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Abstract

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell
membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and
fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits
growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not
just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action,
we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model
membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed
by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how
the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic
antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar
mechanistic basis.
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Introduction

Membrane active peptides (MAPs) represent a class of

molecules that are able to interact with membranes, leading to

fusion, poration and/or translocation. Depending on their mode

of action, these peptides have been traditionally classified in three

different categories: fusogenic peptides, antimicrobial peptides and

cell-penetrating peptides [1–4]. More and more data suggest that

this classification is too rigid as some peptides have multiple

functionalities [5–14]. For example, both fusogenic and antimi-

crobial peptides have been shown to induce leaky fusion in vesicles

[6,15,16], and a cell-penetrating peptide has been shown to induce

leaky fusion of liposomes [7]. For antimicrobial peptides it has

been speculated that this ‘‘multihit mechanism’’ increases their

potency [17,18]. Despite much progress in the characterization of

peptide-membrane interactions, the molecular details of the events

leading to membrane fusion, poration, and peptide translocation

are still poorly understood. A powerful tool to study peptide-

membrane interactions at the molecular level is the molecular

dynamics (MD) technique [19–22].

Here, we combine MD simulations with a number of

experimental techniques, including Dual-Color Fluorescence Burst

Analysis (DCFBA), Förster Resonance Energy Transfer (FRET)

and cryogenic Transmission Electron Microscopy (cryo-TEM), to

explore the process by which peptides are able to act on

a membrane in a dual way. Moreover, we relate our findings to

cryo-TEM studies in Escherichia coli cells. The peptide in-

vestigated, BPC194: c(KKLKKFKKLQ), is a cyclic antimicrobial

peptide that adopts a b-sheet structure upon interaction with the

membrane [23]. The peptide was selected from a library of de

novo synthesized head-to-tail cyclic peptides [24,25], which

showed a high antimicrobial activity towards Gram-negative plant

pathogenic bacteria like Erwinia amylovora, Pseudomonas

syringae and Xanthomonas vesicatoria. We have previously

probed the pore forming propensity of this peptide and showed

that the b-conformation of the peptide is optimal for the

stabilization of the curvature of the transmembrane pore [26].

We show here how BPC194 also induces membrane fusion,

probing the process at an atomistic, molecular and ensemble level.

Two seemingly unrelated processes: pore formation and mem-

brane fusion are shown to occur simultaneously and influence the

paths of both modes of action. Our in silico and in vitro

observations correlate with in vivo data and provide a mechanistic

framework for growth inhibition of bacterial cells by BPC194.
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Materials and Methods

Reagents and Apparatus
The 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic

(HEPES) was from Roche Diagnostics GmbH; 1,2-dioleoyl-sn-

glycero-3-phosphatidylglycerol (DOPG) was from Avanti Polar

Lipids; 1,19-dioctadecyl-3,3,39,39-tetramethylindodicarbo-cyanine

perchlorate (DiD), 3 kDa dextran-fluorescein, N-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phos-

phoethanolamine (NBD-PE) and LissamineTM Rhodamine B 1,2-

dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Rh-DHPE)

were from Invitrogen. For in vivo experiments, the medium used

was Luria Broth (10 g/L Bacto Tryptone (Becton Dickinson), 5 g/

L Yeast extract (Becton Dickinson) plus 10 g/L NaCl; Merck).

The buffer used for cell imaging with the light microscope was

10 mM sodium phosphate, pH 7.5, containing 150 mM NaCl.

For cryo-TEM assay with E. coli cells we used the buffer 120 mM

potassium phosphate, pH 7.0, which has an osmolality equal to

that of LB (measured by determination of the freezing point in an

Osmomat 030, Gonotec) or sodium phosphate buffer (same for

light microscopy). In vitro solutions were prepared in 10 mM

HEPES-NaOH, pH 7.2, containing 150 mM NaCl (the so-called

physiologic ionic strength). The peptides BPC194,

c(KKLKKFKKLQ), and its linear counterpart BPC193, H-

KKLKKFKKLQ-OH, were synthesized as described previously

(23) and purified by reverse-phase preparative HPLC (purities

.95%).

