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To those who have helped me.

Als qui m’han ajudat.
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Resum Executiu

Aquesta tesi s’emmarca dins del projecte CICYT TAP 1999-0443-C05-01. L’objectiu

d’aquest projecte és el disseny, implementació i avaluació de robots mòbils, amb un

sistema de control distribüıt, sistemes de sensorització i xarxa de comunicacions per

realitzar tasques de vigilància. Els robots han de poder-se moure per un entorn

reconeixent la posició i orientació dels diferents objectes que l’envolten. Aquesta

informació ha de permetre al robot localitzar-se dins de l’entorn on es troba per

poder-se moure evitant els possibles obstacles i dur a terme la tasca encomanada.

El robot ha de generar un mapa dinàmic de l’entorn que serà utilitzat per localitzar

la seva posició. L’objectiu principal d’aquest projecte és aconseguir que un robot

explori i construeixi un mapa de l’entorn sense la necessitat de modificar el propi

entorn.

Aquesta tesi està enfocada en l’estudi de la geometria dels sistemes de visió estere-

oscòpics formats per dues càmeres amb l’objectiu d’obtenir informació geomètrica

3D de l’entorn d’un vehicle. Aquest objectiu tracta de l’estudi del modelatge i la

calibració de càmeres i en la comprensió de la geometria epipolar. Aquesta geome-

tria està continguda en el que s’anomena matriu fonamental. Cal realitzar un estudi

del càlcul de la matriu fonamental d’un sistema estereoscòpic amb la finalitat de

reduir el problema de la correspondència entre dos plans imatge. Un altre objectiu

és estudiar els mètodes d’estimació del moviment basats en la geometria epipolar

diferencial per tal de percebre el moviment del robot i obtenir-ne la posició. Els

estudis de la geometria que envolta els sistemes de visió estereoscòpics ens permeten

presentar un sistema de visió per computador muntat en un robot mòbil que navega

en un entorn desconegut. El sistema fa que el robot sigui capaç de generar un mapa

dinàmic de l’entorn a mesura que es desplaça i determinar quin ha estat el moviment

del robot per tal de localitzar-se dins del mapa.

La tesi presenta un estudi comparatiu dels mètodes de calibració de càmeres més

utilitzats en les últimes dècades. Aquestes tècniques cobreixen un gran ventall dels

mètodes de calibració clàssics. Aquest mètodes permeten estimar els paràmetres de
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la càmera a partir d’un conjunt de punts 3D i de les seves corresponents projeccions

2D en una imatge. Per tant, aquest estudi descriu un total de cinc tècniques de cal-

ibració diferents que inclouen la calibració implicita respecte l’explicita i calibració

lineal respecte no lineal. Cal remarcar que s’ha fet un gran esforç en utilitzar la

mateixa nomenclatura i s’ha estandaritzat la notació en totes les tècniques presen-

tades. Aquesta és una de les dificultats principals a l’hora de poder comparar les

tècniques de calibració ja què cada autor defineix diferents sistemes de coordenades

i diferents conjunts de paràmetres. El lector és introdüıt a la calibració de càmeres

amb la tècnica lineal i impĺıcita proposada per Hall i amb la tècnica lineal i explicita

proposada per Faugeras-Toscani. A continuació es passa a descriure el mètode a de

Faugeras incloent el modelatge de la distorsió de les lents de forma radial. Seguida-

ment es descriu el conegut mètode proposat per Tsai, i finalment es realitza una

descripció detallada del mètode de calibració proposat per Weng. Tots els mètodes

són comparats tant des del punt de vista de model de càmera utilitzat com de la

precisió de la calibració. S’han implementat tots aquests mètodes i s’ha analitzat la

precisió presentant resultats obtinguts tant utilitzant dades sintètiques com càmeres

reals.

Calibrant cada una de les càmeres del sistema estereoscòpic es poden establir

un conjunt de restriccions geomètriques entre les dues imatges. Aquestes relacions

són el que s’anomena geometria epipolar i estan contingudes en la matriu fonamen-

tal. Coneixent la geometria epipolar es pot: simplificar el problema de la corre-

spondència reduint l’espai de cerca a llarg d’una ĺınia epipolar; estimar el moviment

d’una càmera quan aquesta està muntada sobre un robot mòbil per realitzar tasques

de seguiment o de navegació; reconstruir una escena per aplicacions d’inspecció,

propotipatge o generació de motlles. La matriu fonamental s’estima a partir d’un

conjunt de punts en una imatges i les seves correspondències en una segona imatge.

La tesi presenta un estat de l’art de les tècniques d’estimació de la matriu fona-

mental. Comença pels mètode lineals com el dels set punts o el mètode dels vuit

punts, passa pels mètodes iteratius com el mètode basat en el gradient o el CFNS,

fins arribar las mètodes robustos com el M-Estimators, el LMedS o el RANSAC.

En aquest treball es descriuen fins a 15 mètodes amb 19 implementacions diferents.

Aquestes tècniques són comparades tant des del punt de vista algoŕısmic com des

del punt de vista de la precisió que obtenen. Es presenten el resultats obtinguts tant

amb imatges reals com amb imatges sintètiques amb diferents nivells de soroll i amb



Resum Executiu xiii

diferent quantitat de falses correspondències.

Tradicionalment, l’estimació del moviment d’una càmera està basada en l’aplicació

de la geometria epipolar entre cada dues imatges consecutives. No obstant el cas

tradicional de la geometria epipolar té algunes limitacions en el cas d’una càmera

situada en un robot mòbil. Les diferencies entre dues imatges consecutives són molt

petites cosa que provoca inexactituds en el càlcul de matriu fonamental. A més cal

resoldre el problema de la correspondència, aquest procés és molt costós en quant a

temps de computació i no és gaire efectiu per aplicacions de temps real. En aquestes

circumstàncies les tècniques d’estimació del moviment d’una càmera solen basar-se

en el flux òptic i en la geometria epipolar diferencial. En la tesi es realitza un recull

de totes aquestes tècniques degudament classificades. Aquests mètodes són descrits

unificant la notació emprada i es remarquen les semblances i les diferencies entre

el cas discret i el cas diferencial de la geometria epipolar. Per tal de poder aplicar

aquests mètodes a l’estimació de moviment d’un robot mòbil, aquest mètodes gen-

erals que estimen el moviment d’una càmera amb sis graus de llibertat, han estat

adaptats al cas d’un robot mòbil que es desplaça en una superf́ıcie plana. Es presen-

ten els resultats obtinguts tant amb el mètodes generals de sis graus de llibertat com

amb els adaptats a un robot mòbil utilitzant dades sintètiques i seqüències d’imatges

reals.

Aquest tesi finalitza amb una proposta de sistema de localització i de construcció

d’un mapa fent servir un sistema estereoscòpic situat en un robot mòbil. Diverses

aplicacions de robòtica mòbil requereixen d’un sistema de localització amb l’objectiu

de facilitar la navegació del vehicle i l’execució del les trajectòries planificades. La

localització es sempre relativa al mapa de l’entorn on el robot s’està movent. La

construcció de mapes en un entorn desconegut és una tasca important a realitzar

per les futures generacions de robots mòbils. El sistema que es presenta realitza

la localització i construeix el mapa de l’entorn de forma simultània. A la tesi es

descriu el robot mòbil GRILL, que ha estat la plataforma de treball emprada per

aquesta aplicació, amb el sistema de visió estereoscòpic que s’ha dissenyat i s’ha

muntat en el robot. També es descriu tots el processos que intervenen en el sistema

de localització i construcció del mapa. La implementació d’aquest processos ha

estat possible gràcies als estudis realitzats i presentats prèviament (calibració de

càmeres, estimació de la matriu fonamental, i estimació del moviment) sense els

quals no s’hauria pogut plantejar aquest sistema. Finalment es presenten els mapes
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en diverses trajectòries realitzades pel robot GRILL en el laboratori.

Les principals contribucions d’aquest treball són:

• Un estat de l’art sobre mètodes de calibració de càmeres. El mètodes són

comparats tan des del punt de vista del model de càmera utilitzat com de la

precisió dels mètodes.

• Un estudi dels mètodes d’estimació de la matriu fonamental. Totes les tècniques

estudiades són classificades i descrites des d’un punt de vista algoŕısmic.

• Un recull de les tècniques d’estimació del moviment d’una càmera centrat en

el mètodes basat en la geometria epipolar diferencial. Aquestes tècniques han

estat adaptades per tal d’estimar el moviment d’un robot mòbil.

• Una aplicació de robòtica mòbil per tal de construir un mapa dinàmic de

l’entorn i localitzar-se per mitja d’un sistema estereoscòpic. L’aplicació pre-

sentada es descriu tant des del punt de vista del maquinari com del programari

que s’ha dissenyat i implementat.
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Chapter 1

Introduction

This chapter describes the motivation leading to the presentation of this thesis and

how it is related to a CICYT project funded by the Spanish government. The objec-

tives of the project and the subjects included in this document are briefly explained.

The chapter ends describing the structure and contents of the remaining of the thesis.

1.1 The Human Eye versus Computer Vision

Human beings own five different senses: vision, taste, smell, touch and hearing.

These senses keep us in touch with our surrounding, allowing us to perceive and

interact with our environment. Albert Einstein defined reality in the following way:

“Reality is nothing more than the capability of our senses to be wrong”. However,

human senses provide the only way of acquiring information from “reality”.

Human senses can be classified into two groups. First, taste and touch are con-

sidered touching senses because a direct contact with the sensing object is required.

Vision, smell and hearing are considered indirect senses due to the ability of such

senses to perceive information at a certain distance from the object. The infor-

mation acquired by the different sensors gives a different perceptual view of the

surroundings. However, of the five vision is considered the most developed human

sense.

The perception of the environment is completed in two steps. First, the informa-

tion is acquired through at least one of the human senses. Second, this information

1



2 Chapter 1. Introduction

is processed to get an interpretation of the environment perceived. With human vi-

sion, the information is acquired by means of the eyes and interpreted by the human

brain.

Human eyes have long been the subject of medical and biological studies so that

their functioning is well documented. Basically, light entering the cornea is focused

onto the retinal surface by a lens which under muscular control changes shape, to

perform proper focusing on near and distant objects. The iris acts as a shutter to

control the amount of light entering the eye. The retina is composed of two types

of receptors: rods and cones. Nerves, carrying the visual message, leave the retina

and pass through the optic nerve bundle to the brain. The rods are long slender

receptors extremely sensitive to light, while cones are only sensitive to high level of

illumination. We perceive three-dimensional information by using our eyes and the

knowledge of the most common objects which we achieved through living. Overall,

the behavior of our brain is very complex and the manner in which information is

processed is still largely unknown, and remains one of the most exciting research

subjects for the scientific community.

Computer vision tries to copy the way how human beings perceive visual in-

formation by means of using cameras acting as eyeballs and computers to process

the information in an “intelligent way” as does the human brain. The cameras are

designed based on the knowledge of the eyeball operation so that some comparisons

can be established: the shutter corresponds to the human iris, the camera lenses and

focus correspond to the muscular human lens, and the CCD1 array corresponds to

the retina. The computer vision community has been studying ways to process the

visual information acquired by these cameras with the aim of perceiving and being

conscious of reality.

The complex task of understanding of reality has been divided into a set of

simpler problems starting from what is considered low-level image processing such as

thresholding, edge detection and filtering and proceeds through to high-level image

processing tasks such as texture analysis, feature extraction and motion detection

ending with the description and interpretation level for shape identification and

scene description.

1Charge-Coupled Device
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1.2 Context and Motivation

This thesis was partially funded by the CICYT2 project TAP3 1999-0443-C05-01.

The main objective of this project is the design, implementation and accuracy evalu-

ation of mobile robots fitted with distributed control, sensing and a communicating

network. The robots must be able to navigate around an unknown structured envi-

ronment estimating the position and orientation of every obstacle in their surround-

ings. This information must allow the robots to compute their localization in the

environment so they can avoid any potential obstacle and accomplish the mission.

Each robot must be able to generate a dynamic map of the environment which will

be used to localize the robot. The main objective of this project is to allow the

robots to explore and build a map of the environment so that no modification of the

environment is needed.

In order to achieve accurate navigation of the vehicle, it is quite important to

equip the robot with a sensing system, permitting the acquisition of information

about the vehicle’s surroundings. When considering an easy task of obstacle avoid-

ance, the use of range systems such us ultrasonic and infrared sensors might be

enough. Also, with the aim of acquiring more accurate information, it is interesting

to study the computer vision problem as applied to mobile vehicles. The main ob-

jective of this project is to fit every robot with a computer vision sensor which must

allow the vehicle to acquire information of the environment so that a 3D map might

be built dynamically. Moreover, the position of the vehicle has to be estimated as

accurate as possible by using the 3D map alone. Hence, the motion of the vehicle

should also be computed allowing the localizing of the vehicle with respect to the

3D map.

1.3 Objectives

The main objectives of this thesis are described in the following paragraphs.

The study of the geometry involved in stereo vision systems composed of two

cameras with the aim of obtaining 3D geometric information of the vehicle’s sur-

roundings. This objective deals with the study of camera modelling and calibration

2Centro de Investigación Cient́ıfica y Tecnológica
3Tecnoloǵıas Avanzadas de Producción
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and the comprehension of epipolar geometry. Then, the computation of the fun-

damental matrix of a stereoscopic system is surveyed with the aim of reducing the

correspondence problem between both image planes. An accurate estimation of the

fundamental matrix allows us not only to compute 3D information of the vehicle’s

environment but to validate it as well.

The traditional case of epipolar geometry has some limitations in the common

case of a single camera attached to a mobile robot. Disparities between two con-

secutive images are rather small at the usual image rates, leading to numerical

inaccuracies on the computation of the fundamental matrix. Therefore, a second

objective should be the study of general vision-based egomotion estimation meth-

ods based on the differential epipolar constraint with the aim of perceiving a 6-DOF

movement. However, the geometry should be adapted to the common case of a

mobile robot moving on a plane constraining the movement to 2-DOF, leading to

more accurate results.

The study of the geometry involved in stereo vision systems should allow us to

present an application which permits a vehicle to move in an unknown environment.

Two main tasks should be faced: a) the localization of the vehicle and b) the building

of an absolute map while the robot is moving.

1.4 Thesis Outline

This research survey is structured in 7 chapters, two appendices and a bibliography

section detailed at the end of the document.

Chapter 2 surveys five camera calibration methods. This chapter focuses on

describing each camera model by a set of calibrating parameters. First, the intrinsic

parameters dealing with the internal geometry and optic characteristics of the image

sensor are described. Second, the extrinsic parameters dealing with the position and

orientation of the camera with respect to a reference system are presented. Both

parameters are thoroughly discussed, explaining how the camera model is obtained.

Once the camera model is known, the value of every parameter is estimated, i.e. the

camera must be calibrated. The different camera calibration methods are amply

explained.

Chapter 3 relates to the study of the fundamental matrix estimation problem.
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First, the epipolar geometry is presented. Then, several methods of estimating

the fundamental matrix are described and classified into linear, iterative and robust

methods. Linear methods require a low computing time but their geometry is rather

inaccurate in the presence of noise. Iterative methods improve the accuracy of linear

methods but can not cope with outliers. Finally, robust methods can cope with both

noise and outliers, obtaining better results but they require a considerable computing

time.

Some authors have proposed techniques to estimate the camera motion at a high

image rate based on the computation of the linear and angular velocities instead

of the orientation and translation between consecutive images. These techniques

are commonly based on the optical flow and the differential epipolar constraint.

Chapter 4 of this thesis presents an exhaustive survey covering the last twenty

years of research in this field. The techniques surveyed here are classified and the

mathematical notation is unified. The robustness of each technique with respect

to both synthetic and real images is detailed. Nevertheless, all these techniques

generate poor results unless they are adapted to the special case of a mobile robot

moving on a plane. The adaptation is based on constraining the movement from

six degrees of freedom to only two degrees, which are: a) the spin rotation of the

mobile robot, and b) the forward motion.

Chapter 5 describes a system for localizing and map-building in robotics appli-

cations by means of stereo vision. This system is structured in three steps. First,

points of interest are found by using image processing tools. Then the epipolar

geometry is computed from the camera calibration in order to simplify the corre-

spondence problem. Third, we proceed to reconstruct the geometry of the scene for

each pair of stereo images by means of triangulation. Finally, the trajectory carried

out by the robot is estimated and the absolute mapping of the environment built

while the robot is moving.

Chapter 6 presents the experimental results obtained from the implementation

of the surveyed methods and described in the previous chapters. This chapter is

composed of four parts: camera calibration results, fundamental matrix estimation

results, motion recovery results and the application related to vehicle localization

and map building by means of stereovision. Synthetic and real images have been

used for testing the camera calibration methods, fundamental matrix estimation

methods and egomotion estimation methods. The results obtained are compared in
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terms of accuracy and computing time.

Finally, chapter 7 ends this document with conclusions and further work. A list

of the related publications is included.

Two appendixes are attached to this document. Appendix A explains the mathe-

matical notation used in this thesis while Appendix B describes some details related

to the software implementation.



Chapter 2

Camera Modelling and Calibration

Camera calibrating is a crucial problem for further metric scene measurement. Many

techniques and some studies concerning calibration have been presented in the last

few years. However, it is still difficult to go into details of a determined calibrating

technique and compare its accuracy with respect to other methods. Principally, this

problem emerges from the lack of a standardized notation and the existence of various

methods of accuracy evaluation to choose from. This chapter presents a detailed

review of some of the most used calibrating techniques with the principal idea being

to present them all with the same notation.

2.1 Introduction

Camera calibration is the first step towards computational computer vision. Al-

though some information concerning the measuring of scenes can be obtained by

using uncalibrated cameras [Hartley 93], calibration is essential when metric infor-

mation is required. The use of precisely calibrated cameras makes the measure-

ment of distances in a real world from their projections on the image plane possi-

ble [Faugeras 93, Haralick 92a]. Some applications of this capability include:

1. Dense reconstruction: Each image point determines an optical ray passing

through the focal point of the camera towards the scene. The use of more

than a single view of a motionless scene (taken from a stereoscopic system,

a single moving camera, or even a structured light emitter) permits cross-

7
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ing both optical rays to get the metric position of the 3D points [Ahlers 89,

Batlle 98, Jarvis 83]. Obviously, the correspondence problem has to be previ-

ously solved [Zhang 93].

2. Visual inspection: Once a dense reconstruction of a measuring object is ob-

tained, the reconstructed object can be compared with a stored model in order

to detect any manufacturing imperfections such as bumps, dents or cracks.

One potential application is visual inspection for quality control. Computer-

ized visual inspection allows automatic and exhaustive examination of prod-

ucts, as opposed to the slower human inspection which usually implies a sta-

tistical approach [Newman 95].

3. Object localization: When considering various image points from different ob-

jects, the relative position between these objects can be easily determined.

This has many possible applications such as in industrial part assembly and

obstacle avoidance in robot navigation [Broggi 98, Casals 89, Charbonnier 95],

among others.

4. Camera localization: When a camera is placed in the hand of a robot arm or

on a mobile robot, the position and orientation of the camera can be com-

puted by locating some known landmarks in the scene. If these measurements

are stored, a temporal analysis allows the handler to determine the trajec-

tory of the robot. This information can be used in robot control and path

planning [Khadraoui 96, Lenz 89, Li 94].

Camera calibration is divided into two steps. The first step, called camera mod-

elling, deals with the mathematical approximation of the physical and optical be-

havior of the sensor by using a set of parameters. The second step deals with the

use of direct or iterative methods to estimate the values of these parameters which

is again called calibration. There are two kinds of parameters in the model which

have to be considered. On the one hand, there is the intrinsic parameter set which

models the internal geometry and optical characteristics of the image sensor. Basi-

cally, intrinsic parameters determine how light is projected through the lens onto the

image plane of the sensor. The other set of parameters are extrinsic. The extrinsic

parameters measure the position and orientation of the camera with respect to a

world coordinate system which, in turn, provides metric information with respect

to a user-fixed coordinate system instead of the camera coordinate system.
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Camera calibration techniques can be classified according to several different

criteria: 1) linear versus nonlinear camera calibration (usually differentiated de-

pending on the modelling of lens distortion) [Ito 91] and 2) intrinsic versus extrinsic

camera calibration. Intrinsic calibration is concerned only with obtaining the phys-

ical and optical parameters of the camera [Lenz 88, Penna 91]. Extrinsic calibra-

tion concerns the measurement of the position and orientation of the camera in the

scene [Liu 90, Wang 92]. 3) Implicit [Hall 82] versus explicit [Batista 99] calibration.

Implicit calibration is the process of calibrating a camera without explicitly comput-

ing its physical parameters. Although the results can be used for 3D measurement

and the generation of image coordinates, they are useless for camera modelling as the

obtained parameters do not correspond to the physical ones [Wei 94]. Finally, 4) the

methods which use known 3D points as a calibrating pattern [Faugeras 86, Tsai 87]

or even a reduced set of 3D points [Hong 93, Kamata 92], with respect to others

which use geometrical properties in the scene such as vanishing lines [Wang 91] or

other line features [Chen 90, Echigo 90].

These various approaches can also be classified as regards the calibration method

used to estimate the parameters of the camera model:

1. Non-linear optimization techniques. A calibrating technique becomes non-

linear when any kind of lens imperfection is included in the camera model.

In that case, the camera parameters are usually obtained through iteration

with the constraint of minimizing a determined function. The minimizing

function is usually the distance between the imaged points and the modelled

projections obtained by iterating. The advantage of these iterating techniques

is that almost any model can be calibrated and accuracy usually increases

by increasing the number of iterations up to convergence. However, these

techniques require a good initial guess in order to guarantee convergence. Some

examples are described in classic photogrammetry [Salvi 97, Slama 80].

2. Linear techniques which compute the transformation matrix. These techniques

use the least squares method to obtain a transformation matrix which relates

3D points with their 2D projections. The advantage here is the simplicity of

the model which consists of a simple and rapid calibration. One drawback

is that linear techniques are useless for lens distortion modelling, entailing a

rough accuracy of the system. Moreover, it is sometimes difficult to extract
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the parameters from the matrix due to the implicit calibration used. Some

references related to linear calibration can be found in Hall [Hall 82], Toscani-

Faugeras [Faugeras 86, Toscani 87] and Ito [Ito 91].

3. Two-step techniques. These techniques use a linear optimization to compute

some of the parameters and, as a second step, the remaining parameters are

computed iteratively. These techniques permit a rapid calibration which re-

duces the number of iterations considerably. Moreover, the convergence is

nearly guaranteed due to the linear guess obtained in the first step. Two-step

techniques make use of the advantages of the previously described methods.

Some references are Tsai [Tsai 87], Weng [Weng 92b] and Wei [Wei 94].

This chapter is a detailed survey of some of the most frequently used calibrating

techniques (see camera calibration surveys [Armangué 00] and [Salvi 02]). The first

technique was proposed by Hall in 1982 and is based on an implicit linear camera

calibration by computing the 3x4 transformation matrix which relates 3D object

points with their 2D image projections [Hall 82]. The latter work of Faugeras,

proposed in 1986, was based on extracting the physical parameters of the cam-

era from such a transformation technique and is explained as the second tech-

nique [Faugeras 86, Toscani 87]. The following methods are based on non-linear

explicit camera calibration, including the modelling of lens distortion. Hence, the

first one is a simple adaptation of the Faugeras linear method with the aim of in-

cluding radial lens distortion [Salvi 97, Salvi 98]. The widely used method proposed

by Tsai, based on a two-step technique modelling only radial lens distortion, is also

detailed [Tsai 87]. Finally, the complete model of Weng, proposed in 1992, including

three different types of lens distortion, is explained as the last technique [Weng 92b].

Note that one of the principal problems in understanding a calibrating technique in

detail is the lack of notation standardization in mathematical equations and the use

of different sets of coordinate systems. Both limitations complicate the comparing of

techniques, thus a great deal of effort has been made to present the survey using the

same notation. All five techniques are explained herein and their 2D and 3D accu-

racy shown and discussed. A brief overview of camera accuracy evaluation [Lai 93]

is included with the aim of using the same tools to compare the different calibrating

techniques implemented.
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This chapter is structured as follows. Section 2.2 deals with camera modelling

and how the camera model is gradually obtained by a sequence of geometrical trans-

formations. Section 2.3 describes the five different techniques of camera calibration

which estimate the parameters of the camera model. Then, a few methods for

accuracy evaluation of camera calibrating techniques are explained in section 2.4.

Finally, a summary of the chapter is presented.

2.2 Camera Model

A model is a mathematical formulation which approximates the behavior of any

physical device by using a set of mathematical equations. Camera modelling is based

on approximating the internal geometry along with the position and orientation of

the camera in the scene. There are several camera models to choose from depending

on the desired accuracy [Ito 91]. The simplest are based on linear transformations

without modelling the lens distortion. However, there are also some non-linear

models which accurately model the lens. These are useful for some applications

where greater precision is required.

The simplest model is the one proposed by Hall [Hall 82]. The goal is to find a

linear relationship among the 3D points of the scene with their 2D projecting points

on the image plane. This relationship is approximated by means of a transformation

matrix1, as shown in equation (2.1).







sIXd

sIYd

s






=







A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34



















WXw

WYw

WZw

1













(2.1)

Then, given a 3D point Pw, expressed with respect to the metric world coordinate

system (i.e. WPw), and applying the transformation matrix proposed by Hall, the

2D point Pd in pixels with respect to the image coordinate system is obtained, i.e.
IPd = (IXd,

I Yd).

However, camera modelling is usually broken down into 4 steps, as is hereafter

detailed (see also Figure 2.1).

1The appendix A at the end of this document details the used nomenclature.
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Figure 2.1: The geometric relation between a 3D object point and its 2D image
projection.

1. The first step consists of relating a point WPw from the world coordinate

system to the camera coordinate system, obtaining CPw. This transformation

is performed by using a rotation matrix and a translation vector.

2. Next, it is necessary to carry out the projection of point CPw on the image

plane obtaining point CPu, by using a projective transformation.

3. The third step models the lens distortion, based on a disparity with the real

projection. Then, point CPu is transformed to the real projection of CPd (which

should coincide with the points captured by the camera).

4. Finally, the last step consists of carrying out another coordinate system trans-

formation in order to change from the metric coordinate system of the camera

to the image coordinate system of the computer in pixels, obtaining IPd.

In the following, the different camera models of Faugeras-Toscani [Toscani 87],

Faugeras-Toscani with distortion [Salvi 98], Tsai [Tsai 87] and Weng [Weng 92b] are

explained in detail with attention on how they carry out the above four steps.
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2.2.1 Camera Position and Orientation

Changing the world coordinate system to the camera coordinate system is carried

out in the same way in all the surveyed models. This transformation is modelled

using a translation vector and a rotation matrix, as shown in equation (2.2).







CXw

CYw

CZw






= CRW







WXw

WYw

WZw






+ CTW (2.2)

Then, given a point WPw related to the world coordinate system, and applying

equation (2.2), the point CPw in relation to the camera coordinate system is ob-

tained. Note that CRW expresses the orientation of the world coordinate system

{W} with respect to the axis of the camera coordinate system {C}, and that CTW

expresses the position of the origin of the world coordinate system measured with

respect to {C}.

2.2.2 Perspective Projection

Consider that any optical sensor can be modelled as a pinhole camera [Faugeras 93].

That is, the image plane is located at a distance f from the optical center OC , and

is parallel to the plane defined by the coordinate axis XC and YC . Moreover, given

an object point (CPw) related to the camera coordinate system, if it is projected

through the focal point (OC), the optical ray intercepts the image plane at the 2D

image point (CPu). This relation is shown in equation (2.3).

CXu = f
CXw
CZw

CYu = f
CYw
CZw

(2.3)

All the various models reviewed solved the projective transformation by using

the same equation (2.3).

2.2.3 Lens Distortion

The third step is based on modelling the distortion of the lenses. Equations (2.4)

transform the undistorted point CPu to the distorted point CPd, where δx and δy
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represent the distortion involved.

CXu = CXd + δx
CYu = CYd + δy (2.4)

The camera model proposed by Faugeras and Toscani [Toscani 87] does not

model the lens distortion, therefore, CPu and CPd are the same point. In this case

δx and δy are zero, as shown in equation (2.5).

δx = 0 δy = 0 (2.5)

The Faugeras-Toscani model, can be improved by modelling the radial lens dis-

tortion [Salvi 98], though. Besides, Tsai [Tsai 87] has modelled the lens distortion

considering in the same way only radial distortion. As shown in equations (2.6), δx

and δy represent the radial distortion [Slama 80]. This type of distortion is mainly

caused by flawed radial curvature of the lens, shown in Figure 2.2 and 2.3. See

also [Weng 92b].

δx = δxr δy = δyr (2.6)

The displacement given by the radial distortion dr can be modelled by equa-

tions (2.7), which consider only k1 the first term of the radial distortion series. It

has been proven that the first term of this series is sufficient to model the radial

distortion in most of the applications [Tsai 87].

δxr = k1
CXd

(

CXd
2
+ CYd

2
)

δyr = k1
CYd

(

CXd
2
+ CYd

2
)

(2.7)

The model of Weng [Weng 92b] considers three types of distortion: radial dis-

tortion, decentering distortion and thin prism distortion. The total distortion will

be the sum of these three distortions.

δx = δxr + δxd + δxp δy = δyr + δyd + δyp (2.8)

However, Weng proposed to model the lens distortion from the undistorted im-

age point (CXu,
CYu) instead of the distorted one (CXd,

CYd). Although both ap-

proaches can be considered, it also has to be taken into account that the calibrating
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d
P

u
P dr

C
Y

C
X

Observed position

Ideal

projection

dr: radial distortion

Figure 2.2: Radial distortion.

a

b

Figure 2.3: Radial distortion effect (a: negative, b: positive).
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Ideal

projection
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dr: radial distortion

dt: tangencial distortion

d
P

u
P

dr

C
Y

C
X

dt

Figure 2.4: Radial and tangential distortion.

parameters will be different. Hence, equations (2.4) have to be substituted by equa-

tions (2.9).
CXd = CXu + δx

CYd = CYu + δy (2.9)

The radial distortion is modelled in the same manner Tsai proposed, except that

Weng used the undistorted points.

δxr = k1
CXu

(

CXu
2
+ CYu

2
)

δyr = k1
CYu

(

CXu
2
+ CYu

2
)

(2.10)

The decentering distortion is due to the fact that the optical center of the lens

is not correctly aligned with the center of the camera [Weng 92b]. This type of

distortion introduces a radial and tangential distortion [Slama 80] (see Figure 2.4),

which can be described by the following equations,

δxd = p1

(

3 CXu
2
+ CYu

2
)

+ 2p2
CXu

CYu

δyd = 2p1
CXu

CYu + p2

(

CXu
2
+ 3 CYu

2
) (2.11)
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Figure 2.5: Radial and tangential distortion effect.

The thin prism distortion arises from imperfection in lens design and manufactur-

ing as well as camera assembly. This type of distortion can be modelled by adding a

thin prism to the optic system, causing radial and tangential distortions [Weng 92b].

