar terrain, but many fields present 3-dimensional fea-
tures that have an impact on coverage performance.
Addressing this issue, this work provides coverage al-
gorithms based on a seed curve that is incrementally
offset on both sides to generate a coverage path. The
method optimizes the seed curve selection by taking
into account its associated number of turns, the soil
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erosion cost and the skipped area. The method is
validated on real-world elevation maps of agricultural
fields.

8.6 Random Sampling-based Coverage
of Complex 3D Structures

In confined 3-dimensional areas where a robot cannot
go through the spaces between component structures,
or where occluded areas are only visible from a reduced
set of viewpoints, modular approaches such as those
described above are unsuitable. To handle this fam-
ily of problems, global path planning strategies, uti-
lizing sampling-based planning (Danner and Kavraki,
2000) have been applied to find feasible, collision-free,
paths through confined areas and obtain full coverage
of a 2-dimensional target structure. Their approach
is based on the art gallery problem. Building upon
a similar idea, Englot and Hover (2012) introduce an
off-line, sampling-based coverage algorithm to achieve
complete sensor coverage of complex, 3-dimensional
structures. Their target application is autonomous
ship hull inspection, in which the robot must cover
the in-water part of the hull surface using a sensor
such as a sonar. The sensory data collected in situ
is later used to construct an accurate 3-dimensional
model where anomalies in the hull surface can be
searched for. They consider the planning problem with
a fully-actuated, six degree-of-freedom hovering AUV
that uses a bathymetry sonar to inspect the structures
in the ship hull. The method requires a discrete model
of the structure to be inspected provided in the form
of a closed triangular mesh. The planning is performed
in two steps. First, a graph of feasible paths for the
robot is constructed using random sampling until the
set of nodes of the graph allows complete coverage of
the structure. This is equivalent to solving a variant of
the art gallery problem. Then, a minimum-cost closed
walk along the graph which fully covers the structure
is searched for in the graph. This second step involves
solving a variant of the traveling salesman problem.
By favoring a random sampling method, they reduce
the computational burden necessary to face the high-
dimensionality of the problem. It should be noted that
the generated paths cover cluttered spaces where com-
plex structures such as shafts and rudders are present.
The approach is validated using sensor imagery of real
vessels and with experiments conducted at sea. Fur-
thermore, a method for smoothing and shortening the
paths initially generated is provided. This procedure
can be incrementally applied while computation time
allows. Fig. 25 shows examples of planned inspection
paths for a ship hull with and without smoothing.



As discussed above, the approach by Englot and Hover
(2012) first generates a set of view configurations that
completely cover the target surface (by solving an in-
stance of the art gallery problem) and then finds a
path that connects them (by solving an instance of the
traveling salesman problem). This might pose a prob-
lem for robots with differential constraints, given that a
path connecting to a given view configuration might be
infeasible. To tackle this problem, Papadopoulos et al.
(2013) presented a random sampling-based algorithm
that incrementally explores the robot’s configuration
space while constructing an inspection path until all
points on the target surface are guaranteed to be cov-
ered. In contrast to the aforementioned approaches,
which first plan a set of view configurations that cover
the target environment, their algorithm generates view
configurations and at the same time validates the fea-
sibility of the path connecting them. Only view con-
figurations reached by feasible paths are incorporated
in the final coverage path. Additionally, this method
is probabilistically optimal with respect to a given cost
function. The method is validated in simulation.

Given the wide variety of structures that are able to
handle, these approaches constitute the state of the
art in coverage of complex 3-dimensional structures.

9 Optimal Coverage

Work addressing the optimality of the planned cov-
erage paths, in terms such as path length and time to
completion, appears in the CPP literature. Notice that
it is only possible to find an optimal solution for an a
priori known environment, or partially known at least,
since an antagonistic example can always be found for a
sensor-based approach. Hence optimal coverage meth-
ods are classified as off-line methods.