Strains, Growth and Cell Imaging
Escherichia coli (E. coli) K-12 strain MC1061 [27] was grown

from single colonies in LB at 37uC under vigorous aeration until

the culture reached an OD600 of 0.15 for light microscopy and 0.6

for electron microscopy. Prior to the light microscopy, 1 mL of

cells was washed twice with fresh LB medium and the pellet was

finally resuspended in a 400 mL of LB to get an optimal cell

density. Afterwards, 1.5% agarose solution in LB was pipetted

onto a multispot microscope slide of 12 wells (Hendley-Essex). The

coated slide was left to solidify at 4uC for 15 min. A 1 mL drop of

cell suspension mixed 1:1 (v/v) with buffer or peptide solution

(final concentration range from 0.75 mM to 100 mM) was placed

on each well and immediately covered with a coverslip. Cells were

imaged for approximately 4 hours using Differential Interference

Contrast (DIC) transmitted-light in an inverted microscope

Observer Z1 (Carl Zeiss), equipped with a Zeiss LCI Plan-

NeoFluar 636 objective (numerical aperture of 1.3) and a Cool-

Snap HQ2 CCD camera (Photometrics). Cell growth rates were

calculated from the increase in cell number over time; growth rates

in liquid LB medium and LB-agarose were comparable. For

electron microscopy, the cells were centrifuged (4 min; 10,0006g;

room temperature) and concentrated to a final OD600 of 100.

Preparation of Lipid Vesicles
Large unilamellar vesicles (LUVs) were prepared as described

elsewhere [26]. Briefly, rehydration of a dried DOPG lipid film

was done in 10 mM HEPES-NaOH, 150 mM NaCl, pH 7.2.

Vesicles were then subjected to five cycles of flash freezing in liquid

nitrogen and rapid thawing at 37uC. Subsequently, liposomes were

extruded 11 times through a 200 nm polycarbonate filter

(Avestin).

For the DCFBA experiments the lipid film was made by mixing

the membrane dye DiD with DOPG lipids at a molar ratio of

1:12,000 (corresponding to ,15 molecules of DiD per liposome

for vesicles with a diameter of 200 nm) and the rehydration was

done in the presence of the lumen cargo molecule: 3 kDa dextran

labeled with fluorescein (5 mM). Liposomes were separated from

the non-encapsulated fluorophores by centrifugation (20 min;

270,0006g; 20uC) and resuspended in the buffer to a final lipid

concentration of 80 mM.

For the FRET assays, the lipid film contained 1 mol% NBD-PE

and/or 1 mol% Rh-DHPE, and the final lipid concentration was

125 and 250 mM DOPG.

For cryo-TEM, the liposomes were briefly sonicated before

extrusion to increase the unilamellarity of the vesicles (5 pulses of

1 sec. at 75% amplitude with a Sonics Vibra Cell VCX 130

sonicator) and the final lipid concentration was 5 mM DOPG.

DCFBA
In the DCFBA experiment, liposomes were labeled with two,

spectrally non-overlapping fluorescent probes [28]. The DiD

probe was incorporated in the phospholipid bilayer, while the

fluorescein-labeled dextran filled the aqueous interior of the

liposomes. By using a dual-color laser-scanning microscope, we

monitored membrane-disrupting effects at the single liposome

level. Different amounts of peptide (0 to 27 mM) were added to

80 mM DOPG liposomal solutions, yielding total peptide-to-lipid

(P/L) ratio from 0 to 0.3. The samples were equilibrated for 10

minutes at room temperature after each addition of peptide. The

fluorescence bursts, resulting from the diffusion of the liposomes

through the detection volume, were measured for 10 min. The

internal cargo concentration (C) of the ith liposome (burst) is given

by:

Ci~

Ð t2
t1

IICdt

Ð t2
t1

ILdt
� �

where IL is the fluorescence intensity of the lipid marker, DiD,

above a certain threshold between t1 and t2. IIC is the fluorescence

of the internal cargo. The average concentration of internal cargo,

Cav, over all the liposomes can be obtained from Ci:

Cav~
1

N

XN

i~1

Ci

where N corresponds to the number of liposomes [28]. Samples

were imaged on a commercial laser-scanning confocal microscope,

LSM 710 (Carl Zeiss MicroImaging, Jena, Germany), using an

objective C-Apochromat 406/1.2 NA, a blue argon ion laser

(488 nm) and a red He-Ne laser (633 nm).

FRET
Fusion was monitored using the Förster resonance energy

transfer (FRET)-based methodology described before by others

[29,30], using a Cary Eclipse fluorescence spectrophotometer

(Varian). Two different FRET assays were performed, i.e.,

positive- and negative-FRET. In positive-FRET, DOPG vesicles

labeled with 1 mol% NBD-PE (donor) were mixed with DOPG

vesicles labeled with 1 mol% Rh-DHPE (acceptor) at a molar ratio

of 1:1. If fusion occurs, the lipids of the donor and acceptor vesicles

will mix and the FRET efficiency, as monitored by an increase in

the acceptor emission (intensity at lem = 590 nm, Rhodamine

emission), will increase. On the other hand, in the negative-FRET

assay, DOPG vesicles labeled with both 1 mol% NBD-PE and

1 mol% Rh-DHPE were mixed with unlabeled vesicles at a molar

ratio of 1:3. In this case, as the vesicles fuse, the average distance

between donor and acceptor increases. Thus, the FRET efficiency

Membrane Action of Cyclic Antimicrobial Peptide
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decreases proportionally and is monitored by an increase in the