This distortion is modelled by,

δxp = s1

(

CXu
2
+ CYu

2
)

δyp = s2

(

CXu
2
+ CYu

2
)

(2.12)

By adding the three equations (2.7), (2.11) and (2.12), and carrying out the

following variable replacement: g1 = s1 + p1, g2 = s2 + p2, g3 = 2p1 and g4 = 2p2,

equations (2.13) are obtained,

δx = (g1 + g3)
CXu

2
+ g4

CXu
CYu + g1

CYu
2
+ k1

CXu

(

CXu
2
+ CYu

2
)

δy = g2
CXu

2
+ g3

CXu
CYu + (g2 + g4)

CYu
2
+ k1

CYu

(

CXu
2
+ CYu

2
) (2.13)
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2.2.4 Computer Image Frame

This final step deals with expressing the CPd point with respect to the computer

image plane in pixels {I}. This change of coordinates can be made in two different

ways according to the camera models surveyed.

The camera models proposed by Faugeras-Toscani, Faugeras-Toscani with dis-

tortion and by Weng use the following equations to carry out such a transformation:

IXd = −ku
CXd + u0

IYd = −kv
CYd + v0 (2.14)

where: (ku,kv) are the parameters that transform from metric measures with respect

to the camera coordinate system to pixels with respect to the computer image co-

ordinate system; and (u0, v0) are the components that define the projection of the

focal point in the plane image in pixels, i.e. the principal point. They are used to

determine the translation between both coordinate systems.

The camera model of Tsai proposed other equations to carry out the same trans-

formation. These equations are the following,

IXd = −sxd
′
x
−1CXd + u0

IYd = −dy
−1CYd + v0 (2.15)

where: (u0, v0) are the components of the principal point in pixels; sx is the image

scale factor; d′x = dx
Ncx

Nfx
; dx is the center to center distance between adjacent sensor

elements in the X direction; dy is the center to center distance between adjacent

sensor elements in the Y direction; Ncx is the number of sensor elements in the

X direction; and Nfx is the number of pixels in an image row as sampled by the

computer.

2.3 Calibrating Methods

The calibrating method depends on the model used to approximate the behavior of

the camera. The linear models, i.e. Hall and Faugeras-Toscani, use a least-squares

technique to obtain the parameters of the model. However, non-linear calibrating

methods, i.e. Faugeras-Toscani with distortion, Tsai and Weng, use a two-stage

technique. As a first stage, they carry out a linear approximation with the aim of
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obtaining an initial guess and then a further iterative algorithm is used to optimize

the parameters. In this section, each calibrating method is explained detailing the

equations and the algorithm used to calibrate the camera parameters.

2.3.1 The Method of Hall

The method used to calibrate the model of Hall is based on expressing equation (2.1)

in the following form,

IXu =
A11

WXw + A12
WYw + A13

WZw + A14

A31
WXw + A32

WYw + A33
WZw + A34

(2.16)

IYu =
A21

WXw + A22
WYw + A23

WZw + A24

A31
WXw + A32

WYw + A33
WZw + A34

By arranging the variables, the following expressions are obtained,

0 = A11
WXw − A31

IXu
WXw + A12

WYw

−A32
IXu

WYw + A13
WZw − A33

IXu
WZw + A14 − A34

IXu

0 = A21
WXw − A31

IYu
WXw + A22

WYw

−A32
IYu

WYw + A23
WZw − A33

IYu
WZw + A24 − A34

IYu

(2.17)

Finally, the unknowns Aij are arranged in a 12-parameter vector (A), obtaining

the following equation:

QA = 0 (2.18)

where A is the vector of 12 unknowns of the equation (2.19). Q is a matrix of 2n×12

where n is the number of pair points used to calibrate the camera. A pair of points

is formed by a 3D point expressed with respect to the world coordinate system {W}
and its 2D projection expressed in pixels with respect to coordinate system {I}.

A =
(

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34

)T

(2.19)
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Every pair of points adds to the Q matrix the two following rows,

Q2i−1 =





















































WXui

WYui

WZui

1

0

0

0

0

−IXui
WXwi

−IXui
WYwi

−IXui
WZwi

−IXui





















































T

Q2i =





















































0

0

0

0
WXui

WYui

WZui

1

−IYui
WXwi

−IYui
WYwi

−IYui
WZwi

−IYui





















































T

(2.20)

Consider then that the 3D position of a set of n calibrating points and their

corresponding 2D projection in the image are known (n should be bigger or equal

to 6). Moreover, consider without loss of generality that A34 = 1. This approx-

imation can be assumed since the transformation matrix is defined up to a scale

factor [Faugeras 93]. Then, all the elements of the A vector can be obtained by

using a linear least-squares technique as the pseudo-inverse [Hall 82]. With the

aim of applying the pseudo-inverse, it becomes necessary to modify equation (2.18)

considering that A34 = 1, obtaining:

Q′A′ = B′ (2.21)

where,

A′ =
(

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33

)T

(2.22)
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and,

Q′
2i−1 =















































WXui

WYui

WZui

1

0

0

0

0

−IXui
WXwi

−IXui
WYwi

−IXui
WZwi















































T

Q′
2i =















































0

0

0

0
WXui

WYui

WZui

1

−IYui
WXwi

−IYui
WYwi

−IYui
WZwi















































T

(2.23)

B′
2i−1 =

(

IXui

)

B′
2i =

(

IYui

)

(2.24)

Finally, the vector of unknowns (A) is computed by applying the pseudo-inverse

shown in the following equation (2.25).

A′ =
(

Q′TQ′
)−1

Q′TB′ (2.25)

2.3.2 The Method of Faugeras

In order to calibrate the complete model of the camera proposed by Faugeras and

Toscani, it is necessary to combine equations (2.2), (2.3), (2.4), (2.5) and (2.14),

obtaining (2.26).

IXu = −kuf
r11

WXw + r12
WYw + r13

WZw + tx
r31WXw + r32WYw + r33WZw + tz

+ u0

(2.26)

IYu = −kvf
r21

WXw + r22
WYw + r23

WZw + ty
r31WXw + r32WYw + r33WZw + tz

+ v0

Note that equations (2.26) can be expressed in a matricial form in the following
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manner,







sIXd

sIYd

s






=







αu 0 u0 0

0 αv v0 0

0 0 1 0



















r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

























WXw

WYw

WZw

1













(2.27)

where αu = −fku and αv = −fkv. Then, by computing the product of both

matrices, the transformation matrix A is obtained.







sIXd

sIYd

s






= A













WXw

WYw

WZw

1













(2.28)

A =







αur1 + u0r3 αutx + u0tz

αvr2 + v0r3 αvty + v0tz

r3 tz






(2.29)

The camera parameters can be extracted from the symbolic matrix (A) by equalling

it to the numeric matrix obtained by calibrating the camera with the technique of

Hall. Note that the orientation of the vectors ri must be orthogonal and that it is

also known that the dot product between two vectors follows the following criteria:

rirj
T = 0 i 6= j

rirj
T = 1 i = j

(2.30)

Using these relationships, the four intrinsic parameters (αu, αv, u0, v0) and the

six extrinsic ones (r1, r2, r3, tx, ty, tz) can be extracted from equation (2.29) in the

following manner,

u0 = A1A3
T v0 = A2A3

T

αu = −
(

A1A1
T − u2

0

)1/2
αv = −

(

A2A2
T − v2

0

)1/2

r1 = 1
αu

(A1 − u0A3) tx = 1
αu

(A14 − u0A34)

r2 = 1
αv

(A2 − v0A3) ty = 1
αv

(A24 − v0A34)

r3 = A3 tz = A34

(2.31)
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where the numerical matrix A is:

A =







A1 A14

A2 A24

A3 A34






(2.32)

However, before estimating the camera parameters, the A matrix has to be cal-

culated. Faugeras proposed a slightly different method of estimating A from the one

proposed by Hall. Hence, the terms of equation (2.1) have been rearranged in the

following way,

A1
WPw + A14 − IXu

(

A3
WPw + A34

)

= 0

A2
WPw + A24 − IYu

(

A3
WPw + A34

)

= 0
(2.33)

Both equations are then factorized with respect to the unknowns, obtaining,

IXu =
A1

A34

WPw +
A14

A34

− A3

A34

WPw
IXu

(2.34)

IYu =
A2

A34

WPw +
A24

A34

− A3

A34

WPw
IYu

At this point, a set of 5 parameters is considered X = (T1, T2, T3, C1, C2)
T,

which are T1 = A1

A34

, T2 = A3

A34

, T3 = A2

A34

, C1 = A14

A34

and C2 = A24

A34

.

IXu = T1
WPw + C1 − T2

WPw
IXu

IYu = T3
WPw + C2 − T2

WPw
IYu

(2.35)

Then, the value of the vector X is obtained by using a linear least-squares tech-

nique.

B = QX (2.36)

where,

Q =













· · ·
WPw

T
i −IXui

WPw
T
i 01x3 1 0

01x3 −IYui
WPw

T
i

WPw
T
i 0 1

· · ·













B =













· · ·
IXui

IYui

· · ·













(2.37)
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Hence, vector X is computed using equation (2.36).

X =
(

QTQ
)−1

QTB (2.38)

Finally, the camera parameters are extracted from X by using equation (2.28).

T1 = r3

tz
u0 + r1

tz
αu C1 = u0 + tx

tz
αu

T2 = r3

tz

T3 = r3

tz
v0 + r2

tz
αv C2 = v0 + ty

tz
αv

(2.39)

At this point, it has to be considered that the norm of the three orientation

vectors ri is equal to unity by definition. By using equations (2.39), the parameter

tz can then be computed. Hence, considering r3 = 1,

tz =
1

‖T2‖
(2.40)

The rest of the parameters can be obtained using the properties of the dot prod-

uct and the cross product between vectors, which are,

v1v2 = ‖v1‖ ‖v2‖ cosα v1 ∧ v2 = ‖v1‖ ‖v2‖ sinα (2.41)

so that,

rirj
T = 0 i 6= j ri ∧ rj = 1 i 6= j

rirj
T = 1 i = j ri ∧ rj = 0 i = j

(2.42)

The intrinsic parameters can then be obtained in the following way,

u0 = T1T2
T

‖T2‖
2 v0 = T1T3

T

‖T2‖
2

αu = −‖T1
T∧T2

T‖
‖T2‖

2 αv = −‖T2
T∧T3

T‖
‖T2‖

2

(2.43)
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Moreover, the extrinsic parameters which model the orientation are the following,

r1 = − ‖T2‖
∥

∥T1
T ∧ T2

T
∥

∥

(

T1 −
T1T2

T

‖T2‖2 T2

)

r2 = − ‖T2‖
∥

∥T2
T ∧ T3

T
∥

∥

(

T3 −
T2T3

T

‖T2‖2 T2

)

(2.44)

r3 =
T2

‖T2‖

Finally, the extrinsic parameters that model the translation are also obtained from (2.39).

tx = − ‖T2‖
∥

∥T1
T ∧ T2

T
∥

∥

(

C1 −
T1T2

T

‖T2‖2

)

ty = − ‖T2‖
∥

∥T2
T ∧ T3

T
∥

∥

(

C2 −
T2T3

T

‖T2‖2

)

(2.45)

tz =
1

‖T2‖

By using the ri vectors in equations (2.44), the rotation matrix CRW is directly

obtained. The three angles α, β and γ can then be computed by equalling the sym-

bolic rotation matrix to the numeric matrix obtained by calibration. At this point,

all the parameters of the linear model of Faugeras are obtained. These parameters

determine the relationship between the 3D object points with their 2D projections,

as shown in equation (2.28). However, the model of Faugeras can be more accurate

if radial lens distortion is included.

2.3.3 The Method of Faugeras with Radial Distortion

When a bright accuracy is necessary, the linear method of Faugeras becomes useless.

However, it can be easily modified by including the radial lens distortion as it has

been shown in section 2.2.3. Then, the equations become non-linear, and the linear

least-squares technique has to be replaced by an iterative algorithm.

Note that by combining equations (2.2), (2.3), (2.4), (2.6) and (2.7), the equa-
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tions (2.46) are obtained.

CXd + CXdk1r
2 = f

r11
WXw + r12

WYw + r13
WZw + tx

r31WXw + r32WYw + r33WZw + tz

CYd + CYdk1r
2 = f

r21
WXw + r22

WYw + r23
WZw + ty

r31WXw + r32WYw + r33WZw + tz
(2.46)

r =

√

CXd
2 + CYd

2

Moreover, equations (2.14) have to be used to transform from metric coordinates

to pixels. Then, equation (2.47) defines the vector of unknowns which can be com-

puted by using an iterative method as, for instance, the method of Newton-Raphson

or Levenberg-Marquardt, among others [Stoer 80].

x = (α, β, γ, tx, ty, tz, ku, kv, u0, v0, k1)
T (2.47)

For example, the general method of Newton-Raphson minimizes the following

equation,

G (xk) ≈ G (xk−1) + J∆xk (2.48)

where x is the vector of unknowns, G(x) is the minimization function, G(xk) is a

value close to the solution, and J represents the jacobian matrix of the function

G(x). With the aim of finding a solution of ∆xk, it is necessary to equal G(xk) to

zero.

G (xk) = 0 (2.49)

Note that one of the problems of convergence in iterative algorithms is the initial

guess. However, an initial guess can be obtained by calibrating the linear method of

Faugeras-Toscani without including lens distortion, and assuming k1 = 0. Moreover,

the difference between the initial value and the estimated parameters will be the error

of the function. For each iteration it is necessary to compute the value of ∆xk to

obtain the new value of x.

J∆xk = −G (xk−1) (2.50)

Then, arranging equations (2.46) and (2.14), the functions U(x) and V (x) are
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given.

U (x) = f
r11

WXw + r12
WYw + r13

WZw + tx
r31WXw + r32WYw + r33WZw + tz

−
(

IXd − u0

)

−ku

−k1





(

(

IXd − u0

)

−ku

)2

+

(

(

IYd − v0

)

−kv

)2




(

IXd − u0

)

−ku

(2.51)

V (x) = f
r21

WXw + r22
WYw + r23

WZw + ty
r31WXw + r32WYw + r33WZw + tz

−
(

IYd − v0

)

−kv

−k1





(

(

IXd − u0

)

−ku

)2

+

(

(

IYd − v0

)

−kv

)2




(

IYd − v0

)

−kv

Next, with the aim of solving the system, it is necessary to apply equations (2.51)

to the n calibrating points. However, in order to apply equation (2.50), it is necessary

to get the symbolic function G(x) and its partial derivative matrix J, as it is shown

in the following equations,

G(xk−1) =













U1 (xk−1)

V1 (xk−1)
...

Vn (xk−1)













(2.52)

J =













∂U1(xk−1)

∂α

∂U1(xk−1)

∂β
· · · ∂U1(xk−1)

∂k1

∂V1(xk−1)

∂α

∂V1(xk−1)

∂β
· · · ∂V1(xk−1)

∂k1

...
...

. . .
...

∂Vn(xk−1)

∂α

∂Vn(xk−1)

∂β
· · · ∂Vn(xk−1)

∂k1













(2.53)

Finally, the parameters of the model are obtained by applying the pseudo-inverse

of equations (2.54) in each iteration. The more iterations done, the higher the

accuracy obtained until convergence is achieved.

∆xk = −
(

JTJ
)−1

JTG (xk−1)

xk = xk−1 + ∆xk

(2.54)
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2.3.4 The Method of Tsai

The non-linear method of Faugeras was based on fixing the initial guess without

considering lens distortion. Moreover, a large number of iterations are usually nec-

essary to obtain an accurate value of the camera parameters. Besides, the method

of Tsai [Tsai 87] also models the radial lens distortion but assumes that there are

some parameters of the camera which are provided by manufacturers. This fact

reduces the number of calibrating parameters in the first step where an initial guess

is estimated. Moreover, although all the parameters are iteratively optimized in the

last step, the number of iterations is considerably reduced by using the calibrating

algorithm proposed by Tsai.

Firstly, by combining equations (2.2), (2.3), (2.4), (2.6), and (2.7), the equa-

tions (2.46) are obtained. Note that at this point model of Tsai is equivalent to the

previous model of Faugeras with distortion (2.46). Once CX ′
d and CY ′

d are obtained

in metric coordinates by using equation (2.15), they can be expressed in pixels (IXd

and IYd) and the following equations are obtained.

CX ′
di = −

(

IXdi − u0

)

d′x
CY ′

di = −
(

IYdi − v0

)

dy (2.55)

where,
CX ′

di = CXdisx
CY ′

di = CYdi (2.56)

It is necessary therefore to find a relationship between the image point Pd (in

metric coordinates) with respect to the object point Pw. Figure 2.6 shows how the

radial distortion affects the camera model. It can be observed that the segment

ORPd is parallel to the segment PozPw. Considering this constraint, the following

relationship is established,

ORPd//PozPw ⇒ ORPd × PozPw = 0 (2.57)

By using equation (2.57), the following equations are obtained.

ORPd × PozPw = 0 (2.58)
(

CXd,
CYd

)

×
(

CXw,
CYw

)

= 0 (2.59)

CXd
CYw − CYd

CXw = 0 (2.60)
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Figure 2.6: Illustration of the radial alignment constraint [Tsai 87].

Equation (2.60) can be arranged expressing the object point Pw with respect to

the world coordinate system, instead of expressing it with respect to the camera

coordinate system.

CXd

(

r21
WXw + r22

WYw + r23
WZw + ty

)

=

CYd

(

r11
WXw + r12

WYw + r13
WZw + tx

)

(2.61)

Operating equation (2.61) and arranging the terms,

CXd = CYd
WXw

r11
ty

+ CYd
WYw

r12
ty

+ CYd
WZw

r13
ty

+ CYd
tx
ty

−CXd
WXw

r21
ty

− CXd
WYw

r22
ty

+ CXd
WZw

r23
ty

(2.62)

In order to compute equation (2.62) for the n points obtained from equations (2.55),
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it is necessary to combine equation (2.62) with the equations (2.56), obtaining,

CX ′
di = CY ′

di
WXwi

sxr11
ty

+ CY ′
di

WYwi

sxr12
ty

+ CY ′
di

WZwi

sxr13
ty

+ CY ′
di

sxtx
ty

−CX ′
di

WXwi

r21
ty

− CX ′
di

WYwi

r22
ty

+ CX ′
di

WZwi

r23
ty

(2.63)

At this point, a system with n equations and 7 unknowns is obtained, which can

be expressed in the following form,



























CY ′
di

WXwi

CY ′
di

WYwi

CY ′
di

WZwi

CY ′
di

−CX ′
di

WXwi

−CX ′
di

WYwi

−CX ′
di

WZwi



























T

























t−1
y sxr11

t−1
y sxr12

t−1
y sxr13

t−1
y sxtx

t−1
y sxr21

t−1
y sxr22

t−1
y sxr23



























= CX ′
di (2.64)

In order to simplify the notation, the 7 unknown components of the vector renamed.

a1 = t−1
y sxr11 a5 = t−1

y r21

a2 = t−1
y sxr12 a6 = t−1

y r22

a3 = t−1
y sxr13 a7 = t−1

y r23

a4 = t−1
y sxtx

(2.65)

Note that the ai components can be easily computed by using a least-squares

technique. Therefore, the point of interest is to extract the calibrating parame-

ters of the camera from these ai components. First ty can be obtained by using

equations (2.65) in the following manner,

ty =
‖r2‖

‖a5,6,7‖
(2.66)

and equation (2.66) is simplified because the norm of the vector r2 is equal to

the unity, obtaining the parameter ty.

|ty| =
1√

a5
2 + a6

2 + a7
2

(2.67)
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However, equation (2.67) is insufficient since it does not provide the sign of the

ty component. In order to determine this sign, a point (IXd,
IYd) located at the

periphery of the image, far from the center, is taken from the set of test points (its

corresponding 3D point is also kept). It is then supposed that the ty sign is positive,

and the following equations are computed.

r11 = a1ty/sx r21 = a5ty

r12 = a2ty/sx r22 = a6ty

r13 = a3ty/sx r23 = a7ty

tx = a4ty

(2.68)

By using the corresponding 3D point (WXw,WYw,WZw), the linear projection of this

3D point on the image plane (without considering lens distortion) can be computed

by using equations (2.69).

CXu = r11
WXw + r12

WYw + r13
WZw + tx

CYu = r21
WXw + r22

WYw + r23
WZw + ty

(2.69)

At this point the ty sign can be verified. If both components of the point

(CXu,
CYu) have a sign equal to the components of the point (IXd,

IYd), it means

that the ty sign was correctly chosen as positive. Otherwise, it has to be considered

negative.

The second parameter to be extracted is the scale factor (sx). Note that by

arranging equations (2.65), the following equation is obtained,

sx =
‖a1,2,3‖ ty

‖r1‖
(2.70)

where it is known that the norm of r1 is the unity and the scale factor is always

positive. Then, sx is obtained by using equation (2.71).

sx =
√

a1
2 + a2

2 + a3
2 |ty| (2.71)

Furthermore, the 2D points, with respect to the camera coordinate system (CXd,
CYd),

can be computed from the same point with respect to the image coordinate system,

that is (IXd,
IYd), by using equations (2.56). Moreover, by using equations (2.68)

the r1 and r2 vectors of the rotation matrix CRW , and the first element of the trans-
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Compute image co-ordinate
CXd and CYd

Compute from a1 until a7

Compute CRW, tx and ty

Compute of an approxi-

mation of f and tz position

Compute the exactly

solution for f, tz and k1

Compute 3D orientation,

position ( tx and ty)

and scale factor

Compute effective focal

length f, distortion

coefficients k1 and tz position

Non-linear full

optimitzation

Parameters

optimitzation

Figure 2.7: Flowchart of the method of Tsai.

lation vector CTW , i.e. tx, can be calculated. Finally, the third orientation vector

(r3) can be computed by a cross product between r1 and r2 because of the property

of orthogonality, (note also that the determinant of any rotation matrix is the unity,

i.e. |CRW | = 1). At this point, the first three steps of the method of Tsai are

completed, see Figure 2.7.

However, the following parameters are still unknown: the focal distance (f), the

radial lens distortion coefficient (k1), and the translation of the camera with respect

to the Z axis (tz). In order to compute these three parameters, a linear approxima-

tion is first used without considering the k1 parameter. The linear approximation is

shown in equation (2.72), which was obtained from equations (2.46).

(

r21
WXwi + r22

WYwi + r23
WZwi + ty −CYd

)

(

f

tz

)

=

(

r31
WXwi + r32

WYwi + r33
WZwi

)

CYd (2.72)
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Equation (2.72) has now been applied to the whole set of test points, obtaining

a system of n equations and two unknowns. The linear approximation of both

unknowns, f and tz, is obtained by using a pseudo-inverse. However, in order

to calculate a better approximation including the k1 parameter, it is necessary to

iterate equations (2.46) by using an optimization method considering the linear

method with k1 = 0 as an initial solution.

Finally, all the parameters are optimized iteratively with the aim of obtaining

an accurate solution. The entire process is explained in Figure 2.7.

2.3.5 The Method of Weng

The method of Tsai is based on modelling radial lens distortion. The accuracy

obtained by Tsai is sufficient for most applications. However, in some cases where

the camera lens needs to be accurately modelled, a simple radial approximation is

not sufficient. In such situations, Weng [Weng 92b] modifies the model proposed by

Faugeras-Toscani [Toscani 87] including up to three types of lens distortion, which

has been explained in section 2.2.3. This fact increases the number of steps needed

to calibrate the camera. A flowchart of the entire process is detailed in Figure 2.8.

The first step is to obtain the complete model of Weng. Then, Weng proposed

to simplify the equations by introducing a variable substitution. Hence, equalling

equations (2.9) and (2.14), equations (2.73) are obtained.

CXu + δx
(

CXu,
CYu

)

=
(

IXd − u0

)/

−ku

CYu + δy
(

CXu,
CYu

)

=
(

IYd − v0

)/

−kv

At this point, two new unknowns are introduced, in the following manner,

CX̂d =
(

IXd − u0

)/

αu
C Ŷd =

(

IXd − v0

)/

αv (2.73)

A substitution is then applied to simplify equations (2.73), obtaining equa-

tions (2.74).

CXu

f
= CX̂d −

δx(CXu,CYu)
f

CYu

f
= C Ŷd −

δy(CXu,CYu)
f

(2.74)
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Figure 2.8: Flowchart of the method of Weng [Weng 92b].

This replacement of unknowns is necessary because the value of (CXu,
CYu)

cannot be obtained by observation. This fact makes it necessary to compute the

distortion from the observed points after representing them with respect to the

camera coordinate system, that is from (CX̂d,
C Ŷd) [Slama 80, Weng 92b]. This

replacement is reasonable because the distortion on the image plane suffered by the

point (CXu,
CYu) is approximately equal to the distortion suffered by the point(CX̂d,

C Ŷd). Therefore, the distortion coefficients in δ′x and δ′y will be estimated from

(CX̂d,
C Ŷd), instead of δx and δy, which was estimated from (CXu,

CYu). As a result,

the equations which relate distorted to undistorted points are the following,

CXu

f
= CX̂d + δ′x

(

CX̂d,
C Ŷd

)

CYu

f
= C Ŷd + δ′y

(

CX̂d,
C Ŷd

)

(2.75)

Finally, redefining the coefficients k1 and g1 up to g4, and combining equa-
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tions (2.2), (2.3) and (2.75) the complete camera model is obtained,

r11
WXw + r12

WYw + r13
WZw + tx

r31WXw + r32WYw + r33WZw + tz
= CX̂d

+ (g1 + g3)
CX̂d

2
+ g4

CX̂d
C Ŷd + g1

C Ŷd

2
+ k1

CX̂d

(

CX̂d

2
+ C Ŷd

2
)

r21
WXw + r22

WYw + r23
WZw + ty

r31WXw + r32WYw + r33WZw + tz
= C Ŷd

+g2
CX̂d

2
+ g3

CX̂d
C Ŷd + (g2 + g4)

C Ŷd
2
+ k1

C Ŷd

(

CX̂d
2
+ C Ŷd

2
)

(2.76)

In order to be able to calibrate all the parameters of the model, Weng proposed to

obtain a first approximation of the linear parameters, i.e. the extrinsic and intrinsic

parameters without distortion. The m vector is now defined containing these linear

parameters.

m = (u0, v0, αu, αv, tx, ty, tz, α, β, γ)
T (2.77)

Furthermore, the non-linear parameters which model the lens define a new vector

d.

d = (k1, g1, g2, g3, g4)
T (2.78)

Moreover, the calibration is based on the 3D test points and their projections.

Let us call F the camera model, Ω the set of 3D points, and ω the set of their

projections. Then, the calibration problem is the same as optimizing the parameters

(m∗,d∗) which minimize the equation F by using both sets of test points.

F (Ω, ω,m∗, d∗) = min
m,d

F (Ω, ω,m, d) (2.79)

This problem of optimization can be solved by using a non-linear method, in the

following manner:

1. Fix d = 0.

2. Calculate m, which minimizes F by fixing d, that is: min
m

F (Ω, ω,m, d)

3. Calculate d, which minimizes F by fixing m, that is: min
d
F (Ω, ω,m, d)

4. Return to step 2 until the minimization error is sufficiently tolerable.

This method of optimization is used to solve diverse problems. First, the vector

d can be coupled with m making the minimization of F false. Second, the intrinsic
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parameters can not be optimized until a sufficient approximation of the extrinsic

parameters is achieved. Third, sincem corresponds to an approximation of the linear

parameters, it cannot be the best solution if a significant distortion is presented.

With the aim of obtaining a good estimation of m with a non-linear optimization

method, it is necessary to obtain an initial guess before iterating. Therefore, the

initial guess is calculated supposing d = 0. Then, the model of Weng removing

distortion, see equations (2.74), is applied to the n calibrating points, obtaining 2n

equations of the form:

(

IXui − u0

)

WXwir31 +
(

IXui − u0

)

WYwir32

+
(

IXui − u0

)

WZwir33 +
(

IXui − u0

)

tz

−αu
WXwir11 − αu

WYwir12 − αu
WZwir13 − αutx = 0

(

IYui − v0

)

WXwir31 +
(

IYui − v0

)

WYwir32

+
(

IYui − v0

)

WZwir33 +
(

IYui − v0

)

tz

−αv
WXwir21 − αv

WYwir22 − αv
WZwir23 − αvty = 0

(2.80)

By using equations (2.80), all the m parameters can be calculated. As the m

vector has 10 unknowns, it is necessary to use at least 5 test points. Nevertheless,

a large number of points is used in order to obtain a more accurate solution. The

following parameters are then defined,

W1 = αur1 + u0r3 w4 = αutx + u0tz

W2 = αvr2 + v0r3 w5 = αvty + v0tz

W3 = r3 w6 = tz

(2.81)

where the vectors r1, r2 and r3 correspond to each row of the matrix CRW , respec-

tively. Moreover, the set of equations (2.80) is expressed in matricial form as

AW = 0 (2.82)
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where A is a matrix with 2n rows and 12 columns.

A =



















−WPw1
T

01x3
IXu1

WPw1
T −1 0 IXu1

01x3 −WPw1
T IYu1

WPw1
T

0 −1 IYu1

...
...

...
...

...
...

−WPwn
T

01x3
IXun

WPwn
T −1 0 IXun

01x3 −WPwn
T IYun

WPwn
T

0 −1 IYun



















(2.83)

However, the vector W = (W1,W2,W3, w4, w5, w6)
T cannot be directly calculated

because of the homogeneity of the system, which deals with multiple solutions. Then,

only one of these potential solutions satisfies the following conditions: a) The norm

of theW3 vector has to be the unity because it is the third row of the rotation matrix;

b) The w6 sign has to coincide with the position of the optical center with respect

to the image plane: Positive if the z-axis intersects the image plane, otherwise has

to be considered negative.

With the aim of avoiding the homogeneity of the system of equation (2.82), it is

necessary to impose the following temporary restriction,

w6 = tz = 1 (2.84)

Hence, equation (2.82) is modified, obtaining

A′W ′ +B′ = 0 (2.85)

where A′ is the first 11 columns of the A matrix, B ′ is the last column of A and

W ′ is a vector of the 11 unknowns, i.e. W ′ = (W1,W2,W3, w4, w5). Then, W ′ is

computed by using the pseudo-inverse,

W ′ =
(

A′TA′
)−1

A′T (−B′) (2.86)

At this point, W ′ is the solution of the system shown in equation (2.85). However,

in order to be a solution of equation (2.82) as well, it has to accomplish the two

constraints. Therefore, the solution is divided by ‖W3‖, which forces the norm of
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W3 to be the unity, and replaces the w6 sign if necessary. See equation (2.87).

S =























S1

S2

S3

s4

s5

s6























= ± 1

‖W3‖























W1

W2

W3

w4

w5

w6























(2.87)

Moreover, knowing that the vectors r1, r2 and r3 are orthogonal, equations (2.81)

can be applied to obtain a first approximation of the m vector.

