Jutge.org:
Characteristics and Experiences”

J. Petit, S. Roura, J. Carmona, J. Cortadella, A. Duch, O. Giménez,
A. Mani, J. Mas, E. Rodriguez-Carbonell, A. Rubio, J. de San Pedro, D. Venkataramani ¥

Abstract

Jutge.org is an open educational online programming judge designed for students and instructors,
featuring a repository of problems that is well organized by courses, topics and difficulty. Internally,
Jutge.org uses a secure and efficient architecture and integrates modern verification techniques, formal
methods, static code analysis and data mining. Jutge.org has exhaustively been used during the last
decade at the Universitat Politecnica de Catalunya to strengthen the learning-by-doing approach in several
courses. This paper presents the main characteristics of Jutge.org and shows its use and impact on a
wide range of courses covering basic programming, data structures, algorithms, artificial intelligence,
functional programming and circuit design.

1 Introduction

It is a well-established fact that practice is fundamental to learn computer programming. Whether at sec-
ondary, high school or university level, instructors assign programming problems to students in order to
help them acquiring this skill. However, correcting programming assignments can be tedious and error-
prone. Fortunately for instructors, programming problems are ideal candidates for automated assessment.
Reviews on automatic assessment of programming problems can be found in [13{19] and recent experiences
include [6,21}23]].

Currently, the dominant automatic correction systems are the online programming judges on the inter-
net. Online judges are web-based systems that offer a repository of programming problems and enable
submitting solutions to these problems so as to obtain a verdict on their correctness and efficiency by apply-
ing a battery of unit tests under certain memory and time constraints. Popular online judges include UVa
and CodeForces, but these judges are competitively oriented and not adequate for learning. On the other
hand, some MOOC:s such as the |Algorithms courses from Princeton University and the Machine Learning
course from Stanford University at Coursera also feature this kind of automatic assessment. However, their
repository of problems is much smaller, more focused on a specific topic, and strongly relies on a specific
programming language (PL). In a similar vein, many interactive programming educational platforms are
also offered on the web, but often these do not focus much on algorithmic problem solving but rather target
learning PLs, building games, creating web pages...

The purpose of this paper is twofold: First, it describes Jutge.org, an open educational online program-
ming judge that is the offspring of some teaching projects in several undergraduate programming courses
in the Universitat Politecnica de Catalunya (UPC). Second, it presents its use and impact on a wide range
of UPC courses spanning the last ten years and covering basic programming, data structures, algorithms,
artificial intelligence and functional programming.

The main characteristics of Jutge.org are:

— Jutge.org is designed both for students and instructors. It integrates in a coherent way ideas from tradi-
tional online judges and from learning management systems, with a user-friendly interface.

— The repository of problems at Jutge.org covers many topics including basic programming, data struc-
tures, algorithms, artificial intelligence, functional programming and circuit design. The problem collection

*This work was partially supported by funds from the Spanish Ministry for Economy and Competitiveness (MINECO) and the
European Union (FEDER funds) under grants TIN2013-46181-C2-1-R and TIN2015-69175-C4-3-R, and SGR 2014 1034 (ALBCOM)
of the Catalan government.

0. Giménez is with Google, Mountain View (California). A. Mani and D. Venkataramani are from SASTRA University, Tanjore
(India). All other authors are with the CS Department of the Universitat Politecnica de Catalunya, Barcelona (Catalonia).

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/TLT.2017.2723389

http://uva.onlinejudge.org
http://codeforces.com/
https://www.coursera.org/learn/introduction-to- algorithms
https://www.coursera.org/learn/machine-learning
https://www.coursera.org
https://jutge.org

Verdict distribution Problems along time ‘Submissions along time

Language distribution Compiler distribution Accuracy along time

“‘

‘Submissions by hour of the day Submissions by day of week

Figure 1: Sample snapshot for the dashboard of a student.

(about 2100 problems) is clearly organized and graded by difficulty, enabling a systematic progress, largely
independent of the 22 supported PLs.

— Jutge.org integrates some techniques that go beyond other judges, such as modern verification and for-
mal methods to assess problems on logic circuits, static code analysis to ensure constraints on functional
programming problems, and data mining in order to provide appropriate feedback to users’ submissions.

As a tool, Jutge.org has propitiated a number of positive changes in the way various programming
courses at UPC are taught:

— The judge has become a structuring driving force to modernize the goals, contents, approach and presen-
tation of most programming and algorithms courses.

— Jutge.org places emphasis on the work of the student and is therefore especially useful to reinforce the
“learning-by-doing” approach.

— The judge has made possible a semi-automatic grading: In contrast with the old courses where program-
ming was vastly relegated to pseudo-code written on paper, the current courses feature practical exams that
take place in front of the computer. This results in a more objective grading than the older one.

— Jutge.org allows conducting alternative motivating and fun assignments where gamification concepts are
used to improve learning by leveraging students’ natural desires for competition and achievement.

— Other UPC activities such as programming contests, the Spanish Olympiads in Informatics, a Machine
Translation MOOC and some summer camps for high school talented students are also powered by Jutge.org
and provide added value to our university.

This paper is a coherent full account on the experience of developing and using Jutge.org during the last
10 years. Because of space reasons, some technical details are omitted; the reader is referred to
for more information on them.

In what follows, Section 2 presents a guided tour to Jutge.org. Then, Section 3 details the feedback that
this judge provides to users’ submissions and Section 4 summarizes the original algorithm to produce it.
Afterwards, Section 5 presents a selected set of courses that use Jutge.org and, for each of them, details the
impact of the judge on the learning and teaching experience. A comparison with similar systems is given in
Section 6, before the conclusions.

2 Guided tour to Jutge.org

In this section we first introduce the main types of user and the main teaching resources available at
Jutge.org. Afterwards, we present two typical use case scenarios.

Types of user and teaching resource. Users can have different roles: Students, Tutors, Instructors and
Administrators. All users must register with a valid email address. Additionally, prospective instructors
must contact the administrators proving their membership to an educational organization. Most of the
features can be tried without registering using the demo account. Usage of Jutge.org is free and will remain
free. Importantly, Jutge.org sends no spam and personal data is not disclosed to third parties.

Problems are the main resource of Jutge.org. They are identified by a unique short code, and typically
consist of a problem statement that describes the task to perform, a correct and efficient reference solution
(hidden to users), some public test cases, and some private test cases. For instance, problem P29212 is
titled “Modular exponentiation” and can be found at https:/jutge.org/problems/P29212. Most of the problems
can be solved in any of the 22 programming languages currently available and are written in English. As
multilingual problems are supported, many problems are also offered in Catalan and/or Spanish.

The teaching resources of Jutge.org are primarily organized in courses. Courses themselves contain
lists of problems. A problem can be in many lists and a list can be in many courses. Instructors can invite
students and tutors to their courses, and students can enroll in or unenroll from such courses. In addition,
instructors can also add or edit their courses, lists and problems, and organize exams within courses. The
system also features awards, which are motivating clip-art images rewarded to users when they achieve
certain milestones. The system also provides an API to programatically interact with it.