donor emission (intensity at lem = 530 nm, NBD emission). In

both assays the peptide BPC194 was added to a final concentra-

tion in the range of 0 to 200 mM. The absorbance peaks of

samples were kept ,0.1, and various controls were done to

minimize the inner filter effects (Fig. S1A–B in Supporting

Information S1). Quantification of fusion was calculated from

the increase in NBD emission in the negative-FRET assay at two

different lipid concentrations (125 and 250 mM). The 0% fusion

was taken from the intensity of free-peptide vesicles. The other end

of the fusion scale (100%) was calculated by adding CaCl2
(194 mM) as a fusogenic agent to the vesicle suspension [29].

Control experiments to correct the intensities for quenching of

NBD and Rhodamine upon peptide and calcium addition were

also performed (Fig. S1C–F in Supporting Information S1).

Cryo-TEM
Samples for cryo-TEM were prepared by deposition of a few mL

of vesicle solution (with buffer or peptide at a final P/L ratio of

0.01) or cell solutions (mixed 1:1 (v/v) with either buffer for the

control or BPC194 to a final P/L ratio of 0.02 or 0.4) on holey

carbon-coated grids (Quantifoil 3.5/1, Quantifoil Micro Tools).

After blotting the excess liquid, the grids were vitrified in liquid

ethane in a Vitrobot (FEI) and transferred to a Philips CM 120

cryo-electron microscope equipped with a Gatan model 626 cryo-

stage, operating at 120 kV. Images were recorded under low-dose

conditions with a slow-scan CCD camera. For the in vivo system,

images were taken at two time points, one or 30 minutes after

mixing with peptide. For the in vitro system, images were taken 10

minutes after mixing with peptide and a total of 98 cells were

analyzed in the presence of peptide and 58 cells without peptide.

Simulations System Set-up
The starting system consisted of two solvated DPPG (dipalmi-

toyl-phosphatidylglycerol; anionic lipid) bilayers in the fluid phase,

comprising of 512 lipids each and placed at a distance of about

3 nm from each other. The DPPG lipids and their palmitoyl tails

are well characterized in our group and have been used in our

previous study on pore formation by BPC194 [23,26]. We

emphasize that this lipid is in the fluid phase at conditions in the

molecular dynamics simulations. BPC194 peptides were placed

between the bilayers in the water phase at a P/L ratio of 1:15. The

cyclic peptides were modeled based on a previous study [23,26].

The system consisted of about 32000 water molecules. K+ ions

were added as counter-ions for anionic lipids and Cl2 ions were

added to neutralize the overall system. Five simulations were set

up with different starting random velocities to obtain statistically

significant results. A pure DPPG bilayer was also simulated for

reference. Furthermore, a simulation where the inactive linear

analog (BPC193) was tested at the same conditions as the active

cyclic peptide was performed as a control. The linear peptide was

modeled based on our previous study [23,26] with charged termini

to best represent the experimental conditions. For an overview of

the simulations see Table 1.

Simulations Parameters
The GROMACS software package [31] was used to perform all

MD simulations. The GROMOS force-field 43a2 [32] was used to

describe the peptide and peptide-solvent interactions. The force-

field for DPPG lipids was taken from a previous study [23,26]. All

force-fields were parameterized for use with a group-based twin

range cut-off scheme (using cutoffs of 1.0/1.4 nm and a pair-list

update frequency of once per 10 steps), including a reaction field

(RF [33]) correction with a dielectric constant of 78 to account for

the truncation of long-range electrostatic interactions. The water

was modeled using the SPC model [34]. A time step of 2 fs was

used. Bond lengths were constrained using the LINCS algorithm

[35]. The simulations were performed in the NP|PZT ensemble

using periodic boundary conditions. The temperature was weakly

coupled (coupling time 0.1 ps) to T = 320 K using the Berendsen

thermostat [36]. The pressure was also weakly coupled (coupling

time of 1.0 ps and compressibility of 4.561025), using a semi

isotropic coupling scheme in which the lateral (P|) and perpen-

dicular (PZ) pressures were coupled independently at 1 bar,

corresponding to a tension-free state of the membrane. The

simulation setup is similar to that used in previous studies of

peptide-membrane interactions [23,26,37–39].

Characterization of Lipid Tilting and Splaying
The tilt of the lipids was calculated by the angle between the

vector of three atoms (P, C2A and C2P) and the z-axis as

a reference. The values close to 0u mean no tilt whereas values

close to 90u mean complete tilt. The splay of the lipids was

calculated by the angle between the vectors of two atoms of one

lipid tail (C2A, C2P) and the other lipid tail (C1A, C1P). The

values close to 180u indicate the splay of the hydrocarbon tails.