ū0 = ST
1 S3 v̄0 = ST

2 S3

ᾱu = −‖S1 − ū0S3‖ ᾱv = −‖S2 − v̄0S3‖
t̄x = (s4 − ū0s6)/ᾱu r̄1 = (S1 − ū0S3)/ᾱu

t̄y = (s5 − v̄0s6)/ᾱv r̄2 = (S2 − v̄0S3)/ᾱv

t̄z = s6 r̄3 = S3

(2.88)

However, this first approximation does not imply that the matrix CR̄W is orthonor-

mal. The next step consists of calculating the orthonormal matrix CR̃W . The first

step is to verify,
∥

∥

∥

CR̃W − CR̄W

∥

∥

∥ = min
CRW

∥

∥

CR̄W − CRW

∥

∥ (2.89)

With the aim of solving equation (2.89), it is rewritten including a 3× 3 identity

matrix I.
∥

∥

∥

CR̃W I − CR̄W

∥

∥

∥ = min
CRW

∥

∥

CR̄W − CRW

∥

∥ (2.90)

It is then defined a 4 × 4 matrix B,

B =
3
∑

i=1

BT
i Bi (2.91)

where,

Bi =

(

0 (ii − r̄i)
T

r̄i − ii (r̄i + ii)×

)

(2.92)

and where I = (i1, i2, i3)
T, and (x,y,z)× is the antisymmetric matrix of the vector
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(x,y,z), that is:

(x, y, z)× =







0 −z y

z 0 −x
−y x 0






(2.93)

The vector q = (q0, q1, q2, q3)
T is then obtained by calculating the eigenvalues

associated with matrix B, where qi is an eigenvalue and qi ≤ qi+1. Finally, the

solution of the matrix CR̃W is shown in the following equation,

CR̃W =







q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)

2 (q3q1 − q0q2) 2 (q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3






(2.94)

With the orthornomal rotation matrix, the rest of the parameters are recalculated

once again, obtaining:

ũ0 = ST
1 r̃3 ṽ0 = ST

2 r̃3

α̃u = −‖S1 − ũ0r̃3‖ α̃v = −‖S2 − ṽ0r̃3‖
t̃x = (s4 − ũ0s6)/α̃u

t̃y = (s5 − ṽ0s6)/α̃v

t̃z = t̄z

(2.95)

An iterative method is then used to recalculate, for the third time, the values of

m, assuming zero distortion. Finally, a two-stage iterative method is used. In the

first stage, the parameters of d are linearly obtained by using least-squares. The

second stage computes the values of m iteratively. These stages are repeated as

many times as needed depending on the desired accuracy.
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Stage of non-linear optimization of m by fixing d.

The camera model of Weng is expressed in equation (2.96), see also (2.76).

U(x) =
r11

WXw + r12
WYw + r13

WZw + tx
r31WXw + r32WYw + r33WZw + tz

− CX̂d

− (g1 + g3)
CX̂d

2 − g4
CX̂d

C Ŷd − g1
C Ŷd

2 − k1
CX̂d

(

CX̂d

2
+ C Ŷd

2
)

(2.96)

V (x) =
r21

WXw + r22
WYw + r23

WZw + ty
r31WXw + r32WYw + r33WZw + tz

− C Ŷd

−g2
CX̂d

2 − g3
CX̂d

C Ŷd − (g2 + g4)
C Ŷd

2 − k1
C Ŷd

(

CX̂d
2
+ C Ŷd

2
)

Equation (2.97) shows the function of minimization that has to be used in opti-

mization.
n
∑

i=1

{

(

IXdi − IXdi (m, d)
)2

+
(

IYdi − IYdi (m, d)
)2
}

(2.97)

At this point any optimization algorithm such as Newton-Raphson or Levenberg-

Marquardt can be used to optimize equations (2.96).

Stage of linear optimization of d by fixing m.

Note that by arranging equations (2.14) and (2.76), the equations which have to be

optimized become linear. Therefore, they can be optimized by using the pseudo-

inverse technique. The linear equations obtained are the following,

IXd (m, d) − IXd = u0 + αu
CX̂d − IXd

= u0 + αu

(

r11
WXw + r12

WYw + r13
WZw + tx

r31WXw + r32WYw + r33WZw + tz

− (g1 + g3)
CX̂d

2 − g4
CX̂d

C Ŷd − g1
C Ŷ 2

d − k1
CX̂d

(

CX̂d

2
+ C Ŷd

2
))

− IXd

(2.98)

IYd (m, d) − IYd = v0 + αv
C Ŷd − IYd

= v0 + αv

(

r21
WXw + r22

WYw + r23
WZw + ty

r31WXw + r32WYw + r33WZw + tz

−g2
CX̂d

2 − g3
CX̂d

C Ŷd − (g2 + g4)
C Ŷ 2

d − k1
C Ŷd

(

CX̂d
2
+ C Ŷd

2
))

− IYd
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where the function to minimize is expressed in equation (2.99):

min
d

‖Q d+ C‖ (2.99)

where,

C =























u0 + αu

(

r11
W Xw1+r12

W Yw1+r13
W Zw1+tx

r31
W Xw1+r32

W Yw1+r33
W Zw1+tz

)

− IXd1

v0 + αv

(

r21
W Xw1+r22

W Yw1+r23
W Zw1+ty

r31
W Xw1+r32

W Yw1+r33
W Zw1+tz

)

− IYd1

...

u0 + αu

(

r11
W Xwn+r12

W Ywn+r13
W Zwn+tx

r31
W Xwn+r32

W Ywn+r33
W Zwn+tz

)

− IXdn

v0 + αv

(

r21
W Xwn+r22

W Ywn+r23
W Zwn+ty

r31
W Xwn+r32

W Ywn+r33
W Zwn+tz

)

− IYdn























(2.100)

Q =























−αu
CX̂d1

(

CX̂d1

2
+ C Ŷd1

2
)

−αu

(

CX̂d1

2
+ C Ŷd1

2
)

−αv
C Ŷd1

(

CX̂d1

2
+ C Ŷd1

2
)

0
...

...

−αu
CX̂dn

(

CX̂dn

2
+ C Ŷdn

2
)

−αu

(

CX̂dn

2
+ C Ŷdn

2
)

−αv
C Ŷdn

(

CX̂dn

2
+ C Ŷdn

2
)

0

0 −αu
CX̂d1 −αu

CX̂d1
C Ŷd1

−αv

(

CX̂d1

2
+ C Ŷd1

2
)

−αv
CX̂d1

C Ŷd1 −αv
C Ŷd1

...
...

...

0 −αu
CX̂dn −αu

CX̂dn
C Ŷdn

−αv

(

CX̂dn

2
+ C Ŷdn

2
)

−αv
CX̂dn

C Ŷdn −αv
C Ŷdn





















(2.101)

The solution for d can now be obtained by using the pseudo-inverse in the fol-

lowing way,

d = −
(

QTQ
)−1

QTC (2.102)

2.4 Accuracy Evaluation

The systems used to evaluate the accuracy of camera calibration can be classified in

two groups. The first group is based on analyzing the discrepancy between the real
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Figure 2.9: Accuracy obtained from stereo triangulation.

position of the 3D object point with respect to the 3D position estimated from its

2D projection. The second group compares the real position in pixels of a 2D image

point with respect to the calculated projection of the 3D object point on the image

plane.

2.4.1 3D Measurement

In the following text, some of the most frequently used methods of accuracy evalu-

ation in 3D coordinates system are described.

1. 3D position obtained from stereo triangulation. In the first step, two images are

acquired from a set of 3D test points whose 3D coordinates are known. In the

second, the estimated 3D coordinates of the same points are computed from

their projections using the calibrated parameters. Finally, the discrepancy

between real and estimated positions is compared. In this case the accuracy

depends on calibration of both cameras, see Figure 2.9. The stereo triangula-

tion principle is detailed in the next chapter of stereo vision.
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Figure 2.10: Accuracy obtained from radius of ambiguity in the calibrating plane.

2. Radius of ambiguity in the calibrating plane. First, a set of 3D test points,

which lay on the test plane and whose coordinates in the world coordinate

system are known, is acquired. Second, for each image point, the calibrated

model is used to project the optical ray back from the focal point through the

2D projection. The transverse of the optical ray with the test plane determines

the intersection point. The distance from the 3D test point to this intersection

point defines a radius of ambiguity around the 3D point (see Figure 2.10).

3. Distance with respect to the optical ray. This method is a generalization of

the previous one. In this case, the discrepancy to be measured is the distance

between the 3D test points and the optical ray generated from their projections

(see Figure 2.11).

4. Normalized Stereo Calibration Error [Weng 92b]. The array of pixels in an

image is projected back to the scene so that each back-projected pixel covers

a certain area of the object surface (see Figure 2.12). This area indicates

the uncertainty of the basic resolution at this distance. The orientation of

the surface has been fitted to a plane which is orthogonal to the optical axis.



44 Chapter 2. Camera Modelling and Calibration

��

��������	�


������

���
���

���������
�

�
��
�

�����

���������


�
��
�

�
�	

�


��

�


�


��

����
�����


{ }�

��

��

�
{ }�

�
 { }�
�


����


���������


�
��
�

( )� ��� �

�	

��

�
 { }�

�	

�


�	

Figure 2.11: Accuracy obtained from distance between 3D object point and camera
optical ray.

Let the depth of this plane be equal to CZw, and the row and column focal

lengths be αu and αv. The back projection of the pixel on this plane is a

rectangle of a × b size. Let the real coordinates of the ith 3D object points

(CXwi,
CYwi,

CZwi) be represented in the camera coordinate system, and let its

coordinates obtained by back-projecting the pixel and intersecting it with the

surface plane (CX̂wi,
C Ŷwi,

CẐwi) be also represented in the camera coordinate

system. The Normalized Stereo Calibration Error (NSCE) is defined as,

NSCE =
1

n

n
∑

i=1







(

CX̂wi − CXwi

)2

+
(

C Ŷwi − CYwi

)2

CẐwi

2
(α−2

u + α−2
v )
/

12







1/2

(2.103)

2.4.2 2D Measurement

The following techniques describe two ways to compute the accuracy in the image

plane in pixels.
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Figure 2.12: Backward projection of a pixel to 3D space.

1. Accuracy of distorted image coordinates. First, take an image of a set of

3D test points. Then, calculate the 2D position of each 3D point on the

image plane, taking into account lens distortion. Accuracy is obtained by

measuring the discrepancy between the real 2D points (obtained from image

segmentation) and the estimated ones (obtained by using the camera model),

shown in Figure 2.13.

2. Accuracy of undistorted image coordinates. First, take an image of a set of 3D

test points. Calculate the linear projection of the 3D points on the image plane,

without taking lens distortion into account. Continue by determining the real

2D points through image segmentation and remove the lens distortion by using

the camera model to obtain a set of undistorted points. Finally, accuracy is

obtained by measuring the discrepancy between the linear projections and the

undistorted points, shown in Figure 2.14.
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Figure 2.13: Accuracy of distorted image coordinates.
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Figure 2.14: Accuracy of undistorted image coordinates.
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2.5 Summary

In this chapter, we have presented a comparative study of the most commonly used

camera calibrating methods of the last few decades. These techniques cover a wide

range of the classical hard calibration of image sensors which begin from a previous

knowledge of a set of 3D points and their corresponding 2D projections on an image

plane in order to estimate the camera parameters. Hence, this study has described a

total of 5 different camera calibrating techniques which include implicit vs. explicit

calibration and linear vs. non-linear calibration.

A great deal of attention has been paid to using the same nomenclature and

a standardized notation in the presentation of all the techniques. Actually, this

is one of the greatest difficulties when going into the details of any calibrating

technique. This problem usually arises because each method defines a different

set of coordinate systems and camera parameters. Therefore, all the techniques

have been re-arranged so as to allow a comparative presentation. The reader has

been introduced to calibration with the implicit linear technique of the pseudo-

inverse presented by Hall, with the explicit linear calibration of Faugeras-Toscani

presented afterwards. Furthermore, this chapter has described an easy modification

of the Faugeras method in order to include radial lens distortion, the well-known

method of Tsai, and finally the complete method of Weng which models up to

three different kinds of lens distortion has been discussed. In order to compare

the accuracy provided by each technique surveyed, a brief description of accuracy

evaluation has been presented.

The reader can take the equations directly from this chapter and easily use them

in the desired calibrating algorithm2. There are numerous advantages thanks to an

accurate calibration. For instance, dense reconstruction of 3D objects and surfaces

has applications in visual inspection and medical imaging, such as quality control

in industrial manufacturing and reconstruction of human spinal cords and skulls for

the detection of deformations or for surgical purposes. Another problem is the 3D

position estimation of an object in a scene, which has many applications such as

obstacle avoidance, landmark detection and industrial part assembly, among others.

2The implementation of the camera calibration algorithms surveyed are detailed in appendix B.





Chapter 3

Stereo Vision and the Epipolar

Geometry

Stereo Vision is based on acquiring 3D information from multiple views obtained

by a single moving camera or a fixed structure composed of at least two cameras.

The relationship between each set of two viewspoints is determined by the epipolar

geometry and the fundamental matrix estimation is the only way to compute it.

This chapter is a fresh look at the subject and overviews classic and newer presented

methods of fundamental matrix estimation which have been classified into linear

methods, iterative methods and robust methods.

3.1 Introduction

Nowadays, there are many methods to obtain 3D information from an unknown

scene by means of computer vision and every year new proposals and techniques are

aggregated. These methods are classified in what Woodham [Woodham 78] refers

to as direct methods and indirect methods. Direct methods are those which try

to measure distance ranges directly for example as in pulsed laser based systems,

where the depth information is the only information available. Indirect methods are

those which attempt to determine distance by measuring parameters calculated from

images of the illuminated object. Several direct and indirect methods commonly

refer to these subjects as Shape from X, where X is one of a number of options

considering the spread of such technologies in the last few years. Shape from X can

49
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be itemized at the same time into the following groups:

1. Techniques based on modifying the intrinsic camera parameters, i.e. Depth

from Focus/Defocus and Depth from Zooming. Considering the Depth from

Focus/Defocus, images are obtained by changing the camera parameters (typ-

ically the focal setting or the image plane axial position), and taken from the

same point of view. The difference between depth from focus and depth from

defocus is that, in the first case, it is possible to dynamically change the cam-

era parameters during the surface estimation process while in the second, this

is not possible [Favaro 02]. Besides, Depth-from-Zoom considers the use of

multiple images taken with a single camera coupled with a motorized zoom.

2. Techniques based on considering an additional source of light projected onto

the scene, i.e. Shape from Photometric Stereo and Shape from Structured

Light. Photometric Stereo is based on considering various radiance maps of

the measuring surface captured by using a single camera and a set of known

light sources. The use of at least three radiance maps determines a single

position and orientation for every imaged point [Solomon 96]. The structured

light technique is based on the projection of a known pattern of light onto the

measuring surface, such as points, lines, stripes or grids. 3D information of

the scene is obtained by analyzing the deformations of the projected pattern

when it is imaged by the camera [Salvi 97].

3. Techniques based on considering additional surface information, i.e. Shape

from Shading, Shape from Texture and Shape from Geometric Constraints.

Shape from Shading uses the pattern of shading in a single image to infer

the shape of the surface. Often, the parameter of the reflectance map is un-

known. In this case we have to estimate the albedo and illuminant direction.

From the reflection map and by assuming local surface smoothness, we can

estimate local surface normal, which can be integrated to give local surface

shape [Gibbins 94]. The basic principle behind shape from texture is the dis-

tortion of the individual texels. Their variation across the image gives an esti-

mate of the shape of the observed surface. The shape reconstruction exploits

perspective distortion which makes objects farther from the camera appear

smaller, and foreshortening distortion which makes objects not parallel to the

image plane seem shorter. Assuming that the normals are dense enough and
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the surface is smooth, these distortions can be used to reconstruct the surface

shape [Chantler 94]. Finally, Shape from Geometric Constraints consider the

problem of obtaining 3D reconstruction from 2D points localized in a single

image. Planarity, colinearity, known angles and other geometric properties

provided by the “user” are used to remove ambiguities from the scene and, if

possible, obtain a single reconstruction [Grossmann 02].

4. Techniques merely based on multiple views, such as Shape from Stereo and

Shape from Motion. Shape from Stereo is based on solving the correspondence

problem between two or more views of a given surface taken from different

locations. Each image point determines an optical ray which intersects with

the others in space with the aim of computing the 3D surface point. Shape from

Motion exploits the relative motion between camera and scene. Similar to the

stereo technique, this process can be divided into the subprocesses of finding

correspondences from consecutive frames and finally to the reconstruction of

the scene. The differences between consecutive frames are, on average, much

smaller than those of typical stereo pairs because the image sequences are

sampled at higher rates. Motion computation can be obtained from optical

flow and differential epipolar constraint which is the main subject of chapter 4.

This chapter focuses on stereo vision which is basically achieved by means of two

different approaches.

The first approach is based on a previous camera calibration so that the imaging

sensor model which relates 3D object points to their 2D projections on the im-

age plane is known. Camera modelling and calibration, presented in the previous

chapter, have been widely studied during the last decades (see camera calibration

surveys [Armangué 00] and [Salvi 02]). Once the system has been calibrated, the

camera model can be used either to estimate the 2D projection of an object point

or to compute the 3D optical ray passing through a given 2D image projection.

Therefore, at least two optical rays are needed to compute the 3D position of the

object point by means of triangulation (section 3.2). The set of optical rays can be

obtained by a single moving camera coupled with a robotic arm, a binocular system

consisting of two cameras located at fixed positions, or a multiple-view configuration

such as a trinocular configuration. Figure 3.1 shows an example of a stereo vision

system composed of two pinhole cameras, a 3D object and its projection on both
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Figure 3.1: A stereo vision system composed by two pinhole cameras.

image planes.

Calibration can not be used in active systems due to its lack of flexibility. Note

that in active systems, the optical and geometrical characteristics of the cameras

might change dynamically depending on the imaging scene and camera motion. The

second approach is based on establishing some geometric constraints between the

imaging sensors [Faugeras 93]. Thus, the geometry between two cameras related to a

set of 3D surface points is called the epipolar geometry, which was first published by

Longuet-Higgins in 1981 [Longuet-Higgins 81]. Since that time, a great deal of effort

has been expended to increase the knowledge in this field [Faugeras 93, Huang 89].

Many articles have been presented on self-calibrated and uncalibrated systems as a

result of the boom in the 1990’s. For instance, in 1992 Faugeras published a brief

survey on self-calibration and the derived Kruppa equations which are used to esti-

mate the camera parameters from the epipolar geometry [Faugeras 92a]. Basically,

intrinsic parameters of both cameras and the position and orientation of one camera

related to the other can be extracted by using Kruppa equations [Hartley 97]. In the

same year, Faugeras also gave an answer to the question ”What can be seen in three

dimensions with an uncalibrated stereo rig?” [Faugeras 92b]. Hartley also did a lot
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of work with geometry and how it is contained in the essential and the fundamental

matrix [Hartley 92a] as well as the estimation of the camera position [Hartley 92b].

Two years later, Deriche et al. presented a robust method for recovering epipolar

geometry based on a matching by correlation and detecting the outliers [Deriche 94].

As a result, Hartley studied the geometry involved in a rotating camera [Hartley 94]

while Li studied the geometry of a head-eye system [Li 94] and Luong et al. intro-

duced a Canonic representation [Luong 94b]. Also, in 1994, Luong and Faugeras

published an interesting article on analyzing the stability of the fundamental matrix

due to uncertainty in the epipole computation, noise in the image point localization,

camera motion, and so on [Luong 94a].

Some applications of epipolar geometry are the simplification of the image match-

ing in stereoscopic systems [Brooks 96], the estimation of camera motion [Jang 96]

and scene reconstruction [Zhang 96b]. It is important, therefore, to develop accu-

rate techniques to compute it. Classic linear methods are mainly based on least-

squares minimization [Zhang 98] and eigen values minimization [Torr 97]. Other

methods are based on optimizing linear methods by means of iteration [Li 96]. Ro-

bust methods are based on computing a more accurate geometry detection and

removing false matchings [Rousseeuw 87, Zhang 98]. Robust computation is still

a subject for wide research focusing mainly on proposing new estimators to im-

prove the accuracy of the fundamental matrix and on reducing computation ex-

penses [Bober 98, Stewart 95, Torr 00].

This chapter surveys nineteen of the most widely used techniques in computing

the fundamental matrix such as the 7-point, the least-squares and the eigen analysis

linear techniques among others and robust techniques such as M-estimators, LMedS,

RANSAC and so on [Armangué 03b, Salvi 01]. All these techniques have been

implemented and their accuracy analyzed in synthetic and real scenarios. This

chapter is organized as follows. First, section 3.2 describes the principle to compute

a 3D surface point from at least two optical rays given by the image projections

of such a surface point. Second, a brief introduction to epipolar geometry and

fundamental matrix is presented in section 3.3. Then, all the surveyed methods are

described in section 3.4, analyzing their advantages and drawbacks with respect to

the previous methods and presenting an overview of every surveyed technique from

the algorithmic point of view. Finally, the chapter concludes with a summary.
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3.2 The Triangulation Principle

The triangulation principle is based on computing the 3D position of a surface point

from the intersection of a set of optical rays determined by at least two views of the

same 3D surface point. In practice, a camera does not function in the same way

as a pinhole camera due to lens distortion. Also, there is uncertainty around the

image point due to camera digitalization and image segmentation. This uncertainty

is caused by the fact that both optical rays do not cross at any single point. The

triangulation process must find, then, the 3D surface point closest to both optical

rays.

Consider Pd an image point in the first image plane {I} and P ′
d its corresponding

point in the second image plane {I ′}. Both image points are projections of a 3D

object point Pw (see Figure 3.2). The intrinsic camera parameters of both cameras

permit computation of Pu and P ′
u with respect to the camera coordinate system (see

chapter 2). The 3D point Pu, lying on the image plane, and the origin of the first

camera coordinate system OC define the first optical ray given by the vector. Also,

P ′
u and the origin of the second camera coordinate system OC′ define the vector.

Consider Pr the point lying on the optical ray defined by ~u as being the closest to

the optical ray defined by ~v. Again, consider Ps the point lying on the optical ray

defined by ~v as being the closest point to the optical ray defined by ~u,

Pr = Pd + α~u (3.1)

Ps = P ′
d + β~v (3.2)

where α, β ∈ R and PrPs is orthogonal to ~u and ~v. Then, the following equations

are solved by using PrPs = PuP ′
u − α~u+ β~v.

{

0 = PrPs ~u = PuP ′
u − α‖~u‖2 + β(~u~v)

0 = PrPs ~v = PuP ′
u − α(~u~v) + β‖~v‖2

(3.3)

where α and β are unknown. Then, Pr and Ps are obtained by substituting α and β

in equations (3.1) and (3.2). Finally, Pw is easily determined by using the following

equation.

Pw =
Pr − Ps

2
(3.4)
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Figure 3.2: Stereo triangulation to obtain 3D object point.

3.3 Epipolar Geometry

Given a 3D object point M = (WX, WY, WZ, 1)T expressed with respect to a world

coordinate system {W}, and its 2D projection on the image plane in pixels m =

(IX, IY, 1)T, both points are related to a projective transformation matrix as shown

in equation (3.5),

sm = IPW M (3.5)

in which s is a scale factor and IPW is a 3 × 4 matrix, which can be decomposed as

IPW = IAC
CKW (3.6)

in which IAC is a 3 × 4 matrix relating the metric camera coordinate system located

at the focal point OC to the image coordinate system located at the top-left corner

of the image plane in pixels, that is the optical and internal geometry of the camera.

Moreover, CKW is a 4 × 4 matrix which relates the camera coordinate system {C}
to the world coordinate system {W}, that is the position and orientation of the
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Figure 3.3: The geometric relation between two pinhole cameras.

camera in the scene (see chapter 2 for further details).

CKW =

(

CRW
CtW

0 1

)

(3.7)

Epipolar geometry defines the geometry between two cameras creating a stereoscopic

system or the geometry between two different positions of a unique moving camera.

Consider an object point M and its 2D projections m and m′ on both image planes,

the 3 points define a plane Π, which intersects both image planes at the epipolar

lines lm′ and l′m respectively, as shown in Figure 3.3. Note that the same plane Π

can be computed using both focal points OC and OC′ and a single 2D projection,

which is the principle to reduce the correspondence problem to a single scanning

along the epipolar line. Moreover, the intersection of all the epipolar lines defines

an epipole on both image planes, which can also be obtained by intersecting the line

defined by both focal points OC and OC′ with both image planes.

All the epipolar geometry is contained in the so called fundamental matrix as

shown in equation (3.8).

mTFm′ = 0 (3.8)
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The fundamental matrix F contains the intrinsic parameters of both cameras and

the rigid transformation of one camera related to the other, which depends on which

camera has been considered as the origin of the world coordinate system. In equa-

tion (3.9), the origin of the world coordinate system coincides with the coordinate

system of the second camera, located at OC′ .

F = IAC
−T

[ CtC′ ]×
CRC′

I′AC′

−1
(3.9)

A particular case of the fundamental matrix is the essential matrix. When the

intrinsic camera parameters are known, it is possible to simplify equations (3.8) and

(3.9) obtaining

qTE q′ = 0 (3.10)

where,

q = IAC
−1
m, E = [ CtC′ ]×

CRC′ , q′ = I′AC′

−1
m′ (3.11)

The matrix E is called essential [Huang 89].

3.4 Estimating the Fundamental Matrix

In the last few years, several methods to estimate the fundamental matrix have been

proposed, which can be classified into linear, iterative and robust methods. Linear

and iterative methods can cope with bad point localization in the image plane due to

noise in image segmentation. Robust methods can cope with both image noise and

outliers, i.e. wrong matching between point correspondences in both image planes.

All of these methods are based on solving a homogeneous system of equations which

can be deduced from equation (3.8) rewriting it in the following way:

Uf = 0 (3.12)

where,

f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)
T (3.13)
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U =









IX1
IX ′

1
IX1

IY ′
1

IX1
IY1

IX ′
1

IY1
IX ′

1
IY1

IX ′
1

IY ′
1 1

...
...

...
...

...
...

...
...

...
IXn

IX ′
n

IXn
IY ′

n
IXn

IYn
IX ′

n
IYn

IX ′
n

IYn
IX ′

n
IY ′

n 1









(3.14)

It is important to note that there are only 7 independent parameters and 9 un-

knowns. The 7 independent parameters are given by two independent columns and

the scale factor forcing the fundamental matrix to be rank-2 [Zhang 98].

3.4.1 Linear Methods

The linear method of the seven points is based on computing the fundamental matrix

by using only seven point correspondences [Zhang 98]. Due to the homogeneity of

the equations, the solution is a set of matrices of the form

F = αF1 + (1 − α)F2 (3.15)

By forcing the rank of the matrix to be equal to 2 and using the expression det (F),

a cubic polynomial is obtained which has to be solved to obtain α and then F. The

main advantage of this method is that a fundamental matrix can be estimated by

using only seven points. However this fact becomes a drawback when some points

are poorly located. Moreover, the 7-points method cannot be applied in the presence

of redundancy. Hence, it can not be applied using n points where n > 7.

Another interesting method is the 8-points method, in which the redundancy

of points permits the minimization of the error in estimating F. The equation to

minimize in the 8-points method is the residual of equation (3.8), that is:

min
F

∑

i

(

mT
i Fm′

i

)2
(3.16)

The classical method to solve such an equation is the least-squares technique of

forcing one of the components of F to be the unity [Luong 96]. This simplification

can be assumed because F is always defined up to a scale factor. Then, the equation

to solve is

f ′ =
(

U′TU′
)−1

U′Tc9 (3.17)

in which U′ is a matrix containing the first eight columns of U, c9 is the last column

of U (see also equation (3.14)) and f ′ is a vector containing the first eight elements
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Figure 3.4: Cost functions: (a) Algebraic least squares minimization; (b) Orthogonal
least squares; and (c) Approximate maximum likelihood.

of f . Note that the last element of f is 1.

A variant of the 8-points method can be applied if equation 3.16 is solved by

using eigen analysis, also called orthogonal least-squares technique [Torr 97]. In this

case F can be determined from the eigen vector corresponding to the smallest eigen

value of UTU. The difference between this method and the classical least-squares

resides in the form of calculating the error between correspondences and epipolar

lines so that an orthogonal minimization is much more realistic (see Figure 3.4a and

Figure 3.4b).

The last linear method we surveyed is the analytic method with rank-2 constraint

which imposes the rank-2 constraint in minimization [Zhang 98]. Then, the matrix

U′ is defined as the composition of the first seven columns of U and c8 and c9

are defined as the eighth and ninth columns of U respectively, so that F can be

computed as

f ′ = −f8

(

U′TU′
)−1

U′Tc8 − f9

(

U′TU′
)−1

U′Tc9 (3.18)

in which f ′ is the vector containing the first seven elements of f , and f8 and f9 are

the eighth and ninth elements of f . In order to obtain the values of f8 and f9, F

is computed by using the seven points algorithm. Then, f is computed by selecting

from any choice of pairs of F, the one which minimizes ‖f‖ = 1. Although the

analytic method with rank-2 constraint obtains a rank-2 matrix, it does not greatly

improve the results of the previously explained methods.
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3.4.2 Iterative Methods

Iterative methods can be classified into two groups: those that minimize the dis-

tances between points and epipolar lines and those that are based on the gradient.

In the first classification, the iterative methods minimizing the distances between

points and epipolar lines are based on solving the following equation

min
F

∑

i

(

d2(mi,Fm
′
i) + d2(m′

i,Fmi)
)

(3.19)

A first approach consists of directly applying an iterative method as Newton-

Raphson or Levenberg-Marquardt in the equation (3.19) [Salvi 97]. Another possi-

bility consists of applying an iterative linear method as was proposed by Luong and

Faugeras (1996) [Luong 96], in which equation (3.19) has to be rewritten as

min
F

∑

i

w2
i

(

mT
i Fm′

i

)2
(3.20)

where,

wi =

(

1

l1
2 + l2

2 +
1

l′1
2 + l′2

2

)1/2

(3.21)

Fm′
i = (l1, l2, l3)

T (3.22)

FTmi = (l′1, l
′
2, l

′
3)

T (3.23)

The iterative linear method is based on computing the weight value wi equiva-

lent to the epipolar distances by using the previous F (in the first iteration wi = 1)

and then minimize by using least-squares in each iteration. Neither approach im-

poses the rank-2 constraint. However, the nonlinear minimization in parameter

space [Zhang 98] can solve this situation. This method is based on parameterizing

the fundamental matrix, keeping in mind that it has a rank-2 in the following way,

F =







a b −axe − bye

c d −cxe − dye

−axe′ − cye′ −bxe′ − dye′ (axe + bye)xe′ + (cxe + dye)ye′






(3.24)

in which (xe, ye) and (xe′ , ye′) are the coordinates of the epipole in the first image
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plane and second image plane, respectively. Equation (3.24) is just one of the

multiple parameterizations of F which must be computed. Finally, the estimated F

becomes the parameterization which maximizes the following equation,

(ad− bc)2
√

xe
2 + ye

2 + 1
√

xe′
2 + ye′

2 + 1 (3.25)

The iteration of this method allows the computation of a better rank-2 F.

Besides, the minimization of equation (3.16) is not accurate enough to obtain a

good estimation because the variance of points is not analogous and the least-squares

technique assumes they are comparable. In order to overcome this drawback, the

second group of methods has to be considered.

The second group of methods considers the gradient-based [Hartley 00]. In this

case, the equation to solve is

min
F

∑

i

(

mT
i Fm′

i

)2
/g2

i (3.26)

where gi =
√

l1
2 + l2

2 + l′1
2 + l′2

2.

This method has to potential minimizations: least-squares and eigen analysis.