Currently, Jutge.org contains about 2,100 problems, serves more than 15,000 users worldwide and has
processed almost two million submissions.

Scenario 1: Student point of view. Let us consider the following scenario: Some student —Ilet us call her
Hermione— wishes to use Jutge.org to learn to program. After registering and logging in, Hermione will
find her dashboard page that shows some statistics on her work (see Figure |1) and offers her some public
courses where she can enroll in.

In order to try to solve her first problem, Hermione will read its problem statement and consider its
public test cases. Then, Hermione will design and develop a solution for the problem in her own computer,
compiling it, and validating it (at least, apparently) using the public test cases and other test cases that she
can think about by herself. Finally, Hermione will upload her source code to the online judge, which will
return a verdict, in about five seconds on average. To emit its verdict, the engine of the online judge uses
private test cases, as exhaustive as possible, to check that the solution submitted by Hermione is efficient
enough, and that its output is correct. In the case that her submission is considered correct, Hermione may
see a report on software metrics comparing her solution with the reference solution, which may evidence
that her solution has room for improvement despite being correct. In the case that her submission is incor-
rect, Hermione will usually receive a machine generated hint in the form of a short and relevant test case
for which her solution fails.

Hermione can submit as many solutions as desired to the judge. All the submitted source code and
associated verdicts are permanently stored so that Hermione can retrieve them later.

Scenario 2: Instructor point of view. We consider now another typical scenario: During the next semester,
Prof. McGonagall will be the responsible of a course on programming at her university. About 400 students
(including Hermione) will take that course, and a dozen teachers (including Hagrid) will assist her in the
laboratory sessions.

To set up her course, Prof. McGonagall will get an account with instructor privileges. Then she will
create a new course with some lists of problems that she will populate with the public problems already
offered by Jutge.org according to her preferences. The system already offers so many problems that she
does not need to create new problems on her own, but she could do it if she wishes so. Afterwards, she will
invite her students via their official email addresses at the university. All invited students will receive an
email stating that they can enroll in that course at Jutge.org. In the same way, Prof. McGonagall will also
invite her teaching assistants, who will be designated as tutors for this course. Naturally, only the invited
students and tutors will be allowed to join her course.

At some point, it may happen that Hermione has some doubts about a particular problem that she is
not able to solve. Hermione can contact Hagrid by email to state her difficulties and ask for help. In order
to help students, tutors can use a special feature of Jutge.org called supervision, which enables Hagrid to
visualize Hermione’s account and access her problems and submissions. By inspecting her code, Hagrid
can spot her mistakes, answer her doubts and offer further guidance. To maintain privacy, tutors can only

https://jutge.org/demo
https://jutge.org/problems/P29212

75

50
25

1 22 33 44 55 66 77 83 93 110 121 132 143 154 165 176 167 108 200

(a) Histogram of solved problems by stu-
dents. Hor. axis: number of problems;

vert. axis: number of students.
‘:ll_l I |ll |‘l

(b) Number of submissions for each day of

May 2011. Green: accepted submissions;
red: rejected submissions.

W ACET8
PE 46
W wa 420

| R
M EE 166
W CcE 105

Submissions accepted/rejected

I =
) W KO 741

0 500 1000 1500 2000

Problem status for students

Il OK 380
=
0 100 260 300 o EINT

(c) Results for problem “Greatest common divi-
sor” (P67723): distribution of verdicts; propor-
tion of accepted/rejected submissions; number
of students with the problem accepted (OK), re-
jected (KO) and not tried (NT).

Figure 2: Sample snapshots of statistics offered to instructors.

https://www.jutge.org/problems/P67723

supervise students that have enrolled in their courses, and supervision is limited to their problems.

All through the semester, Prof. McGonagall can gather data on the overall progress of her students. To
help her, Jutge.org offers a wealth of diagrams and statistics such as the ones shown in Figure[2] Addition-
ally, Prof. McGonagall will be able to easily create exams for her students. Jutge.org also offers other minor
but practical functionalities that somehow alleviate the administrative burden for professors. For instance,
the solutions submitted by the students during the exams can be easily distributed to the tutors, so that they
can grade those solutions according to their own grading method.

3 Feedback in Jutge.org

The feedback reported to a user’s submission is a key characteristic of any programming judge. In this
section we explain the Jutge.org’s feedback. (Section [5.5] provides particular information on feedback for
problems on circuit design.)

In general, Jutge.org emits the following verdicts:

— Accepted (AC): The submission passes all public and private test cases.
— Compilation Error (CE): The submission does not compile.

— Execution error (EE): The submission crashes in some test case. Further indications such as Uncaught
exception, Division by zero, Invalid memory reference or Time limit exceeded complement this verdict.

— Wrong answer (WA): The submission successfully executes all test cases but fails to write the expected
output for some of them.

In addition to the verdict, Jutge.org also provides more feedback depending on whether the submission has
been accepted or not:

Feedback for accepted submissions. Beginners tend to write overly long and complicated solutions. There-
fore, the feedback of Jutge.org for accepted submissions focuses on warning them (if necessary) about that
possibility.

This is achieved through the comparison of their solution and the reference solution using static code
metrics. In particular, the following metrics are reported: number of lines of code, number of tokens,
number of comments, number of auxiliary functions, Haelstad’s difficulty (DIF) and McCabe’s cyclomatic
complexity (CCN ﬂ Whereas these code metrics are generally despised as a measure for developer’s pro-
ductivity [31]], they have been used in other automatic grading tools [20,27,35]] and we think they are useful
in the context of small, specific assignments as they provide a nice way to compare beginner solutions to
expert solutions without disclosing the latter ones.

Figure |3| shows a snapshot of the code metrics report on a (real) correct submission to the problem of
returning the position of the first occurrence of an element in a sorted vector. As the gauges illustrate, the
DIF and the CCN metrics of the solution are much higher than these of the reference solution, suggesting
that the submitted solution is too complex.

Feedback for rejected submissions. In the event that a submission is incorrect, and within the scope of the
“Learning to Program” course (which contains about 200 problems), Jutge.org tries to hint the user with
useful counterexamples where the code fails.

In the (too common!) case that failure happens on a public test case, the system warns the user and
suggests him less rush and a better testing strategy.

In the case that failures happen on private test cases, the system reveals him up to two distilled test
cases where the submission fails. Distilled test cases are a small set of relevant and concise test cases
automatically computed by the system by a data mining algorithm that takes into account all past wrong
submissions for this problem (this algorithm is explained in Section[d)). As such, distilled test cases provide
a deeper insight than just a dull and long arbitrary counterexample.

Figure ff] shows a snapshot of the two revealed test cases for a (real) incorrect submission to a problem
that requires incrementing one second a clock time and printing it in the hh:mm:ss format. See how well the
two offered hints capture two bugs in the submission: Input 9:59:59 catches a format mistake (presumably

! McCabe’s cyclomatic complexity [26] gives an indication of the complexity of a program through a quantitative measure of the
number of linearly independent paths through its source code. Haelstad’s difficulty [17] estimates its difficulty of being understood
(e.g., in a code review) through counting the total number and the distinct number of operators and operands.

