FINAL YEAR PROJECT REPORT ADVANCED DIPLOMA IN CIVIL ENGINEERING SCHOOL OF ENGINEERING MARA INSTITUTE OF TECHNOLOGY SHAH ALAM, SELANGOR DARUL EHSAN

STUDY ON STRUCTURAL BEHAVIOUR OF PRESTRESSED CONCRETE SLEEPER

BY ARIFFIN BIN NGAH 92056430

NOVEMBER 1995

ABSTRACT

The development of concrete sleeper becomes very important due to increase in train speed and development of the long welded rails. Due to this, it is necessary to increase the weight and the strength of the concrete sleepers to resist track buckling and reduce vibration in ballast.

Modern high speed trains impart considerable amount of impact energy to the track and this also generates high frequency vibrations in the rails. Sleeper should be able to absorb the impact energy and damp vibrations to a considerable extent and transmit the balance safely to the ballast.

At higher speed, the stress component of the Prestressed Concrete Sleeper developed on quasi-static response to dynamic force. This can lead to fairly high tensile stresses in sleepers and problem of concrete sleepers cracking. The investigation under the positive bending moment test will analyse the dynamic load of the Prestressed Concrete Sleeper.

The report of this experimental project is to make an analysis of the experiment on the structural behaviour of the Prestressed Concrete Sleeper under 3,000,000 and 5,000,000 cycles of dynamic load.

TABLE OF CONTENTS

Contents			Page	
ACKNOWLE	DGEMI	ENT	i	
TABLE OF CONTENTS				
LIST OF TABLES				
LIST OF FIGURES				
LIST OF PLATES				
ABSTRACT	ABSTRACT			
		1		
CHAPTER	1	INTRODUCTION		
	1.1	General	1	
	1.2	Scope Of Study And Objective	3	
CHAPTER	2	LITERATURE REVIEW		
	2.1	Prestressed Concrete Sleeper	6	
		2.1.1 Historical Development of PCS	7	
		2.1.2 Type of Concrete Sleeper	9	
		2.1.3 Other Railroad Component	11	

Contents

	2.2	Prestressed Theory	14
		2.2.1 Method of Prestressing	17
	2.3	Flexture Behaviour and Strength of PCS	21
CHAPTER	3	MATERIAL AND TESTING MACHINE	
	3.1	Material Properties of PCS	23
		3.1.1 Concrete	23
		3.1.2 Prestressing Wire	26
	3.2	UTM 1000 Universal Testing Machine	26
		3.2.1 Series Concept	27
		3.2.2 User Programmable Test	29
CHAPTER	4	DESIGN CONSIDERATION & EXPERIMEN	TAL
		SET-UP	
	4.1	Design Consideration	31
		4.1.1 Loading Conditions	31
		4.1.2 Design Criteria	34
	4.2	Experimental Set-up	47

4.2.1 Dynamic Load Test 48

Contents

•

Page

CHAPTER	5	RESULT AND DISCUSSION	
	5.1	General	49
	5.2	Deflection Vs Time (hour) Graph	49
	5.3	Stress - Strain Relationship	51
	5.4	Location And Width Of Crack	51
CHAPTER	6	CONCLUDING REMARKS	
	6.1	Conclusion	64
	6.2	Recommendation	65
REFERENCE	C S		66
APPENDIX A		PHOTOGRAPHS	A1
APPENDIX B	5	DESIGN CONSIDERATION	B1