Huang (2001) presented an optimal line-sweep based
method for cellular decomposition algorithms in pla-
nar spaces. This approach produces an optimal length
coverage path by allowing different sweep directions
in the lawnmower paths used to cover each cell. The
main idea is to minimize the number of turns in the
path, as each turn typically implies the added cost of
the robot decelerating and accelerating again after the
turn. This is achieved by allowing a different sweep
direction in each cell. The number of turns is mini-
mized by sweeping each cell in parallel to its maximal
altitude axis. That is, the method intends to maximize
the length of the laps in the zigzag pattern in order to
minimize the number of turns. However, this approach
does not take into account the cost of traveling from
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(a) Feasible tour for full coverage of a ship running gear. The
tour is 176 m in length and contains 121 nodes.

(b) Tour of (a) after applying the refinement procedure. The
shortened tour is 102 m in length and contains 97 configurations.

Figure 25: Full-coverage inspection paths obtained
with the method of Englot and Hover (2012).



cell to cell. The method is validated in simulation.

Jimenez et al. (2007) proposed to use a genetic algo-
rithm to achieve optimal coverage. In this proposal,
workspace and obstacles are assumed to be polygonal
and known beforehand. Then, the free space is divided
in subregions using the trapezoidal cellular decompo-
sition method (Latombe, 1991; Choset et al., 2005).
Finally, a genetic algorithm is used to plan an optimal
path that covers all the subregions. This proposal is
tested in simulation.

Mannadiar and Rekleitis (2010) proposed an algorithm
based on the Boustrophedon cellular decomposition
that achieves complete coverage of known spaces while
minimizing the path of the robot. The algorithm en-
codes the cells to be covered as edges of the Reeb graph.
Then, the optimal solution to the Chinese Postman
Problem is used to calculate an Euler tour, which guar-
antees complete coverage of the available free space
while minimizing the coverage path length.

Xu et al. (2011) presented an application of the
optimal Morse-based boustrophedon decomposition
method (Mannadiar and Rekleitis, 2010) for UAVs.
First, they generate an optimal exhaustive walk
through the adjacency graph of the cell decomposition
of the terrain. Then, they cover each cell with zigzag
motions taking into account the kinematic constraints
of the vehicle, as the fixed-wing UAV they use has non-
holonomic constraints. Extensive experimental results
in simulation validate the presented system, along with
data from over 100 kilometers of coverage flights using
a real fixed-wing aircraft.

10 Coverage under Uncertainty

In many scenarios, the lack of a global localization sys-
tem such as GPS makes the robot accumulate drift,
and hence a growing uncertainty about its pose. Al-
though the topological representations such as the ad-
jacency graph are tolerant to localization error, the
performance of coverage algorithms, even if using such
representations, is still affected (Mazo and et al., 2004;
Choset, 2001). This is because the amount of cover-
age within a cell depends on the direction of the zigzag
pattern.

Recent advances in simultaneous localization and map-
ping (SLAM) have greatly improved robot localization.
SLAM uses statistical techniques to correct the robot’s
pose (position and orientation) estimation. However,
the problem of correcting the robot’s pose while per-
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forming coverage has been only addressed in few work.

Acar and Choset (2002b) propose to plan the paths of
their sensor-based Morse decomposition approach by
relying on the boundaries of each cell, hence minimiz-
ing the dead-reckoning error.

Tully et al. (2010) used a fleet of three robots, each
one of them equipped with a red ball (easily detectable
using standard computer vision techniques) to follow a
strategic path in formation to minimize the localization
error. The mentioned robot fleet is shown in Fig. 26.
The path consists of a series of steps, or leaps. In
each leap, two robots are static and serve the third one
as beacons, and this later one advances. The robots
successively interchange their roles. Real experiments
show a minimization of the localization error, report-
ing one of the most successful 2-dimensional coverage
experiments to date. However, obstacles are not con-
sidered in this work.

Figure 26: Three robots used for experimental evalua-
tion of the leap-frog localization and coverage strategy.

Kim (2012) propose an active SLAM approach to cov-
erage path planning for ship hull inspection in a 3D sce-
nario. The proposed algorithm drives the robot along
a pre-planned coverage trajectory on the ship hull, and
during trajectory execution the robot selects candi-
date locations that, once revisited, can help reduce the
robot’s pose uncertainty. The algorithm chooses to re-
visit a candidate location once the pose uncertainty
surpasses a user-provided threshold, and otherwise fol-
lows the pre-planned path.