Besides, Chojnacki, Brooks, van den Hengel and Gawley [Chojnacki 02] recently

proposed two new iterative methods based on an approximate maximum likelihood

estimate which can be applied to several computer vision applications. Such meth-

ods are called Fundamental Numerical Scheme (FNS) and Constrained Fundamental

Numerical Scheme (CFNS). Both methods are based on Newton-Raphson minimiza-

tion technique. Then, in order to estimate the fundamental matrix F the following

minimization has to be overcome,

JAML =
∑

i

(mT
i Fm′

i)
2

mT
i FFTmi +m′T

i FFTm′
i

(3.27)

so that ∂fJAML(f) is the row vector of partial derivatives of JAML with respect to

f . The minimization forces such vector to zero so that ∂fJAML(f) = 2Xff . Then,

arranging the terms of this equation,

Xff = 0 (3.28)
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where,

Xf =
n
∑

i=1

Ai

fTBif
−

n
∑

i=1

fTAif

(fTBif)2
Bi (3.29)

Ai = uiu
T
i (3.30)

Bi = ∂muiΛm∂mu
T
i (3.31)

∂m represents the partial derivative of the corresponding points, Λm is the symmetric

covariance matrix that relates the point uncertainty [Brooks 01, Chojnacki 00] (see

Figure 3.4c). Then, FNS is based on solving equation (3.28) by means of an initial

seed to search for a local minimum.

The CFNS [Chojnacki 02] improves FNS by including in the optimization method

an ancillary constraint obtained from the minimization function. In such a case, the

Xf matrix is replaced to a more complex one, i.e. Zf .

Zf = PfXfPf (3.32)

where,

Pf = I − ‖af‖−2afa
T
f (3.33)

af = ∂fφ(f)T (3.34)

and φ(f) = 0 is the ancillary constraint.

3.4.3 Robust Methods

In this section we present five robust methods: M-Estimators, Least-Median-Squares

(LMedS), Random Sampling (RANSAC), MLESAC and MAPSAC which can be

used both in the presence of outliers and in bad point localization.

M-estimators [Hartley 00] reduces the effect of outliers weighting the residual of

each point. Consider ri the residual of mT
i Fm′

i. Then, M-estimators are based on

solving the following expression

min
F

∑

i

wi

(

mT
i Fm′

i

)2
(3.35)
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in which wi is a weight function. A lot of different weight functions have been

proposed so a new M-estimator is obtained for each one. A common weight function

proposed by Huber [Huber 81] is the following

wi =











1 |ri| ≤ σ

σ/|ri| σ < |ri| ≤ 3σ

0 3σ < |ri|
(3.36)

Another interesting weight function is proposed by Mosteller and Tukey [Mosteller 77],

wi =







(

1 −
(

ri

4.6851

)2
)2

|ri| ≤ 4.6851σ

0 otherwise
(3.37)

In order to obtain σ, the robust standard deviation can be used (see [Zhang 98]).

σ = 1.4826 (1 + 5/(n− 7)) mediani |ri| (3.38)

There are a lot of weight functions and for each one we obtained different results.

Overall, the results given by this method are quite good in the presence of gaussian

noise in image point localization, but they are rather limited in outlier detection.

LMedS [Zhang 98] and RANSAC [Torr 97] techniques are quite similar. Both

techniques are based on randomly selecting the set of points used to compute an

approximation of F by using a linear method. The difference between both tech-

niques is in the way use to determine the chosen F. LMedS calculates for each

F the median distance between the points and epipolar lines, in which the chosen

fundamental matrix has to minimize this median. RANSAC calculates for each F

the number of inliers, in which the chosen F is the one that maximizes it. Once the

outliers are removed, F is recalculated with the aim of obtaining a better approach.

Another difference between both methods is that LMedS is more restrictive than

RANSAC, so that LMedS removes more points than RANSAC. However, the prin-

cipal constraints of both techniques is their lack of repetitivity due to the aleatory

way of selecting the points. Although experimental results show that LMedS gives

better results in terms of accuracy, it does not always model the epipolar geometry

properly.

Recently some other methods based on RANSAC has been proposed. The
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MLESAC [Torr 00] (Maximum LikElihood SAmple Consensus) is a generalization

of RANSAC based on the same point selection strategy and the solution is the one

that maximizes a likelihood, so that the shape of a normal distribution instead of

the number of inliers. Besides, MAPSAC [Torr 02] (Maximum A Posteriori SAm-

ple Consensus) improves MLESAC being more robust against noise and outliers

including Bayesian probabilities in minimization.

3.4.4 Algorithmic Overview

This section gives an algorithmic point of view of the surveyed methods to estimate

the fundamental matrix described in sections 3.4.1, 3.4.2 and 3.4.3. The main ob-

jective of this section is to present an overall schema to make agile the comparison

among the different methodologies.

Figure 3.5 summarizes the algorithmic methodology of the linear methods. Be-

sides, Figure 3.6 abstracts the methodology used by the iterative methods to min-

imize the distance between points and the corresponding epipolar lines. Moreover,

Figure 3.7 illustrates the schema of the iterative methods based on minimizing the

gradient. The two schemas are two different implementations of the gradient tech-

nique, that is linear-squares and eigen analysis. Figure 3.8 shows the methods who

minimize the approximate maximum likelihood. The two schemas are based on FNS

and CFNS which methodology are quite similar. Note that Zf = 0 is equivalent

to ZT
f Zf = 0 obtaining a symmetric matrix which is replaced to Xf in the algo-

rithm. Then, Figure 3.9 deals with robust methods based in M-Estimators. The

schemas are three different implementations of the M-Estimator technique, that is

the minimization of equation (3.35) by using least-squares and eigen analysis, and

the implementation proposed by Torr [Torr 97] in which the fundamental matrix is

forced to be rank-2 in every iteration (explained in detail in section 3.4.5). Finally,

the methods shown in Figure 3.10 correspond to LMedS and RANSAC, respectively.
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3.4.5 Considerations in F Estimation

This section present to considerations to keep in mind when using fundamental

matrix estimators. On one hand the data normalization and on the other hand the

rank-2 constraint.

Normalizing data

Data normalization is a key point in fundamental matrix estimation. It has been

proved that the computation should not be applied directly to raw data in pixels

due to potential uncertainties given by huge numbers. The process of normalization

consists of scaling and translating the data so that points mi and m′
i are transformed

to (m̂i = Tmi and m̂′
i = T′m′

i) by using two transformation matrices T and T′

respectively. Then, the F̂ matrix is estimated from the normalized points and,

finally, it has to be restored to obtain F using the following equation

F = TTF̂T′ (3.39)

Basically there are two different methods of data normalization. The first method

proposed [Zhang 98] normalizes the data between [-1,1]. The second was proposed

by Hartley [Hartley 95] and is based on two transformations. First, the points are

translated so that their centroid is placed at the origin. Then, the points are scaled

so that the mean of the distances of the points to the origin is
√

2. It has been

proved that Hartley’s method gives more accurate results compared to normalizing

between [-1,1].

Rank-2 constraint

In most circumstances, the estimated F should be a rank-2 matrix in order to model

the epipolar geometry with all the epipolar lines intersecting in a unique epipole.

Although the rank-2 constraint is not imposed in most of the surveyed methods,

there is a mathematical method which transforms a rank-n square matrix to the

closest rank-(n− 1) matrix [Hartley 00]. The F is decomposed in

F = USVT (3.40)
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by using singular value decomposition, where Ŝ = diag(
√
λ1,

√
λ2,

√
λ3). The com-

ponent with the smallest weight is removed obtaining

Ŝ = diag(
√
λ1,

√
λ2, 0). Then, F is recalculated in the following way:

F̂ = UŜVT (3.41)

However, transforming the obtained F to a rank-2 matrix gives worse results then

keeping a rank-2 F in the minimization process. Besides, a rank-3 matrix gives an

additional degree of freedom that usually reduces the distance between points and

epipolar lines.

Overall, we suggest the use of any method which imposes a rank-2 matrix in

the computation of F because rank-2 matrices models more accurate the epipolar

geometry.

3.5 Summary

Fundamental matrix estimation is a key point in computer vision because an accu-

rate estimation is required in order to compute the epipolar geometry of a stereo-

scopic system. Some applications of epipolar geometry are: a) the simplification of

image matching which is reduced to a search along the epipolar line; b) the esti-

mation of camera motion when mounted either to a robotic arm or a mobile robot

with useful applications in grasping and mobile navigation; and c) scene reconstruc-

tion with several applications in industrial inspection, prototyping and even mould

generation.

In this chapter we present a comparative study of the most commonly used fun-

damental matrix estimation methods of the last few decades. The techniques cover

a wide range of methods from the classical linear estimation such as the 7-points, the

least squares and the eigen analysis up to some of the most frequently used robust

methods such as the M-Estimators, the least median of squares and the random

sampling. Hence, this study is presented describing a total of 15 methods and up to

19 different implementations. The different methods have been programmed1.

The chapter describes each method surveyed and compares it with the others,

1Detailed in appendix B.
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giving a fresh look which may be useful to any reader entering the field for the first

time or who is searching for some sort of method for his application. This chapter

presents a scheme of every method surveyed allowing the reader to compare the

techniques in terms of algorithm complexity.

Finally, we have also pointed out that data have to be normalized and the best

results have been obtained by using the method proposed by Hartley in his recently

published book [Hartley 00]. Finally, a rank-2 matrix is preferable because it models

the epipolar geometry with a single epipole defined by the intersection of all the

epipolar lines.





Chapter 4

Motion from Discrete and

Differential Epipolar Geometry

The estimation of camera egomotion is an old problem in computer vision. Since

the 1980s, many approaches based on both the discrete and the differential epipolar

constraint have been proposed. The discrete case is used mainly in self-calibrated

stereoscopic systems, whereas the differential case deals with a single moving cam-

era. This chapter surveys several methods for 3D motion estimation unifying the

mathematics convention which are then adapted to the common case of a mobile

robot moving on a plane.

4.1 Introduction

The problem of estimating structure and motion from image sequences has been

studied by the computer vision community over the past few decades. Most tech-

niques try to decouple the two problems by first estimating the motion and then the

structure.

Approaches to motion estimation can be separated into discrete and differen-

tial methods, depending on whether they use a set of image correspondences or

optical flow. Probably the best known point of view is the discrete epipolar con-

straint formulated by Longuet-Higgins [Longuet-Higgins 81], Huang [Huang 89] and

Faugeras [Faugeras 93]. In this case the relative 3D displacement between both

73
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views is recovered by the epipolar constraint from a set of correspondences in both

image planes. This information is contained in the fundamental matrix which in-

cludes the intrinsic parameters of both cameras and the position and orientation of

one camera with respect to the other. The essential matrix can be extracted of the

intrinsic parameters are previously known. Many papers describe different methods

to estimate the fundamental matrix and it has been discussed in depth in the pre-

vious chapter of this document as well as in the articles [Armangué 03b, Salvi 01].

Tsai and Huang [Tsai 84] proved that there are only two possible 3D displacements

obtainable from the essential constraint. In 1986, Toscani and Faugeras [Toscani 86]

proposed a three-step algorithm for recovering the 3D displacement from image cor-

respondences.

Overall, this essential constraint only recovers discrete 3D displacement. The

displacement estimation obtained by using epipolar constraint works well when the

displacement between the two images is relatively large. However, if the velocity

of the moving camera is low or we use a high frame rate, the relative displacement

between two consecutive images might become small. In this case, the algorithm

become singular due to the short translation and the estimation results are less

reliable.

A differential version of the 3D motion estimation is to recover the 3D velocity

of the camera from the optical flow. The optical flow is the velocity of pixels in the

image plane in an image sequence. This problem has been explored by many authors

such as Prazdny [Prazdny 80], Bruss and Horn [Bruss 83], Zhuang et al [Zhuang 84],

and Kanatani [Kanatani 93b], for example.

Approaches to motion estimation can be classified into discrete and differential

methods depending on whether they use a set of point correspondences or the op-

tical flow [Armangué 03a]. Another possible classification takes into account the

estimation techniques used for motion recovery (linear or nonlinear techniques). In

table 4.1, the algorithms are summarized and classified in terms of their nature (dis-

crete and differential case), and estimation method (linear and nonlinear technique).

This chapter analyzes several different algorithms for camera motion estimation

based on differential image motion. The surveyed methods have also been compared

with them. Moreover, this chapter analyzes the adaptation of general methods used

in free 3D movement to planar motion which corresponds to the common case of a
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Table 4.1: Motion recovery methods
Discrete Case Differential Case

Linear techniques

Longuet-Higgins [Longuet-Higgins 81] Zhuang, Huang, Ahuja, Haralick [Zhuang 84, Zhuang 88]1

Tsai, Huang [Tsai 84] Heeger, Jepson [Heeger 92, Jepson 91, Jepson 93]

Toscani, Faugeras [Toscani 86] Kanatani [Kanatani 93b, Kanatani 93a]1

Tomasi, Kanade [Tomasi 92] Tomasi, Shi [Tomasi 93, Shi 94]

Brooks, Chojnacki, Hengel, Baumela [Brooks 98]1

• Seven Points
• Least Squares
• Iteratively Reweighted Least Squares
• Modified Iteratively Reweighted Least Squares
• Least Median Squares

Ma, Košecká, Sastry [Ma 00, Ma 98a]1

Baumela, Agapito, Bustos, Reid [Baumela 00]1

Nonlinear techniques

Horn [Horn 90] Prazdny [Prazdny 80, Prazdny 81]

Weng, Ahuja, Huang [Weng 92a] Bruss, Horn [Bruss 83]

Taylor, Kriegman [Taylor 95] Zhang, Tomasi [Zhang 99]

Soatto, Brockett [Soatto 98]

Ma, Košecká, Sastry [Ma 98b]

robot moving on a plane with the aim of studying how much accuracy improves by

constraining the camera movement [Armangué 02]. Hence, this chapter focuses on

linear techniques, as the motion has to be recovered in real-time.

This chapter is structured as follows. Section 4.2 presents similarities and differ-

ences between discrete and differential epipolar constraint. Then, section 4.3 deals

with motion recovery by means of the discrete epipolar constraint. Section 4.4 de-

scribes twelve algorithms for 3D motion estimation based on optical flow. Section 4.5

focuses on the estimation of planar motion by constraining the free movement ex-

plained in the previous section. The chapter ends with a summary.

4.2 Discrete vs. Differential Epipolar Constraint

The following sections describe two different approaches for motion recovery. First,

we explain the common case of the discrete epipolar geometry formulated by Longuet-

Higgins [Longuet-Higgins 81] using the fundamental matrix and a set of correspond-

ing points. Then, differential epipolar constraint is detailed and compared with a

1These methods are based on the differential epipolar constraint.
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discrete approach find similarities and differences. This constraint incorporates two

matrices which encode information about the ego-motion of the camera using any

sufficiently large subset of an optical flow field.

4.2.1 Discrete Epipolar Constraint

The relative 3D displacement between both camera views is recovered by the epipolar

constraint from a set of correspondences in both image planes (see section 3.3). All

the epipolar geometry is contained in the so-called fundamental matrix, as shown

in equation (4.1).

mT Fm′ = 0 (4.1)

where the fundamental matrix depends on the intrinsic parameters of both cameras

and the rigid transformation between them,

F = IAC
−TCRC′

T C T̂C′

I′AC′

−1
. (4.2)

See section 3.4 for a detailed survey on computing F. When the intrinsic camera

parameters are known, it is possible to simplify equations (4.1) and (4.2), obtaining

qTE q′ = 0 (4.3)

where

q = IAC
−1
m, E = CRC′

T C T̂C′ , q′ = I′AC′

−1
m′ . (4.4)

Matrix E is called essential [Huang 89] and will be used to extract the motion of a

moving camera.

4.2.2 Differential Epipolar Constraint

The differential case is the infinitesimal version of the discrete case, in which both

views are always given by a single moving camera. If the velocity of the camera

is low enough and the frame rate is very high, the relative displacement between

two consecutive images becomes very small. The 2D displacement of image points

can then be obtained from an image sequence using the optical flow. In this case,
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Figure 4.1: Differential epipolar case.

the 3D camera motion is described by a rigid motion using a rotation matrix and a

translation vector, as in

M(t) = R(t)M(0) + T (t) (4.5)

where differentiating

Ṁ(t) = Ṙ(t)M(0) + Ṫ (t) . (4.6)

Then, replacing the parameter M(0) to R−1(t) [M(t) − T (t)] in equation (4.6), the

following equation is obtained,

Ṁ(t) = Ṙ(t)R−1(t)M(t) + Ṫ (t) − Ṙ(t)R−1(t)T (t) , (4.7)

which leads to the following differential epipolar constraint,

qT υ̂q̇ + qT ω̂υ̂ q = 0 (4.8)

where, ω = (ω1, ω2, ω3)
T is the angular velocity of the camera and υ = (υ1, υ2, υ3)

T

is the linear velocity of the camera. By projecting M and Ṁ in the image plane, q

in the camera coordinates and its corresponding optical flow q̇ are obtained.
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For a complete demonstration, the reader is directed to Haralick’s book, chapter

15 [Haralick 92b], where the movement of a rigid body in relation to a camera is

explained. In our case, the demonstration is used to describe the movement of a

camera in relation to a static object, in which only the sign of the obtained velocities

differs from the previous one. Nevertheless, equation (4.8) can also be demonstrated

in different ways as explained by Viéville [Viéville 96] and Brooks [Brooks 97]. Also,

another equivalent form of equation (4.8) is shown in equation (4.9). In this case,

since matrix S is symmetric, the number of unknowns is reduced to six.

qT υ̂q̇ + qT S q = 0 (4.9)

where

S =
1

2
(ω̂υ̂ + υ̂ω̂) . (4.10)

The existence of two forms to express the differential epipolar constraint (equa-

tions (4.8) and (4.9)) indicates that a redundancy exists in equation (4.8) (for a

demonstration see Viéville [Viéville 96], Brooks [Brooks 97] and Ma [Ma 00]). Sev-

eral books describe optical flow, such as Trucco and Verri [Trucco 98], and the

article published by Barron et al. [Barron 92] gives a state-of-the-art in optical flow

estimation.

When comparing the discrete and differential methods, the discrete epipolar

equation incorporates a single matrix, whereas the differential epipolar equation

incorporates two matrices. These matrices encode information about the linear and

angular velocities of the camera [Haralick 92b].

4.3 Discrete Motion Estimation

This approach was originally developed by Huang et al. [Huang 89] and is based

on motion recovery between two camera views from essential matrix, described in

equation (4.4). Huang and Faugeras [Huang 89] established that matrix E is an

essential matrix if the singular value decomposition (SVD) of E = UDVT forces

D = diag{λ, λ, 0} (4.11)
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for some λ > 0. This work also demonstrates that there are two pairs of R and T

which satisfy an essential matrix E such as RT T̂ = E. The following equations give

the two solutions:

R1 = URZ(+π
2
)T VT , T̂1 = VRZ(+π

2
)DVT

R2 = URZ(−π
2
)T VT , T̂2 = VRZ(−π

2
)DVT

(4.12)

where RZ(θ) is defined as a rotation matrix around the Z axis by an angle θ.

The estimation of the essential matrix can only recover up to an arbitrary scale

factor, so many matrices satisfy the epipolar constraint. In particular, both E and

−E are solutions of the same equation. In general, four solutions of R and T will be

obtained from a set of image correspondences. However, it is possible to reduce this

ambiguity by imposing the positive depth constraint to fit the problem into just two

solutions. Following this paragraph we present the three-step algorithm proposed

by Maybank [Maybank 93] to estimate R and T from E.

The three step SVD based displacement estimation algorithm:

1. Estimate the essential matrix : For a set of image correspondences find the

matrix E which minimizes

min
E

∑

i

(

qT
i Eq′i

)2
(4.13)

such as ‖E‖ = 1 (see Chapter 3 for more details about fundamental matrix

estimators).

2. Use a singular value decomposition in the essential matrix : Find the singular

value decomposition of the matrix E.

E = U diag{σ1, σ2, σ3}VT (4.14)

where σ1 ≥ σ2 ≥ σ3.

3. Recover 3D displacement : We define the diagonal matrix as

D′ = diag{σ′
1, σ

′
2, 0} (4.15)

to project onto the essential manifold where σ′
1 = σ1+σ2

2
and σ′

2 = σ1+σ2

2
to
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obtain the two solutions of 3D displacement as

R1 = URZ(+π
2
)T VT , T̂1 = VRZ(+π

2
)D′VT

R2 = URZ(−π
2
)T VT , T̂2 = VRZ(−π

2
)D′VT .

(4.16)

4.4 Overview of Differential Motion Estimation

In this section, we detail some methods used for the recovery of every 6-DOF2 motion

parameter from optical flow, providing insights into the complexity of the problem.

The surveyed methods have been classified considering whether they are based on

the Differential Epipolar Constraint or not.

4.4.1 Methods Based on the Differential Epipolar Constraint

The methods based on the Differential Epipolar Constraint deal with the minimiza-

tion of the following criteria,

min
υ,S

n
∑

i=1

(

qi
T υ̂q̇i + qi

T S qi
)2

. (4.17)

Rewriting equation (4.17) in matrix form,

min
θ

‖U θ‖2 (4.18)

where,

θ =
(

υ1, υ2, υ3, s11, s12, s13, s22, s23, s33

)T

, (4.19)

U =
(

u1, u2, . . . , un

)T

(4.20)

in which

ui =
(

q̇i2qi3 − q̇i3qi2 , q̇i3qi1 − q̇i1qi3 , q̇i1qi2 − q̇i2qi1 , qi1
2,

2qi1qi2 , 2qi1qi3 , qi2
2, 2qi2qi3 , qi3

2
)T

. (4.21)

Hereafter, 7 different methods based on such minimization criteria are consecu-

2Degrees Of Freedom
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tively explained in the following paragraphs.

Seven Points Estimator: This method was proposed by Brooks [Brooks 98]

but not entirely, since a similar method to estimate the fundamental matrix has

been used by other authors [Zhang 98, Torr 97].

Using seven points, through singular value decomposition (U = V1DV2
T ),

vectors θ1 and θ2 are obtained from the two last columns of V2. The solution is a

linear combination of θ1 and θ2, θ = α θ1 + (1−α)θ2 which corresponds to υ and S.

Substituting θ into υT S υ = 0 (for details see [Brooks 97]) a cubic equation on α is

obtained. This equation could have one or three solutions for υ and S.

The main advantage of this method is that υ and S can be estimated using only

seven points, but this can also be a drawback when some of the points are corrupted

by noise. Moreover, the 7-points method cannot be applied in the presence of

redundancy. Hence, it can not be applied using n points where n > 7.

Least Squares Estimator using Eigen Analysis: When there are n points,

where n ≥ 8, equation (4.17) goes into redundancy, in which θ = 0 is the trivial

solution. Then, some constraints have to be established in order to avoid the null

solution. A general constraint is to fix ‖θ‖ = 1. Then, equation (4.18) is rewritten

as,

min
‖θ‖=1

θT UT U θ (4.22)

Introducing the Lagrange multiplier λ,

L(θ) = θT UT U θ − λ(θT θ − 1) (4.23)

Equation (4.22) is equivalent to minimize,

min
‖θ‖=1

UT U θ − λθ (4.24)

Thus, the solution θ must be the eigenvector of the 9x9 matrix X = UT U corre-

sponding to the smallest eigenvalue λ0 (more details in [Trucco 98] Appendix A.6).

Iteratively Reweighted Least Squares Estimator: This method is an evo-

lution of the previous Seven-Point Estimator proposed by Brooks [Brooks 98]. In

this case, θ is computed by using an iterative approximation method where all points
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Figure 4.2: Iterative estimator procedure.

are reweighted in each iteration. The equation to minimize is

min
υ,S

n
∑

i=1

(

|qiT υ̂q̇i + qi
T S qi|2

√

‖2S qi + υ̂q̇i‖2 + ‖υ̂qi‖2

)2

(4.25)

which can be rewritten in matrix form obtaining,

min
‖θ‖=1

θT wT UT U θ (4.26)

min
‖θ‖=1

wT UT U θ − λθ (4.27)

where w = (w1, . . . , wn)T and wi = (‖2S qi + υ̂q̇i‖2 + ‖υ̂qi‖2)−1. Employing La-

grange multipliers, as in the previous method, the solution θ is the eigenvector

corresponding to the smallest eigenvalue of X = wT UT U. Then, the proposed

iterative method is shown in Figure 4.2.

Modified Iteratively Reweighted Least Squares Estimator: This tech-

nique, surveyed by Brooks [Brooks 98], is similar to the precedent method but is

based on a different minimization of equation (4.25). Starting from the reweighted
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equation wi, we can express it in matrix form as shown in equation (4.28).

w−1
i = ‖2S qi + υ̂q̇i‖2 + ‖υ̂qi‖2 = θT Niθ (4.28)

in which

Ni = 4
3
∑

α=1

ρα
T qiqi

T
ρα + 4

3
∑

α=1

ρα
T qiq̇i

T
σα −

3
∑

α=1

σα
T q̇iq̇i

T
σα −

3
∑

α=1

σα
T qiqi

T
σα .

(4.29)

Where

ρ1 =







1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0






, σ1 =







0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0






,

ρ2 =







0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0






, σ2 =







0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1






,

ρ3 =







0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0






, σ3 =







0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0






.

(4.30)

After that, equation (4.26) is reorganized as,

min
‖θ‖=1

2X θ (4.31)

where,

X =
n
∑

i=1

Mi

θT Ni θ
−

n
∑

i=1

θT Mi θ

(θT Ni θ)2
Ni (4.32)

Mi = uiu
T
i . (4.33)

By using eigen analysis, a solution of θ is obtained. The procedure proposed is

shown in Figure 4.2.

Least Median Squares Estimator: The previous methods assumes that im-

age points can only present a gaussian noise in its localization in the image plane.

LMedS is considered a robust estimator as the method does not use all data because

it assumes that a set of points could present a matching error with its correspon-

dent. The points with an erroneous matching are called outliers and the rest are
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called inliers. LMedS is able to recognize the outliers and keep them out of the

computation. LMedS is considered a statistical method which was first proposed

by Rousseeuw [Rousseeuw 87] but later used in several other applications, such as

Fundamental matrix estimation [Zhang 98].

First, this technique is based on selecting a number of sets made up of seven

random points which are used to compute approximations of θ by using the 7-points

method. It is important to assure that sets are made up of points evenly spread

throughout the image. The number of sets considered depends on the estimated

outliers ratio and the probability that at least one set is free of outliers. This

probability is given by P = 1 − (1 − (1 − ε)s)p, where ε is the maximum outlier

ratio, s is the number of elements in each set sample (seven in our case) and p is

the number of set samples. Arranging the terms, we obtain

p =

⌈

log(1 − P )

log(1 − (1 − ε)s)

⌉

. (4.34)

The LMedS method calculates the median of algebraic residual for each θ using

all data, where the chosen θ has to minimize this median. This θ is used to identify

the outliers. Finally, when the outliers are removed, a non-robust method using all

the remaining points is used to estimate the best solution.

The complete algorithm is the following:

1. Choose p sets of seven points evenly spread throughout the image.

2. For each set, obtain an estimation of θ using the 7-Point method. We obtain

υj and Sj, where j = 1, . . . , p.

3. For each estimation, compute the algebraic residual and determine the median

as,

mj = median
i=1,...,n

(

|qiT υ̂j q̇i + qi
T Sj qi|2

√

‖2Sj qi + υ̂j q̇i‖2 + ‖υ̂jqi‖2

)2

. (4.35)

4. From every estimation mj, take the mk in which the median is the minimum:

mk = minj=1,...,p mj.

5. Compute the robust standard deviation σ̂ = 1.4826
(

1 + 5
n−7

√
mk

)

.
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6. Then, qi is considered an outlier only if

(

|qi
T υ̂k q̇i+qi

T Sk qi|
2√

‖2Sk qi+υ̂k q̇i‖2+‖υ̂kqi‖2

)2

> (2.5σ̂)2.

7. Finally, recompute υ and S considering only the inliers by using one of the

previous methods.

Ma, Košecká and Sastry Estimator: The estimator proposed by Ma, Košecká

and Sastry [Ma 00, Ma 98a] estimates not only the linear velocity υ and the sym-

metric matrix S like the previous methods, but also the angular velocity ω which is

computed from S.

The computation of the 3D velocity (υ, ω) is divided into four steps:

1. Estimate υ0 and S0. Obtain υ0 and S0, minimizing the error function using

least squares estimator by means of eigen analysis.

min
θ0

‖Uθ0‖2 (4.36)

2. Recover the special symmetric matrix. The symmetric matrix S obtained

in the previous step probably does not have the form S = 1
2
(ω̂υ̂ + υ̂ω̂) called

special symmetric matrix by the authors. Therefore, diagonalize the symmetric

matrix S0 using eigenvalue decomposition:

S0 = V1 diag{λ1, λ2, λ3}V1
T (4.37)

with λ1 ≥ λ2 ≥ λ3. Project the symmetric matrix onto the special symmetric

matrix.

S = V1 diag{σ1, σ2, σ3}V1
T (4.38)

where,

σ1 = 2λ1+λ2−λ3

3
, σ2 = λ1+2λ2+λ3

3
and σ3 = 2λ3+λ2−λ1

3
. (4.39)

3. Recover the linear and angular velocities from the special symmetric matrix,

obtaining four solutions:

ω̂1,2 = U2RZ(±π
2 ) diag{λ, λ, 0}U2

T , υ̂1,2 = V2RZ(±π
2 ) diag{1, 1, 0}V2

T

ω̂3,4 = V2RZ(±π
2 ) diag{λ, λ, 0}V2

T , υ̂3,4 = U2RZ(±π
2 ) diag{1, 1, 0}U2

T

(4.40)
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where U2 = −V2RY(ψ) , V2 = V1RY
T (ψ/2 − π/2) , λ = σ1 − σ3 ≥ 0 and

ψ = arccos(−σ2/λ) ∈ [0, π].

4. Recover the linear velocity. It is necessary to choose one velocity from the four

available. Choose the one which accomplishes

υk
T υ0 = max

i=1,...,4
υi

T υ0 . (4.41)

Then the 3D velocity estimated is υ = υ0 and ω = ωk.

Baumela, Agapito, Bustos and Reid Estimator: This motion estimator

was proposed by Baumela et al. [Baumela 00] and is based on using information

from the uncertainty of the optical flow. This algorithm is based on the assumption

that the optical flow estimation produce exact values for q and noisy estimations for

q̇.