Results

Cell Growth Inhibition and Cell Envelope Defects by
BPC194

To analyze the mechanism of action of BPC194, we monitored

the aggregation, growth and morphology of E. coli cells by light

microscopy and used the linear analog of BPC194, which lacks

activity, as a control. Figure 1A summarizes the results of the cell

growth over 4 hours of imaging (see also Movies S1, S2, S3). The

linear analog, BPC193, did not effect the cell growth up to

a concentration of at least 100 mM. BPC194 already inhibited the

growth at an order of magnitude lower concentration. The growth

rate of E. coli as a function of peptide concentration is shown in

Fig. 1C. Unlike the linear peptide, the cyclic peptide caused severe

inhibition of growth and aggregation of the cells. This is

a remarkable difference because both peptides have identical

sequence and overall charge (+6 at physiological pH). To

determine whether or not the different effects of BPC194 and

BPC193 are caused by (partial) degradation of the peptides by E.

coli cells, we tested their stability (see Supporting Methods in

Supporting Information S1). The fate and concentration of the

peptides was followed by reverse-HPLC. The results show that

there is no observable degradation of the peptides after 1 h of

incubation with cells (or even cell lysates), that is, under conditions

that BPC194 is completely inhibiting growth and BPC193 is

having no effect (Fig. S2 in Supporting Information S1). To

investigate further the effect of the cyclic peptide on the

ultrastructure of the cells, we performed cryo-TEM (Fig. 1B).

BPC194 caused disruption of the cell envelope (shown in black

arrows) in all the cells analyzed, most notably the integrity of the

inner and outer membrane (IM and OM) was disrupted. The cell

envelope is no longer smooth (panel B2) with the presence of

contact sites between the IM and OM (panel B3) in about 30% of

the cells, and in some regions the membrane was pinched off or

budding off of vesicle-like structures was observed (panel B4).

The results show that only the cyclic peptide is able to abolish

cell division, which is preceded by cell aggregation. The positive

charge of the peptide is not sufficient for cell aggregation and

subsequent disruption of the cell envelope, as the linear analog

does not show similar effects. The locked cyclic conformation of

BPC194 might be the key factor in the initial interaction with the

Membrane Action of Cyclic Antimicrobial Peptide

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e61541



cell envelope, causing large physical stress and damage, what leads

to inhibition of cell division and ultimately to cell death.

Simultaneous Pore Formation and Fusion Action of
BPC194

The use of model systems is required to get fundamental

chemical understanding of the mode of action of membrane-active

compounds as whole cells are simply too complicated for such an

analysis. We used DOPG vesicles albeit that, similar observations

have been made in membranes composed of mixtures of

zwitterionic and anionic lipids [23]. However, the higher the

fraction of anionic lipids, the stronger the binding and poration of

BPC194. We used solely negatively charged lipids as in this system

the pores are stable for long periods of time (on the time scale of

minutes) as inferred from electrophysiology studies [26]. DCFBA,

FRET and cryo-TEM techniques were used to probe the peptide-

membrane interactions of BPC194, using BPC193 as negative

control. First, DCFBA experiments were performed upon addition

of different amounts of peptide to the DiD-labeled vesicles, filled

with the internal cargo 3 kDa dextran-fluorescein [28]. The

average concentration of internal cargo and the normalized

intensity of membrane-associated DiD per liposome as a function

of peptide-to-lipid ratio are summarized in Fig. 2A. As the P/L

ratio increases the amount of dextran inside the vesicles, Cav,

decreases, which is indicative of the poration activity of the peptide

(full circles). In parallel with the cargo leakage, we observed that

the amount of DiD per vesicle increased, which points towards

vesicle fusion or aggregation (empty squares). The DCFBA data

(Fig. 2A) in conjunction with the confocal images (Fig. 2B) confirm

the two concurrent events, poration and fusion/aggregation. In

panel c, mesoscopic aggregates can be observed in the DiD

channel, whereas the corresponding signal of internal cargo has

disappeared due to leakage.

To distinguish between fusogenic action (lipid mixing of vesicles)

and aggregation, we performed both positive-FRET (Fig. 2C) and

negative-FRET (Fig. 2D) [29]. The fusogenic action of the cyclic

peptide BPC194 was confirmed by both assays, thus classifying the

observations of Fig. 2B c as fusion of vesicles. Using the emission

intensity of the FRET donor, NBD-PE, after correcting for peptide

quenching, we quantified the percentage of fusion at each P/L

ratio with two different lipid concentrations (Fig. 2E). The

percentage of fusion increased with the peptide addition until

a P/L of roughly 0.3, at which the fusion of vesicles as probed by

FRET was maximal. At this particular P/L ratio, the cargo of the

vesicles had already completely leaked out (Fig. 2A and 2B). As

a control, we analyzed the inactive linear analog of BPC194, that

is BPC193, at the same peptide concentrations and there was no

change in the FRET efficiency (Fig. 2C; inset).