Code metrics

nloc toks com dif cecn

Submission 31 293 77
ifirst occurrence 14 174 7
man 9 65 2
first_occurence 5 43 1
Solut 12 147 48 4

olution
Ratio 26 20 16 18

Figure 3: Code metrics reported to a correct submission to problem “First occurrence” (P84219).

- Add one second P34279 en

Analysis of revealed test case

Input
9 59 59

Differences (left: output, right: correct):

010:00:00 10:00:00

Analysis of revealed test case

Input
23 59 59

Differences (left: output, right: correct):

24:00:00 00:00:00

Figure 4: Automatically computed test cases for a wrong submission to problem “Add one second”
(P34279).

an incorrect comparison) and input 23:59:59 catches a conceptual mistake (presumably a forgotten edge
case). The next submission by that student fixed the bugs and obtained an AC verdict.

For problems that do not belong to the “Learning to Program” course, we consider that students should
already have acquired a minimal programming maturity and are able to face negative verdicts such as WA
and EE on their own, without hints from the system that would encourage sloppy-thinking programmers,
who first recklessly write a wrong program, and afterwards try to patch it (multiple times) using the given
counterexamples.

4 Extracting small and relevant test cases

In this section we present the algorithm that Jutge.org uses to automatically reveal a small subset of the
private test cases to be used in the feedback of incorrect submissions.

Whereas an obvious solution would be to just show users an arbitrary instance for which their code fails,
we feel that providing such a hint would not be effective as it would encourage a “trial and error’” approach.
Clearly, this is not the right way to proceed. Instead, we believe that the counterexamples provided should
be as small and relevant as possible. By “relevant” we mean that these test cases should probably be helpful
to most of the users.

AC

(G

WA

CE

Figure 5: Current distribution of verdicts at Jutge.org.

Solution. Our solution consists in data mining past incorrect submissions sent by all the users of the judge.
These automatically generated test cases would somehow capture the essence of the problem and, thus,
should constitute a great feedback when revealed. This technique, which we call the distiller and elaborate
in [25]], has the virtue to put to use the wrong solutions, which represent about one third of all submitted
solutions to Jutge.org (see Figure[3)). Indeed, at this point, we are interested in bad submissions, defined as

https://www.jutge.org/problems/P84219
https://www.jutge.org/problems/P34279

_Table 1: Test cases for problem ““Validating daSeB’,’ (13_24951_48%

(a) Public sample test cases (b) Distitiediniput test cases
Sample input Sample output 29 2 4900 13 9 1800 29 2 1870
30 11 1971 Correct Date 7 2 1900 28 0 1852 31 2 1964
6 4 1971 Correct Date 31 8 8298 31 1 7709 1 12 2002
4 8 2001 Correct Date 29 1 1942 31 12 5741 30 1 3157
29 2 2001 Incorrect Date 30 2 1864 29 2 6592 0 2 1910
32 11 2005 Incorrect Date 31 7 3535 31 9 1948 29 2 2000
30 11 2004 Correct Date 31 2 2000 32 12 2008 0 3 2000
-20 15 2000 Incorrect Date 5 13 2000 31 11 2000

T?ab)lg 2: Test cases for s}gl;oblem Brackets an?bygrentheses (P96529).

ublic sample test ca istilled input tesit cases

Sample input Sample output ([LL

[1CC10) yes [1 Il

«Ino no 10 [CCOD]]

[1¢ no 11 [ICODIC

1 yes)1 [COIDINIIN O]

the submissions that pass all public test cases but fail in some private test cases. We are not interested in
submissions that pass all test cases (because they do not help finding relevant test cases) nor in submissions
that do not pass the public test cases (because these do not even reflect a minimum quality).

The distillation process works as follows. Consider a bipartite graph whose left vertices correspond
to test cases, right vertices to submissions, and edges to failure to report the correct output for a particular
submission on a particular test case. Then, discovering the relevant test cases consists in finding a minimum
subset S of left vertices such that every right vertex has some neighbor in S. This corresponds to solving
the Set Cover problem, a classical hard problem in computer science. If the length of the input test cases
must also be taken into account, one can enrich this graph formulation by weighting the left vertices by their
length, and requiring a set cover of minimum weight. Similarly, it is also possible to cover just a fraction of
the bad submissions.

To build the bipartite graph, the distiller must extract all individual private test cases of the problem. This
is not a trivial task, as many test cases are contained in a single file, and some splitting must be performed
to access them. Afterwards, the distiller solves the Set Cover problem using Integer Linear Programming
(ILP). Despite the theoretical intractability of the Set Cover problem, we have seem that ILP work quickly
in all our instances; heuristics could be used to reduce execution time if necessary, as optimality is really
not needed.

Results. We have been able to distill almost all problems in the “Learning to Program™ course using
submissions of about 7200 users since September 2006. The results indicate that our solution is general,
efficient, and generates high quality test cases. Let us consider a couple of examples:

o “Validating dates” (P29448)). This problem asks the student to tell whether several triples of integers are
valid dates in the Gregorian calendar. Its public test cases are shown in Table[T(a). This is an easy problem,
but the thorough case analysis for the validation on the number of days for each month (including coping
with leap years) can be tricky for beginners. This problem has 129458 private test cases. It has received
about 7000 submissions, from which about 3700 are bad. The distillation process took about 35 seconds
and produced a distilled set with 23 test cases, shown in Table b). As could be expected, those test cases
feature limiting values for the number of the day (such as 0 and 32) and stress years (such as 2000) for
which the leap year rule may be wrongly coded.

e “Brackets and parentheses” (P96529). This problem asks the student to tell whether words made up
of brackets and parentheses close correctly. Its public test cases are shown in Table 2(a). In this case, the
distillation process produced 11 relevant test cases out of the 1766 private test cases. However, the distilled
set had a big issue: its total size was quite large (18360 characters). Using weights, we obtained 13 test
cases, whose total size is 1254 characters, and where three test cases still had more than 350 characters
each. By relaxing the ILP to catch 90% of the bad submissions, we obtained a workable distilled set with
just 10 inputs and 63 characters; see Table [2|b).

Conclusions. The distillation process extracts in an automatic way a small, concise and relevant subset of
private test cases that captures the difficulty of the problem for many users. Revealing these distilled test
cases to beginners helps not discouraging them and increases their own ability to identify and address edge

https://www.jutge.org/problems/P29448
https://www.jutge.org/problems/P96529
https://www.jutge.org/problems/P29448
https://www.jutge.org/problems/P96529

Computer Science degree Mathematics degree Other

’ Programming- 1 e - —>’ Informatics ‘ ’ Circuit Design ‘
1
’ Programming-2 ‘ ’ Programming Contests ‘
]
’ Data Structures and Algorithms | - —>’ Algorithmics ‘ ’ Spanish Olympiads ‘
¥
¢ ’ Summer Camps ‘

’ Programming Languages ‘

’ Machine Translation MOOC ‘

Figure 6: Courses at UPC using Jutge.org.

cases. Taking into account the amount of effort spent by problem setters in creating huge and exhaustive
private test cases, it is a bit deceiving to see a posteriori that only few of these test cases are, in fact, relevant.