Bretl and Hutchinson (2013) suggest a way to plan
modified coverage paths for a mobile robot whose po-
sition and velocity are subject to bounded error. As-
suming a worst-case model of uncertainty they are able
to guarantee complete coverage. This guarantee comes
at the cost of a longer path, since paths generated by
their algorithm include retracing. Nonetheless, this
work provides the first guaranteed coverage results for
the case of bounded position and velocity error.



In the context of marine robotics, Galceran et al. (2013)
presented a coverage path planning technique for vast,
open sea areas which minimizes the robot’s position un-
certainty along the path. This technique is especially
targeted for bathymetric mapping applications and re-
spects application constraints such as the desire to sur-
vey in parallel tracks and to avoid turns in the target
area to maximize sonar measurements quality. The
method uses the saliency on an a priori map to predict
how the terrain will affect the robot’s belief at every
point on the target area. Based on this magnitude, an
algorithm provided in this work computes the order in
which to trace parallel tracks to cover the target area
minimizing the overall uncertainty along the path. A
particle filter keeps track of the robot’s position uncer-
tainty during the planning process and, in order to find
useful loop- closures for mapping, crossing tracks that
visit salient locations are added when the uncertainty
surpasses a user-provided threshold. The method is
tested on real-world datasets and results show that it
offers benefits over a standard lawnmower-type path.

11 Multi-robot Methods

There are advantages in using multiple robots in a CPP
task. Using multiple robots clearly decreases the time
to complete the task due to workload division. But
a team of robots can go further, for example using
each other as beacons to minimize localization error.
Additionally, using multiple robots improves robust-
ness, as failure of some members of the robot team
can be compensated by others. There exist a number
of multi-robot CPP proposals in the literature. Most
approaches extend single-robot ideas presented above
to multiple robots by using a strategy to divide the
workload. In this section, we discuss multi-robot cover-
age methods based on the single-robot boustrophedon
decomposition, on spanning trees, on the biologically
inspired neural-network approach and on the graph-
based approach. Nonetheless, there are genuine multi-
robot approaches which are not based in any particular
single-robot algorithm, which we also discuss below.

11.1 Multi-robot Boustrophedon De-
composition

Rekleitis et al. (2009) presented a collection of algo-
rithms for the complete coverage path planning prob-
lem using a team of mobile robots on an unknown en-
vironment (on-line). Their algorithms aim to minimize
repeated coverage. The algorithms use the same pla-
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nar cellular decomposition as the Boustrophedon sin-
gle robot coverage algorithm, but provide extensions to
handle how robots cover a single cell, and how robots
are allocated among cells. Their solution takes into ac-
count communication restrictions among the members
of the team. To achieve coverage in line-of-sight-only
communications, the robots take two roles: some mem-
bers, called explorers, cover the boundaries of the cur-
rent target cell, while the other members, called cov-
erers, perform simple back-and-forth motions to cover
the remainder of the cell, as shown in Fig. 27. For
task/cell allocation among the robots, a greedy auction
mechanism is used. Experimental results from differ-
ent simulated and real environments are provided to
illustrate their proposed approach.

Top explorer

Bottom explorer

Figure 27: Explorer/coverer approach, where two ex-
plorer robots outline the top and bottom boundaries
while the remaining robots (coverers) execute simple
back-and-forth coverage of the target cell.

11.2 Multi-robot Contact Sensor-based
Coverage of Rectilinear Environ-
ments

A strategy for covering rectilinear environments using
robots equipped only with contact sensors was pro-
posed by Butler et al. (2000). The strategy is based
on C'CR, discussed in Sec. 5, and is called DCgr. DCg
decouples cooperation and coverage by executing CCg
individually on each robot and adding a higher-level
coordinator, termed the overseer, which is in charge
of controlling the cooperation among the robots. The
overseer operates in such a way that coverage directed
by CCR on each robot can continue without CCg be-
ing aware that cooperation is occurring. A proof of
completeness for DCR is provided in this work.