Cryo-TEM also revealed the fusogenic behavior of BPC194 and

the most representative images of vesicles without peptide, with

BPC194 and BPC193 are shown in Fig. 2F. Vesicles without

peptide were on average about 200 nm. BPC194 yielded larger

vesicles, consistent with membrane fusion, whereas the linear

BPC193 brought the vesicles close together but vesicle fusion was

not observed (Fig. 2F). The linear BPC193 peptide was previously

shown to be inactive and vesicles aggregates were already seen by

confocal microscopy [23,26].

We note that complete fusion occurs at a bound peptide-to-lipid

ratio of around 0.15. It has been shown by Melo and coworkers

that the bound peptide concentrations at the MIC value are

comparable to those of the thresholds effects (pore formation) in

model membranes [40–42]. The apparent difference between the

in vivo and in vitro numbers arises from the fact that in a standard

MIC assay, the number of cells is very low and the lipid

concentrations are in the nanomolar range. When all these factors

are taken into account, the corresponding P/L ratio in the

bacterial cell is around 0.1 and thus very similar to what we find in

the membrane model system. In accordance, substantial fusion

and leakage were observed at similar P/L ratios in the in vivo and

in vitro assays. The overall data indicate that the fusogenic and

poration activity of the cyclic peptide occur simultaneously and

points to a ‘‘multi-hit’’ mechanism of action.

Molecular Basis for Concurrent Fusion and Leakage by
MD Simulations

To study the fusion and leakage events at an atomistic level, MD

simulations of two DPPG bilayers were set up with multiple copies

of the peptide placed between them (Fig. 3A). We note that in the

simulations DPPG is in the fluid, liquid-disordered state. The P/L

ratio was set to 1/15, i.e. at intermediate values for fusion and

poration as observed experimentally. A control simulation was

performed with the linear analog, BPC193, at the same P/L ratio.

The linear counterpart of BPC194 is not able to form pores, as

shown previously [26] or fuse the two apposed bilayers (Fig. S3 in

Supporting Information S1). Five independent simulations were

performed with the cyclic peptide, exploring a total time scale of

more than 1 microsecond (Table 1). Representative snapshots

showing the sequence of events in a particular simulation (F1, cf.

Table 1) is depicted in Fig. 3B–D and the whole trajectory is

shown in Movie S4. The other four simulations showed

qualitatively similar behavior. The following steps were observed:

i) peptide binding leading to membrane contact, ii) lipid

Table 1. Overview and statistics of the MD simulations.

Simulation Time (ns) Nr. Pores Time scale Pore (ns) Tilt .85u Splay .170u

Pure DPPG 100 – – 0 2

F1 360 2 40/58 24 9

F2 210 – – 18 8

F3 590 1 150 28 12

F4 160 2 10/70 10 6

F5 230 – – 16 10

Average – – – 19.263.1 8.961.1

The percentage of lipids in the contacting monolayers which, during the simulation, tilt by more than.85u or splay by more than.170u is indicated. The standard error
of the average is obtained from the standard deviation between all five simulations. The simulation length and formation of pores is also indicated.
doi:10.1371/journal.pone.0061541.t001

Membrane Action of Cyclic Antimicrobial Peptide
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Figure 1. Growth inhibition and cell envelope defects by BPC194. A. Cell growth imaging of E. coli without peptide (control) and with
12.5 mM of BPC193 or BPC194 during four hours. Note that the first image was taken after 1 h. and one or two cell divisions had already taken place
in the control and BPC193 samples. B. Cryo-TEM micrographs of E. coli cells without (B1) and with BPC194 (B2–B4). Black arrows point out severe
disruption of the cell envelope: membrane irregularities (B2); putative contact sites between IM and OM (B3); rupture of the cell envelope and
budding off of vesicle-like structures (B4). Scale bars represent 100 nm. C. Cell growth rates of E. coli in the presence of different concentrations of

Membrane Action of Cyclic Antimicrobial Peptide
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perturbations leading to membrane bridge formation, and iii)

peptide penetration resulting in pore formation.

