UNIVERSITI TEKNOLOGI MARA

EVALUATION OF WALL-DEEP BEAM CONNECTION USING CCWA UNDER VERTICAL AND LATERAL LOADS

JERRISLY SULINDAP

Dissertation submitted in partial fulfillment of the requirements for the degree of Master in Science Civil Engineering (Structure)

Faculty of Civil Engineering

April 2010

Abstract

Shear wall are structural vertical member that is able to resist combination of shear, moment and axial load induced by wind load and gravity load transferred to the wall from other structural members. Deep beam recieved loadings from upper shear walls and distribute to the widely spaced columns or deep beams that support the shear walls.

The development of construction industry contributed negative effect to our environment in term of wastage of construction materials. Taking sustainable development into account, the concrete industry needs to apply a variety of strategies concerning future concrete use. Crushed Concrete waste Aggregate (CCwA) was identified as one of the best alternative to replace the natural aggregate. The knowledge on the effectiveness of CCwA as replacement to natural aggregate was inadequate. This research used CCwA as coarse aggregate to replace natural aggregate in the concrete mix wall-deep beam specimen were constructed to investigate the performance of wall-deep beam when using CCwA as course aggregate. This research will be carrying out experimentally.

Two specimen of wall-deep beam were designed and prepared. The deep beam size was $200 \times 1000 \times 600$ (Thickness: Length: Height) and the wall was $70 \times 100 \times 1000$ (width: length: height). This dimension was reduced by half from the actual dimension to fulfill the testing facilities. CCwA was used in full course aggregate as replacement over natural aggregate. One sample was subjected to vertical load and another one was subjected to lateral load.

Under vertical load, the wall tend to fail under crushing whilst the connection is still intact. There were no cracks visible at wall-deep beam connection. The ultimate load and ultimate deflection were 934.62 kN and 3.66 mm respectively. All cracks and failure occured on the wall. It was found that the wall was governed by compression shear failure. Under lateral load, specimen failed at the connection of the wall-deep beam due to flexural. The ultimate moment was 10.17175 kNm and ultimate rotation was 0.088289 radian. It was found that wall-deep beam connection governed by brittle mode failure. Similar behaviour was observed in specimen on the wall-deep beam using natural aggregate.

Keyword: Wall-deep beam, Crushed Concrete waste Aggregate (CCwA), Vertical load, Lateral load.

CANDIDATE DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as references work. This topic not submitted yet to any other academic or non-academic institution for any degree or qualification.

In the even that my thesis be found to violate the condition mentioned above, I voluntary waive the right of conferment of my degree and agree be subjected to the discipline rules and regulation of University Teknology Mara.

Name of Candidate	Jerrisly Sulindap
Candidate's ID No.	2008544871
Programme	Master in Science Civil Engineering
Faculty	Civil Engineering
Thesis Title	Evaluation of wall-deep beam connection using CCwA
	under vertical and lateral loads

Signature of Candidate.....Date 23^{rd} April 2010

TABLE OF CONTENTS

ABSTRACT	i
DECLARATION	
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	
LIST OF TABLE	
LIST OF FIGURE	
	viii
INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	5
1.3 Objectives	5
1.4 Significant of study	6
1.5 Scope of study	6
1.6 Assumptions	8
1.7 Limitation of study	8
LITERATURE REVIEW	9
2.1 General	9
2.2 Materials	9
2.2.1 Concrete	9
2.2.1.1 Workability	10
2.2.1.2 Curing	11
2.2.1.3 Cracking	11
2.2.2. Crushed Concrete waste Aggregate as coarse aggregate in	
concrete mix	11
2.2.2.1 Fresh concrete	12
2.2.2.2 Hardened concrete	13
2.2.3 Reinforcement	14
2.2.3.1 Steel mesh or steel fabric as reinforcement	14
2.2.3.2 Advantages of steel fabric	18
2.3 Strain Gauges	19
2.4 Behaviour of loading	20
2.4.1 Concentric Axial Loading	20
2.4.2 Bending	20
2.5 Structural Behaviour	21
2.5.1 Cracking	21
2.5.2 Concrete in compression	21
2.5.3 Ductility	23
2.5.4 Deflection	23
2.6 Deep beam	23
2.6.1 Behaviour of deep beam	23
2.6.2 Shear design of deep beam	24 25
2.7 Shear wall	
	25
2.7.1 Load bearing wall	27

	2.7.2 Reinforced concrete wall characteristic	27
	2.7.2.1 Slenderness ratio	27
	2.7.2.2 Aspect ratio	28
	2.7.2.3 Reinforcement ratio, p and arrangement	28
2.8	Connection	28
	2.8.1 Lapping	29
	2.8.2 Bonding between concrete and reinforcement	29
2.9	Theoretical analysis	30
	2.9.1 British Standard	30
	2.9.2 Euler's Buckling Load	32
	2.9.3 Moment resistance according to the analytical model equa	tion
	(Prab Bhatt et al, 2006)	33
MET	THODOLOGY	34
3.1	General	34
3.2	Research design	34
3.3	Material properties	36
	3.3.1 Concrete	36
	3.3.2 Ordinary Portland Cement (OPC)	37
	3.3.3 Water	37
	3.3.4 Fine and Coarse Aggregates Grading	38
3.4	Mix Design Process	38
3.5	Concrete Cube Compression Test	39
3.6	Wall-deep beam connection design	39
3.7	Preliminary Laboratory Work	41
	3.7.1 Material Preparation	41
	3.7.2 Preparation of formwork	41
	3.7.3 Preliminary Testing	42
	3.7.3.1 Curing Process	42
	3.7.3.2 Slump Test	42
	3.7.3.3 Compression Test	42
	3.7.3.4 Tensile Test	43
	3.7.3.5 Bend Test	43
3.8	Main Laboratory Work	44
	3.8.1 Casting process	44
3.9	Experimental Setup	45
3.10	• •	49
RES	SULT AND DISCUSSION	50
4.1	General	50
4.2	Slump Test	50
4.3	Compressive Test	51
4.4	Steel	53
4.5	Tensile Test	56
4.6	Bend Test	58
4.7	Weld Strength Test	62
4.8	Load-deflection characteristic	62
	4.8.1 WDB under vertical load	62
	4.8.2 WDB under lateral load	66
4.9	Stress and Strain	68