MARA UNIVERSITY OF TECHNOLOGY

INTELLIGENT GARMENT SYSTEM
USING
FUZZY EXPERT SYSTEM

Amal Nabilah Md Amin
2004329596

Thesis submitted in fulfillment of the requirements for
Bachelor of Science (Hons) Intelligent System
Faculty of Information Technology And
Quantitative Science

MAY 2007
DECLARATION

I declare that this thesis and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

MAY 29, 2007

AMAL NABILAH MD AMIN
2004329596
ABSTRACT

Body measurement is the most important thing that need to be considered in order to find the best fit size clothes. Traditionally, manual taking measurement by tailor has been applied. However, this conventional method requires more time and energy. This method also involved highly cost which may give a huge impact to the garment company. Therefore, a new system should be developed to measure human body based on the data (image) given by the customers. It will help to search and decide the best fit cloth(es) as a result. This research use one of the artificial intelligence techniques, Fuzzy Expert System. The type of fuzzy inference applied to the system is Mamdani with hedges. The first step applied is by defining the range of body measurement for each clothes size which was determined by the relevant expertise (tailor). Then fuzzy rules and fuzzy sets are determined. Next, coordinate point used for the image before the system gathers the measurement of the body. After that, the measurement will become an input to the knowledge base. The system will then be able to determine the match clothes size. This project was restricted to the Quppy’s Garment Sdn Bhd for the shoulder, chest, waist and hip range measurement. This project is significant to the garment industry whereby, in defining clothes sizes using intelligent systems may make process faster and decrease the cost. The system have been tested base on 30 images and 95% of the output generate are consistent.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.0 Introduction 1
1.1 Background of the Problem 1
1.2 Problem Statement 1
1.3 Objectives of Research Project 2
1.4 Research Project Scopes 2
1.5 Significance of the Research Project 3
1.6 Summary 4

CHAPTER TWO: LITERATURE REVIEW

2.0 Introduction 5
2.1 Artificial Intelligence and Expert System 5
2.2 Fuzzy Expert System 9
2.2.1 Fuzzy Rules 9
2.2.2 Fuzzy Variable, Fuzzy Sets and Fuzzy Value 10
2.2.3 Inference Process 12
2.2.3.1 Mamdani-Style Inference 13
2.2.3.2 Sugeno-Style Inference 14
CHAPTER THREE: METHODOLOGY

3.0 Introduction 19
3.1 Project Overview 20
3.2 Knowledge Comprehension 21
 3.2.1 Fuzzy Expert System Approach 21
 3.2.1.1 Mamdani-Style Inference Engine 22
 3.2.2 Acquiring Problem Domain Knowledge 23
3.3 Knowledge Acquisition 23
 3.3.1 Interview 23
 3.3.2 Image Samples 24
3.4 System Design 25
 3.4.1 Inference Engine 26
 3.4.1.1 Define Variables 26
 3.4.1.2 Determine Fuzzy Sets 27
 3.4.1.3 Construct Fuzzy Rules 28
 3.4.1.4 Encode Fuzzy Sets and Rules 31
 3.4.2 Interface Design 31
 3.4.3 Database Design 31
3.5 System Development 31
3.6 Assessment 34
 3.6.1 Validation 34
 3.6.2 Analysis and Documentation 35
3.7 Software and Hardware Requirement 36
3.8 Summary 36