11.3 Multi-robot Spanning Tree Cover-
age

The STC method was generalized to multi-robot teams
by Hazon and Kaminka (2005) using a heuristic ap-
proach. They termed their algorithm MSTC. Zheng
et al. (2005) presented an improved (with respect to
MSTC) method to find a coverage tree for a team of
robots to cover known terrain with a team of robots. In
this work they also provide an upper bound on the per-
formance of a multi-robot coverage algorithm on known
terrain, guaranteeing a performance of at most eight
times the optimal cost. Their reported experimental
results show their method to perform significantly bet-
ter than MSTC. Agmon et al. (2006) propose a span-
ning tree construction algorithm that provides efficient
paths in terms of distance. The spanning tree con-
struction algorithm can be used as base for MSTC.
An extension of MSTC to terrain with non-uniform
traversability (that is, terrain where traversing certain
areas is costlier than others) was presented by Zheng
and Koenig (2007). Hazon et al. (2006) presented an
on-line, robust version of MSTC. They show analyti-
cally that the algorithm is robust, guaranteeing cover-
age as log as a single robot is able to move. Empirical
results validating the algorithm are reported.

A more recent off-line spanning tree-based multi-robot
coverage method presented by Fazli et al. (2010) deals
with the case where the robots have a limited visibility
range. This approach is shown to be complete and
robust with respect to robot failure.

11.4 Multi-robot
based Coverage

Neural-network-

Luo and Yang (2002) presented a straightforward adap-
tation of the biologically inspired neural network ap-
proach for coverage tasks to multi-robot scenarios
where the robots see each other as moving obstacles.
In a later work (Luo et al., 2003), an extension was pro-
vided to avoid deadlock situations between the robots.
Their approach is validated in simulation.

11.5 Multi-robot Graph-based
Boundary Coverage

and

Extensions of the graph-based techniques discussed in
Sec. 7 for coverage using multiple robots were provided
by Xu (2011). In a previous multi-robot graph-based
coverage approach, Easton and Burdick (2005) discuss

a 2-dimensional boundary coverage algorithm for mul-
tiple robots. It is worth mentioning that, as in the ma-
jority of 3-dimensional coverage methods discussed in
Sec. 8, this work focuses on covering only the boundary
of the target environment. In the multi-robot bound-
ary coverage problem, introduced in this work, a team
of robots must inspect all points on the boundary of
the 2-dimensional target environment. A motivating
application of the multi-robot boundary coverage prob-
lem is inspection of separated blade surfaces inside a
turbine. The boundary coverage problem is converted
into an equivalent graph representation where a heuris-
tic search is used to plan the inspection routes of every
robot. The planned routes provide complete coverage
of the boundary while balancing inspection load among
the robots. The algorithm is validated in simulations.

11.6 Bio-inspired Multi-robot Cover-
age

Several muli-robot coverage path planning proposals
have been presented which are inspired by behaviors
found in nature. Many of them are inspired by ant
behavior, using evaporating traces to achieve an emer-
gent coverage behavior (Wagner et al., 1999, 2008;
Menezes et al., 2007). In (Batalin and Sukhatme, 2002)
two algorithms are presented which are based on the
premise that to achieve coverage the team of robots
must “spread out” over the environment. The authors
note that “this premise is loosely inspired by the diffu-
sive motion of fluid particles”. Using these algorithms
robots perform obstacle avoidance and at the same
time are mutually repelled by each other within their
sensor range. These bio-inspired works are validated
in simulation, but their practical application has been
very limited up to date.

11.7 Multi-robot Coverage for Aerial
Robotics

A considerable body of research has addressed multi-
robot coverage path planning for fleets of aerial robots,
taking into account the particulars of this domain. No-
tice that in the works discussed below it is assumed
that the vehicles fly at a safe altitude, and as a result
obstacles are not considered.

Ahmadzadeh et al. (2006) proposed a coverage algo-
rithm for surveillance using a fleet of UAVs. Their
proposal takes into account the limited maneuverabil-
ity of the aerial platforms and visibility constraints on
the body-fixed cameras imposed by the application at
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hand. The problem is posed using the integer pro-
gramming (IP) formalism, which provides a convenient
representation for the aforementioned constraints. The
solution of the IP problem instance produces a control
policy for the UAV fleet to accomplish the surveillance
task operating within the constraint limits. The effi-
cacy of this approach is validated by simulation and
experimental results.