5 Experiences of courses using Jutge.org

In this section we detail how Jutge.org has been used in several courses at UPC. In particular, we focus on
the Computer Science and Mathematics Schools: the Facultat d’Informatica de Barcelona (FIB) and the
Facultat de Matematiques i Estadistica (FME).

Within the Computer Science degree at FIB, the judge is used in Programming-1 (PRO1), Programming-
2 (PRO2) and Data Structures and Algorithms (EDA), which correspond to its three first compulsory courses
on programming and algorithmics, and also in Programming Languages (PL), which is elective. Within the
Mathematics degree at FME, the judge is used in Informatics and Algorithmics, which are both compulsory
courses. These two courses are somehow similar to PRO1 and EDA respectively, so we shall not elaborate
on them. Additionally, Judge.org has been used in other transversal activities at UPC, including Circuit
Design, Programming Contests and the Spanish Olympiads in Informatics. A MOOC course on Machine
Translation has also used Jutge.org [8]|. The overall structure of these courses is shown in Figure 6]

5.1 Programming-1

PROI1 is a first-year, 7.2 ECTS-credits, compulsory, one semester programming course taught at FIB that
introduces computer programming. This course is taught by 15 faculty members to approximately 450
students per semester.

In September 2006, the PRO1 course was redesigned and its fundamental objective was set “to ensure
students passing PRO1 to be able to confidently code correct, readable programs to solve problems of
elementary difficulty.” The course syllabus is similar to that of other analogous courses: It includes basic
elements of programming (types, variables and control structures), functions and procedures, recursion, one
and two-dimensional arrays, strings, and aggregate types. Some well-known algorithms are also introduced,
such as Euclid’s algorithm, the sieve of Eratosthenes, binary search, basic sorting methods, and merge-sort.
The programming language of choice is (a small subset of) C++.

For the sake of acquiring the required programming skills, students were encouraged to solve as many
problems as possible. During laboratory sessions, teachers helped students. However, it was expected
that students should work most of the time on their own, using a complete and well-organized problem
collection. To apply this methodology, the PRO1 programming judge —which would later evolve into
Jutge.org— offered up to 300 programming problems.

The online judge was also used in exams, to reject wrong solutions while giving the chance to the
student to identify and correct mistakes (multiple submissions were allowed). After the exam, only the
correct solutions were additionally graded by human instructors, mainly to assess their adequacy to general
quality criteria.

The results of applying this methodology during the first four semesters were not as successful as ex-
pected: Although there was a clear correlation between the amount of problems the students solved and the
grades they obtained (see Figures[7]and[8), the data collected on the judge showed that the effort that most

100 —_—
80
60
40

ol

1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Figure 7: % of students passing the course w.r.t. the number of problems solved during the course. The
trend is that the more solved problems, the higher the probability of passing.

10—

©
T

T T T
100 150 200 250 300

Figure 8: Final grade (between 0 and 10) vs the number of solved problems with a linear regression.

students devoted to the course was way less than the workload required according to its ECTS-credits. As
a sad but logical result, a high number of those students failed PRO1. More details can be found in [|16].

As a consequence, during the subsequent years, several adjustments were progressively applied to the
course with the intention to turn the situation around. Basically, these modifications involved increasing
the weight of continuous assessment as a way to boost students’ work, reintroducing some partial exams
on paper, and relaxing the condition to pass the private data sets to have a problem exam graded. However,
it appears that despite these adjustments, the rate of success of the PRO1 course has not yet increased as
much as desired. Figure [9] shows the evolution of the success rate from 2007 up to 2015, which roughly
rose from 20% to 40%.

The opinion of students with respect to the usage of the judge in PRO1 has evolved since its introduction.
Whereas students in 2006 officially protested to the Dean by claiming that “the judge demotivates and
thwarts students” and that “exams in front of the computer are unfair” |12]], current students claim the
opposite: “programming exams on paper are unfair!”. Figure [I0] shows the answers of students to an
opinion survey conducted in December 2015 to get a clearer view on the matter. The range of answers is
from 1 (strongly disagree) to 5 (strongly agree). From the survey, we can see that a huge majority of students
accepts that the judge system helps them to improve their programming skills, that they admit not using it
as much as they should, and that they would object to the course without it. The survey also demystifies
that the judge highly thwarts students: the average response to this question is 3.6, and the dual question
that asks whether an “Accepted” verdict motivates them has an average response of 4.5. Likewise, the poll
results indicate that the additional stress of exams in front of the computer with respect to traditional paper
exams is not very significant (one third of the answers are 1 or 2, one third are 3 and, another third 4 or 5).

Furthermore, all the coordinators and teachers of the PRO1 course acknowledge the usefulness of the
online judge. As a learning tool, it is a handy device to learn programming, since it contains an extensive

60

) M
2

T T T T T T T T T
2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 9: Percentage of students passing the course by year.

40 — 60—

30—
40

20—

ol 20—

e e B === D\ T
1 2 3 4 5 1 2 3 4 5

The judge helps me to Getting an AC verdict mo-
better program. tivates me.

40—
30—

20—

10— 101
e 0
1 2 3 4

\ T I_TI T

5 1 2 3 4 5
Getting a non-AC verdict | should use the judge
thwarts me. more often.

60 [30

40 [20

pIEIN (mHEE

0 s N [P 0 D
T T
3 3 4 5

[[[[
1 2 4 5 1 2

| would prefer the course Exams with the judge
without a judge. stress me more than reg-
ular exams on paper.

Figure 10: Results of the survey about the judge on PRO1 (1: Strongly disagree — 5: Strongly agree).
Values shown as percentages.

list of exercises, automatically evaluates the solutions submitted by students and gives an immediate verdict
about their correctness. As a tool for helping on the evaluation process, the judge makes it possible to grade
students precisely in the competence that they must acquire, that is, solving simple programming problems.
This includes reading and understanding the statement of a problem, thinking about an algorithm solving it,
coding it, checking that it works, and making the appropriate changes, if needed. As a tool for monitoring
students progress, the online judge provides a source of objective, untainted data from a hitherto unknown
depth at UPC.

5.2 Programming-2

The PRO2 course is a natural continuation of PRO1. With 7.5 ECTS-credits, it introduces modular and
object-oriented design; presents new data structures such as stacks, queues, lists and trees paired with their
implementations with pointers, and emphasizes the reasoning about the correctness of solutions and the
improvement of inefficient solutions. The collection of problems in Jutge.org for PRO2 expands the one
in PRO1 with problems that ask to code (or expand) a set of C++ classes in different files with a given
interface, and ensuring their compilation with a makefile.

5.3 Data Structures and Algorithms

The Data Structures and Algorithms (EDA) course consists of 6 ECTS-credits. It combines basic theoretical
aspects of algorithm design and analysis together with several programming features. The course starts by
introducing algorithm analysis, together with its basic mathematical tools. Then, these bases are used to
analyze several implementations of classic algorithms and data structures (sorting and searching, divide
and conquer, backtracking, dynamic programming, hashing, balanced binary trees, graphs, shortest paths,
among others). Within this course, the online judge is used as the basis of the programming assignments
and exams in a similar way as in the PRO1 and PRO2 courses previously described. Interestingly, in the
EDA course, Jutge.org is also used to manage a new and motivating activity: the EDA Tournament.

