

INVESTIGATION OF WATER FLOW AND THERMAL CHARACTERISTICS IN A FIRE TUBE BOILER BY USING FLUENT

MOHD ISA BIN MOHD NASARUDDIN

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

2009

DECLARATION

"I hereby declare that this report is the result of my own work except for quotations and summaries which have been duty acknowledged"

Mohd Isa bin Mohd Nasaruddin 2006844072 23th October 2009

ABSTRACT

Fire tube boiler is a one type of boiler. It is developed as the second of the three major historical types of boilers which are low-pressure tank, fire tube boiler and high-pressure water tube boiler. Sometimes fired tube boiler is called as a smoke tube boiler or shell boiler. A fired tube boiler is use for production of steam.

The efficiency of steam production is directly related to the temperature, residence time of water flow and the water turbulence inside the fire tube boiler. With the aid of computational fluid dynamics (CFD), this study presents the effort performed in modelling work on the water turbulence using design of fire tube boiler without baffles and fire tube boiler with baffles. The prediction of water flow inside the boiler based on k- ϵ turbulence model is used since it is widely applied in industries and education sectors. Anyway, the purpose of this study is to investigate the water flow and the thermal characteristics in a fire tube boiler by using FLUENT.

FLUENT is the software that used as a solver and post-processing in CFD. The comparison of the water flow and the thermal characteristics between fire tube boiler without baffles and fire tube boiler will also be discussed.

Keyword: Fire tube boiler, Modeling and Simulation, Water Flow, Thermal Characteristics

TABLE OF CONTENTS

	PAGE
DECLARATION	ii
SUPERVISOR'S CERTIFICATION	iii
COORDINATOR'S CERTIFICATION	iv
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF NOMENCLATURES	ix
LIST OF SYMBOLS	Х
TABLE OF CONTENTS	xi
ACKNOWLEDGEMENT	
ABSTRACT	

CHAPTER 1	INTRODUCTION			
	1.0	Introduction of CFD	1	
		1.0.1 GAMBIT	2	
		1.0.2 FLUENT	2	
	1.1	Objectives of Study	3	
	1.2	Limitation of Study	4	
	1.3	Significant of Study	5	
CHAPTER 2	LITERATURE REVIEW			
	2.0	2.0 Computational Fluid Dynamics (CFD)		
		2.0.1 History of the computational	6	
		fluid dynamics (CFD)		
		2.0.2 Types of Computational Fluid	9	
		Dynamics (CFD) software		
		2.0.3 The Advantages of FLUENT software	are 15	
	2.1	Geometry and Mesh Generation	17	
	2.2	k-ε Turbulence Model	24	

	2.3	Fired-tube Boiler	31
		2.3.1 According the position of the furnace	31
		2.3.2 According to layout position	31
		2.3.3 According to flue-gas travel	31
		2.3.4 According to type of firebox	32
	2.4	Design of Fired-tube Boiler	35
CHAPTER 3	МЕТ	THODOLOGY	
	3.0	Model Description	37
	3.1	Conservation of Mass	37
	3.2	Momentum Equation in Three Dimension	40
	3.3	Energy Equation in Three Dimensions	42
	3.4	k-ε Turbulence Model	44
	3.5	Modelling and Simulations	45
		3.5.1 Pre-Processor	46
		3.5.1.1 Fired tube boiler without baffles	46
		3.5.1.2 Fired tube boiler with baffles	48
		3.5.1.3 Meshing	49
		3.5.2 Solver	50
CHAPTER 4	RES	ULTS AND DISCUSSIONS	

4.0	Introduction	56
4.1	Description of Plain Position	56
	4.1.1 Description of Each Plain	58
4.2	Simulation Results	58
	4.2.1 Plain A	58
	4.2.2 Plain B	62
	4.2.3 Plain C	66
	4.2.4 Plain D	70