By starting from equation (4.9) and knowing that q = (q1, q2, 1)T and q̇ =

(q̇1, q̇2, 0)
T , we obtain

aq̇1 + bq̇2 + c = 0 (4.42)

where a = v3q2 − v2 , b = v1 − v3q1 and c = s11q1
2 + 2s12q1q2 + 2s13q1 + s22q2

2 +

2s23q2 + s33 . Then the algorithm is based on minimizing the distance between

equation (4.42) and the optical flow for all the points

min
υ,S

n
∑

i=1

(aiq̇i1 + biq̇i2 + ci)
2

ai
2 + bi

2 . (4.43)

The uncertainty of each flow measurement can be expressed by the covariance matrix

Σq̇i
, consequently equation (4.43) becomes

min
θ

n
∑

i=1

θT fi fi
T θ

υT HiΣq̇i
Hi

T υ
(4.44)

where,

fi =
(

q̇i2 ,−q̇i1 , q̇i1qi2 − q̇i2qi1 , qi1
2, 2qi1qi2 , 2qi1 , qi2

2, 2qi2 , 1
)T

(4.45)

Hi
T =

(

1 0 −qi2
0 −1 qi1

)

. (4.46)
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It is necessary to impose the constraint υT Sυ = 0 in the minimization of equa-

tion (4.44). The possibility proposed by the authors of the method is to substitute

s33 to the explicit value and employ an iterative minimization method. In this case,

equation (4.44) is rewritten in the following way,

min
δ

n
∑

i=1

δT gi gi
T δ

υT HiΣq̇i
Hi

T υ
(4.47)

where,

gi =

(

q̇i2 ,−q̇i1 , q̇i1qi2 − q̇i2qi1 , qi1
2 − υ1

2

υ3
2
,

2(qi1qi2 −
υ1υ2

υ3
2

), 2(qi1 −
υ1

υ3

), qi2
2 − υ2

2

υ3
2
, 2(qi2 −

υ2

υ3

)

)T

, (4.48)

δ = (υ1, υ2, υ3, s11, s12, s13, s22, s23)
T , (4.49)

and

s6 = −s11υ1
2 + 2s12υ1υ2 + s22υ2

2

υ3
2

− 2s13υ1 + 2s23υ2

υ3

. (4.50)

4.4.2 Methods Directly Based on the Optical Flow

Hereafter, 5 different methods which are based directly on the optical flow instead

of using the Differential Epipolar constraint are explained. Such methods have been

included in the chapter with the aim of providing experimental results covering the

whole field of differential egomotion estimation.

Bruss and Horn Estimator: Bruss and Horn [Bruss 83] proposed a method

not based on the differential epipolar principle as are the previously described meth-

ods. Instead, their method is based on the following equation:

q̇ =

(

1 0 −q1
0 1 −q2

)

(

υ

Z(q)
+ ω × q

)

. (4.51)

This equation relates the camera velocity with respect to the static scene in which

q is the image point, q̇ is the point velocity, Z(q) is the point depth related to the

camera coordinate system and, finally, υ and ω are the linear and angular camera

velocities, respectively.
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Then a bilinear constraint can be imposed on the linear υ and angular ω velocities

of every pixel in order to remove point depth Z(q) by means of a few algebraic

transformations in equation (4.51) described in the following equation.

υT (q × q̇) + (υ × q)T (q × ω) = 0 (4.52)

However, the following stages are required. First, an initial guess of the transla-

tion which can be estimated by using least-squares technique is needed. Second, a

non-linear minimization of equation (4.52) is applied to every image pixel with the

constraint ‖υ‖ = 1 with the aim of obtaining υ. Finally, the rotation velocity can

be extracted linearly from equation (4.52).

Prazdny Estimator: The method proposed by Prazdny [Prazdny 81] was one

of the first to estimate camera movement from optical flow, so it is not based on

the epipolar constraint either. This method differs from the previous one because it

estimates the rotating velocity first instead of computing the linear velocity. Then

a triplet of image points can be obtained from equation (4.51) and by using some

algebraic transformations the following equation is given.

n3 (n1 × n2) = 0 (4.53)

where ni = (ω × qi + q̇i) × qi = 0. Once the rotating velocity ω is computed from

equation (4.53), the linear velocity is given by equation (4.52).

Heeger and Jepson Estimator: Heeger and Jepson proposed the so-called

linear subspace method [Heeger 92, Jepson 91]. Given the optical flow of a set of n

image points, the following relationship can be formulated.

τi =
n
∑

k=1

cik(q̇k × qk) (4.54)

where vector τi is orthogonal to υ. Moreover, ci = (ci1, . . . , cin) has to be chosen

so that it is orthogonal to both quadratic polynomiums qk1
and qk2

with the aim

of removing the rotating velocity from the images. Note that given n points, n− 6

vectors τi are generated. Then υ corresponds to the eigenvector associated to the

smallest eigenvalue of
∑

τiτi
T .

Tomasi and Shi Estimator: The method proposed by Tomasi and Shi [Shi 94,



4.5 Adaptation to a Mobile Robot 89

Tomasi 93] estimates υ from image deformations. Their method estimates transla-

tion from image deformations, defined as the change α̇ in the angular distance

α = arccos(qi qj) between two image points due to camera movement. Image defor-

mations do not depend on the camera rotating movement so the following bilinear

equation can be extracted. Note that this equation is only a function of υ and both

depth points Z(qi) and Z(qj),

α̇ = sinα(Z(qj), Z(qi), 0)(qi, qj, wij)
−Tυ (4.55)

where wij = (qi × qj)/‖qi × qj‖. Equation (4.55) is then minimized by using the

variable projection method [Ruhe 80] from a given set of correspondences with the

aim of obtaining υ forcing ‖υ‖ = 1. This minimization leads to estimates of three

parameters of the linear velocity υ and the n depth parameters of every point. Hence,

computing time depends considerably on the number of point correspondences.

Kanatani Estimator: The last of the surveyed methods considered in this

chapter is that proposed by Kanatani [Kanatani 93b, Kanatani 93a] in 1993. One

of the first methods to estimate camera movement based on the epipolar geome-

try was described by Zhuang, Thomas, Ahuja and Haralick [Zhuang 88] in 1998.

Later, in 1993, Kanatani reformulated this method. He described the image sphere

representation and solved the differential epipolar equation written in terms of the

essential parameters and twisted optical flow.

The first approach proposed by Kanatani was statistically biased. In order to

remove the bias, he proposed an algorithm called renormalization, also in 1993. This

second method automatically adjusts the bias and removes the image noise.

4.5 Adaptation to a Mobile Robot

The aim of this work is to estimate the motion of a mobile robot. Due to the fact

that the permitted movements of a robot are limited, it is possible to establish some

modifications in the differential epipolar equation by applying new constraints.

Our robot (see Figure 4.3) is constrained to only two independent movements:

a translation along XR axis and a rotation around ZR axis.

Rυr = (υr1
, 0, 0)T , Rωr = (0, 0, ωr3

)T (4.56)
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Figure 4.3: (a) Robot for test the algorithms; (b) Robot and camera coordinate
systems.

This limitation implies that the camera placed on and above the robot cannot

move freely, so the camera velocity is the same as the robot velocity (υr = υc and

ωr = ωc). The motion with respect to the camera coordinate system depends on its

position. The camera is placed in the vertical of the robot at height h and the XC

axis is parallel to YR and perpendicular to XR. There is a known angle α between

XR and ZC axis (see Figure 4.3). With this configuration the matrices which relate

camera and robot coordinate systems are,

RRC = RZ(−π
2
)RX(−π

2
− α), RtC = (0, 0, h)T

CRR = RX(π
2

+ α)RZ(π
2
), CtR = (0,−h cosα, h sinα)T .

(4.57)

By transforming the velocities to camera coordinate system [Hutchinson 96],

Cυr = CRR
Rυr − CRR

Rωr × CtR (4.58)

Cωr = CRR
Rωr (4.59)

we obtain

Cυr = (0, υr1
sinα, υr1

cosα)T (4.60)

Cωr = (0, ωr3
cosα, −ωr3

sinα)T . (4.61)

The camera motion is independent of h and depends only on three unknowns: vr1
,
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wr3
and the angle α. With this information it is possible to simplify the symmetric

matrix Sr as

Sr =
1

2
(ω̂rυ̂r + υ̂rω̂r) =







0 0 0

0 ωr3
υr1

sinα cosα 1
2
ωr3

υr1
(cos2 α− sin2 α)

0 1
2
ωr3

υr1
(cos2 α− sin2 α) −ωr3

υr1
sinα cosα







(4.62)

where s11 = s12 = s13 = 0, s22 = 1
2
ωr3

υr1
sin(2α), s23 = 1

2
ωr3

υr1
cos(2α) and s33 =

−s22.

The following subsections concern the adaptation of the methods described in

section 4.4.1 to the movement of a mobile robot by means of the differential epipolar

constraint.

Least Squares Simplified Estimator using Eigen Analysis: This method

is a simplified version of the method described in section 4.4.1. Starting from the

differential epipolar equation,

min
υr1

,s22,s23

n
∑

i=1

(

qi
T υ̂rq̇i + qi

T Srqi
)2

, (4.63)

and knowing the camera motion constraint (equations (4.60), (4.61) and (4.62)), it

is possible to rewrite the equation (4.63) in matrix form as

min
θ′

‖U′θ′‖2 (4.64)

where,

θ′ =
(

υr1
, s22, s23

)T

, (4.65)

U′ =
(

u′1, u
′
2, . . . , u

′
n

)T

(4.66)

and

u′i =
(

(q̇i1qi2 − qi1 q̇i2) cosα+ (qi1 q̇i3 − q̇i1qi3) sinα , qi2
2 − qi3

2 , 2qi2qi3

)T

. (4.67)

When there are n points and n ≥ 8, the solution of θ′ is the eigenvector corre-

sponding to the smallest eigenvalue of the square matrix X′ = U′T U′.

Iteratively Reweighted Least Squares Simplified Estimator: This sim-
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plified estimation reduces the number of parameters and the weight function. By

rewriting equation (4.25) in matrix form and only using three parameters (vr1
, s22

and s23) we obtain

min
‖θ′‖=1

θ′
T
w′T U′T U′ θ′ (4.68)

min
‖θ′‖=1

w′T U′T U′ θ′ − λθ′ (4.69)

where θ′ is defined in equation (4.65), U′ is defined in equation (4.66), w′ =

(w′
1, . . . , w

′
n)T and

w′
i = (‖2Sr qi + υ̂rq̇i‖2 + ‖υ̂rqi‖2)−1. It is necessary to use an iterative algorithm

(see Figure 4.2) to solve equation (4.68), which is actually the same, already applied

in the general method, but uses the simplified equation X′ = w′T U′T U′.

Modified Iteratively Reweighted Least Squares Simplified Estimator:

This method is the adapted version to a mobile robot of the method used to estimate

camera motion proposed by Brooks [Brooks 98] and described in section 4.4.1. When

considering equation (4.25), the reduced number of parameters to estimate leads to

a simplified equation as follows.

w′
i
−1

= ‖2Sr qi + υ̂rq̇i‖2 + ‖υ̂rqi‖2 = θ′
T

N′
i θ

′ (4.70)

where,

N′
i = 4

3
∑

α=1

ρ
′
α

T
qiqi

T
ρ
′
α +4

3
∑

α=1

ρ
′
α

T
qiq̇

T
i σ

′
α −

3
∑

α=1

σ
′
α

T
q̇iq̇

T
i σ

′
α −

3
∑

α=1

σ
′
α

T
qiqi

T
σ

′
α

(4.71)

and

ρ
′
1 =







0 0 0

0 0 0

0 0 0






, σ

′
1 =







0 0 0

− cos(α) 0 0

0 0 0






,

ρ
′
2 =







0 0 0

0 1 0

0 0 1






, σ

′
2 =







cos(α) 0 0

0 0 0

− sin(α) 0 0






,

ρ
′
3 =







0 0 0

0 0 1

0 −1 0






, σ

′
3 =







0 0 0

sin(α) 0 0

0 0 0






.

(4.72)
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Then equation (4.25) is rewritten in matrix form considering the parameters to

estimate the robot movement obtaining,

min
‖θ′‖=1

2X′ θ′ (4.73)

where,

X′ =
n
∑

i=1

M′
i

θ′T N′
i θ

′
−

n
∑

i=1

θ′T M′
i θ

′

(θ′T N′
i θ

′)2
N′

i (4.74)

M′
i = u′iu

′
i
T

(4.75)

using u′i which was previously described in equation (4.67).

Finally, θ′ is obtained, minimizing X′θ′ = 0 by using eigen analysis and the

algorithm shown in Figure 4.3.

Least Median Squares Simplified Estimator: The adaptation of LMedS

to robot movement estimation forces the following considerations. First, instead

of using the 7-points method to measure of the velocity for each group of points,

we will use the simplified least squares method described in this section. In the

adaptation to a mobile robot, the movement is constrained to only three unknowns;

that is straight forward, translation and rotation. Moreover, the number of sets to

generate randomly also changes as it depends on the number of set points. The

equation (4.34) relates such a relationship.

The second modification of this method takes place in the last step of the algo-

rithm once all the outliers have been removed, and υr and Sr are recalculated using

the modified iteratively reweighted least square simplified estimator instead of the

general method.

Ma, Košecká and Sastry Simplified Estimator: The method proposed

by Ma et al. [Ma 00, Ma 98a] is not affected by the reduction of the number of

parameters. Moreover, only the first step of the method has to be modified to adapt

the algorithm to the case of a robot moving on a plane, that is υ0 and S. The

equation to minimize is the following,

min
θ′

‖U′θ′‖2 . (4.76)

Equation (4.76) computes υr0
and Sr, these results are used in the further steps of
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the algorithm already detailed in section 4.4.1. Then the steps of the algorithm are

the following:

1. Estimate υr0
and Sr.

2. Recover the special symmetric matrix.

3. Recover velocities form the special symmetric matrix.

4. Recover velocity.

Baumela, Agapito, Bustos and Reid Simplified Estimator: The adap-

tation of the general method proposed by Baumela et al. [Baumela 00] described

in section 4.4.1 to the simplified case of the robot movement is based on the fol-

lowing modifications. Considering equation (4.9) and using the simplified camera

movement described in equations (4.60) and (4.62), the following linear equation is

obtained,

a′q̇1 + b′q̇2 + c′ = 0 (4.77)

where a′ = vr1
(q2 cosα− sinα) , b′ = −vr1

q1 cosα and c′ = s22(q2
2 − 1) + 2s23q2 .

This algorithm minimizes the distance between equation (4.77) and the optical

flow of every point by using the following equation.

min
vr1

,s22,s23

n
∑

i=1

(a′iq̇i1 + b′iq̇i2 + c′i)
2

a′i
2 + b′i

2 (4.78)

Considering that the measures of the optical flow present a given discrepancy,

equation (4.78) is rewritten in matrix form including the covariance matrix of the

optical flow Σq̇i
, obtaining

min
θ′

n
∑

i=1

θ′T f ′
i f

′
i
T θ′

υT
r HiΣq̇i

Hi
T υr

(4.79)

where f ′
i =

(

(q̇i1qi2 − qi1 q̇i2) cosα− q̇i1 sinα , qi2
2 − 1 , 2qi2

)T

and Hi
T is defined

in equation (4.46).

However, the constraint υr
T Srυr = 0 has to be forced to equation (4.79) in min-

imization. Hence, the parameter s22 is extracted and substituted in equation (4.79),

obtaining
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min
δ′

n
∑

i=1

δ′T g′i g
′
i
T δ′

υr
T HiΣq̇i

Hi
T υr

(4.80)

where,

g′i =
(

(q̇i1qi2 − qi1 q̇i2) cosα− q̇i1 sinα , 2qi2 − tan(2α)(qi2
2 − 1)

)T

, (4.81)

δ′ = (υr1
, s23)

T (4.82)

and

s22 = −s23 tan(2α) . (4.83)

4.6 Summary

Traditionally, the estimation of the movement of a single camera is based on the ap-

plication of the epipolar geometry between every two consecutive images. Epipolar

geometry is contained in the fundamental matrix, which can be computed by lin-

ear or non-linear optimization from a set of correspondences. However, traditional

epipolar geometry has some limitations in the common case of a single camera

attached to a mobile robot. First of all, the disparities between two consecutive im-

ages are rather small at usual image rates, leading to numerical inaccuracies in the

computation of the fundamental matrix. Indeed, disparities could be increased by

removing intermediate images, but then the obtained movement is a rough approx-

imation of reality. Secondly, the correspondence problem between images consumes

a lot of computing time reducing its effectiveness for real time applications.

Some authors have proposed techniques to estimate the camera motion at a high

image rate based on the computation of the linear and angular velocities instead of

on the orientation and translation between consecutive images. These techniques are

commonly based on the optical flow and the differential epipolar constraint. This

chapter has presented an up-to-date classification of the methods and techniques

used to estimate the movement of a single camera. A survey of several motion

recovery methods has been presented. The techniques surveyed were classified and

the mathematical notation has been unified in this document. Several methods

were described after analyzing their differences with respect to the use of epipolar



96 Chapter 4. Motion from Discrete and Differential ...

geometry in both the discrete and differential cases. This chapter was based on

giving a better understanding of the relative performances of the 6-DOF camera

movement estimators.

The general methods to estimate a 6-DOF movement have been adapted to the

common case of a mobile robot moving on a plane. The adaptation was based on

constraining the movement from six degrees of freedom to only two degrees, which

were: a) the spin rotation of the mobile robot, and b) the forward motion. With

these modifications, the number of potential solutions is reduced so the obtained

results improve considerably.



Chapter 5

A Mobile Robot Application:

Localization and Mapping

Several mobile robotic applications require a localization system with the aim of fa-

cilitating the navigation of the vehicle and even the execution of the planned trajec-

tories. The localization is always relative to the map of the environment in which

the robot is moving. This chapter presents a computer vision system which deals

with the localization of the vehicle while simultaneously mapping the environment.

A stereoscopic vision system is proposed in which the theory surveyed in the previous

chapters is taken into account during the whole process.

5.1 Introduction

Navigation and map building from an unknown environment are important tasks

for future generations of mobile robots. The are several different fields in which

it is possible to apply mobile robotic systems, such as applications in industrial

environments [Lauterbach 93], the transport of dangerous substances, surveillance

tasks and many others. In all these fields, it becomes necessary to equip the mobile

robots with a sensor system which allows the vehicle to obtain information from the

environment. The processing of these data, provided by the sensor system must be

useful to facilitate actions and control planning. A stereo vision system has proved

to be a reliable and effective way to extract range information from the environment.

97
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Accurate localization is a prerequisite for building a good map, and having an

accurate map is essential for good robot localization. Therefore, simultaneous lo-

calization and map building (SLAM) is a critical factor for successful mobile robot

navigation. Various authors have been working with in SLAM systems using differ-

ent types of sensors, such as sonar [Borenstein 96], laser range finders [Weckesser 96]

and vision [DeSouza 02]. Sonar is fast but inaccurate, whereas a laser scanning sys-

tem is active, accurate, but rather slow. Vision systems are passive and provide

high resolution. Some systems using a single camera [Se 02] or even a stereo vision

composed of two cameras have been proposed [Iocchi 98].

This chapter describes a vision system designed to build a map from the sur-

roundings of the mobile robot and explains how this information is used to locate

the vehicle. This proposal is based on a stereo vision system using the techniques

already presented in the previous chapters, such as camera calibration and epipo-

lar geometry. Moreover, low level image processing techniques basically used to

solve the correspondence problem are briefly introduced. The main objectives of

the proposed vision system are the following:

• Building a 3D map from an unknown environment using a stereo camera sys-

tem.

• Localization of the robot on the map.

• Providing a new useful sensor for robot control architectures to facilitate robot

navigation.

This chapter is organized into the followings sections. First, section 5.2 describes

the mobile robot used in the set-up. Section 5.3 describes the different steps needed

to achieve an algorithm dealing with the localization and mapping by means of

stereo vision.

5.2 The Mobile Robot

The platform utilized for the real experiments is a mobile robot called GRILL. This

robot is based on the commercial robot Pioneer 2 DX from ActivMedia c©. This
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robot was originally developed by Kurt Konolige of SRI International, Inc. and

Stanford University [Act 00].

The mobile robot contains the basic components for sensing and actuators in-

cluding battery power, drive motors, encoders, and a front sonar ring. These com-

ponents are controlled by a 20 MHz Siemens 88C166-based microcontroller which

also runs the Pioneer 2 Operating System (P2OS). This microcontroller performs

low-level tasks such as odometry, sonar control, and translational and rotational

speed control. The GRILL robot is also equipped with an onboard computer which

communicates with the microcontroller by means of a RS-232 serial port. This com-

puter is a Pentium c© 233 MHz with Ethernet and a PCI bus and space for PC104+

accessory cards. The GRILL robot uses this onboard computer just for control tasks.

GRILL is equipped with a second computer (Pentium c© III 850 MHz) with Eth-

ernet and a PCI bus for two PC104+ frame grabber cards. This second computer is

used to run the stereo vision system. The frame grabbers used are PXC200 Imagena-

tion with four channels each one. However, two frame grabbers are required because

it is not possible to grab two images simultaneously with the same frame grabber.

The cameras utilized are two JAI CV-S3300 connected to both frame grabbers. Both

cameras are synchronized in order to simultaneously acquire the two images which

form the stereo vision system. Figure 5.1 summarizes schematically the different

elements which compose the robot.

The communication between both onboard computers is realized with an Eth-

ernet LAN. The vision computer is also connected by means of a wireless Ethernet

with the host computer. The host computer is utilized to monitor and remotely

operate the mobile robot. The remote operation of the robot is carried out by using

a console application and the image provided by one of the two cameras. This image

is acquired by the camera and transmitted by means of a radio link to a video screen

closer to the host computer (see Figure 5.2).

Figure 5.3a and Figure 5.3b show two different views of the vision system mounted

on the robot. This system is composed of the main computer, two PXC200 frame

grabbers, a dedicated laptop hard disk and the power supply. Moreover, there is a

fan cooler to refrigerate the whole system. The synchronized stereo camera, together

with the Ethernet and video link, is mounted on the robot as shown in Figure 5.3c

and Figure 5.3d.
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Onboard Control Computer

Microcontroller

Onboard Vision Computer

Frame Grabber A Frame Grabber B

Motor Encoder Sonar

Camera A Camera B

Wireless Ethernet

Radio video emitter

Ethernet Card

PCI Bus

Ethernet Card

PCI Bus

Ethernet Link

PC104+PC104+

USB

RS-232

Control system

Vision system

Figure 5.1: Block diagram of the mobile robot GRILL.

Host computerVideo screen

Access Point
Radio Ethernet

Radio video
receptor

Stereo cameraRadio
video emitter

Access Point
Radio Ethernet

Figure 5.2: Elements which interact with the mobile robot GRILL.
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(a) (b)

(c) (d)

Figure 5.3: Mobile Robot called GRILL. (a) Onboard vision computer, frontal view.
(b) Onboard vision computer, back view. (c) GRILL frontal view. (d) GRILL back
view.

5.3 Localization and Map-Building Algorithm

The proposed localization and map-building algorithm is divided into the following

three on-line steps:

1. 2D image processing. The 2D image processing step deals with finding interest

points in each pair of images and further solving the problem of matching

two images. Moreover, the correspondence problem is also solved temporally

through the sequence of images captured by each camera.

2. 3D image processing. Given the image point correspondences and the camera

calibrations (containing the geometry of the stereo rig), the 3D image pro-
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cessing step deals with the computation of the 3D points with respect to the

position of the mobile robot by means of triangulation. Then, the 2D and 3D

points are tracked through time.

3. Localization and map-building. The robot is located on the map using the

points connected through time. The map is updated with new points provided

by the second step by using the localization of the robot estimated in the last

iteration.

These steps are summarized in Figure 5.4. This algorithm requires an off-line

process consisting of the calibration of both cameras. Camera calibration is utilized

in the following tasks: a) removal of the image distortion caused by the lens; b)

Exploitation of epipolar geometry to simplify the correspondence problem, i.e. the

epipolar geometry increases the accuracy in solving the correspondence problem;

c) triangulation making use of the calibrating parameters of both cameras; and d)

localization of the robot on the map by again using the camera parameters.

The following section describes the off-line process with details of the three entire

on-line steps introduced in the previous paragraphs.

5.3.1 Off-line Process

The off-line process consists of an explicit calibration because the intrinsic and ex-

trinsic parameters are required. Therefore, Hall’s method is not applicable here.

Moreover, the fundamental matrix can be directly computed from the calibrating

parameters, i.e. consider CKR a 4 × 4 matrix relating the robot coordinate system

{R} with respect to the first camera coordinate system {C}, and consider C′

KR a

second 4 × 4 matrix which relates the robot coordinate system {R} with respect to

the second camera coordinate system {C ′}. Then, the relative position and orien-

tation of one camera with respect to the other is described by equation (5.1).

CKC′ = CKR
C′

KR
−1

(5.1)

Once CKC′ is computed, CRC′ and CTC′ can be extracted and, by using the definition

of fundamental matrix, F is obtained (see equation (3.9)). These relationships

between the different coordinate systems are graphically shown in Figure 5.5.
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2D Image Processing

3D Image Processing

Map Building and
Localization

Camera A Camera B

Sequence A Sequence B

2D Points

3D Points

3D Points Position

3D Map Trajectory

Image Flow
2D Points Flow
3D Points Flow
Position Flow

Figure 5.4: Data flow diagram of the three on-line step algorithm.

�������

����	
�����


�
���

�
�

�
�

�
�

�
�

{ }�

�������

����	
����


�
���

���

���

���

���{ }��

�
�

�
�

�
�

{ }�
�
�

�
�

�
�

���

���
���

{ }��
���

���

{ }��

���

{ }�

{ }�
�
�

�
�

�
�

�
�

�����

����	
�����


�
���

��

�
�

�

�
�

�

�

�
�

{ }�

�
�

�
�

�
�

�
�

����	

����	
�����


�
���

Figure 5.5: Cameras, robot and world coordinate systems.
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Figure 5.6: Data flow diagram of 2D image processing.

5.3.2 2D Image Processing

2D image processing is divided into five stages: a) image conversion; b) image

distortion removal; c) corner detection; d) spatial cross correlation; and e) temporal

cross correlation; as shown in Figure 5.6.

The first stage is a trivial conversion from the color image provided by both

cameras to two intensity images due to the fact that the proposed algorithm does

not consider the use of color information.

The second stage removes lens distortion by means of the camera calibration

parameters. This stage considerably improves the accuracy obtained by further

stages, such as spatial cross correlation (epipolar lines will be really straight lines)

and triangulation (optical rays are again straight lines leading to a simpler and more

precise intersection). The image effect given by lens distortion is shown in Figure 2.3

and Figure 2.5.

The third stage consists of finding the points of interest. A variant of the Harris

corner detector [Harris 88] has been utilized, which was proposed by Garcia and

detailed in [Garćıa 01b]. In general, most of the image points do not provide any
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significant information to build a map. So, the use of interest points considerably

reduce the computation time of image processing. Corners have been widely used

by the scientific community as the simplest way of finding points of interest in

any image [McCane 02]. Other possibilities might use scale invariants [Lowe 99]

or projective invariants [Vanderkooy 96]. Overall, a corner is defined as a point

where a large intensity variation in every direction is presented. Corners are found

by computing an unnormalised local autocorrelation of the image intensity at that

point in four directions. A 2 ×2 autocorrelation matrix is computed for every pixel,

A = w

(

I2
x Ixy

Ixy I2
y

)

(5.2)

where

Ix = ∂I
∂x
, Iy = ∂I

∂y
, Ixy = ∂2I

∂xy
. (5.3)

x = (x, y), I(x) is the intensity image, w is a gaussian smoothing mask. A pixel is

flagged as a corner if both eigenvalues are larger than a given threshold. In order to

avoid eigen value descomposition of A, the coefficient of cornerness is defined as

c(x) = det(A) − k(Tr(A))2 (5.4)

where k is a given constant, typically 0.04, and Tr(A) is the trace of the matrix A.

Finally, local minimums in image cornerness are candidates to become a corner.

The fourth stage deals with the computation of spatial cross correlation be-

tween stereo images by using the epipolar geometry. We have adapted the tech-

nique already utilized in the underwater robots in our lab to make a mosaic of the

seabed [Garćıa 01a]. The two main differences are:

1. The original algorithm correlates a list of interest points provided by a first

image with all the points laying with a search window in the second image. In

our case, the list of interest points provided by the first camera is correlated

with a second list of interest points provided by the second camera.

2. The geometric position between both cameras is known through camera cali-

bration. The search windows utilized to search the correspondences has been

substituted to a search of those interest points along the epipolar line.
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Figure 5.7: Example of a spatial cross correlation where the image point m has three
candidates in the second image.

Both modifications of the algorithm considerably reduce the computation time,

improving the accuracy of cross correlation and reducing drastically the number of

outliers.

The cross correlation coefficient is described as follows: Consider an interest point

m in the first image in which the correlation window is centered. Then, the epipolar

line given by m in the second image is computed, as can be seen in Figure 5.7.

Finally, the correlation operation is performed, computing a normalized correlation

score [Zhang 94] for all the candidates near the epipolar line in the following way:

CS(m,m′) =

α
∑

i=−α

α
∑

j=−α

(

I(x1 + i · q, y1 + j · q) − I(x1, y1)
)

·
(

I ′(x2 + i · q, y2 + j · q) − I ′(x2, y2)
)

α2
√

σ2(I)σ2(I ′)
(5.5)

where α = n−1
2q

, n is the size correlation window, q is a subsampling coefficient, σ2(I)

is the variance of the image computed in the correlation window (see equation (5.6)),

and I(x, y) is the average of the correlation window as shown in equation (5.7).

σ2(I) =

α
∑

i=−α

α
∑

j=−α

I(x+ i · q, y + j · q)2

α2
− I(x, y)

2
(5.6)

I(x, y) =

α
∑

i=−α

α
∑

j=−α

I(x+ i · q, y + j · q)

α2
(5.7)
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Figure 5.8: Example of temporal cross correlation where the image point m has
three candidates in the second image.

The correlation score of equation (5.5) gives a value in the interval [-1,+1] where

+1 means that the point m and m′ are identical, and -1 indicates no similarity at

all.

Finally, the last stage of 2D image processing is based on temporal cross correla-

tion. Until this moment, the algorithm has been established as a spatial relationship

between image sequences provided by both cameras. Temporal cross correlation con-

sists of establishing the temporal relationship between the images and is computed

starting from the corners spatially correlated between both cameras. The cross cor-

relation algorithm utilized is the same as was used in spatial cross correlation with

just one difference: the epipolar geometry between two consecutive images is un-

known due to its dependence on the robot’s motion. Search windows are used to

determine the correspondences instead of the epipolar lines used in the spatial cross

correlation (see Figure 5.8).

5.3.3 3D Image Processing

Once the 2D Image processing step is accomplished for every two images, a list of

2D spatially and temporally correlated image points are obtained. Then, the 3D

image processing step is divided into three tasks as shown in Figure 5.9.

First, the third dimension is computed from every pair of 2D spatially correlated

image points by triangulation. So, the stereo reconstruction task is based on the
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Figure 5.9: Data flow diagram of 3D processing subsystem.

triangulation technique described in section 3.2 and illustrated in Figure 3.2.

Second, the 3D tracker task consists of computing the displacement of these 3D

object points through the whole image sequence. In order to accomplish this task,

the list of image points correlated temporally and the list of reconstructed 3D object

points are utilized. This task stores the image points together with the 3D object

points and tracks the point in the image plane and in the 3D space (see Figure 5.10),

removing any point whose tracking has been broken. Moreover, the algorithm also

removes those points whose displacement in both image planes is inconsistent.

Finally, the last task consists of detecting and removing the bad correspondences

produced by 2D image processing which are easily detectable at this moment. In

some cases, bad image correspondences are persistent throughout the time. In gen-

eral, these outliers are produced by spatial cross correlation and are not detected by

the tracker. Then, an additional task is necessary to detect and remove any left over

bad correspondences. This task is called outlier detector and consists of detecting

inconsistent 3D displacements.
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Figure 5.10: Example of tracker in 3D space and 2D image planes.

5.3.4 Localization and Map-Building

The last step described in Figure 5.4 consists of the robot localization and map-

building. This step provides a global map of the environment and the trajectory

carried out by the robot with respect to this map. There are three tasks to accom-

plish as shown in Figure 5.11.