Maza and Ollero (2007) proposed a terrain coverage
strategy using a heterogeneous fleet of UAVs. First,
their method generates a polygonal partition of the tar-
get area. The partition takes into account the capabili-
ties of each individual vehicle, such as flight endurance
and range. Each polygon in the partition is assigned
to an UAV which will cover it using a zig-zag pattern.
Each vehicle plans its zig-zag pattern according to the
geometric characteristics of its assigned polygonal area
to determine a sweep direction that minimizes the num-
ber of turns. An important consideration in this work
is low complexity of the algorithms used, seeking oper-
ation in near-real time. The proposed method is vali-
dated in simulation.

Targeting remote sensing in agriculture, Barrientos
et al. (2011) presented an approach to area coverage
using fleets of mini aerial robots. Regarding multi-
robot coverage, they first present a task scheduler to
partition the global target area into k non-overlapping
subtasks for the £ UAVs. In contrast with the previous
work, this partition procedure is based on a negotia-
tion process in which each robot claims covering as
much area as possible, rather than on geometric con-
siderations. Second, the wavefront algorithm discussed
in 6.1 is used to cover each subarea.

12 Conclusion

In this paper, we have seen that the coverage path plan-
ning problem has been addressed using many differ-
ent approaches. For planar spaces, the trapezoidal de-
composition guarantees complete coverage for a known
polygonal environment. An improvement to the trape-
zoidal decomposition is the “classical” boustrophedon
decomposition, which generates shorter complete cov-
erage paths for the same class of environments. The
Morse-based cellular decomposition provides complete
coverage paths for environments whose obstacle bound-
aries are differentiable. A method to detect the critical
points that determine the cell boundaries using range
sensor information allows to perform Morse-based cel-
lular decomposition coverage on-line. Furthermore,
Morse decomposition allows generation of different cov-
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erage patterns, such as spiral patterns, that can sim-
plify the path following to vehicles with motion con-
straints.

However, the Morse-based cellular decomposition
method cannot handle rectilinear environments, and
the cyclic rectangular paths used to detect all the crit-
ical points include retracing, which makes them longer
than a standard zigzag path. This limitations are over-
come by the landmark-based topological coverage ap-
proach. This method uses a cellular decomposition
based on natural landmarks of the environment which
determine the cell boundaries. An algorithm is given
to perform coverage on-line on unknown environments
using this technique.

For the particular case of robots with only contact sen-
sors (i.e., with no range sensing capabilities) operating
in rectilinear environments, the CCg algorithm guar-
antees complete on-line coverage.

Grid-based methods such as the wavefront algorithm,
the Spiral-STC algorithm and its derivatives, and the
described neural-network-based and hexagonal decom-
position approaches, provide complete coverage on a
discretized representation of the target environment.
However, the grid representation of the environment
used is highly sensitive to localization error and incurs
an exponential memory consumption. On the other
hand, it is easy to create and operate with a grid map.
It is worth noticing, as a unique capability among the
reviewed methods, that the discussed neural network-
based methods are able to handle environments with
moving obstacles.

Some methods aimed to cover 3-dimensional environ-
ments have been reviewed. Hert’s algorithm can com-
pletely cover projectively planar 3-dimensional envi-
ronments. However, details on how to detect the in-
lets used by the algorithm using sensor data are not
provided, making it difficult to implement. Modu-
lar approaches, such as the coverage methods targeted
for spray-painting tasks proposed by Atkar et al. or
the simplified model of a urban environment used by
Cheng et al. can achieve complete coverage of certain
3-dimensional environments. The method for cover-
age of bathymetric surfaces by Galceran et al. and
the coverage algorithm for arable farming by Jin et al.
provide coverage of 3-dimensional environments taking
into account application-specific constraints. However,
in confined 3-dimensional areas where a robot cannot
go through the spaces between component structures,
or occluded areas only visible from a reduced set of
viewpoints, these modular approaches do not suffice.
To overcome this limitation, Englot et al. introduced a



sampling-based coverage algorithm to achieve complete
sensor coverage of complex, 3-dimensional structures.
The paths generated using this method are able to
cover cluttered spaces where complex structures such
as shafts and rudders are present. The approach is
validated using triangular mesh models constructed us-
ing sensor imagery of real-world vessels. Also building
upon the idea of sampling-based coverage, Papadopou-
los et al. presented an algorithm that generates cov-
erage paths for complex 3-dimensional structures suit-
able for vehicles with differential constraints. Further-
more, their algorithm is proven asymptotically optimal
with respect to a given cost function. This approaches
constitute the state of the art in coverage of complex
3-dimensional structures.