10

i =
=1

H 3°§° goo

apofen 9 %0.8087

PacMan:

Each player controls one

Battle Royale: Each player controls
several knights and peasants to colo-
nize cells and fight adversary knights.

Tron: Each player controls some light
cycles that should never crash against
the trails that light cycles leave behind.

Figure 11: View of some games.

pacman and four ghosts.

60—

40 —

20—

40 —

30—

20—

10—

60 [~
40 —

20

“7 T DD'Z'I__l

0
1

| enjoyed the game.

DH

[[I [
2 3 4 5

Beating the dummy
player was easy.

oL
1

I
1 2 3 4 5

| would rather spend my
time studying theory than
programming my player.

40~

20—

30

40—

I—TII:I

0= T
12 3 4

Competing against my

mates motivates me.

I
5

alll

| improved my player after
winning the dummy.

|mmAl

I I
1 2 3 4 5

The documentation of the
game is right to me.

60 [—

40—

20—

o7 7
1T 2 3 4 5

The game motivates me
more than traditional pro-
gramming projects.

80

60—

40

20—

e A

1 2 3 4 5
| would rather prefer this
course without game.

Figure 12: Results of the survey for the PacMan game (1: Strongly disagree — 5: Strongly agree).
Values shown as percentages.

11

The EDA Tournament is a programming project where students compete among themselves by design-
ing and implementing strategies that control the movements of several agents according to some rules of a
game. There is no human interaction during a match; this tournament is played by programs. Unlike most
exercises of this and previous courses, it is an “open” project: it is not about solving a specific problem,
but about designing a plan, studying the opponent’s strategies and, if required, adjusting or rebuilding one’s
own coded plan. It emphasizes the algorithmic aspects taught in the course, requires careful programming,
encourages good coding habits and, moreover, is fun, which is particularity important because it intends to
overcome the poor motivation of many students for the theoretical contents of the course.

Tournament. We briefly comment on the three main stages in the development of the EDA Tournament:
qualifying, tournament and grand final. More details can be found in [[14]]. In order to qualify for the
tournament —thus obtaining a passing grade in this project— students have three weeks to individually
work on their own strategy and come up with a player that consistently beats the dummy: a basic player
programmed by the course lecturers. This is a mandatory requirement to ensure a minimal coding effort by
every student.

Afterwards, the tournament itself begins, with all the qualified players. It lasts for around two weeks,
and consists of the necessary amount of rounds to eliminate all players but 16. A round consists of several
matches. Every match is publicly visible and involves (usually) four programs. The worst player of each
round is eliminated. The longer a student stays in the game, the higher is her grade.

When there are only 16 players left, a grand final takes place in the conference room. The surviving
players are grouped into four rounds, and the winner of each one competes in a last round to determine the
absolute champion. In the ceremony, the programmers of the best players are invited to give a public short
speech about their strategies. See https:/jutge.org/fim/jocs.mp4. for a video of the event.

Several games have been released, trying to make them as attractive and enjoyable as possible. All the
games feature a board where several agents controlled by four different players interact for several rounds
to get a final score. The board is organized as a collection of cells that induce a graph. At each round,
the movements of the agents are governed by the players’ strategies and invoked through the game APIL
Every player decides its movements for the next round independently of the other players, and there is a
randomization process by which possible collisions are resolved; see Figure [IT]for some snapshots.

Analysis. The EDA Tournament activity has been implemented as described above for the last nine
semesters. It has a large percentage of participation (always more than 90%) and almost all students who
tried were able to qualify a player into the tournament, consequently passing the project. Moreover, since
the results in the tournament provide extra points for the course’s grade, typically around 20% of students
pass the whole course thanks to this bonus.

A survey was conducted to the EDA students in December 2013. During that course, when the PacMan
game was played, 143 students submitted a total of 2929 programs, 749 of them beating the dummy player.
A total number of 7761 matches were disputed. Figure[T2]shows the answers of the students. The range of
answers was from 1 (strongly disagree) to 5 (strongly agree). From the survey, we can infer that almost all
students enjoyed the game activity, that they did not find too many problems in beating the dummy player,
and that they preferred it over standard assignments. Also, since most of them liked to compete against
each other, this activity was fun, attractive and motivating.

5.4 Programming Languages

Functional programming is introduced as part of the Programming Languages elective course (6 ECTS-
credits). It introduces new programming constructions such as anonymous functions, higher-order func-
tions, richer and stronger type systems, and monads. The language of choice is Haskell [33]]. This language
is ideal for introducing functional programming, as it provides all these constructions plus lazy evaluation.
Being a pure functional language, it prevents students from using any construction based on having side
effects, and increases the skill of students to define functions by recursion or by composition of existing
functions.

Since functional programming represents only half of the Programming Languages course, it is specially
important to provide students with good tools for training on their own since the very beginning of the
course.

Along the course, different features of functional programming are tought. Therefore, each exercise
specifies what kind of constructions are allowed to solve it. Although students are responsible for doing
their job properly, it turned out that (as will be shown below), in a relevant amount of cases the submissions
do not meet the given requirements. For this reason, a code inspector was recently developed and integrated
into Judge.org.

12

https://jutge.org/flm/jocs.mp4

Table 3: Results of the evaluation with and without the Haskell inspector.
P93632, P31745 P93588 P90677

ACs without inspector 41.4% 54.3% 77.5% 31.1%
ACs with inspector 30.5% 32.3% 72.8% 16.8%
Submissions with inspector diagnostics 28.4% 54.7% 9.5% 37.4%
Average score without inspector 70.7 79.5 91.0 75.4
Average score with inspector 58.8 433 85.7 63.1

The Haskell code inspector. The inspector parses the Haskell submission and produces an abstract syntax
tree (AST) which is analyzed to check if all the requirements hold (test cases are still used to judge correct-
ness). This tool is written in Haskell itself (using haskell-src-exts) and checks the following requirements:

e Use of recursive definitions. The use of recursion may be forbidden in some problems, whereas it may be
mandatory in others. For instance, a problem could ask for the factorial function expressed as

fact n = foldl () 1 [l..n]
rather than recursively as

fact 0 =1

fact n =n = fact (n—1)
Based on the AST, the inspector can detect the presence or absence of recursive definitions (direct, indirect
or mutual).

e Use of list comprehensions. Some problems are intended to teach list comprehensions. For instance, in
Haskell, Pythagorean triplets could be defined using a list comprehension such as
pythag n = [(x,y,z) | x<[l..n], y«[x..n],
ze[y.n], X2 +y"2 ==7"2]
As these problems can be solved as well using recursion or predefined higher-order functions, the inspector
checks for the use of list comprehensions.

o Use of predefined functions. Some problems ask for functions already in the Haskell standard library
(for instance, implementing the ubiquitous map function). To rule out solutions such as myMap = map or
variations thereof, the inspector analyzes the possible invocation of such functions (not just its appearance).