First, the local displacement of the robot is estimated by using the current 3D

object points and the map build up to this moment. The robot odometry gives

only a rude estimation and is prone to errors such as drifting, slipping, etc. We

propose to improve the odometry by using stereo vision system. The 3D motion

of the stereo vision system is computed by using the matches stored in the tracker.

The robot coordinate system is linked with the stereo vision system, consequently

the robot displacement is directly obtained. The displacement is restricted to a 2D

planar motion with just 3 degrees of freedom (two translations and one orientation).

The idea is to minimize the distance between the projection in both image planes

of a set of 3D object points (contained in the map) with the observed position of

those image points. Figure 5.12 illustrates this idea showing a map formed by a
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Figure 5.11: Data flow diagram of localization and map-building subsystem.

single cube and its projections on both image planes at the present instant, and the

discrepancy with respect to the projection of the same cube at the previous instant.

The 3D motion of the robot is computed by minimizing both image projections using

the discrepancies between the 2D points. A Newton-Raphson solution is computed

using the previous position estimated by the robot as the initial guess.

Second, the trajectory realized by the robot is updated with the new position by

using the task called Global Localization.

Third, the map is updated including the points provided by the last stereo image,

consisting of making a 3D map and integrating different scene reconstructions and

the estimated localization. The map is continually updated especially when the

current position of the robot changes and the set of object points changes due to the

robot movement or new object detection. Existing object points are updated if their

relative position with respect to the robot is closer than the relative position on the

map, as is the case when the robot approaches the object point, thereby improving

the accuracy of the map.
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Figure 5.12: Local localization minimizing the discrepancy between the observed
points at the present moment with respect to the previous moment.





Chapter 6

Experimental Results

This chapter presents the experimental results obtained in synthetic and real sce-

narios by means of the algorithms described in the previous chapters. Basically,

this chapter presents the results on camera calibration, fundamental matrix estima-

tion and motion recovery which are the subjects of the first chapters of this thesis.

The results are compared and analyzed bringing insightful information concerning

the potential and robustness of each method surveyed. Also, this chapter presents

qualitative results obtained when applying the algorithm described in chapter 5, that

is, the mapping and localization approach for a mobile robot.

6.1 Introduction

This chapter presents the experimental results obtained from the implementation of

the different methods described in the previous chapters. Also, a brief discussion of

these results is included with the aim of giving the reader details of the accuracy and

robustness of each method. First, camera calibration results are given in section 6.2.

The results obtained with synthetic images allow us to compare the accuracy of the

camera calibration surveyed methods without considering gaussian noise leading to

a pure analyzation of the accuracy of the method with a set of known points apart

from segmentation discrepancies. Furthermore, real cameras have been considered

when describing the calibration process, the segmentation approach and the exper-

imental results obtained. Second, the experiments carried out on the estimation

of the fundamental matrix are described in section 6.3. Synthetic data are gener-

113
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ated aggregating gaussian noise and potential outliers to evaluate the accuracy and

robustness of the surveyed estimators. Again, images from a wide variety of real

scenes are used and the epipolar geometry is recovered. Third, the results obtained

by means of motion recovery are presented in section 6.4 considering both a camera

with 6 degrees of freedom in a free 3D movement and a camera with 2 degrees of

freedom in the case of a mobile robot. Finally, the chapter ends with the presen-

tation of the qualitative results obtained by using a stereo vision system mounted

on a mobile robot. Then, section 6.5 shows the results obtained in each step of the

whole mapping and localization approach.

6.2 Camera Calibration Experimental Results

The experimental results presented in this section were carried out with the following

two purposes. On the one hand, the comparison of the camera calibration surveyed

methods in terms of accuracy by using synthetic data with the aim of facilitating the

choice of the most convenient method for any given application. On the other hand,

the description of how a camera is calibrated step by step, including the results

obtained in several real scenarios.

6.2.1 Camera Calibration with Synthetic Images

Instead of using our own experimental setup, we decided to download a list of corre-

sponding points from the well-known Tsai’s Camera Calibration Software Webpage

(http://www.cs.cmu.edu/~rgw/TsaiCode.html). Actually, results are always con-

ditioned to the structure of the 3D points and the image processing tools used in

segmentation and further points extraction. Hence, this decision was just taken to

allow the scientific community to reproduce the same conditions.

Then, the surveyed calibrating techniques have been implemented and their ac-

curacy measured using the following criteria: a) Distance with respect to the optical

ray; b) Normalized Stereo Calibration Error; c) Accuracy of distorted image coor-

dinates; and d) Accuracy of undistorted image coordinates. The two first criteria

calculate the accuracy with respect to a world coordinate system. The other two

calculate the discrepancy on the image plane (see section 2.4 for details on accu-

racy measurement). First, table 6.1 shows the accuracy measured by using the first
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Table 6.1: Accuracy of 3D coordinate measurement with synthetic data.
3D position (mm.) NSCE

Mean σ Max

Hall 0.1615 0.1028 0.5634 n/a
Faugeras 0.1811 0.1357 0.8707 0.6555
Faugeras NR1 without distortion 0.1404 0.9412 0.0116 0.6784
Faugeras NR with distortion 0.0566 0.0307 0.1694 0.2042
Tsai 0.1236 0.0684 0.4029 0.4468
Tsai optimized 0.0565 0.0306 0.1578 0.2037
Tsai with principal point
of Tsai optimized 0.0593 0.0313 0.1545 0.2137
Tsai optimized with principal
point of Tsai optimized 0.0564 0.0305 0.1626 0.2033
Weng 0.0570 0.0305 0.1696 0.2064

Table 6.2: Accuracy of 2D coordinate measurement with synthetic data.
2D distorted image (pix.) 2D undist. image (pix.)
Mean σ Max Mean σ Max

Hall 0.2676 0.1979 1.2701 0.2676 0.1979 1.2701
Faugeras 0.2689 0.1997 1.2377 0.2689 0.1997 1.2377
Faugeras NR without distortion 0.2770 0.2046 1.3692 0.2770 0.2046 1.3692
Faugeras NR with distortion 0.0840 0.0458 0.2603 0.0834 0.0454 0.2561
Tsai 0.1836 0.1022 0.6082 0.1824 0.1011 0.6011
Tsai optimized 0.0838 0.0457 0.2426 0.0832 0.0453 0.2386
Tsai with principal point
of Tsai optimized 0.0879 0.0466 0.2277 0.0872 0.0463 0.2268
Tsai optimized with principal
point of Tsai optimized 0.0836 0.0457 0.2500 0.0830 0.0454 0.2459
Weng 0.0845 0.0455 0.2608 0.0843 0.0443 0.2584

criteria and the second criteria, respectively. Note that the NSCE method is not

applicable to Hall because the method of Hall does not provide the camera param-

eters. Second, table 6.2 shows the results of calculating the accuracy by using the

third and fourth criteria, respectively. Note that the first three calibrating methods

which do not include the modelling of lens distortion (i.e. Hall, Faugeras-Toscani

and iterative Faugeras-Toscani without distortion) obviously give the same accuracy

with distorted and undistorted 2D points as has been considered Pd = Pu.

These tables show the accuracy obtained by each of the camera calibration tech-

niques surveyed. It can be observed that the techniques, which do not model lens

1Newton-Raphson.
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distortion (the first three rows in the tables) provide less accuracy than the others,

which do model the lens. Moreover, the technique of Hall appears as the best linear

method because it is based on computing the transformation matrix without includ-

ing any constraint. The other two techniques are based on a model which imposes a

determined form of the transformation matrix. This fact ill effects the calibration.

However, the discrepancy between their accuracy is not significant. Furthermore,

the results show that the use of an iterative algorithm does not improve the accuracy

obtained by using the pseudo-inverse in the technique of Faugeras-Toscani without

distortion. In order to improve accuracy it has to go to lens modelling.

It can be observed from the tables that the non-linear techniques, which model

lens distortion (the last 6 rows of the tables), obviously obtain better results than

the linear techniques. However, the improvement obtained by the method of Tsai

without optimization (fifth row) is not very significant because only a few parameters

are iteratively optimized (i.e. f , tz and k1). Nevertheless, when the whole set of

parameters is optimized, the method of Tsai (sixth row) shows the best accuracy

obtainable despite needing more computing time. Note that accuracy is limited due

to image segmentation and also that the model used always approximates the real

behavior of the image sensor. However, if a real principal point is known instead

of the image center approximation, the Tsai method without optimization is as

accurate as any iterative method, and allows a rapid computation. Note that the

use of the Tsai optimized method by using the real principal point in the initial

guess does not suggest an important improvement in accuracy. Finally, results show

that any iterative method which models lens distortion provides the same accuracy

without depending on the kind of modelled lens. That is, the complete method

of Weng does not obtain a better accuracy than the simple iterative method of

Faugeras modelling only radial distortion. Even so, the accuracy is slightly less due

to the complexity of this model which ill effects the calibration. The modelling of a

camera including a large quantity of parameters does not imply that the accuracy

obtained will be better.

6.2.2 Camera Calibration with Real Images

The results obtained when using synthetic data allows us to compare the error

produced by the camera model and the numerical method used in minimization.
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When a real camera is calibrated, other factors modify the calibration error, such

as the accuracy of the position of 3D object points used in the calibration and the

error given by 2D image points measurement due to digitalization of 3D object

points projection.

The next few pages will show the algorithm which clarifies how a camera is

calibrated is described step by step. Then, an example of camera calibration is pre-

sented as an application of 3D reconstruction. Finally, a second example concerning

a camera mounted on a mobile robot is calibrated and used in robot navigation.

Camera calibration step by step

The six steps to calibrate a camera are the following:

1. Place the camera to be calibrated in a location where the entire working area

is viewed by the given camera.

2. Set a world coordinate system in a fixed position with respect to the camera.

3. Place a set of 3D object points spread throughout the working area. Some

calibration methods use a set of coplanar 3D object points [Batista 99] while

others use a set of non-coplanar 3D points, which is our case. The positions

of object points with respect to the world coordinate system are given and

their 2D image projections in the camera image plane must be measured. The

number of object points depends on the size of the working area, however

the minimum should be six. More accurate results are obtained when using

at least twenty object points together with their 2D image projections well

distributed throughout the image plane.

4. Capture an image of the working area and measure the 2D projections of each

one of the object points. Depending on the distribution of the 3D object

points, it is necessary to capture more than a single image, as in the case of

3D object points situated on a set of planes at different distances where an

image might be captured for every plane.

5. Solve the correspondence between the 3D object points with their 2D image

projections.
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Figure 6.1: Camera and projector system for scene reconstruction.

6. Calibrate the camera. Sometimes it is necessary to know some parameters

related to the CCD sensor and image size, which is usually provided by man-

ufacturers as in the Tsai method.

Example of camera calibration in a reconstruction system

This is an example of calibrating a camera situated in a reconstruction system using

a coded light projection technique [Pagès 03]. This system is composed of three

elements: a camera, a light projector and a reconstruction area. Following the steps

explained previously, we must fix a world coordinate system, in this case the origin

has been situated in a corner of the reconstruction area (see Figure 6.1). After that,

two white planes with black squares have been placed in the working area. The

positions of squares corners are known and will be utilized in the calibration. Then,

an image is grabbed, as shown in Figure 6.2. The squares corners are obtained

by hand without subpixel accuracy. Finally, each 3D object point is related to its

corresponding 2D image point to calibrate the camera.

Using these points, the camera can be calibrated with five methods. The calibra-
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Figure 6.2: Image of the calibrating pattern viewed by a given camera.

Table 6.3: Computing time results for a fixed camera by using a set of 40 calibrating
points.

Time (ms.)

Hall 1
Faugeras 1
Faugeras with distortion 10
Tsai 10
Weng 51

tion accuracy has been computed for each method and shown in the following tables.

Table 6.3 shows the computing time for each method using a laptop Pentiumr III

Computer at 1000 MHz. It is necessary to point out that linear methods (Hall and

Faugeras) are faster than iterative methods and the Weng method is the slowest

because it uses the most complex camera model.

In terms of accuracy, the measuring methods followed the same criteria previ-

ously presented in synthetic data. Table 6.4 shows the distance between the 3D

object points and their optical ray. Moreover, the computation of the ratio called

Normalized Stereo Calibration Error is also given. Table 6.5 shows the accuracy

measured by using distorted and undistorted image coordinates in the computation.

The large mean error (more than one pixel in all cases) is due to the manual segmen-

tation of the 2D image points. The accuracy obtained by comparing tables 6.4 and



120 Chapter 6. Experimental Results

Table 6.4: Accuracy of 3D coordinate measurement for a fixed camera by using a
set of 40 calibrating points.

3D position (mm.) NSCE
Mean σ Max

Hall 0.5219 0.2595 1.1370 n/a
Faugeras 0.7782 0.4253 2.0210 4.0649
Faugeras with distortion 0.4967 0.3367 1.5642 2.5489
Tsai 0.4815 0.3023 1.4014 2.4836
Weng 0.4740 0.2904 1.2669 2.4556

Table 6.5: Accuracy of 2D coordinate measurement for a fixed camera by using a
set of 40 calibrating points.

2D distorted image (pix.) 2D undist. image (pix.)
Mean σ Max Mean σ Max

Hall 1.1124 0.5667 2.3322 1.1124 0.5667 2.3322
Faugeras 1.6549 0.9033 4.1251 1.6549 0.9033 4.1251
Faugeras with distortion 1.0661 0.7283 3.2365 1.0397 0.7283 3.2365
Tsai 1.0283 0.6474 2.8767 1.0137 0.6474 2.8767
Weng 1.0151 0.6217 2.6073 1.0010 0.6217 2.6073

6.5 with tables 6.1 and 6.2 is, in all cases, worse. In order to improve the calibra-

tion, it would be necessary to compute the 2D image points automatically, including

subpixel accuracy. In short, iterative methods improve the accuracy considerably

when compared to linear methods.

Example of camera calibration in a mobile robot

The second example considers the calibration of a camera placed on a mobile robot.

The mobile robot is equipped with a stereo vision system (see Figure 6.3) which is

further used in the robot navigation (see the application concerning the mapping of

a robot localization in chapter 5). This section describes the calibration of one of

the cameras (the left) of the stereo vision system. Note that the same procedure is

applied to calibrate the other camera.

Following the same algorithm described at the beginning of this section, we

have to first fix a world coordinate system. In this case, the origin of this world

coordinate system cannot move with respect to the camera position. Therefore, it

is not possible to fix such a coordinate system in any place in the scene due to the

fact that it has to move according to the motion of the robot. In this case, the
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Figure 6.3: Stereo camera over a mobile robot.

world coordinate system coincides with the robot coordinate system whose origin

is located at the bottom of the robot between the wheels. Now, a set of 3D object

points spread throughout the working area in the camera view has to be located.

Note that the range of distances from 1 to 4 meters in the chosen working area is

quite large. This decision was taken considering that distant objects are irrelevant

to robot navigation. Besides, closer objects are objects which have been previously

seen by the system and already considered. We have not considered that any object

could appear unexpectedly at distances closer than 1 meter.

The set of object points utilized in the camera calibration are structured into 9

planes placed from 0.8 meters to 4.40 meters with respect to the robot coordinate

system. Each plane is composed of a set of equidistant black circles on a white

background where each circle center the 3D coordinates are known. Then, an image

is taken for every plane position (see Figure 6.4). The center of every circle in the

image plane is computed with subpixel accuracy as the mass center. Note that the

center of a circle coincides with the mass center only when the circle is perpendicular

to the optical ray of the camera. Otherwise, the image of the circle has an egg-shape,

leading to the use of other kinds of patterns, usually the vertexes of a square. Finally,

the whole set of 3D points (1904 in our set up) is related to its 2D projective position

to calibrate the camera.
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Figure 6.4: Images utilized to calibrate a camera on the mobile robot.

Table 6.6: Computing time results for a camera mounted on a mobile robot by using
a set of 1904 calibrating points.

Time (ms.)

Hall 70
Faugeras 70
Faugeras with distortion 380
Tsai 530
Weng 4216

Table 6.6 shows the camera calibration results in terms of computation time

which are compared to the previous example (see Table 6.3). Note that the total

time depends directly on the number of points used in the calibration with Weng’s

method always being the slowest.

Table 6.7 shows the accuracy when considering two different criteria. The first 3

columns show the discrepancy between each 3D object point with respect to its op-

tical ray. The last column is the Normalized Stereo Calibration Error. Apparently,

the comparison of the results given in Table 6.7 with the results previously shown in

Table 6.4 when using only the first criteria shows a large discrepancy, indicating that

the calibration of the first example was more accurate. This should be considered
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Table 6.7: Accuracy of 3D coordinate measurement for a camera mounted on a
mobile robot by using a set of 1904 calibrating points.

3D position (mm) NSCE
Mean σ Max

Hall 1.5698 0.9842 8.9249 n/a
Faugeras 1.6187 0.9856 8.8812 2.0175
Faugeras with distortion 0.9930 0.5660 3.2386 0.9909
Tsai 0.9927 0.5655 3.2311 0.9908
Weng 0.9896 0.5724 3.3526 0.9869

Table 6.8: Accuracy of 2D coordinate measurement for a camera mounted on a
mobile robot by using a set of 1904 calibrating points.

2D distorted image (pix.) 2D undist. image (pix.)
Mean σ Max Mean σ Max

Hall 0.8061 0.8981 6.3560 0.8061 0.8981 6.3560
Faugeras 0.8235 0.9183 6.8152 0.8235 0.9183 6.8152
Faugeras with distortion 0.3996 0.2124 1.3225 0.4045 0.2172 1.3828
Tsai 0.3995 0.2124 1.3333 0.4045 0.2172 1.3944
Weng 0.3981 0.2105 1.3516 0.4029 0.2153 1.4344

a mistake because the first criteria depends on the distance of the 3D points with

respect to the camera. Note that, in the first example, the calibration points were

located closer (about one meter) to the camera than in the second example, in which

they were located from one to four meters away. In conclusion, the first accuracy

evaluation criteria is useless to compare calibrations in different camera configura-

tions, but it is the most convenient to find the given error in metric coordinates.

Besides, the NSCE ratio is independent of the distance of the calibration points with

respect to the camera. Considering the second example, the NSCE ratio is smaller

when in every method, leading us to conclude that the camera calibrations obtained

are more accurate basically due to the fact that more calibrating points were used.

In Table 6.8 the reader can observe the accuracy measured with respect to dis-

torted and undistorted image coordinates. The mean error is smaller compared to

Table 6.5 due to the fact that the method utilized to extract the 2D image point

coordinates used subpixel accuracy and was automatic.
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6.2.3 Discussion

The surveyed methods have been implemented and their accuracy analyzed. Results

show that only non-linear methods obtain a 3D accuracy smaller than 0.1 mm. with

a reasonable standard deviation using synthetic data. Moreover, the accuracy of

non-linear methods on the image plane is much higher than linear methods. Results

show, moreover, that the modelling of radial distortion is quite sufficient when high

accuracy is required. The use of more complicated models does not improve the

accuracy significantly. It should be kept in mind that segmentation introduces a

discrepancy between observable and modelled projections which poses conditions

on the accuracy. Moreover, when low accuracy is sufficient, the fast and simple

method of Hall is sufficient for most applications.

When comparing the results obtained using the same camera configuration, it

can be seen that a relationship exists between the different criteria. Accuracy mea-

suring methods obtain similar results if they are relatively compared. That is, good

calibrating algorithms obtain acceptable accuracy results independently from the

accuracy evaluation method used. Obviously, the results only prove something al-

ready demonstrated by the authors. However, in this chapter the accuracy has been

measured by using the same test points for all the methods, so the results can be

reliably compared. Hence, the reader can choose any method depending on the

accuracy required.

Finally, the NSCE ratio of accuracy evaluation is the most convenient because it

is independent of the distance between the object points and the calibrated camera.

Besides, the methods used to evaluate the accuracy considering the image coordi-

nates are the most suitable when the NSCE is not available, i.e. the Hall’s method.

Moreover, the accuracy method based on the 3D error measurement is not a good

criteria to compare calibrations with different camera configurations, but is the most

convenient when the reconstruction error measurement is needed.
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6.3 Fundamental Matrix Estimation Experimen-

tal Results

The surveyed methods explained in section 3.4 have been implemented2 and their

accuracy analyzed with synthetic images varying the gaussian noise and the number

of outliers. Moreover, the surveyed methods have been tested by using real images in

different scenarios, that is urban scenes, mobile robot indoor environment, seabed,

road images, aerial and images of a potential kitchen. Tables presented in this

section show the accuracy of every method computed as the mean and standard

deviation of the distances between points and epipolar lines.

6.3.1 Fundamental Matrix Estimation with Synthetic Im-

ages

Table 6.9 illustrates the results obtained with the linear methods. The seven points

algorithm obtains a solution using only seven points. However, the accuracy depends

greatly on the points used. The least-squares technique is based on using at least

8 points and its accuracy depends on the amount of badly located points used,

usually obtaining better results by increasing the amount of points. The eigen

analysis is the linear method that obtains the best results because an orthogonal

least-squares minimization is more realistic than the classical one. However, all

these methods obtain a rank-3 fundamental matrix, which means that the epipolar

geometry is not properly modeled. The analytic method with rank-2 constraint

obtains a rank-2 fundamental matrix in which distances between points and epipolar

lines are worse than in the linear methods and it is more expansive in computing

time (see Figure 6.5).

Table 6.10 presents results obtained with iterative methods. The iterative linear

method improves considerably the least-squares technique but can not cope with

outliers. The iterative Newton-Raphson algorithm gets even better results than the

previous method if the presence of outliers is not considered. Although the nonlinear

minimization in parameter space also obtains a rank-2 matrix, the distances of points

to epipolar lines are the worst and sometimes the method diverges obtaining a false

2FNS, CFNS, MLESAC and MAPSAC implementations have been provided by the original
authors.
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Table 6.9: Synthetic image results of linear methods3. Every cell show the mean
and standard deviation of the discrepancy between points and epipolar lines.

Methods Linear

1 2 3 4

σ = 0.0 14.250 0.000 0.000 1.920
outliers 0% 13.840 0.000 0.000 1.143

σ = 0.0 25.370 339.562 17.124 30.027
outliers 10% 48.428 433.013 31.204 59.471

σ = 0.1 135.775 1.331 0.107 0.120
outliers 0% 104.671 0.788 0.088 0.091

σ = 0.1 140.637 476.841 19.675 70.053
outliers 10% 104.385 762.756 46.505 63.974

σ = 0.5 163.839 5.548 0.538 0.642
outliers 0% 178.222 3.386 0.362 0.528

σ = 0.5 140.932 507.653 19.262 26.475
outliers 10% 109.427 1340.808 49.243 54.067

σ = 1.0 65.121 21.275 1.065 1.319
outliers 0% 58.184 12.747 0.744 0.912

σ = 1.0 128.919 429.326 21.264 61.206
outliers 10% 100.005 633.019 53.481 64.583

solution. The eighth and ninth methods are two different versions of the gradient-

based method using least-squares and orthogonal least-squares, respectively. Both

methods obtain better results than their equivalent linear methods. Nevertheless,

the eigen analysis once more obtains better results than the other linear methods.

Results obtained and computing time spent by the method FNS are quite similar

to the gradient technique. Besides, CFNS improve slightly the results obtained by

FNS, but spending more computing time. Summarizing, iterative methods improve

the computation of the fundamental matrix but they cannot cope with outliers.

The last surveyed methods are classified into robust (see in Table 6.11), which

means that they might detect and remove potential outliers and compute the fun-

damental matrix by using only inliers. Three versions of the M-estimators based

on the Huber weight function have been programmed: least-squares, eigen analysis

and the method proposed by Torr [Torr 97]. The three methods start from a linear

initial guess and become fully dependent on the linear method used to estimate

it. Moreover, least-squares and eigen values get a rank-3 matrix, while Torr forces

a rank-2 matrix in each iteration giving a more accurate geometry. Besides, two

3Methods: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank-2 constraint.
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Table 6.10: Synthetic image results of iterative methods4. Every cell show the mean
and standard deviation of the discrepancy between points and epipolar lines.

Methods Iterative

5 6 7 8 9 10 11

σ = 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
outliers 0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

σ = 0.0 161.684 20.445 ∞ 187.474 18.224 17.124 16.978
outliers 10% 117.494 30.487 ∞ 197.049 36.141 31.204 29.015

σ = 0.1 1.328 0.107 1.641 1.328 0.112 0.107 0.110
outliers 0% 0.786 0.088 0.854 0.786 0.092 0.088 0.091

σ = 0.1 158.961 32.765 146.955 183.961 15.807 14.003 14.897
outliers 10% 124.202 67.308 94.323 137.294 40.301 38.485 39.388

σ = 0.5 5.599 0.538 7.017 5.590 0.554 0.538 0.543
outliers 0% 3.416 0.361 3.713 3.410 0.361 0.362 0.368

σ = 0.5 161.210 31.740 ∞ 217.577 19.409 22.302 22.262
outliers 10% 136.828 59.126 ∞ 368.061 51.154 59.048 59.162

σ = 1.0 20.757 1.068 345.123 21.234 1.071 1.065 1.066
outliers 0% 12.467 0.772 294.176 12.719 0.745 0.744 0.748

σ = 1.0 158.849 37.480 ∞ 152.906 18.730 18.374 19.683
outliers 10% 120.461 52.762 ∞ 120.827 38.644 39.993 42.112

different versions of LMedS using again least-squares and eigen analysis have been

studied. Although the accuracy of LMedS seems worse compared to M-estimators,

LMedS removes the outliers more efficiently so that the epipolar geometry is prop-

erly obtained. RANSAC is the last surveyed method. However, RANSAC does

not obtains any better results than LMedS with eigen analysis due to the method

used to select the outliers which is quite permissive. MLESAC is a generalization

of RANSAC obtaining more or less the same results. Besides, MAPSAC improves

considerably the results obtained by RANSAC but MAPSAC does not improve the

results obtained by LMedS.

Figure 6.5 shows the mean computing time spent by the whole methods in syn-

thetic and real scenarios. On the whole, computing time is linear dependent to

complexity of the algorithm. So, least-squares turn out to be the quickest linear

method, while Newton-Raphson and gradient techniques are the quickest iterative

methods. Summarizing the robust methods, M-Estimators are quicker than the

methods in which a set of points have to be selected aleatory from the images.

4Methods: 5.- iterative linear; 6.- iterative Newton-Raphson; 7.- minimization in parameter
space; 8.- gradient using LS; 9.- gradient using eigen; 10.- FNS; 11.- CFNS.

5Methods: 12.- M-Estimator using LS; 13.- M-Estimator using eigen; 14.- M-Estimator pro-
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Table 6.11: Synthetic image results of robust methods5. Every cell show the mean
and standard deviation of the discrepancy between points and epipolar lines.

Methods Robust

12 13 14 15 16 17 18 19

σ = 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.011
outliers 0% 0.000 0.000 0.000 0.000 0.000 0.000 0.079 0.009

σ = 0.0 273.403 4.909 4.714 0.000 0.000 16.457 19.375 0.115
outliers 10% 360.443 4.493 2.994 0.000 0.000 26.923 70.160 0.115

σ = 0.1 0.355 0.062 0.062 1.331 0.107 0.107 0.139 0.168
outliers 0% 0.257 0.042 0.041 0.788 0.088 0.088 0.123 0.155

σ = 0.1 73.354 4.876 4.130 0.449 0.098 2.389 21.784 0.701
outliers 10% 59.072 4.808 2.997 0.271 0.077 5.763 97.396 0.740

σ = 0.5 2.062 0.392 0.367 5.548 0.538 0.538 0.550 0.762
outliers 0% 1.466 0.237 0.207 3.386 0.362 0.362 0.377 0.618

σ = 0.5 143.442 3.887 3.147 47.418 0.586 18.942 23.859 0.629
outliers 10% 111.694 3.969 2.883 29.912 0.434 53.098 79.890 0.452

σ = 1.0 8.538 0.794 0.814 21.275 1.065 1.065 1.089 1.072
outliers 0% 6.306 0.463 0.463 12.747 0.744 0.744 0.768 0.785

σ = 1.0 120.012 3.921 4.089 25.759 1.052 14.076 19.298 1.041
outliers 10% 122.436 3.752 4.326 15.217 0.803 30.274 65.149 0.822

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8
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1.4

se
c.

Methods

Figure 6.5: Computing time of methods3,4,5.
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6.3.2 Fundamental Matrix Estimation with Real Images

The surveyed methods have been tested by using real images in different scenarios,

that is, urban scenes, mobile robot indoor environment, aerial and seabed outdoors,

road images, and the special case of a kitchen scene (see Figure 6.6). The correspon-

dence problem between images have been solved by using the algorithm proposed

by Zhang6 [Zhang 94] and the obtained results are shown in Figure 6.7. The corre-

sponding points have normalized by the method proposed by Hartley [Hartley 95]

described in section 3.4.5.

Continuing with the methodology applied with synthetic images, the following

Tables 6.12, 6.13 and 6.14 show the results obtained using real images with linear,

iterative and robust methods, respectively.

As it has been observed with synthetic images, robust methods improve the

accuracy of linear and iterative methods. For example a robust method should be

used in the mobile robot scene where there are a lot of outliers. Nevertheless, if the

number of outliers is can be neglected, an iterative method is enough, that is the

case of the urban and aerial scenes. Finally, a linear method is the most suitable

where there are no outliers since it is the one that minimizes the computing time,

i.e. in the case of the road scene.

Figure 6.8a shows the matchings obtained by using the method proposed by

Zhengyou Zhang [Zhang 93, Zhang 94]. First, a Harris corner detector is applied to

obtain a list of interest points. Then the matching between both images is computed

by using a pixel-based correlation. Note that matches might not be unique. Finally,

a relaxation method is used to improve the local consistency of matches, reducing

their ambiguity.

Figure 6.8b shows the list of matchings kept by M-estimator based on eigen val-

ues. Depending on the weighting function, the removed matchings vary due to both

noise and outliers. Note that some good matchings are also removed while potential

outliers are kept as inliers. Figure 6.8c shows the results obtained by LMedS, while

Figure 6.8d shows the results obtained by RANSAC. In both cases, every single

outlier is detected and removed, obtaining comparatively the same results.

posed by Torr; 15.- LMedS using LS; 16.- LMedS using eigen; 17.- RANSAC; 18.- MLESAC; 19.-
MAPSAC.

6Available at http://www-sop.inria.fr/robotvis/demo/f-http/html
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Real images utilized to fundamental matrix estimation: (a) Urban scene;
(b) Mobile Robot Scene; (c) Underwater Scene; (d) Road Scene; (e) Aerial Scene;
(f) Kitchen Scene.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Correspondences used in real images: (a) Urban scene; (b) Mobile Robot
Scene; (c) Underwater Scene; (d) Road Scene; (e) Aerial Scene; (f) Kitchen Scene.
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Table 6.12: Real image results of linear methods7. Every cell show the mean and
standard deviation of the discrepancy between points and epipolar lines.

Methods Linear

1 2 3 4

Urban 51.633 1.724 0.440 1.023
Scene 35.724 1.159 0.334 1.012

Mobile Robot 119.439 35.525 4.080 16.511
Scene 46.268 64.175 7.684 18.964

Underwater 97.977 4.683 1.725 5.242
Scene 66.223 3.941 2.138 4.286

Road 27.668 0.825 0.609 1.078
Scene 39.688 1.144 0.734 2.118

Aerial 99.635 0.179 0.149 1.480
Scene 62.162 0.158 0.142 0.979

Kitchen 16.956 5.014 2.623 2.681
Scene 16.696 5.177 3.327 4.175

Table 6.13: Real image results of iterative methods8. Every cell show the mean and
standard deviation of the discrepancy between points and epipolar lines.