We have discussed several approaches to generate op-
timal coverage paths in planar spaces and to reduce
localization error while performing coverage.

Finally, we have reviewed some multi-robot coverage
methods in which time to completion is reduced by di-
viding the workload among the individual robot team
members, besides providing increased robustness guar-
antees.

The features of the most relevant CPP methods re-
viewed in this article are summarized in Table 1. For
each method (rows), the table underlines (columns
from left to right) its category, its approach, its main
bibliographical reference, whether it can be used on-
line or not, the kind of environments it can handle and
some remarks.

Probabilistic sampling-based algorithms have revolu-
tionized the state of the art in path planning in the re-
cent years, and they have proven to be extremely pow-
erful as demonstrated in the work by Englot et al. on
ship hull inspection. Therefore, exploiting these tech-
niques opens the door to developing algorithms able
to realize coverage tasks of unprecedented complexity.
On the other hand, in real-world applications, a robot
often does not have perfect knowledge about its lo-
cation. In this situation, incorporating uncertainty in
future location estimates in the planning phase can sig-
nificantly improve motion performance. Although sev-
eral research works have explored taking uncertainty
into account in path planning problems, few attention
has been given to incorporating uncertainty in cover-
age path planning methods. Hence, this remains as an
open issue for further research.
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Survey summary

On/Off- | Environments

Category Approach Reference(s) line Handled Remarks

Trapezoidal De- (Choset et al., . Lays.the conc.e;.)t.of using events to de-

composition 2005) Off-line Polygonal termine cell divisions, a concept a num-
Classical Exact Cell ber of other approaches are based upon.
Decomposition Boustrophedon De- (Choset and ' Generates less cells anq hence Shorte'r

s . Off-line Polygonal paths than the trapezoidal decomposi-
composition Pignon, 1997) tion
. Polygonal and . .

Morse Decomposi- differentiable Allows for generation of different de-

tion & Cycle Algo- | (Acar et al., 2002) | On-line . composition and coverage path pat-

. boundaries  (non-
Morse-based  Cell | rithm . terns.
Decomposition rectilinear)

P Polygonal and
Morse Decomposi- . differentiable Avoids generation unnecessary zigzag
tion + GVD (Acar et al., 2006) | On-line boundaries  (non- | paths in narrow environments.
rectilinear)

Natural Landmz?rk— Landmark-based (Wong and Mac- . Generic planar ob- | Handles a large variety of environments
based Topological | Coverage Algo- On-line . . e .

. Donald, 2003) stacles (including rectilinear environments).
Coverage rithm

Rectilinear decom- . .
Contact Sensor- position (CCr al- (Butler et al, On-line Rectilinear Targeted for robots equipped only with
based Coverage . 1999) contact sensors.

gorithm)

Wavefront  Algo- (Zelinsky et al., . Sy . . . .

rithm 1993) Off-line Grid-discretized Simple, easy to implement algorithm.

Spiral-STC  Algo- | (Gabriely and Ri- . Lo . Minimizes repeated coverage by visiting
Grid-based Cover- | rithm mon, 2002) On-line Grid-discretized each grid cell only once.
age (Luo et al., 2002;

Neural Network Yang and  Luo, On-line Grid-discretized Handles dynamic obstacles.

2004; Luo and
Yang, 2008)

Hexagonal Grid (Paull et al., 2012) | On-line Grid-discretized Ilz/;::?mlzes information gain along the

Variots ranh Environmental con Applies to environments that can be
Graph Coverage srap (Xu, 2011) On-line represented as a graph, such as a street

search algorithms

straints

or road network.