Initial membrane contact. An initial fast binding of the

peptides was observed with most peptides binding to one of the

proximal monolayers, typically within 10 ns, (Fig. 3B). The

binding is facilitated by multiple electrostatic interactions of the

positively charged lysine residues with the negatively charged

head-group moieties of the PG lipids. Importantly, a few of the

peptides were able to interact simultaneously with both mem-

branes. As a result, these peptides formed a bridge between the

apposing membranes. A close-up of a few of these bridging

peptides is presented in Fig. 3E.

Membrane bridge formation. Due to the effect of the

bridging peptides, some of the lipids were perturbed locally and

protruded out of the membrane and interacted with the apposing

membrane, creating a membrane bridge (Fig. 3C). We refer to this

state as a membrane bridge since full contact between the

hydrophobic tails of lipids from the contacting leaflets did not

BPC194 (full circles) and its linear analog, BPC193 (empty circles). The values are normalized to the growth rate in the absence of peptide, which
corresponded to 1.15 h21.
doi:10.1371/journal.pone.0061541.g001

Figure 2. Simultaneous pore formation and fusion activity of BPC194. A: The normalized concentration of dextran inside the liposomes, Cav,
(filled circles) and the normalized intensity of membrane-associated DiD per liposome (empty squares) at different P/L ratios. B: Confocal images of
the lipid vesicles in the DiD and dextran detection channel at three different P/L ratios; a, P/L = 0; b, P/L = 0.1; and c, P/L = 0.3. C: Positive-FRET upon
peptide addition. The emission of Rhodamine increases due to vesicle fusion. Inset: Controls done with the ‘inactive’ linear analog of BPC194, that is,
BPC193 at the same peptide concentrations. D: Negative-FRET upon peptide addition. The emission of NBD increases due to a decrease in FRET
efficiency as a result of vesicle fusion. E. Quantification of fusion at different P/L ratios and at two different lipid compositions, 125 mM (full circles) and
250 mM (empty squares). D. Representative cryo-TEM micrographs of DOPG vesicles without peptide (control) and with BPC194 or the linear analog
BPC193.
doi:10.1371/journal.pone.0061541.g002

Membrane Action of Cyclic Antimicrobial Peptide

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61541



occur, which is characteristic of membrane stalks. The membrane

bridge remained stable during the length of the simulation.

Formation of the membrane bridge takes place on a time scale of

10–20 ns, i.e., the time required for the bridging peptides to

extract the lipid tails from the contacting monolayers. The

membrane bridge showed high saddle spray curvature and can

be considered an intermediate towards complete stalk formation

during the process of fusion.

Pore formation. Subsequent to the formation of the

membrane bridge, spontaneous pore formation was observed

(Fig. 3D). In MD simulations, pores are distinguished by

a disruption of the lamellar phase and water molecules are seen

to traverse the bilayer freely via the pore. Pore formation was

triggered by a few of the peptides, not involved in stabilizing the

membrane bridge, that insert deeper into the bilayer. We would

like to point out that the pores formed in the simulations are not

fusion pores, rather they are formed adjacent to the membrane

bridge and mimic the stalk/pore complex described in Ref. 50 and

60. Whether or not pores are actually formed appeared to be

a stochastic process, with three out of five simulations showing

pore formation (Table 1). In two of the simulations even two pores

were formed. In each case, the pores formed adjacent to the

membrane bridge, on a time scale ranging between 10 to 150 ns.

A close-up of the membrane bridge and pore complex is shown in

Fig. 3F. The pores formed are reminiscent of the disordered

toroidal type as shown in previous simulation studies for this

peptide [26] and other antimicrobial peptides [37,38].

To further characterize the perturbing effect of the peptides on

the lipids, we quantified the splaying and tilting of the lipid tails

(see methodology for details). The results are given in Table 1. In

Figure 3. Molecular view of the sequence of events of the leaky fusogenic action of cyclic peptides. A. Initial simulation setup with
peptides placed between two bilayers. B. Bridging of proximal leaflets of the two bilayers by BPC194. C. Lipid bulging caused by the action of
peptides associated with the bilayers. D. Pre-stalk intermediate accompanied by disordered toroidal pore. E. Close-up of the bridging peptides. F.
Close-up of the stalk-pore complex. G–J. Splaying of a lipid during the course of a simulation. The peptides are depicted in pink, the phosphorous
atoms in yellow and green respectively and the lipid chains in grey. The water is not shown for clarity. In panel F, the water molecules within the pore
in one of the bilayers are shown in blue. The other pore cannot be seen in the zoom-in but is visible in panel D.
doi:10.1371/journal.pone.0061541.g003
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each of the five simulations, the tilting is quite substantial

compared to a pure bilayer. For example, in simulation-F3, 28%

of the lipids of the proximal leaflet tilted more than 85u from their

initial position at least once during the simulation. In a reference

simulation of a pure DPPG bilayer, no such extensive tilting is

observed. In addition, several lipids were also significantly splayed

to values larger than 170u, implying a full opening of the lipid tails.