Results. During the first four semesters of using Jutge.org in the Programming Languages courses, the
Haskell problems were corrected only via test cases, without the code inspector. Consequently, we possess
a set of submissions big enough to analyze how the inspector discriminates non-compliant submissions.
The results presented here are for some paradigmatic problems, namely “Use of higher-order functions
17 (P93632), “Use of higher-order functions 2” (P31745), “Use of comprehension lists” (P93588), and
“Definition of higher-order functions 1 (P90677).

Table E] shows, for each of the selected problems, the number of AC verdicts with and without the
inspector, the number of submissions that received some inspector diagnostic, and the average problem
score (over 100) with and without the inspector. Note that, for all problems, there is a significant portion
of submissions that do not follow the requirements of the statement. Corresponding, the average score
decreases about a 20% when using the code inspector.

Taking into account that the requirements are intended to help training, it is surprising that so many
students tricked themselves by submitting functionally correct but non-compliant solutions (even when
they knew that their exam solutions would be manually graded). Fortunately, since the integration of the
Haskell inspector in the judge, the number of such non-compliant solutions has dropped abruptly: in the
last two semesters inspector diagnostics were only issued for a 6% of the Haskell submissions.

5.5 Circuit Design

Somehow surprisingly, online programming judges can also be useful in courses on logic circuit design.
Indeed, the times of schematic captures in circuit design have evolved towards a more reliable and produc-
tive methodology based on Hardware Description Languages (HDLs) [34]. Within this approach, designers
describe their circuits with HDLs and implement them using CAD tools that automatically generate logic
netlists, which are later transformed into layouts using physical synthesis tools. Consequently, problems
on circuit design can also be understood as programming problems where circuits are described using an
HDL, such as Verilog.

Jutge.org uses formal verification techniques and tools to prove the correctness of logic circuits. For
that, the problem setter is asked to design a reference circuit that is assumed to be correct. Correctness

13

https://www.jutge.org/problems/P93632
https://www.jutge.org/problems/P31745
https://www.jutge.org/problems/P93588
https://www.jutge.org/problems/P90677
https://www.jutge.org/problems/P93632
https://www.jutge.org/problems/P31745
https://www.jutge.org/problems/P93588
https://www.jutge.org/problems/P90677

(a) Schematics (b) Verilog logic gates (c) Verilog logic equations

) module full_adder (a,b,cin ,sum,cout); module full_adder(a,b,cin,sum,cout);
a 4 cn input a, b, cin; input a, b, cin;
‘ I output sum, cout; output sum, cout;
\LL wire x/, x2, x3; assign sum=a " b " cin;
o xor (sum, a, b, cin); assign cout =a &b | cin & (a | b);
and (x/, a, b); endmodule
and (x2, a, cin);
and (x3, b, cin);
or (cout, xI, x2, x3);
cout sum endmOdule
Figure 13: Possible implementations for the full-adder.
(a) Reference solution (b) Wrong candidate solution (c) Wrong solution report
module mod3_counter (cnt, clk, rst); module mod3_counter(cnt, clk, rst); 01 2 3. 4
input clk, rst; input clk, rst;
output reg [1:0] cnt; output [1:0] cnt; clk —I—l_l—l_l—l_l—l_l—
always @ (posedge clk) wire [1:0] nxt; rst
if (rst| (cnt == 2)) cnt < 0; wire cout; count © CI('J
else cnt < cnt + 1; adder #(2) _add_ (cnt, 1, 0, nxt, cout); S
endmodule register #(2) _reg_ (nxt, cnt, clk, rst);

endmodule

Figure 14: Mod-3 counter: reference and wrong solutions and waveform report for the wrong solution.

is proved by checking the equivalence of the reference and the candidate circuits. Under the hood (more
details can be found in [[11]]), there is a formal verification engine, NuSMV [7]], that performs equivalence
checking. The technology behind NuSMV is based on the theory and algorithms for sequential equivalence
checking that were proposed and developed during the nineties [29]]. In these algorithms, Binary Decision
Diagrams are often used to represent sets of states and symbolically compute the set of reachable states of
a sequential system. For the set of reachable states it is proved that two systems generate the same output
when they receive the same input stimuli.

The main limitation of these techniques arises during the verification of sequential circuits. The com-
plexity of the verification procedure is mostly dominated by the number of state signals. Still sequential
circuits with few dozens of flip-flops can be handled in an affordable computation time.

This approach offers two benefits: For students, the judge can provide a counterexample trace for in-
correct circuits that describes the input stimuli required to lead the circuit from the initial state to the failure
state; see Figure [T4[c). For problem setters, formal verification involves less work to create problems on
circuits than for general programming problems: in the former case no test cases must be written.

Thanks to this innovative correction engine, Jutge.org offers an introductory course on digital circuit
design that includes the following topics:

e Combinational circuits: Simple controllers, multiplexers, voting systems, priority encoders, properties
on numbers, etc.

e Arithmetic circuits: The topic starts with 1-bit adders/comparators, and progresses to n-bit adder/sub-
tractors, comparators, incrementers and small ALUs.

e Sequential circuits: The topic includes various up/down counters, sequence recognizers, simple control
circuits (e.g., for a traffic-light) and some sequential arithmetic (e.g., a generator of Fibonacci series, or a
calculator of the gcd using Euclid’s algorithm).

e A simple CPU: By combining a few components that must be designed as separate problems, students
can create a simple 8-bit CPU with small instruction and data memories.

A sample combinational circuit. As a first example, consider problem X12983| (the second problem in
the Arithmetic Circuits list), which asks for the implementation of a full adder. Figure [T3] shows several
possible solutions: with schematics, in structural form (using logic gates) or in dataflow form (using logic
equations). Interestingly, when a student submits an incorrect implementation (either in structural form or
in dataflow form) the judge offers a set of values for the input stimuli that causes such a wrong answer.

A sample sequential circuit. As a second example, problem X05944| proposes the design of a (mod 3)-
counter that generates the sequence 0, 1,2,0, 1,2,... The reference solution may implement the counter
using a behavioral conditional statement, as in Figure [[4[a). In the case that a student misunderstands
the specification of the problem and implements a conventional (mod 4)-counter with a 2-bit adder and a

14

https://www.jutge.org/problems/X12983
https://www.jutge.org/problems/X05944

register as in Figure [I4[b), the judge would report a “Wrong answer” verdict and, in this case, would also
provide the shortest trace from the initial state to an erroneous state. This trace, reported in graphical form,
indicates with a circle the unexpected value according to the specification of the problem; see Figure[T4{c).

Conclusions. While using formal verification to fully prove software correctness is still an utopia, it is
becoming increasingly practical in hardware design. As we have shown, current technology on formal ver-
ification allows us to build an introductory course on digital circuit design around a collection of problems
that are automatically corrected by our judge with no need for explicit test cases and providing suitable
feedback for wrong submissions. As a similar approach has demonstrated [2], students using the platform
were a 20 percent more likely to pass the course than students who did not use it.

