AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Noor Iswadi Bin Ismail
Student I.D. No. : 2009713839
Programme : Doctor of Philosophy (EM990)
Faculty : Faculty of Mechanical Engineering
Thesis Title : Aerodynamic Performances of Twist Morphing MAV Wing

Signature of Student : ...

Date : March 2015
ABSTRACT

Performing the biomimetic morphing method on a Micro Air Vehicle (MAV) wing is very challenging tasks due to the MAV wing size limitation, limited energy budgets, complicated morphing mechanism and complex aeroelastic interactions. These issues had restricted the application of morphing wing on MAV wing platform. As a result, the impact of twist morphing on MAV wing aerodynamics and structural performances was not fully understood. Thus, this thesis presents the investigation of wing structural, aerodynamics performance and flow structure formations on a basic twist morphing MAV wing named as Twist Morphing wing. A series of morphing force intensity was imposed on Twist Morphing wing design to elucidate the impact of twist morphing mobility. Fully coupled Fluid-Structure Interaction (FSI) simulation is the main methodology used in this works. The wing structural and airflow field problems over Twist Morphing wing were solved based on a three-dimensional (3D) linear quasi-static structural coupled with steady state, incompressible Reynolds Averaged Navier Stokes - Shear Stress Turbulence (RANS–SST) flow. The validation on aerodynamic performances showed good correlation between the FSI and wind tunnel test results. The wing structural results showed that Twist Morphing wings had produced high geometric twist magnitude (ε), which in turn, induced higher lift coefficient (C_L) and drag coefficient (C_D) performances on the wing. The flow structure investigations revealed that this benevolent and malevolent aerodynamics attitude contributed by low-pressure intensity and strong tip vortex (TV) strength induced on Twist Morphing wing. These phenomenon had turned out greater in Twist Morphing wing with higher morphing force (5N and 3N) configurations. However, Twist Morphing wing had also exhibited poor maximum aerodynamic efficiency (C_L/C_D max) performances. The massive drag coefficient distribution had overwhelmed the successive increase in lift coefficient generation, which consequently plunged the maximum aerodynamic efficiency distribution magnitude on Twist Morphing wings. Hence, a multifidelity data Metamodel Based Design Optimization (MBDO) study was conducted to improve the maximum aerodynamic efficiency distribution on Twist Morphing wing. The optimal aerodynamic efficiency for Twist Morphing wing achieved at C_L/C_D max = 6.05 with angle of attack, morphing force and velocity magnitude set at 4.67°, 2.31 N and 9.42 m/s, respectively. Detail investigation on optimization outcome showed that the optimal Twist Morphing wing exhibited better maximum aerodynamic efficiency magnitude than the non-optimal flexible wings. This is due to weak tip vortex strength, which induced low drag coefficient magnitude on the optimal Twist Morphing wing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRMATION BY PANEL OF EXAMINERS</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Research Background 1
1.2 Problem Statement 4
1.3 Research Objectives 5
1.4 Research Contribution 5
1.5 Scope and Limitation of The Present Research 6
1.6 Thesis Outline 7

CHAPTER TWO: LITERATURE REVIEW ON MAV AERODYNAMICS, MORPHING APPLICATION, AND FSI STUDY

2.1 Introduction 8
2.2 Aerodynamic Performances of MAV Wing 8
2.3 MAV Design Challenge 12
 2.3.1 MAV Wing Planform Design 12
 2.3.2 Fuselage Design 14
 2.3.3 Propeller Effect 15
2.3.4 Vertical and Horizontal Stabilizer 16
2.3.5 Morphing Actuator 18

2.4 Morphing Wing Design 19
2.4.1 Morphing Wing Overview 19
2.4.2 Characterization of Morphing Wing 20
2.4.3 An Overview of Twist Morphing Wing Application 22

2.5 Fluid-Structure Interaction Analysis 26
2.5.1 Fluid-Structure Interaction Method 28
2.5.2 Computational Fluid Dynamics (CFD) 29
 2.5.2.1 Governing Equations 30
 2.5.2.2 Finite Volume Method 31
 2.5.2.3 Turbulence Modeling 35
 2.5.2.4 SST Turbulence Model 37
2.5.3 Finite Element Method (FEM) 37
 2.5.3.1 Static Structural Analysis 37
 2.5.3.2 Finite Element Approximations for Structural Analysis 38
 2.5.3.3 Equilibrium Equation 40
2.5.4 ALE Approach for FSI 41
 2.5.4.1 ALE Governing Equation 41

2.6 Chapter Summary 43

CHAPTER THREE: LITERATURE REVIEW ON METAMODEL-BASED DESIGN OPTIMIZATION (MBDO) 45

3.1 Introduction 45
3.2 Overview of MBDO 46
3.3 Multi-fidelity Surrogate Modelling for Aerodynamic Study 48
 3.3.1 Design of Experiments (DoE) 49
 3.3.2 Metamodel Fitting 50
 3.3.2.1 The Kriging Surrogate Model 51
 3.3.2.2 Kriging Mathematical Formulation 51
 3.3.2.3 Kriging Adaptive Sampling Strategy 53
 3.3.3 Metamodel Validation 55