Not surprisingly, the lipids that are most perturbed are the lipids in

direct contact with the peptides, and especially the lipids involved

in the formation of the membrane bridge, and later the pore. An

example is presented in Fig. 3G–J, showing how a single lipid is

splayed by interacting with a few neighboring peptides (see Movie

S5). In this particular example, the splayed lipid tail remains stable

over 50 ns. The stabilizing contacts between the peptides and the

lipids are formed between the lysine residues and the charged

head-groups, and the apolar phenylalanine and leucine residues

shielding the hydrophobic tails of the lipids from the water.

Discussion

On the basis of the in vivo and in vitro experimental data as

well as the molecular dynamics simulations, we show how

a synthetic cyclic antimicrobial peptide, BPC194, operates by

dual action. Two seemingly different mechanisms are shown to

occur concurrently, namely membrane poration and fusion. The

mechanism is similar to the leaky fusion mechanism but follows

a different pathway since complete leakage of vesicular content is

seen and pore formation is independent of fusion. Despite the

differences and higher complexity of the whole cell system as

compared to the membrane model system, aggregation phenom-

ena were observed concomitant with the inhibition of growth

while membrane rupture was demonstrated by cryo-TEM.

Although we did not observe genuine fusion intermediates

between the IM and OM in our cryo-TEM studies of E. coli

cells, we note that in Gram-negative bacteria those membranes are

in close contact (5–20 nm apart) [43] and both were obstructed or

brought close to each other at the point where BPC194 inhibited

growth. BPC194 will not fuse bacteria together but the ability to

fuse membranes may increase the potency of the peptide in cell

membrane permeation of Gram-negative bacteria, i.e. when the

IM and OM are in close contact.

Based on our atomistic molecular dynamics simulations and

biophysical characterization, we propose a mechanism by which

the peptides perform their dual action. Firstly, the peptides bind to

the membrane/water interface. Both electrostatic interactions

between the lysine residues and the lipid head groups and the

partitioning of the hydrophobic side chains into the lipid bilayer

stabilize this binding mode. In our previous work, we showed that

the cyclic peptide, binds stronger compared to its linear analog,

due to its pre-folded amphipathic conformation [23]. When two

membranes are present in close proximity as in our current

simulation setup, the peptides are actually able to bridge the two

membranes. Being able to keep two liposomes at close distance is

likely a necessary condition for fusion, but not sufficient, as the

linear analog can induce aggregation but not fusion (Fig. 2C,

Fig. 2F and Fig. S3 A–D in Supporting Information S1). By

adsorbing at the interface the peptides exert considerable stress on

the outer, contacting monolayers, which can be rationalized in

terms of their wedge-like shape [44]. The stress induced causes

a strong disordering of the lipids in the vicinity of the peptides,

leading to lipid splaying, tilting, and protrusions as evidenced by

our MD simulations. Eventually, a membrane bridge is formed, in

which multiple (bridging) peptides and lipids form a large

protrusion connecting the two apposing monolayers. The mem-

brane bridge (also referred to as the pre-stalk in literature [45,46])

has been suggested to be an important intermediate in the stalk-

mediated pathway to fusion. In particular, recent MD studies show

that at least under conditions of low hydration, early membrane

fusion kinetics is not determined by the stalk energy but by the

energy of pre-stalk transition states involving solvent-exposed lipid

tails [45,46]. Likewise, in MD studies of vesicle fusion mediated by

either lung surfactant protein SP-B [47] or by SNARE complexes

[48], the proteins are observed to trigger spontaneous fusion

events by anchoring two vesicles and facilitating the formation of

a lipid bridge between the proximal leaflets. Also of interest is

a coarse-grained simulation study of another small antimicrobial

cyclic peptide, RRKWLWLW [49]. At high enough concentra-

tions, coating of the membrane caused extrusion of lipids from the

exposed bilayer leaflet, leading ultimately to a release of

phospholipid micellar aggregates (in this study no apposing

membrane was present). Thus, destabilization of lipids by

membrane active peptides appears to be a generic feature.