6 Comparison to related work

Without intending to be exhaustive, in this section we compare Jutge.org to various types of systems that
share similar characteristics. To do so, we classify them into six categories: massive open course§’} in-
teractive programming educational platformsﬂ judges and automated assessment systemﬂ Al-supported
systems’} programming games platformﬁ and circuit design platforms.

Massive online courses. 1In its current state, Jutge.org cannot be considered a MOOC platform, as it is
intended to complement presence-based courses and does not feature multimedia lessons. That said, using
Jutge.org’s back-end to assess programing problems in a MOOC is easily doable, as shown in [S§]].

Whereas assessment in most MOOC: is usually based on peer review or on multiple choice quizzes,
Jutge.org features automatic correction of programming assignments. Only few algorithmic MOOC:s start
to offer such assessment; e.g., the Algorithms|courses and the Machine Learning| course at Coursera. Yet,
these courses only feature few exercises (one or two for each topic among a dozen of topics) and without
choice of PLs.

As offering personal advice is not possible in MOOCs, automatically providing useful feedback be-
comes a necessity. Jutge.org copes with this challenge through data mining past wrong solutions, an ap-
proach further developed in Codewebs [28]] on a wider setting.

Interactive programming educational platforms. Jutge.org shares some characteristics with interactive
programming educational platforms: problem lists, automated-testing, static program analysis and achieve-
ments. However, Jutge.org is geared towards a more mature audience (high school and university students)
than most platforms that are, in general, more oriented toward kids (such such as Code, TKP, Scratch)),
offers many more PLs (sites such as CodingBat just offer about six PLs) and places more emphasis on
algorithmic topics than platforms that focus on building games, web sites or apps (such as Codecademy,
edX and Khan Academy). Furthermore, whereas most systems in this category follow a freemium pricing
strategy (e.g., Code Avengers, Code School, Udemy), Jutge.org is free to use.

Judges and automated assessment systems. Jutge.org belongs to the category of online judges which
strongly focus on algorithmic problem solving. Nevertheless, the main purpose of such systems is to
help users to train themselves for programming contests (e.g., UVa or Codeforces), or to help compa-
nies recruiting programmers (TopCoder). Even though experiences with competitive learning have been
reported [22}30]], overall these sites do not provide much feedback and do not provide help to instructors.

As Jutge.org, the URI Online Judge [3]] is another judge that has been designed with an educational aim
as it provides an Academic Module that enables instructors to manage disciplines and lists of exercises on
specific programming topics. It contains about 1,400 problems but only supports four PLs. Its feedback is
binary and, strangely, does not take public test cases into account. It also does not respect privacy, as any
user can see the activity of other users.

Reference [[19] provides an extensive survey on existing automated assessment systems for education
and identifies their main features. According to that taxonomy, Jutge.org correction is by output comparison
(dynamic) and syntactic analysis (static) while other systems do mostly dynamic correction only.

Al-supported systems. As already pointed out, Jutge.org has not been designed to be a programming tutor,
but a powerful tool assisting human tutors. Nevertheless, the feedback provided by Jutge.org (see Sections 3

2 Hack.pledge, [Khan Academy, [edX, Coursera, MIT OpenCourseWare|or |Stanford Onlinel..

3 /Codel /Code Avengers, CodingBat, |Codecademy, |Code School, Free Code Camp or Udemy:...
4|CodeChef, Sphere, Timus, TopCoder, [URI or UVa...

5 PHP-ITS, |Ask-Elle...

6|Robocode), Battlecode, /Al Challenge...

15

https://www.coursera.org/learn/introduction-to- algorithms
https://www.coursera.org/learn /machine-learning
https://www.coursera.org
http://teachingkidsprogramming.org
https://scratch.mit.edu
https://hackpledge.org
https://www.khanacademy.org
https://www.edx.org
http://coursera.org
https://ocw.mit.edu
http://online.stanford.edu
https://code.org
https://www.codeavengers.com
https://codingbat.com
https://www.codecademy.com
https://www.codeschool.com
https://www.freecodecamp.com
https://www.udemy.com
http://www.codechef.com
http://www.spoj.pl
http://acm.timus.ru
http://www.topcoder.com
https://www.urionlinejudge.com.br
http://http://uva.onlinejudge.org
http://ideas.cs.uu.nl/AskElle/
http://robocode.sourceforge.net
https://www.battlecode.org
http://ants.aichallenge.org

and 4) supports self-learning of programming up to a certain extent. In contrast, various feedback-based Al-
supported tutoring approaches exist [41{15/24,32]]. Most of them use Al techniques to give examples, provide
simulations, promote incremental or stage by stage programming and facilitate dialogues between students
and human tutors. Undoubtedly, Jutge.org and any automated educational system would benefit from such
features (which for sure would provide more insight and support to students in a difficult discipline such as
programming). However, the already available Al-supported systems have some drawbacks. Indeed, many
such existing systems are language-specific and only few programming languages are covered; although
many involve sets of exercises (or problems), those sets are small and usually not easy to enlarge; some
others are highly dependent on a human tutor’s expertise and feed-back, and mostly support only individual
learning (not peer or collaborative).

Programming games platforms. Concerning the tournament activity for the EDA course, let us note that
its development was inspired by the ICPC-Challenges. To our knowledge, with the exception of dedicated
platforms, no other online judge integrates programming games. Wider implications of gamification in
learning can be found, for instance, in [5,|18|]. Historically, programming games seem to go back to 1961,
when the Darwin game was created [/1].

Circuits. With respect to circuits, [9]] describes a system where students can submit their design with
LogicFlash [10], a graphical tool for schematic capture. Since [9]] uses explicit testing, it was only feasible
for combinational circuits and very small arithmetic/sequential circuits. In constrast, Jutge.org can handle
circuits of medium complexity [11f]. A project with a similar setting (using formal verification as a back-
end) but different methodology (rely on a graphical language instead of Verilog, a widely used HDL in
industry) has been presented recently [2].

7 Conclusion

Jutge.org is an online programming judge built with an educational aim. For the past ten years, this tool has
played an essential role in improving the teaching in UPC’s programming and algorithms courses.

Since designing algorithms and programming them requires a set of cognitive processes that naturally
develop through practice, our judge helps students acquire the required skills by progressively solving prob-
lems and learning from their mistakes, without fully placing the burden of correction on their instructors.
Featuring a rich and well organized problem repository, Jutge.org provides students with instant feedback,
and supplies instructors with all necessary tools to manage their courses and assist their students. Addition-
ally, Jutge.org is free, easy-to-use, mature, reliable, robust, and long-lasting.

The different experiences with Jutge.org that we have reported include several presence-based courses
that involved thousands of students of our Computer Science and Mathematics Schools. For these courses,
the judge has been a catalyst to modernize their contents and presentation, emphasizing the learning-by-
doing approach. In contrast with the old courses where programming was vastly relegated to pseudo-code
written on paper, in the current courses using the judge, with practical exams in front of the computer, the
student has a more active role and truly internalizes that programming is a serious matter. Indeed, most
students consider the judge a great help and would disfavor not using it.