Methods Iterative

5 6 7 8 9 10 11

Urban 1.102 0.468 2.974 1.109 0.446 0.437 0.437
Scene 0.796 0.341 3.066 0.803 0.368 0.333 0.334

Mobile Robot 46.216 5.611 24.010 18.665 4.787 4.080 3.199
Scene 35.011 8.729 22.270 22.170 9.255 7.684 5.541

Underwater 3.068 1.752 5.575 2.949 1.581 1.599 1.609
Scene 2.804 2.249 4.337 2.798 2.056 2.019 2.010

Road 0.511 0.559 1.920 0.512 0.809 0.466 0.595
Scene 0.422 0.709 2.498 0.427 0.986 0.419 0.543

Aerial 0.179 0.149 0.497 0.179 0.342 0.149 0.209
Scene 0.158 0.143 0.472 0.158 0.339 0.142 0.178

Kitchen 3.217 2.966 7.563 3.176 1.901 2.623 1.892
Scene 3.310 5.576 2.508 1.499 3.327 2.504 0.425
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Table 6.14: Real image results of robust methods9. Every cell show the mean and
standard deviation of the discrepancy between points and epipolar lines.

Methods Robust

12 13 14 15 16 17 18 19

Urban 1.668 0.309 0.279 1.724 0.319 0.440 0.449 0.440
Scene 0.935 0.228 0.189 1.159 0.269 0.334 0.373 0.348

Mobile Robot 5.775 0.274 0.593 24.835 1.559 3.855 2.443 1.274
Scene 50.701 0.192 0.524 38.434 2.715 6.141 5.629 2.036

Underwater 0.557 0.650 0.475 2.439 0.847 1.725 3.678 1.000
Scene 0.441 0.629 0.368 2.205 0.740 2.138 12.662 0.761

Road 0.373 0.136 0.310 0.825 0.609 0.609 0.427 0.471
Scene 0.635 0.113 0.256 1.144 0.734 0.734 0.410 0.403

Aerial 0.099 0.085 0.161 0.179 0.149 0.149 0.216 0.257
Scene 0.063 0.058 0.106 0.158 0.142 0.142 0.186 0.197

Kitchen 0.584 0.280 0.263 1.350 0.545 2.623 0.864 0.582
Scene 0.425 0.207 0.191 1.200 0.686 3.327 3.713 0.717

Also, the geometry modeled by every robust method is quite different. Fig-

ures 6.9a and 6.9b show the epipolar geometry given by M-Estimator based on

eigen values, wherein it is shown how the epipolar lines do not cross in a single

epipole due to the rank-3 matrix obtained. LMedS obtains a completely different

geometry in which epipoles have been located outside the image plane, but they are

unique (see Figure 6.9c and Figure 6.9d). RANSAC obtains a geometry with the

epipole located near the image centre. Comparing the obtained geometries related

to the position of the camera and its motion, the geometry modeled by RANSAC is

the closest to reality.

The same study has been done considering the urban scene showing that the

obtained results are a bit different. The reader can see these results in Figure 6.10

and Figure 6.11. The number of potential outliers is lower than in the underwater

scene and the location of image points is more accurate because of better image

quality (see Figure 6.10a). Figure 6.10b shows the poor results obtained by the

eigen value M-Estimator, in which a lot of matchings are removed while some of the

outliers remain. In this case, LMedS is the only method which detects the set of

7Methods: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank-2 constraint.
8Methods: 5.- iterative linear; 6.- iterative Newton-Raphson; 7.- minimization in parameter

space; 8.- gradient using LS; 9.- gradient using eigen; 10.- FNS; 11.- CFNS.
9Methods: 12.- M-Estimator using LS; 13.- M-Estimator using eigen; 14.- M-Estimator pro-

posed by Torr; 15.- LMedS using LS; 16.- LMedS using eigen; 17.- RANSAC; 18.- MLESAC; 19.-
MAPSAC.
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(a) (b)

(c) (d)

Figure 6.8: Underwater scene and matchings: (a) set of initial correspondences; and
the remaining matchings: (b) M-Estimators; (c) LMedS; (d) RANSAC.

outliers located at the right side of the image (see Figure 6.10c). Besides, RANSAC

does not detect any outlier so results are not accurate enough.

The geometry obtained in the urban scene largely depends on the method uti-

lized. Figure 6.11 shows the three different geometries given by M-Estimator, LMedS

and RANSAC. In this case, M-Estimator and RANSAC model a similar geometry in

which the epipoles are located outside the image near the top-right corner, which is

not the right situation. LMedS obtains the right geometry with the epipoles located

in the left side of the image.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Points and epipolar lines in the underwater scene: (a) left and (b) right
views obtained by M-Estimator; (c) left and (d) right views obtained by LMedS; (e)
left and (f) right views obtained by RANSAC.
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(a) (b)

(c) (d)

Figure 6.10: Urban scene and matchings: (a) set of initial correspondences; and the
remaining matchings: (b) M-Estimators; (c) LMedS; (d) RANSAC.

6.3.3 Discussion

The different methods have been programmed and their accuracy analyzed in syn-

thetic and real images. The methodology used has been compared and a useful

overall schema is presented. Experimental results show that: a) linear methods are

quite good if the points are well located in the image and the correspondence prob-

lem previously solved; b) iterative methods can cope with some gaussian noise in the

localization of points, but become really inefficient in the presence of outliers; and

c) robust methods can cope with both discrepancy in the localization of points and

false matchings. Nevertheless, the linear methods present an interesting reduced

computing time.

Experimental results show that the orthogonal least-squares method using eigen

analysis gives better results than the classic least-squares technique of minimization.

Moreover, a rank-2 method is preferred because it models the epipolar geometry

with all the epipolar lines intersecting at a single epipole. Moreover, experimental

results show that the corresponding points have to be normalized and the best

results have been obtained by using the method proposed by Hartley [Hartley 00].

In conclusion, the recently proposed method of MAPSAC obtains quite good results
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Points and epipolar lines in the urban scene: (a) left and (b) right
views obtained by M-Estimator; (c) left and (d) right views obtained by LMedS; (e)
left and (f) right views obtained by RANSAC.
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with a low computing time. However, LMedS still obtains the best results when a

low computing time is not required.

The uncertainty in fundamental matrix computation was studied in detail by

Csurka et al. [Csurka 97] and Torr and Zisserman [Torr 98]. The surveyed methods

model the epipolar geometry without considering lens distortion which consider-

ably influences their discrepancy. Thus, some efforts have been made recently in

the presence of radial lens distortion [Zhang 96a]. Among all, LMedS is the most

appropriate for outlier detection and removal. However, with the aim of obtaining

an accurate geometry, it is better to combine it with M-Estimator, which, in our

case, modeled a proper geometry in synthetic data, both in the presence of noise

and outliers.

6.4 Differential Epipolar Constraint Experimen-

tal Results

All the surveyed methods have been programmed and tested under the same con-

ditions of image noise with the aim of giving an exhaustive comparison of most

of 6-DOF motion estimation methods. Hence, section 6.4.1 compares the twelve

surveyed methods of 3D motion estimation and section 6.4.2 deals with the six pro-

posed adaptations to a 2-DOF mobile robot movement estimation. Section 6.4.3

shows results in real image sequences.

6.4.1 Results on 3D Motion Estimation

The surveyed methods based on the differential epipolar constraint explained in sec-

tions 4.4.1 have been programmed in MATLABr. The others, that is, the ones de-

scribed section 4.4.2, have been taken from the comparative survey and MATLABr

toolbox given by Tian, Tomasi and Heeger [Tian 96]. The partial use of a previous

toolbox permits us to validate the programmed methods and compare the obtained

results.

Several tests were done using synthetic data with the goal of comparing the ro-

bustness of the methods in the presence of image noise. We have used a methodology

similar to the one proposed by Tian et al. [Tian 96] and Ma et al. [Ma 00]. Moreover,
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the camera movement is estimated from a cloud of 50 3D points located in front

of the camera and distributed throughout the field of view image (we considered a

field of view varying between 30◦ and 90◦). Next, the optical flow of every point

is computed. Once the optical flow of the 50 points is computed, gaussian noise

is added to every velocity component with a standard deviation varying from 0.05

pixels up to 0.5 pixels. With the aim of studying the robustness of every method in

any potential camera movement, all the potential camera orientations and transla-

tions are considered in ranges of 22.5◦. Ten movement estimations are carried out

for every camera pose.

Then the optical flow of every point is computed by using equation (4.51), in

which q̇ is the velocity of the image point q = (q1, q2, 1) on the image plane; υ and ω

are the camera’s linear and angular velocities; and Z(q) is the depth of every pixel

q.

In the following experiments the angular velocity has been considered fixed and

equal to 0.23o/frame, while the coefficient of linear/angular velocity varies from 1

up to 10. Once the optical flow of the 50 points is computed, a gaussian noise is

added to every velocity component varying its standard deviation from 0.05 up to

0.5 pixels. With the aim of studying the robustness of every method in any potential

camera movement, all the camera orientations and translations have been considered

in ranges of 22.5◦ and 10 movement estimations are carried out for every camera

pose. Hence, given an image field of view of 30o, 60o and 90o, a linear/angular

coefficient of 1, 5 and 10 and a gaussian noise of 0.05 up to 0.5 pixels, an amount

of 655,360 movement estimations have been computed for each surveyed method.

Every estimation has been compared to the real movement where the discrepancy

in the linear velocity estimation is the angle between the real movement vector υ

and the estimated υest which is computed using the following equation.

errorlineal = cos−1(υ · υest) . (6.1)

The discrepancy between the rotation matrix of the real angular movement R

with respect to the estimated rotation matrix Rest obtained from the vector of

angular velocities ωest is used to compute the angular velocity error. Then, the

difference rotation matrix is defined as follows, ∆R = RT Rest. The matrix ∆R is

defined by a rotation axis and an angle. The measuring error presented in this angle
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Figure 6.12: Estimation results of general methods with synthetic dates.

is computed by using the following equation.

errorangular = cos−1

(

Tr(∆R) − 1

2

)

(6.2)

where Tr(∆R) is the trace of the matrix.

Figure 6.12 shows the obtained results of every method considering a linear/angular

velocity coefficient equal to unity, an image field of view of 90◦ and a gaussian noise

varying from 0.05 up to 0.5 pixels. This is a worst case, which leads us to compare the

robustness of every method. The best results are obtained when the linear/angular

velocity coefficient is bigger than the unity and the image field of view smaller than

90◦.

The 7-points method and the method proposed by Prazdny are not shown in Fig-

ure 6.12 due to the poor results obtained which condition the illustrative comparison

of the Figure. The Figure shows errors in the linear velocity angle and its standard

deviation and errors in the angular velocity angle and its standard deviation.

Summarizing, the surveyed methods which present the worst results are the Mod-

ified Iteratively Reweighed Least Squares (MIRLS) and the Least Median Squares
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1.- 7p;  2.- LSeig;  3.- Ma; 4.- IRLS; 5.- MIRLS; 6.- LMedS; 7.- Baumela; 8.- Heeger; 9.- KanataniA; 10.- KanataniB; 11.- Bruss; 12.- Tomasi; 13.- Prazdny.

Time

Figure 6.13: Computing time results of general methods with synthetic dates.

(LMedS) due to the lack of convergence in minimization given by MIRLS. Our imple-

mentation of LMedS optimizes the solution, once the outliers have been removed, by

using MIRLS minimization, showing a poor estimate of the camera movement. The

other surveyed methods obtain similar results, especially in the estimation of the

translation movement, where an angle error of approximately 20◦ is obtained with

a gaussian noise of only 0.3 pixels. Note that we are comparing these methods in

the most unfavorable conditions. These conditions can be improved by reducing the

image field of view of the camera or increasing the linear/angular velocity coefficient.

Nevertheless, the results indicate that in different conditions the results obtained by

the surveyed methods are comparatively similar. However, Figure 6.12 shows that

the method proposed by Kanatani with a previous data normalization obtains by far

the best results in angular velocity estimation even with increasing gaussian noise.

Finally, comparison of the execution time of every method in MATLABr running

on a Pentiumr III Computer at 800 MHz. is shown in Figure 6.13. The Figure

shows that while almost half of the methods obtain a solution in less than 0.1 sec.;

eleven, such as the 7-points method, Bruss and Horn, and Tomasi and Shi, obtain a

motion estimation in less than 0.5 sec., and the two others, Prazdny, and Baumela,
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Figure 6.14: Estimation results of general and simplified methods with synthetic
images.

Agapito, Bustos and Reid spend more than 0.5 sec.

6.4.2 Results on Mobile Robot Motion Estimation

In order to compare the methods adapted to estimate mobile robot movement, tests

are based on the same settings used in the previous section but constrained to the

common case of a mobile robot. A new parameter α, corresponding to the angle

between the optical axis of the camera and the ground plane has been considered.

Tests were done for several values of α, that is: 0o, 15o, 30o, 45o, 60o, 75o and 90o.

It has been observed that the motion estimation presents a slight error at α = 45o,

which was the worst case.

Figure 6.14 shows the results obtained by the movement estimation methods for

the case of a mobile robot with a field of view of 90o, a coefficient linear/angular

velocity equal to unity considering the worst case α = 45o.

The methods adapted to robot motion do not present an error in the linear ve-

locity estimation because the methods intrinsically fix its direction. Hence, the error
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Figure 6.15: Computing time results of general and simplified methods with syn-
thetic images.

in the translation estimate for every method shown in Figure 6.14 is zero. Actually,

this fact implies that the error presented in the estimation of the angular veloc-

ity decreases considerably. Results on rotation estimation show that the adapted

methods are more robust in the presence of image noise than their general versions

(i.e. including all the 6-DOF). Figure 6.15 shows the computation times obtained

by using MATLABr and a PC Pentiumr III at 800 MHz, showing that seven of

the twelve methods yield an estimate in 0.05 seconds or less, permitting their use in

real-time applications.

6.4.3 Results on Mobile Robot Motion with Real Images

The results obtained with real images are also quite accurate. Figures 6.18, 6.20

and 6.22 compare the results given by LS and its adaptation to the mobile robot

(RobalphaLSeig), considering up to 80 test images where the camera has a tilt

angle of 0o, 10o and 20o respectively and the robot progresses and rotates with

an angle of -0.1o in every two consecutive images. The Figure shows the accuracy
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Figure 6.16: Results of general (1 through 6) and adapted (7 through 12) methods
with real images.

on the estimation of rotation and translation estimation and the obtained vectors.

The error on the estimation of translation is zero in the adapted method while the

general method (6-DOF estimation) has an error in the Z-axis, since, in that case,

it is difficult to distinguish between a camera rotation around Y-axis and a camera

translation along X-axis. The error increases for α equal to 45o being minimum at

0o and 90o. Finally, the rotation estimation is also more accurate using the adapted

RaLS than that of the general method.

The same example described in the previous paragraph was tested for all the

surveyed methods. The results obtained are presented in Figure 6.16, which shows

that the adapted 2-DOF methods are always more accurate than the general 6-DOF.

6.4.4 Discussion

Traditionally, the estimation of the movement of a single camera is based on the

application of epipolar geometry between every two consecutive images. However,
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(a) (b) (c)

Figure 6.17: Image sequence with α = 0o. (a) 1st frame; (b) 40th frame; (c) 80th
frame.
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Figure 6.18: Example of motion estimation with real images of 6-DOF (LSeig) and
its adaptation to 2-DOF (RobalphaLSeig) with α = 0o.
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(a) (b) (c)

Figure 6.19: Image sequence with α = 10o. (a) 1st frame; (b) 40th frame; (c) 80th
frame.
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Figure 6.20: Example of motion estimation with real images of 6-DOF (LSeig) and
its adaptation to 2-DOF (RobalphaLSeig) with α = 10o.
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(a) (b) (c)

Figure 6.21: Image sequence with α = 20o. (a) 1st frame; (b) 40th frame; (c) 80th
frame.
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Figure 6.22: Example of motion estimation with real images of 6-DOF (LSeig) and
its adaptation to 2-DOF (RobalphaLSeig) with α = 20o.
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the traditional case of epipolar geometry has some limitations in the common case

of a single camera attached to a mobile robot. First of all, the disparities between

two consecutive images are rather small at the usual image rates, leading to numer-

ical inaccuracies on the computation of the fundamental matrix. Indeed, dispari-

ties could be increased by removing intermediate images, but then the movement

obtained is only a rough approximation of reality. Secondly, the correspondence

problem between images is quite time consuming, reducing its effectiveness for real

time applications.

Some authors have proposed techniques to estimate the camera motion at a high

image rate based on the computation of the linear and angular velocities instead

of the orientation and translation between consecutive images. These techniques

are commonly based on the optical flow and the differential epipolar constraint.

This section presents an exhaustive comparison of these techniques. It shows the

robustness of each technique with respect to both synthetic and real images.

Nevertheless, all these techniques generate poor results unless they are adapted

to the case of a mobile robot moving on a plane. The adaptation is based on

constraining the movement from six degrees of freedom to only two degrees, which

are: a) the spin rotation of the robot, and b) forward motion. Results highlight the

robustness of the adapted methods. Moreover, motion is estimated faster, making

its use easier at a high image rate.

In summary, the 6-DOF movement estimator methods are quite sensitive to noise.

Hence, these methods should be adapted constraining the number of DOF with the

aim of reducing error. In this section, the 2-DOF common case of a mobile robot

has been considered and results show better movement estimation and stability due

to the fixed direction of the translation movement constrained by the structure of

the robot.
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6.5 Mobile Robot Localization and Mapping Ex-

perimental Results

This section deals with the experimental results obtained by the mobile robot ap-

plication described in chapter 5 and is structured in the following way. First, sec-

tion 6.5.1 shows the 2D image processing results given by the following steps: a) lens

distortion removal, b) corner detection; c) spatial cross correlation; and d) tempo-

ral cross correlation. Then, section 6.5.2 presents the results concerning 3D image

processing; a) stereo reconstruction; b) object points tracking; and c) outlier rejec-

tion. Finally, section 6.5.3 shows some samples of reconstructed maps of the mobile

robot surroundings obtained from a sequence of stereo images. The estimation of

the robot trajectory is also detailed.

6.5.1 2D Image Processing Results

The 2D image processing tasks (described in section 5.3.2) are the following:

• Conversion of the color images to intensity images.

• Removal of the image distortion.

• Corner detection.

• Spatial cross correlation.

• Temporal cross correlation.

First, the color images are transformed to an intensity image with 256 different

grey levels. This is a trivial task because it simply needs on computing, per every

pixel, the mean value obtained from the Red, Green and Blue component. Then,

the image distortion caused by the lenses is removed by means of using the camera

calibration parameters. Figure 6.23 shows an example of image distortion removal,

in which a 3 mm. lens camera was used to obtain a wide viewing field consequently

causing great image distortion. As can be seen, the image on the left shows image

distortion in which straight lines become curves, while in the image on the right,

the distortion has been removed, recovering the straight lines.
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(a) (b)

Figure 6.23: A sample of image distortion: a) the captured image with lens distor-
tion; b) the processed image without lens distortion.

(a) (b)

Figure 6.24: A sample of image distortion in the case of a mobile robot: a) the
captured image with lens distortion; b) the processed image without lens distortion.
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Figure 6.25: Stereo image example of corner detection in a typical indoor scene.

Now the image distortion removal is applied to the images obtained by the robot.

Figure 6.24 shows the image captured by one of the two cameras of the stereo vision

system and the image obtained after removing the distortion caused by lens. In this

example, the effect of lens distortion is smaller because the focal length has been

fixed to 6 mm. Although it is rather difficult see any difference between the two

images, a closer study will show that the lines in the image on the left are slightly

curved while in the image on the right, they are straight. The camera calibration

method utilized is the method proposed by Tsai. However, the results given by using

the non-linear method of Faugeras and Weng are basically the same (see accuracy

evaluation in Table 6.7 and Table 6.8), indicating that any of the three methods is

a good choice.

The third task of 2D image processing concerns the detection of corners as points

of interest. The idea is to find as many corners as possible with the aim of acquiring

as many potential interest points as possible in this phase. Subsequent tasks con-

cern the solving of the matching problem and concentrate on discarding the corners

which are of no interest. Figure 6.25 shows a stereo image acquired in the labora-

tory, showing the corners detected on all the various different objects in the scene.

Figure 6.26 shows the results obtained by corner detection when applied to both

images of the stereo vision system mounted on the mobile robot. Note that the

corner detection has been carried out after removing lens distortion.

The fourth task deals with the spatially 2D image processing cross correlation

between the two views provided by the stereo camera. Figure 6.27 shows an example
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Figure 6.26: Stereo image example of corner detector in a controlled environment.

Figure 6.27: Example of spatial cross correlation in a pure translation movement.

of spatial cross correlation using the corners shown in Figure 6.26. In this case,

the geometric relationship between both cameras is known from the calibration

(see section 5.3.1). Given an image point in the first image, the correspondence is

searched along its epipolar line in the second image. All the miscorrelated corners

are discarded. Although most of the image corners are correctly correlated, the

system was not able to provide any outliers. In this case, two outliers have been

marked (red lines) in Figure 6.27. This sort of outlier is not detectable by using

the epipolar geometry alone because the bad correspondence is located along the

epipolar line as well. Figure 6.28 is a second example of spatial cross correlation.

This example was obtained from an image sequence while the robot was executing a
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Figure 6.28: Example of spatial cross correlation in a pure rotation movement.

pure rotation. Note that in this case, there are three outliers marked with red lines

which should be detected and rejected in subsequent steps.

Finally, the fifth and last task concerning 2D image processing is based on a

temporal cross correlation. Consider the points of interest provided by the spatial

cross correlation task applied to a stereo frame (see Figure 6.27) at the present and

last instant of time. Figure 6.29 shows the results obtained by the temporal cross

correlation applied to two consecutive stereo images. In this case, the robot is exe-

cuting a pure translation and there are no outliers. In general, pure translations do

not provide many outliers because consecutive frames are quite similar. Although

the origin of displacement of both cameras is the same, both temporal cross correla-

tions are independent because of the different relative displacement of each cameras

with respect to the world, especially when the robot is turning. Therefore, when

the robot is performing a pure rotation, the situation changes, leading to the fact

that two consecutive frames may differ considerably. Figure 6.30 shows an example

of temporal cross correlation when the robot is performing a pure rotation, in which

the right camera comes closer to the scene while the left camera moves away from

it. Note that in such a situation, the displacement of points on the image plane is

larger, reducing the similarity between correspondences and leading to the presence

of outliers (see Figure 6.29 where as many as three outliers are marked in red).
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Figure 6.29: Example of temporal cross correlation in a pure translation movement.

6.5.2 3D Image Processing Results

The 3D image processing step involves the following three tasks:

• Stereo reconstruction.

• Tracking of 2D image points and 3D object points.

• Outlier rejection.

Given a set of image point correspondences, stereo reconstruction obtains a set of

3D object points. For instance, Figure 6.31 and Figure 6.32 are two different exam-

ples of stereo reconstruction in which four different views of the same reconstruction

are shown. First, Figure 6.31 shows the reconstruction obtained from the image

points correlated in Figure 6.27, in which blue crosses are the 3D object points, and



6.5 Mobile Robot Localization and Mapping Experimental Results 155

Figure 6.30: Example of temporal cross correlation in a pure rotation movement.

red and green crosses are the image points in the two cameras, respectively. Note

that almost all the 3D object points (in blue) are aligned because they all come from

the same wall in the scene. However, it can be also observed that some 3D object

points are incorrectly reconstructed caused by false correspondences which must be

further removed. Second, Figure 6.32 shows the reconstruction obtained from the

image points correlated in Figure 6.28 where it can be seen, in the top view, that

the points form two walls of the scene.

The second task deals with the tracking of image and object points divided into

the storage of these 2D and 3D points and keeping track of these points on the

image plane (see Figure 6.33) and in the 3D space (see Figure 6.34). This algorithm

removes those points whose displacement on both image planes is inconsistent as

a result of a wrong temporal cross correlation. All the incorrect 3D object points

presented in Figure 6.31 are removed in Figure 6.34. Figure 6.35 and Figure 6.36
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Figure 6.31: Stereo reconstruction example measured in centimeters and considering
the mobile robot in front of a wall: a) lateral view; b) back view; c) top view; and
d) 3D view.
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Figure 6.32: Stereo reconstruction example measured in centimeters and considering
the mobile robot in front of two walls: a) lateral view; b) back view; c) top view;
and d) 3D view.
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Figure 6.33: Tracking example in a pure translation movement throughout a se-
quence of five images provided by the stereo frame.
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Figure 6.34: Tracking example in a pure translation movement throughout a se-
quence of five images in the 3D space.
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Figure 6.35: Tracking example in a pure rotation movement throughout a sequence
of five images provided by the stereo frame.

show the tracking results when the robot is performing a pure rotation in the stereo

frame and 3D space, respectively. The number of interest points has been reduced

drastically because in a sequence of five images the point of view of both cameras

has changed considerably and most of the corners are projected outside the camera

field of view.

Although the tracking task considers the detection and removing of potential

outliers, some of these outliers are not detected because the 2D movement remains

similar. Figure 6.37 shows a stereo image in which an outlier has not been detected

by the tracking because, although the point has been tracked correctly through the

image sequence, the spatial cross correlation was erroneous. The first possibility

we could think of was improving the spatial cross correlation, modifying the image

processing by fine tuning the algorithm. However, this possibility leads to drastically

reducing the set of interest points considered in the correlation. Besides, this sort

of outlier can be detected easier by tracking the object points in 3D space. In

Figure 6.38 it can be seen that most of the object points have a small displacement

due to the robot motion while the outliers present a large displacement caused by

the false matching.
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Figure 6.36: Tracking example in a pure rotation movement throughout a sequence
of five images in the 3D space.

Figure 6.37: Stereo image with an outlier due to an erroneous image point correla-
tion.
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Figure 6.38: Reconstruction and displacement of 3D object points.

6.5.3 Localization and Map-Building Results

The experimental results obtained by using the mobile robot GRILL are described

in the following paragraphs. First, an image sequence is presented in Figure 6.39 in

which three representative image frames from a stereo image is shown. In this case,

the robot is moving forward in a pure translation movement leading to: a) small

displacement between every two consecutive images; b) the different objects present

in the scene are maintained in the camera field of view, especially the objects placed

around the image center. This kind of robot motion is the easiest to process because

the static position of the objects in the stereo images simplifies the temporal cross

correlation. Moreover, the tracking task can keep track of the points throughout

several consecutive frames in the sequence.

Initially, the robot was placed at 160 cm. from a wall and was moved forward

about 100 cm. taking an image every 2 cm. Figure 6.40 shows the reconstructed

3D map and the trajectory estimated.

A second image sequence is obtained considering that the robot is performing



6.5 Mobile Robot Localization and Mapping Experimental Results 161

(a) (b) (c)

(d) (e) (f)

Figure 6.39: Frames acquired by a translation image sequence: (a) 1st frame from
the left camera; (b) 25th frame from the left camera; (c) 50th frame from the left
camera; (d) 1st frame from the right camera; (e) 25th frame from the right camera;
(f) 50th frame from the right camera.
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Figure 6.40: Localization and map building result in a pure translation sequence
(units in centimeters).
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(a) (b) (c)

(d) (e) (f)

Figure 6.41: Frames acquired by a rotation image sequence: (a) 1st frame from
the left camera; (b) 45th frame from the left camera; (c) 90th frame from the left
camera; (d) 1st frame from the right camera; (e) 45th frame from the right camera;
(f) 90th frame from the right camera.

only a pure rotation movement (see Figure 6.41). In this case, the displacement of

the objects on the image plane is relatively large compared to the previous example

of a single translation. Additionally, objects vanish off of the image plane after just

a few degrees of rotation. This fact makes temporal cross correlation considerably

more difficult and, consequently, the task realized by the tracker. In this case, it

is necessary to acquire the stereo frames at a high rate, especially if the rotational

velocity is important.

First, the robot was placed at 100 cm. in front of a wall. A second wall was

located at 100 cm. to its left side. The robot movement was a spin rotation around

its center from right to left. The whole rotation was approximately 90 degrees,

acquiring a stereo frame at every degree. Figure 6.42 shows the map built once the

whole rotation was performed, in which it is easy to distinguish the corner formed

by both walls and that only one outlier is present.

The last example is a sequence combined of rotational and translational move-

ments in which a counterclockwise rotation of 45 degrees is applied to the robot
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Figure 6.42: Localization and map building result in a pure rotation sequence (units
in centimeters).

followed by a forward movement of 50 cm. Immediately following, a clockwise rota-

tion of 135 degrees was performed followed by a forward movement of 100 cm. The

mapping and localization of the robot is shown in Figure 6.43.

6.5.4 Discussion

A system to localize a mobile robot and reconstruct a map of the surroundings by

means of stereo vision has been proposed. This stereo vision system is composed

of two cameras mounted on a mobile robot. Several stereo image sequences have

been acquired analyzing the partial results given by all the atomic tasks which

compose the whole algorithm, i.e. lens distortion removal, corner detection, spatial

and temporal cross correlation, tracking and so on. Also, some complete results of

mobile robot localization and mapping in a structured surrounding are included.

The removal of lens distortion considerably improves the accuracy of the system

and simplifies the further tasks of spatial cross correlation, stereo reconstruction

and local localization. Actually, spatial cross correlation is affected by image dis-

tortion because the correlation is based on epipolar geometry. Then, the removal of

lens distortion increases the accuracy in computing the epipolar lines. Also, stereo

reconstruction computes the 3D position of imaged correspondences by means of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.43: Frames acquired by a combination of rotation and translation move-
ments: (a) 1st frame; (b) 30th frame; (c) 50th frame; (d) 70th frame; (e) 90th frame;
(f) 105th frame; (g) 120th frame; (h) 135th frame; (i) 150th frame; (j) 165th frame;
(k) 180th frame; (l) 200th frame.
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Figure 6.44: Localization and map building results in a combination of rotations
and translations (units in centimeters).

triangulation, so that the undistorted image points are required. Then, the previous

removal of lens distortion speeds up the reconstruction. Finally, local localization is

based on comparing the 2D projection of the computed 3D points with respect to

the ones acquired by the camera. Again, this comparison can be straight forward

carried out if the lens distortion has been previously removed.

Points of interest have been obtained by means of a corner detector. Corners

might not be the best way to find points of interest since it is more suitable to

apply other techniques such as geometric invariants or regions. Nevertheless, corner

detection is a fast technique and reliable enough for applications of mobile robot

navigation. However, further research should be done in the computation of interest

points. Better results might be obtained considering a detector based on geometric

invariants which is theoretically more robust.

Spatial cross correlation considers the use of the epipolar geometry computed by

calibration with the aim of reducing the number of potential correspondences, so that

only the image points near the epipolar lines are considered as matching candidates.
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The proposed method benefits from two advantages with respect to traditional cross

correlation: the number of outliers is reduced, and the computation time decreases

considerably.