9¢

Planar terrain cov-
ering algorithm ap-

Projectively planar

Theoretically proven, however no de-

lied at successive (Hert et al., 1996) | On-line (2.5D) tails on how to detect the inlets used
p ’ by the algorithm are provided.
depths
3D cellular decom- Closed, orientable | Theoretically proven. Demonstrated in
" (Atkar et al., 2001) | On-line surfaces embedded | simulation for simple 3D surfaces (poly-
position in R3 hedra).
2;;11ré1ens1onal Cov- ifg?;filgal sei} Car-like parts | Specifically targeted for coverage of au-
& seudo-extruded (Atkar et al., 2009) | Off-line (pseudo-extruded tomotive parts. Generates paths which
p surfaces) optimize paint deposition uniformity.
surfaces
Cover th cen Urban environ-
overage pathi gen- (Cheng et al., . ments simplified as | Suitable for covering urban structures
eration on simpli- On-line
2008) hemispheres  and | with sufficient clearance between them.
fied 3D surfaces cylinders
Coverage of Bathy- Galceran and Car- . Bathymetric (eleva- | Provides fair imaging angles on rugged
Off-line
metric Surfaces reras, 2013) tion) maps terrain.
Coverage for (Jin and Tang, . . . S T o
Arable Farming 2011) Off-line Elevation maps Minimizes application-specific costs.
Random sampling- | (Englot and Hover, . Complex 3D struc- A.HOWS. for ~coverage of complex ?)_
Off-line dimensional structures such as a ship
based 2012) tures
propeller.
llj;;((iiovtli t;iﬁgﬁiﬁ: (Papadopoulos Off-line Complex 3D struc- | Can handle differential constraints and
. . et al., 2013) tures probabilistically guarantees optimality.
tial constraints -
Cell decomposition . « - )
with variable sweep | (Huang, 2001) Off-line Polygonal Takes into z.lccount cell.he1g.ht to se-
. . lect the optimal sweep direction.
direction
Trapezoidal decom- . . . . o
Optimal Coverage position + genetic (Jimenez et al, Off-line Polygonal A genetic algorithm quickly finds a spe-

algorithm

2007)

cific coverage paths among the cells.




LC

Morse  decompo- Polygonal and
sition 4 optimal (Mannadiar and Online differentiable Finds an optimal walk through the ad-
adjacency  graph | Rekleitis, 2010) boundaries  (non- | jacency graph.
traversal rectilinear)
Polygonal and
Exploiting critical | (Acar and Choset, On-line differentiable Efficiently increases actual percent cov-
points 2002b) boundaries  (non- | erage achieved.
rectilinear)
Coverage under Decides when to revisit a salient feature
Uncertainty Active SLAM (Kim, 2012) On-line Ship hull when executing coverage to reduce un-
certainty.
Leap-frog strategy (Tully et al., 2010) | On-line soi(lljesz;cea((iles not con i:;bsosiler;;az?jgy.use each other as bea
Modified boustro- (Bretl and . Guarantees complete coverage under
. Off-line Planar . .
phedon paths Hutchinson, 2013) bounded position and velocity error.
Low  uncertainty (Galceran et al Uses saliency to determine parallel
CPP for marine 2013) 7| Off-line Marine track order and key salient points to re-
surveys visit.
Polygonal and
Boustrophedon- (Rekleitis et al., On-line differentiable Extension of Morse decomposition to
based 2009) boundaries  (non- | multi-robot teams.
rectilinear)
Contact sensor- (Butler et al., On-line Rectilinear E-Xtension of C.CR using a decoupled
. based 2000) high-level coordinator.
Multi-robot Cover- Extension of Spiral-STC to multi-robot
age Spiral-STC-based (Zheng et al., 2005) | Off-line Grid-discretized teams
Spiral-STC-based 2081(;I>azon et al, On-line Grid-discretized r?liiilir—lreobz)‘ét‘f:;;?:. of Spiral-STC to
Neural-network- (Luo et al., 2003) On-line Grid-discretized Robots see each other as moving obsta-
based cles.
Boundary coverage dgclil){&?s;(())85 ;md Bur Off-line oD z‘;)izlsl.sed on coverage of obstacle bound
C e Wagner et al., . Validated in simulation, but of limited
Bio-inspired 20%8) ind others On-line 2D practical application.
(Ahmadzadeh Aerial  (obstacle- Account for limited maneuverability
Aerial et al., 2006) and | Off-line free) and for load balancing in heterogeneous

others

teams.
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