Jutge.org not only relies on well-known techniques such as test-driven evaluation, code metrics and
gamification but also integrates research and innovation: The introduction of formal verification methods
and static code analysis provides a novel paradigm that contributes to broaden the use of such tools in e-
learning. Similarly, new proposals such as data-mining incorrect solutions so as to distill the most relevant
test cases to improve feedback emanate from this project.

Further development for Jutge.org is under work: On the one hand, an inspector for C++ code is being
implemented (as C++ is the most used PL among our users). The goal is to provide similar features to the
Haskell inspector, and to extend them to detect common pitfalls that novice programmers often succumb to
(e.g., the inspector could report that some while loop would be written more naturally with a for loop or
vice-versa).

References

[1] No. Computer recreations: Darwin. Software-Practice and Experience, 2:93-96, 1972.

[2] D. Baneres, R. Clariso, J. Jorba, and M. Serra. Experiences in digital circuit design courses: A self-
study platform for learning support. [EEE Transactions on Learning Technologies, 7(4):360-374,
2014.

16

https://icpc.baylor.edu

[3] J. L. Bez, N. A. Tonin, and P. R. Rodegheri. URI online judge academic. In 2014 9th Int. Conf. on
Computer Science Education, pages 149-152, 2014.

[4] C.Butz, S. Hua, and R. Maguire. A web-based intelligent tutoring system for computer programming.
In Conf. on Web Intelligence, pages 159-165. IEEE, 2004.

[5] N. E. Cagiltay, E. Ozcelik, and N. Sahin Ozcelik. The effect of competition on learning in games.
Computers & Education, 87(0):35-41, 2015.

[6] B. Cheang, A. Kurnia, A. Lim, and W. Oon. On automated grading of programming assignments in
an academic institution. Computers & Education, 41(2):121-131, 2003.

[7] A. Cimatti et al. NuSMV2: An OpenSource Tool for Symbolic Model Checking. In Proc. Int. Conf.
on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS. Springer, 2002.

[8] M. Ruiz Costa-Jussa, L. Formiga, O. Torrillas, J. Petit, and J. A. Rodriguez. A MOOC on approaches
to machine translation. JRRODL, 16(6), 2015.

[9] M. Damm, F. Bauer, and G. Zucker. Solving Digital Logic Assignments with Automatic Verification
in SCORM Modules. In Int. Conf. on Interactive Computer-Aided Learning, pages 359-363, 2009.

[10] M. Damm, B. Klauer, and K. Waldschmidt. LogiFlash - A Flash-based Logic-Simulator for Educa-
tional Purposes. In World Conference on Educational Multimedia, Hypermedia and Telecommunica-
tions, pages 748-750, 2003.

[11] J. de San Pedro, J. Carmona, J. Cortadella, and J. Petit. Integrating formal verification in an on-line
judge for e-learning digital circuit design. In 43rd ACM Technical Symposium on Computer Science
Education, pages 451-456. ACM, 2012.

[12] Delegaci6 d’ Alumnes de la FIB. Carta al respecte de 1’avaluaci6 de I’assignatura P1 a la FIB, 2008.

[13] C.Douce, D. Livingstone, and J. Orwell. Automatic test-based assessment of programming: A review.
ACM Journal on Educational Resources in Computing, 5(3), 2005.

[14] A. Duch, J. Petit, E. Rodriguez-Carbonell, and S. Roura. Fun in CS2. In 5th Int. Conf. on Computer
Supported Education, pages 437-442. SCITEPRESS, 2013.

[15] A. Gerdes, B. Heeren, J. Jeuring, and L. van Binsbergen. Ask-elle: an adaptable programming tutor
for Haskell giving automated feedback. Journal of Artificial Intelligence in Education, pages 1-36,
2016.

[16] O. Giménez, J. Petit, and S. Roura. Programacié 1: A pure problem-oriented approach for a CS1
course. In Informatics Education Europe IV, pages 185-192, 2009.

[17] M.H. Halstead. Elements of Software Science. Elsevier Science, 1977.

[18] M. D. Hanus and J. Fox. Assessing the effects of gamification in the classroom. Computers & Educa-
tion, 80:152-161, 2015.

[19] P.Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppild. Review of recent systems for automatic assess-
ment of programming assignments. /0th Koli Calling Int. Conf. on Computing Education Research,
pages 86-93, 2010.

[20] D. Jackson and M. Usher. Grading student programs using ASSYST. SIGCSE Bull., 29(1):335-339,
1997.

[21] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online submission and assessment system. ACM
Journal on Educational Resources in Computing, 5(3), 2005.

[22] A. Kosowski, M. Malafiejski, and T. Noinski. Application of an online judge & contester system in
academic tuition. In ICWL’07, pages 343-354, 2007.

[23] A. Kurnia, A. Lim, and B. Cheang. Online judge. Computers & Education, pages 299-315, 2001.

17

[24] N. Le, S. Strickroth, S. Gross, and N. Pinkwart. A review of Al-supported tutoring approaches for
learning programming. In Advanced Computational Methods for Knowledge Engineering, pages 267—
279. Springer, 2013.

[25] A. Mani, D. Venkataramani, J. Petit, and S. Roura. Better feedback for educational online judges. In
6th Int. Conf. on Computer Supported Education, pages 176-183. SCITEPRESS, 2014.

[26] T.J.McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308-320,
1976.

[27] N. Mohamed, R. Sulaiman, and W. Endut. The use of cyclomatic complexity metrics in programming
performance’s assessment. Procedia - Social and Behavioral Sciences, 90:497-503, 2013.

[28] A. Nguyen, C. Piech, J. Huang, and L. Guibas. Codewebs: scalable homework search for massive
open online programming courses. Procs. of the 23rd int. conf. on WWW, pages 491-502, 2014.

[29] C. Pixley. A theory and implementation of sequential hardware equivalence. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(12):1469-1478, Dec 1992.

[30] M. A. Revilla, S. Manzoor, and R. Liu. Competitive learning in informatics: The UVa online judge
experience. Olympiads in Informatics, 2:131-148, 2008.

[31] M. Shepperd. A critique of cyclomatic complexity as a software metric. Softw. Eng. J., 3(2):30-36,
1988.

[32] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for introductory pro-
gramming assignments. SIGPLAN Not., 48(6):15-26, 2013.

[33] S. Thompson. Haskell: the craft of functional programming. Addison-Wesley, third edition, 2011.

[34] Z. Vranesic and S. Brown. Use of HDLs in teaching of computer hardware courses. In Workshop on
Computer Architecture Education, 2003.

[35] D. M. Zimmerman, J. R. Kiniry, and F. Fairmichael. Toward instant gradeification. In 24th IEEE-CS
Conference on Software Engineering Education and Training, pages 406410, 2011.

18

	Introduction
	Guided tour to Jutge.org
	Feedback in Jutge.org
	Extracting small and relevant test cases
	Experiences of courses using Jutge.org
	Programming-1
	Programming-2
	Data Structures and Algorithms
	Programming Languages
	Circuit Design

	Comparison to related work
	Conclusion