Temporal cross correlation is not based on epipolar geometry because of the

dependence of this geometry on the unknown movement of the mobile robot. Nev-

ertheless, this unknown is not critical because the candidates have been previously

filtered by the spatial cross correlation. Overall, pure translation movements are

easier to process because of the similarity of every two consecutive stereo frames

which considerably simplifies the image processing. On the other hand, rotational

movements suffer from significant point displacements in the stereo frames which

complicates cross correlation.

The tracking task is directly related to temporal cross correlation. The pursuit

of image points through time permits distinguishing which interest object points are

to be considered in map building. The points which are tracked through only a few

sets of frames are not considered in the mapping. Also, the points that persist in

several frames but are incorrectly correlated should be considered by the following

task of outlier detection.

Outlier detection has the purpose of detecting inconsistencies in the 3D move-

ment which drastically reduce the number of outliers. Nevertheless, the presence

of a few outliers is negligible in mobile robot navigation. However, the number of

outliers should be reduced to zero if a third camera is mounted in the stereo vision

system. The crossing of both epipolar lines produced by two image points forming a

correspondence might cross in the third image in a single point which might corre-

late with the other two correspondence points. This is a robust technique to reduce

the number of potential outliers.

In summary, the proposed system follows one of the objectives of this thesis

of obtaining a navigation system based entirely on computer vision. However, it

is important to note that the application of data fusion techniques which takes

advantage of other sensors such as sonar, encoders and gyroscopes will increase the

reliability of the system. Overall, the proposed algorithm of localization and map

building is robust enough for most applications in mobile robot navigation.



Chapter 7

Conclusions and Further Work

This chapter presents the conclusions of this work. Further work is also analyzed

suggesting various ways through which the research may continue. Finally, this

chapter lists the articles related to this thesis and other research contributions which

have been published.

7.1 Conclusions

This thesis has focused on the study of modelling of stereo vision systems for robotic

applications. Usually, the first step is the modelling and calibration of a single cam-

era. To this end this thesis has presented a detailed survey covering a wide variety

of pinhole camera models and their corresponding calibration methods. Then, the

coupling of the two cameras which form the stereo vision system are related one to

the other by the epipolar geometry using the fundamental matrix. In this way, this

thesis contributes one of the most extended surveys on fundamental matrix estima-

tion. The study of the motion estimation is also an important subject which has

been considered. In this thesis, therefore, a third survey on egomotion estimation

by means of the differential epipolar constraint is included. At this point, in depth

knowledge of the geometry involved in fixed and moving cameras is brought in.

Finally, this thesis amalgamates this knowledge and proposes an algorithm for mo-

bile robot navigation considering vehicle localization and map building in unknown

environments.

The principal contributions and conclusions of this work are summarized in the

167



168 Chapter 7. Conclusions and Further Work

following paragraphs. Note that at the end of every chapter an extended summary

is included and a discussion of the experimental results from the previous chapter

is also detailed.

A comparative review of camera calibration methods, including accuracy evalua-

tion, is presented. One of the main contributions in this case is the unification of the

mathematical notation which allows the reader to easily follow the chapter through

the different methods. In addition, once the desired calibrating method for a given

application has been chosen, the reader can take the equations directly from this

thesis or the software included. Besides, the survey concludes that the modelling

of radial lens distortion is enough in most of the applications, so that the use of

more complicated models does not improve accuracy significantly. Finally, the sur-

vey analyses the proposed methods to demonstrate the accuracy of the calibration

method, concluding that the NSCE ratio is one of the most reliable.

Second, an overall view of fundamental matrix estimation is presented, in which

the surveyed estimators have been classified. The main contribution in this aspect

is the inclusion of a schema detailing the algorithmic viewpoint of each estimator.

This is an important contribution which facilitates the comparison of the estimators.

Moreover, the survey may be one of the most extended works on fundamental matrix

estimation to date due to the number of methods studied. Chapter 3 concludes that

robust methods are the most reliable because they can cope with both discrepancy

in the localization of points as well as outliers. In addition, the orthogonal least-

squares gives better results than the classic least-squares in function minimization.

Moreover, corresponding points have to be normalized to improve minimization

without ill-conditioning the convergence. Finally, a rank-2 matrix is preferred only

to achieve good epipolar geometry, otherwise rank-3 matrices minimize the distance

between points and epipolar lines more accurately.

Third, a review of egomotion by means of differential epipolar geometry applied

to the motion of a mobile robot is detailed, including a state-of-the-art method based

on differential epipolar geometry. Two main contributions should be highlighted in

relation to this chapter. First, an extended classification is proposed, organizing

the methods into linear versus non-linear against discrete versus differential. Fur-

thermore, the main contribution deals with the adaptation of these methods to the

common case of a mobile robot moving on a plane. This adaptation reduces the

degrees of freedom, a minimization which increases the accuracy of the obtained
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results significantly and allows the estimation of motion at high image rates.

Finally, a mobile robot application of vehicle localization and mapping of un-

known environments is proposed. A stereo system was mounted on a mobile robot

and the proposed algorithm has been described in detail. This algorithm benefits

from the knowledge described in the previous chapter whose principal main contri-

butions are the following:

• Spatial cross correlation benefits from the knowledge of the epipolar geome-

try which reduces the computing time and the potential number of matching

candidates.

• The potential outliers obtained in solving the correspondence problem can

be completely removed before estimating vehicle localization. Thus, the can-

didates are followed through time on the image plane, considering only the

points of interest which continuously appear throughout a sequence of images.

• Although a significant amount of outliers are eliminated in the previous step,

the algorithm continues analyzing the consistency of the 3D motion. The 3D

motion of each point in space is compared to the global motion of the system,

detecting and removing those points which do not follow the overall motion.

• Vehicle localization is directly computed from the mapping acquired by the

vision system without modifying the environment with landmarks and without

having a previous map available. The map of the environment is updated

dynamically while the robot is moving.

7.2 Further Work

The work presented in this thesis proposes the following subjects for further research:

• Completion of the camera calibration survey, detailing the last methods pub-

lished in terms of accuracy and reliability. However, it should be considered

that calibration can also obtain great benefits by using a different sort of im-

age segmentation instead of interest points such as straight lines or geometric

invariants.
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• Further study of the fundamental matrix uncertainty to compute the accuracy

instead of using the distance between points and epipolar lines. Also, the

study of Kruppa equations increases the knowledge of the epipolar geometry

in uncalibrated stereo.

• The use of a third camera in the vision system is a very easy way to remove the

false matchings given by the cross correlation, even when considering epipolar

lines. This can be done by using three fundamental matrices, but the study of

the trifocal tensor which models the whole geometry more accurately should

also be considered.

• Considering image segmentation, the use of corners as interest points is quite

noisy and produces a significant amount of outliers. Therefore, the study of

other image features such as segments, color and texture or even geometric

invariants should be considered.

• The SLAM (Simultaneous Localization and Map Building) research subject

should be studied with the aim of improving the proposed algorithm consid-

ering statistics and probability. Data fusion and the EKF (Extended Kalman

Filter) should be included in order to improve the vehicle localization and the

computation of its trajectory.

7.3 Related Publications and other Contributions

The articles published in international journals from the work of this thesis are the

following:

• X. Armangué, H. Araújo and J. Salvi. A Review on Egomotion by Means of

Differential Epipolar Geometry Applied to the Movement of a Mobile Robot.

Accepted in April 2003 to be published in Pattern Recognition, PR.

• X. Armangué and J. Salvi. Overall View Regarding Fundamental Matrix

Estimation. Image and Vision Computing, IVC, pp. 205-220, Vol. 21, Issue

2, Februay 2003.

• J. Salvi, X. Armangué and J. Batlle. A Comparative Review of Camera Cal-

ibrating Methods with Accuracy Evaluation. Pattern Recognition, PR, pp
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1617-1635, Vol. 35, Issue 7, July 2002.

The articles published in national and international conferences are the following:

• X. Armangué, H. Araújo and J. Salvi. Differential Epipolar Constraint in

Mobile Robot Egomotion Estimation. International Conference on Pattern

Recognition, ICPR 2002, vol. 3, pp 599-602, Québec, Canada, August 2002.

• J. Salvi, X. Armangué, J. Pagès. A Survey Addressing the Fundamental Matrix

Estimation Problem. IEEE International Conference on Image Processing,

ICIP 2001, vol. 2, pp 209 -212 Thessaloniki, Greece, October 2001.

• J. Pagès, X. Armangué, J.Salvi, J. Freixenet, J. Mart́ı. A Computer Vision

System for Autonomous Forklift Vehicles in Industrial Environments. The

9th. Mediterranean Conference on Control and Automation, MED 2001,

Dubrovnik, Croatia, June 2001.

• X. Armangué, J. Pagès, J. Salvi and J. Batlle. Comparative Survey on Esti-

mating the Fundamental Matrix. IX Simposium Nacional de Reconocimiento

de Formas y Análisis de Imágenes, SNRFAI 2001, pp 227-232, Castelló,

Spain, May 2001.

• X. Armangué, J. Salvi and J. Batlle. A Comparative Review of Camera Cali-

brating Methods with Accuracy Evaluation. Proceedings of 5th Ibero-American

Symposium on Pattern Recognition, SIARP 2000, pp 183-194, Lisboa, Por-

tugal, 11-13 September 2000.

• X. Armangué, R. Garćıa, J. Batlle, X. Cuf́ı, J.Ll. De La Rosa, P. Ridao.

Implementació d’un algorisme paral·lel de seguiment de múltiples microrobots

mitjançant VHDL. Proceedings del 2on Congrés Català d’intel·ligència Artifi-

cial, CCIA 1999, pp 356-364, Girona, Spain, 25-27 Octubre 1999.

Finally, the following applications of the programmed algorithms are also avail-

able at http://eia.udg.es/~armangue/research:

• Camera calibration toolbox in Matlab.

• Fundamental matrix toolbox in Matlab.
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• Egomotion estimation toolbox in Matlab.

• User-friendly application of camera calibration for Windows (source code in

C++).

• User-friendly application of fundamental matrix estimation application for

Windows (source code in C++).

• Application of vehicle localization and mapping for Windows (source code in

C++).



Appendix A

Notation

A.1 Mathematics Convention

This appendix synthesizes the nomenclature used to express coordinate systems and

camera parameters in the research project.

{H} defines a coordinate system H, which is composed of an origin OH and either

two {XH , YH} or three {XH , YH , ZH} axis, depending on the number of dimensions

defined.

The project defines the following coordinate systems:

• {W}={OW ,XW ,YW ,ZW} defines the world coordinate system.

• {C}={OC ,XC ,YC ,ZC} defines the camera coordinate system located at the

focal point OC .

• {R}={OR,XR,YR} defines the retinal coordinate system located at the princi-

pal point OR = (u0, v0).

• {I}={OI ,XI ,YI} defines the computer image coordinate system located in the

upper-left corner of the image plane.

Each point P is always related to a coordinate system. Hence, HP relates the

point P with respect to {H}, where HP = (HX,H Y,H Z). Each point can be related

to any coordinate system. However, the following notations are the only ones used:
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• WPw=(WXw,WYw,WZw) expresses a 3D test point from the world (scene) ex-

pressed with respect to {W}.

• CPw=(CXw,CYw,CZw) expresses a 3D test point from the world (scene) ex-

pressed with respect to {C}.

• CPu=(CXu,
CYu,f)=(CXu,

CYu) expresses the linear projection of a point CPw

on the image plane related to {C}, without including lens distortion.

• CPd=(CXd,
CYd,f)=(CXd,

CYd) expresses a 2D image point, including lens dis-

tortion, related to {C}.

• IPd=(IXd,
IYd) expresses a 2D image point related to the image coordinate

system {I}, in pixels. This point is the observable point from image acquisi-

tion.

In order to distinguish a single point from a set, i.e. the set of test points, a second

sub-index is used. Then, Pui indicates the i-th point on a set, where i = 1...n.

A rigid transformation between a two coordinate system is expressed by a trans-

formation matrix, i.e. JKH expresses the coordinate system {H} with respect to

{J}. Moreover,

JKH =

(

JRH
JTH

01×3 1

)

where R = (r1, r2, r3)
T expresses the orientation of {H} measured with respect to

the axis of {J}. R can also be given related to the three rotation angles, i.e. α, β

and γ. Moreover, T = (tx, ty, tz)
T expresses the position of the origin of {H} with

respect to {J}.

Then, the following camera parameters are used:

• k1 is the first coefficient of a series which models the radial lens distortion.

• g1 up to g4 are the coefficients which model the decentering and thin prism

lens distortion.

• f is the focal distance, i.e the distance from the focal point OC to the image

plane.
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• (u0,v0) are the two components of the principal point, i.e. the projection of

OC on the image plane.

• ku, kv are the two components which permit to transform a point from metric

coordinates to pixels.

• αu, αv are defined as αu = f ku and αv = f kv.

• sx is the scale factor.

• d′x = dx
Ncx

Nfx

• dx, dy are the center to center distances between adjacent sensor elements with

respect to X direction and Y direction of the CCD sensor, respectively.

• Ncx is the number of sensor elements in the X direction of the CCD sensor.

• Nfx is the number of pixels in an image row as sampled by the computer.

Finally, nomenclature used in the differential epipolar constraint:

• Linear velocity: υ = (υ1, υ2, υ3)
T ∈ R

3

• Angular velocity: ω = (ω1, ω2, ω3)
T ∈ R

3

• Symmetric matrix: S =







s11 s12 s13

s12 s22 s23

s13 s23 s33






∈ R

3×3 where S = ST

• Skew symmetric matrix associated with υ: υ̂ =







0 −υ3 υ2

υ3 0 −υ1

−υ2 υ1 0






where

υ × u = υ̂u





Appendix B

Software

This appendix presents the software referenced throughout this document and utilized

to obtain the experimental results. The software was implemented in Matlab c© and

in C++. All the code is available in http://eia.udg.es/~armangue/research.

B.1 Toolbox in Matlab c©

Matlab c© was chosen to implement the different surveyed methods in this thesis.

Note that Matlab c© is an excellent environment to simulate proposed algorithms

because of the available set of mathematical functions already implemented and

the ease of adding new functions. Maltab c© has become a standard language in

developing and testing mathematical methods.

Three toolboxes were implemented: a camera calibration toolbox, a fundamental

matrix toolbox and a motion estimation toolbox. All these toolboxes are described

in the following sections.

B.1.1 Camera Calibration Toolbox

This toolbox implements the camera calibration methods presented in chapter 2 and

utilized to obtain the experimental results presented in section 6.2. Table B.1 re-

lates the list of files implemented in this toolbox which have been classified into

two sublists. The first sublist details the camera calibration surveyed methods
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(Hall, Faugeras, non-linear Faugeras, Tsai and Weng). The second sublist relates to

the functions implemented which compute the accuracy of the calibration surveyed

methods (3D error, NSCE coefficient, 2D error in the distorted plane and 2D error

in the undistorted image plane).

Table B.1: File list of the camera calibration toolbox.
Filename Description

CalDemo.m Demonstration of the camera calibration toolbox.
CalHall.m Calibrates the camera by using the Hall method.
CalFaugeras.m Calibrates the camera by using the Faugeras method.
CalFaugerasIter.m Calibrates the camera by using the Faugeras method

including lens distortion.
CalTsaiLM.m Calibrates the camera by using the Tsai method with an

iterative optimization of Lenvenberg-Marquardt.
CalTsaiNR.m Calibrates the camera by using the Tsai method with an

iterative optimization of Newton-Raphson.
CalWeng.m Calibrates the camera by using the Weng method.
CalError3DHall.m Computes the 3D error given by the Hall method.
CalError2DHall.m Computes the 2D error given by the Hall method.
CalError3DFaugeras.m Computes the 3D error given by the Faugeras method.
CalErrorNSCEFaugeras.m Computes the NSCE coefficient given by the Faugeras

method.
CalError2DFaugeras.m Computes the 2D error given by the Faugeras method.
CalError3DFaugerasIter.m Computes the 3D error given by the Faugeras method

including lens distortion.
CalErrorNSCEFaugerasIter.m Computes the NSCE coefficient given by the Faugeras

method including lens distortion.
CalError2DdFaugerasIter.m Computes the 2D error given by the Faugeras method

including lens distortion in the distorted image plane.
CalError2DuFaugerasIter.m Computes the 2D error given by the Faugeras method

including lens distortion in the undistorted image plane.
CalError3DTsai.m Computes the 3D error given by the Tsai method.
CalErrorNSCETsai.m Computes the NSCE coefficient given by the Tsai

method.
CalError2DdTsai.m Computes the 2D error given by the Tsai method in the

distorted image plane.
CalError2DuTsai.m Computes the 2D error given by the Tsai method in the

undistorted image plane.
CalError3DWeng.m Computes the 3D error given by the Weng method.
CalErrorNSCEWeng.m Computes the NSCE coefficient given by the Weng

method.
CalError2DdWeng.m Computes the 2D error given by the Weng method in the

distorted image plane.
CalError2DuWeng.m Computes the 2D error given by the Weng method in the

undistorted image plane.
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B.1.2 Fundamental Matrix Estimation Toolbox

The methods implemented in this toolbox are described in section 3.4 and the re-

sults obtained analyzed in section 6.3. The FNS, CFNS, MLESAC and MAPSAC

methods are not included in this toolbox because their implementations have been

provided by the original authors (FNS, CFNS are available in

http://www.cs.adelaide.edu.au/~hengel/Vision/Code/

while MLESAC and MAPSAC are available in

http://research.microsoft.com/~philtorr/).

Table B.2 shows the file list in which the the different F estimators and the

related functions described in section 3.4.5 are detailed.

Table B.2: File list of the fundamental matrix estimation toolbox.
Filename Description

FunMatDemo.m Demonstration of the fundamental matrix estimation toolbox.
FunMat7p.m Estimates the fundamental matrix using the seven points method.
FunMatLS.m Estimates the fundamental matrix using the least-squares technique.
FunMatEig.m Estimates the fundamental matrix using the eigen analysis.
FunMatFaugeras.m Estimates the fundamental matrix using the analytic method with

rank-2 constraint.
FunMatNR.m Estimates the fundamental matrix using the Newton-Raphson

technique.
FunMatinmmdpel.m Estimates the fundamental matrix using the Iterative Linear Method

Minimizing Distances of Points to Epipolar Lines.
FunMatilmmdpel.m Estimates the fundamental matrix using the Iterative Nonlinear

Method Minimizing Distances of Points to Epipolar Lines.
FunMatGradLS.m Estimates the fundamental matrix using the gradient method with

the least-squares technique.
FunMatGradEig.m Estimates the fundamental matrix using the gradient method with

the eigen analysis.
FunMatMEstLS.m Estimates the fundamental matrix using the M-Estimators with

the least-squares technique.
FunMatMEstEig.m Estimates the fundamental matrix using the M-Estimators with

the eigen analysis.
FunMatMEstTorr.m Estimates the fundamental matrix using the M-Estimators proposed

by Torr.
FunMatLMedSLS.m Estimates the fundamental matrix using the Least Median of Squares

with the least-squares technique.
FunMatLMedSEig.m Estimates the fundamental matrix using the Least Median of Squares

with the eigen analysis.
FunMatRANSAC.m Estimates the fundamental matrix using the RANndom SAmpling

Consensus.
NormalOneToOne.m Data normalization between [−1, 1].
NormalHartley.m Data normalization using the method proposed by Hartley.
FunMatRank2.m Transforms a rank-3 3 matrix to a rank-2 matrix
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B.1.3 Motion Estimation Toolbox

The last toolbox implemented concerns the motion estimation. The methods imple-

mented are explained in chapter 4 and the results obtained compared in section 6.4.

Table B.3 presents the file list of this toolbox. The first sublist deals with the

methods implemented based on the differential epipolar constraint. The second

sublist consists of the files whose motion recovery is based on the optical flow.

These methods are obtained from

http://www.cns.nyu.edu/~david/publications.html#tian-cvpr96

and adapted for comparison with those previously listed. The third sublist of files

concerns the adaptation of 6-DOF general methods to the 2-DOF movement of a

mobile robot moving on a planar surface.

B.2 Applications Implemented in C++

The use of Matlab c© eases the developing of mathematical applications but suffers

from two important drawbacks:

• Matlab c© language is interpreted, consequently its execution is rather slow

compared to compiled languages. This problem is well known and Matlab c©

developers provide different tools such as P-Funtions, MEX-Function and

Matlab c© compilers with the aim of decreasing the computing time execu-

tion. These tools are very useful in many cases but are not supported in all

toolboxes (in particular the compiler).

• Some problems arise when building a self-executed application. First, it is

interesting to implement a user-friendly application especially for non Matlab c©

programmers. Second, Matlab c© does not support connectivity to external

devices such as frame grabbers.

In order to overcome these drawbacks, camera calibration methods and funda-

mental matrix estimators have been implemented in C++ using the object oriented

paradigm [Robson 00, Stroustrup 97]. This language improves the computing time

execution considerably, building a user-friendly application. Moreover, an introduc-

tion to the application developed to localize the mobile robot while the mapping of
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Table B.3: File list of the motion estimation toolbox.
Filename Description

MotionDemo.m Demonstration of the motion estimation toolbox.
Motion7p.m Estimates the motion using the seven points method.
MotionLSeig.m Estimates the motion using the least-squares technique with

the eigen analysis.
MotionIRLS.m Estimates the motion using the Iterative Reweighted Least

Squares estimator.
MotionMIRLS.m Estimates the motion using the Modified Iterative Reweighted

Least Squares estimator.
MotionLMedS.m Estimates the motion using the Least Median of Squares

regression.
MotionMa.m Estimates the motion using the Liner Differential Method from

Y. Ma, J. Košecká and S. Sastry.
MotionBaumela.m Estimates the motion using the Liner Differential Method from

L. Baumela, L. Agapito, P. Bustos and I. Reid.
MotionvBruss.m Estimates the translation motion using the Bruss and Horn

method.
MotionwBruss.m Estimates the angular motion using the Bruss and Horn

method.
MotionvPrazdny.m Estimates the translation motion using the Prazdny method.
MotionwPrazdny.m Estimates the angular motion using the Prazdny method.
MotionvHeeger.m Estimates the translation motion using the Heeger and Jepson

method.
MotionwHeeger.m Estimates the angular motion using the Heeger and Jepson

method.
MotionvTomasi.m Estimates the translation motion using the Tomasi and Shi

method.
MotionwTomasi.m Estimates the angular motion using the Tomasi and Shi

method.
MotionKanataniA.m Estimates the motion using the Kanatani method without

renormalization.
MotionKanataniB.m Estimates the motion using the Kanatani method with

renormalization.
MotionRobAlphaLDeig.m Estimates the robot motion using the least-squares technique

with the eigen analysis.
MotionRobAlphaIRLS.m Estimates the robot motion using the Iterative Reweighted

Least Squares estimator.
MotionRobAlphaMIRLS.m Estimates the robot motion using the Modified Iterative

Reweighted Least Squares estimator.
MotionRobAlphaLMedS.m Estimates the robot motion using the Least Median of Squares

regression.
MotionRobAlphaMa.m Estimates the robot motion using the Liner Differential Method

from Y. Ma, J. Košecká and S. Sastry.
MotionRobAlphaBaumela.m Estimates the robot motion using the Liner Differential Method

from L. Baumela, L. Agapito, P. Bustos and I. Reid.
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its surrounding is built is briefly detailed at the end of this appendix.

B.2.1 Camera Calibration Application

This application calibrates a camera with the methods described in chapter 2 by

means of a set of 3D object points and their 2D image projections. Moreover, the

application computes the accuracy given by all the methods and saves the calibrating

parameters obtained for further use.

Figure B.1 shows the main window of this application which is composed of seven

parts:

1. The input box of the calibration points.

2. The input box to introduce the camera parameters used by Tsai’s method.

3. The set of buttons to execute the calibration methods.

4. The display area to show the calibration parameters obtained.

5. The input box to introduce the test point.

6. The display area to show the accuracy for every method obtained.

7. The set of buttons to save the camera calibration parameters obtained.

The reader is directed to the online help for the application and for further details

which include a complete programming manual. However, we have considered it

necessary to highlight the camera calibration hierarchy composed of five classes (see

Figure B.1). The base class is an abstract class and is derived by different calibration

methods. Table B.4 shows the file list of the camera calibration hierarchy class.

B.2.2 Fundamental Matrix Estimation Application

This application is equivalent to the camera calibration application but applied to

the fundamental matrix estimation. The application estimates the fundamental

matrix from all the surveyed methods and explained in section 3.4 by just providing

the image point correspondences.

The main window of this application (see Figure B.3) is divided into seven parts:
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Figure B.1: Camera calibration application.

cvtl::CCalib

cvtl::CCalibFaugeras cvtl::CCalibTsai cvtl::CCalibWeng

cvtl::CCalibFaugerasIter

Figure B.2: Camera calibration hierarchy class.

$classcvtl_1_1CCalibFaugeras.html
$classcvtl_1_1CCalibTsai.html
$classcvtl_1_1CCalibWeng.html
$classcvtl_1_1CCalibFaugerasIter.html
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Table B.4: File list of the camera calibration hierarchy class.
Filename Description

CCalib.h CCalib abstract class definition.
CCalib.cpp CCalib class implementation.
CCalibHall.h CCalibHall class definition.
CCalibHall.cpp CCalibHall class implementation.
CCalibFaugeras.h CCalibFaugeras class definition.
CCalibFaugeras.cpp CCalibFaugeras class implementation.
CCalibFaugerasIter.h CCalibFaugerasIter class definition.
CCalibFaugerasIter.cpp CCalibFaugerasIter class implementation.
CCalibTsai.h CCalibTsai class definition.
CCalibTsai.cpp CCalibTsai class implementation.
CCalibWeng.h CCalibWeng class definition.
CCalibWeng.cpp CCalibWeng class implementation.

1. The input box to introduce the image points and matchings used in F estima-

tion.

2. The selection criteria to normalize the data points.

3. The input box to introduce the image points and matchings used in accuracy

evaluation.

4. The set of buttons to estimate the fundamental matrix.

5. The display area to show the image points and epipolar lines computed.

6. The set of buttons to save the fundamental matrix components.

7. The button to display the accuracy evaluation obtained in the computation

for each method.

The reader is directed to the online help for the application and for further details

which include a complete programming manual. Note: the fundamental matrix

estimator hierarchy composed of a base class and a derived class for each method

implemented is included in Figure B.4. The base class is an abstract class with a

skeleton for a generic estimator. Table B.5 shows the file list of fundamental matrix

hierarchy class.
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Figure B.3: Fundamental matrix estimation application.

CFunMat

CFunMat7p

CFunMatEig

CFunMatFaugeras

CFunMatGradientEig

CFunMatGradientLS

CFunMatIlmmdpel

CFunMatInmmdpel

CFunMatLMedSEig

CFunMatLMedSLS

CFunMatLS

CFunMatMEstEig

CFunMatMEstLS

CFunMatMEstTorr

CFunMatNR

CFunMatRANSAC

Figure B.4: Fundamental matrix estimator hierarchy class.

$classCFunMat7p.html
$classCFunMatEig.html
$classCFunMatFaugeras.html
$classCFunMatGradientEig.html
$classCFunMatGradientLS.html
$classCFunMatIlmmdpel.html
$classCFunMatInmmdpel.html
$classCFunMatLMedSEig.html
$classCFunMatLMedSLS.html
$classCFunMatLS.html
$classCFunMatMEstEig.html
$classCFunMatMEstLS.html
$classCFunMatMEstTorr.html
$classCFunMatNR.html
$classCFunMatRANSAC.html
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Table B.5: File list of the fundamental matrix estimation hierarchy class.
Filename Description

CFunMat.h CFunMat abstract class definition.
CFunMat.cpp CFunMat class implementation.
CFunMat7p.h CFunMat7p class definition.
CFunMat7p.cpp CFunMat7p class implementation.
CFunMatLS.h CFunMatLS class definition.
CFunMatLS.cpp CFunMatLS class implementation.
CFunMatEig.h CFunMatEig class definition.
CFunMatEig.cpp CFunMatEig class implementation.
CFunMatFaugeras.h CFunMatFaugeras class definition.
CFunMatFaugeras.cpp CFunMatFaugeras class implementation.
CFunMatNR.h CFunMatNR class definition.
CFunMatNR.cpp CFunMatNR class implementation.
CFunMatIlmmdpel.h CFunMatIlmmdpel class definition.
CFunMatIlmmdpel.cpp CFunMatIlmmdpel class implementation.
CFunMatInmmdpel.h CFunMatInmmdpel class definition.
CFunMatInmmdpel.cpp CFunMatInmmdpel class implementation.
CFunMatGradientLS.h CFunMatGradientLS class definition.
CFunMatGradientLS.cpp CFunMatGradientLS class implementation.
CFunMatGradientEig.h CFunMatGradientEig class definition.
CFunMatGradientEig.cpp CFunMatGradientEig class implementation.
CFunMatMEstLS.h CFunMatMEstLS class definition.
CFunMatMEstLS.cpp CFunMatMEstLS class implementation.
CFunMatMEstEig.h CFunMatMEstEig class definition.
CFunMatMEstEig.cpp CFunMatMEstEig class implementation.
CFunMatMEstTorr.h CFunMatMEstTorr class definition.
CFunMatMEstTorr.cpp CFunMatMEstTorr class implementation.
CFunMatLMedSLS.h CFunMatLMedSLS class definition.
CFunMatLMedSLS.cpp CFunMatLMedSLS class implementation.
CFunMatLMedSEig.h CFunMatLMedSEig class definition.
CFunMatLMedSEig.cpp CFunMatLMedSEig class implementation.
CFunMatRANSAC.h CFunMatRANSAC class definition.
CFunMatRANSAC.cpp CFunMatRANSAC class implementation.
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B.2.3 Localization and Mapping Engine

This application is composed of more than 28.000 lines of code, organized in 140

files. Nevertheless, we considered interesting the listing of at least one set of the

most important objects which are the following:

Table B.6: Class list of localization and mapping.
Class name Description

GrillEngine Main class which contains the whole localization and mapping engine.
FuncMode Class which determines the functioning mode.
Configuration Class which determines the configuration parameters.
Heuristics Class which determines the heuristics parameters.
Exception Exception class to control error .
StereoCamera Class which acquires stereo images.
Image Class to store an image frame.
Point2D Class to store a 2D point (x, y).
Point3D Class to store a 3D point (x, y, z).
Position Class to store a robot position (x, y, α).
RGBtoI Class which implements the image conversion from color to intensity.
EraseDistortion Class which implements the erase distortion task.
Corners Class which implements the corner detector task.
CrossCorrelation Class which implements the temporal cross correlation task.
CrossCorrelationFM Class which implements the spatial cross correlation task.
StereoReconstruction Class which implements the stereo reconstruction task.
Tracker Class which implements the tracker task and stores 2D and 3D points.
DetectOutliers Class which implements the outlier detector task.
LocalLocalization Class which implements the local localization task.
GlobalLocalization Class which implements the global localization task.
Map3D Class which implements the map task.

The reader is directed to the online help for the application and for further details

which include a complete programming manual.
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[Armangué 03a] X. Armangué, H. Araújo and J. Salvi. A Review on Egomo-

tion by Means of Differential Epipolar Geomety Applied to the

Movement of a Mobile Robot. Accepted to be published in

Pattern Recognition, 2003.
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[Toscani 87] G. Toscani. Systèmes de Calibration et Perception du Move-

ment en Vision Artificielle. PhD thesis, Université Paris Sud,
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