Interestingly, concurrent with the formation of the membrane

bridge, our MD simulations show that a pore is induced in the

lipid membrane, pointing to a dual role of the BPC194. Pore

formation is generally viewed as the main mode of action of

antimicrobial peptides leading to cell content leakage or even

complete lysis of the cell membrane. However, we speculate that

under conditions where membranes are in close proximity, both

stalks and pores can be formed as another way to relieve the lipid

stress caused due to asymmetric peptide binding. A system with

both fusion stalks and adjacent pores (distinct from the fusion

pores) has been termed a stalk/pore complex and has recently

been shown to represent a key intermediate in a possible fusion

pathway [50]. Although apposing membranes are pre-established

in our simulation studies, they also occur in our in vitro studies in

which liposomes are found to aggregate, possibly as a result of the

bridging peptides. The stalk/pore pathway is distinct from the

traditional pathway of fusion, which proceeds via the formation of

a stalk that expands in a radial way forming a hemifusion

diaphragm [50–54]. Fusion is completed when the hemifusion

diaphragm ruptures (via a fusion pore). In the stalk/pore pathway,

one or more pores appear in the vicinity of the stalk, allowing

propagation of the stalk along the edge of the pore. Upon closure,

the HD state is reached, or, in the case when two pores have

formed, full fusion is accomplished. Such a pathway has been

predicted to be energetically favorable based on mean field

calculations [55]. In fact, in MD simulations, the stalk/pore

complex is stabilized by fusion peptides, and the peptides and

lipids form an inverted cubic phase consisting of a network of

stalk/pore complexes [56,57]. The pores seen in our simulations in

the proximity of the membrane bridge is reminiscent of such

a pathway and may be considered an intermediate prior to a stalk/

pore complex. Thus, we believe that BPC194 can lower the energy

barrier towards fusion by stabilizing the stalk/pore complex. The

experimental work also suggests that AMPs can stabilize non-

lamellar phases, and particularly inverted cubic phases [58]. The

ability of AMPs to induce saddle-splay curvature has furthermore

been linked to the lipid composition of the membrane, and has

been implicated to be a generic mechanism for formation of pores,

blebs, buds, and tubes [59]. These results point to a stabilization of

saddle-splay (Gaussian) curvature by membrane adsorbed pep-

tides. In this respect, BPC194, a synthetic cyclic antimicrobial

peptide may act similar to fusion peptides.

Conclusions
In conclusion, by using in vivo, in vitro and in silico methods, we

have established that fusion and poration are correlated in the case
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of BPC194, a synthetic antimicrobial peptide. This dual action is

most likely functionally relevant and may contribute to the high

potency towards bacterial killing. As probed by DCFBA and

optical imaging, poration and fusion occur simultaneously at the

same concentration regimes. In fact, in the DCFBA profiles, an

increase of leakage coincides qualitatively with an increase in

membrane fusion. Cryo-TEM corroborates the fusogenic action of

the peptide. The MD simulations furthermore show that pores and

stalk-like membrane bridges are formed simultaneously. We

believe that the interaction of the cyclic antimicrobial peptide

BPC194 with bilayers promotes saddle-splay curvature that is

required for both stalks and pores. In case of isolated membranes,

pores are formed, but in case membranes are in close proximity

the peptides are able to bridge them. This, in turn, leads to the

formation of a stalk/pore complex, which is an on-pathway

intermediate for membrane fusion. Together, these results explain

the dual action of cyclic peptides causing both fusion and leakage.

The results are consistent with the whole cell studies, which

correlate membrane reorganization with bacteriostasis. Based on

our current work and recent studies in other groups

[47,48,56,57,60], we believe that the stalk/pore pathway could

be a common mode of action of membrane active peptides.

Supporting Information

Movie S1 Cell growth control. Imaging of cells growing

without peptide. Scale bar is 10 mm.

(AVI)

Movie S2 Cell growth inhibition by BPC194. Cell growth

in the presence of 12.5 mM BPC194. Imaging by light microscopy.

Scale bar is 10 mm.

(AVI)

Movie S3 Cell growth in the presence of BPC193.
Imaging of cells growing in the presence of 12.5 mM of BPC193

by light microscopy. Scale bar is 10 mm.

(AVI)

Movie S4 Time course of stalk and pore formation by
BPC194. At the beginning all the peptides are between the two

bilayers. As the simulations start, some of the peptides bind to one

of the bilayers while the remaining peptides bridge both proximal

leaflets. As a result, the lipids are perturbed locally and protrude

from the bilayer and a stalk is formed. The peptides are depicted

in pink, the phosphorous atoms in yellow and green respectively

and the lipid chains in grey.

(AVI)

Movie S5 Lipid splaying caused by cyclic AMPs upon
interaction with membranes. As the lipids come in close

contact with the cyclic peptides large perturbations occur. Lipid

splay occurs and is helped by the interaction between the lysine

residues and the charged lipid head-group as well as the

phenylalanine and leucine residues with the hydrophobic tails of

the lipid. The peptides’ backbone is shown in pink, lysine residues

in orange, the phenylalanine and leucine residues in white, the

phosphorous atom in green and lipid chain in grey. For clarity,

average density of the lipid molecules in the two leaflets in the stalk

phase is shown in yellow and green, respectively.

(AVI)

Supporting Information S1

(DOC)
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