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Abstract

Time-delay estimation is an essential part of a wide variety of signal
processing applications. This paper follows up on earlier work for
time-delay estimation using neural networks. Nonetheless, this work is
specialized in the passive acoustic localization of cetaceans. We built a
time-delay database from real cetacean vocalizations. Afterwards, we
implemented a supervised estimation, based on high-level features and
convolutional neural networks. These features are especially designed
to deal with the high dimensionality of the cetaceans vocalizations.
Finally, we show that our method outperforms traditional approaches
when dealing with a realistic dataset which contains large amounts of
noise.
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Chapter 1

Introduction

Time-delay estimation is an essential part of a wide variety of signal processing ap-

plications, such as sonar and radar direction finding, speech processing, seismology,

neuromedicine, satellite navigation or bio-acoustics.

The recent growth of machine learning approaches reformulates the classical signal

processing techniques, working around its limitations given by its assumed model.

This thesis follows up on earlier work for acoustic source localization and time-delay

estimation using supervised techniques [15, 16]. It is specialized in the localization

of cetaceans, who are species of conservation concern and show interesting acoustic

characteristics.

1.1 Motivations

In [15], it was shown that artificial neural networks can outperform classical methods

in different aspects:

1. The great majority of time-delay estimation methods have demonstrated their

optimality with random signals at high SNR. On the other hand, in real scenar-

ios, when SNR is usually low and signals are far from random, machine learning

tools may exploit the statistical structure of the data.

2. Classical signal processing approaches stand on models which normally do not

13



properly represent the complexity of sound propagation in real environments,

such as reverberation. In realistic cases, supervised approaches should obtain

more precise results.

3. In localization applications many effort is put on the tracking algorithm, such

as Extended and Unscented Kalman Filters, or particle filters [14]. Nonetheless,

a more accurate and robust time-delay estimation will simplify the task of the

tracking algorithm.

Another important motivation is the lack of supervised methods developed for

time-delay estimation, except some recent work [15, 16, 26, 27]. In this thesis, we

focus on improving these methods for real scenarios.

Furthermore, since many cetacean species of interest are easier to hear than to

see, underwater time-delay estimation is an area of growing attraction. Moreover,

some of these bio-acoustic signals have desirable transmission properties.

1.2 Objectives

The main goal is to apply signal processing and machine learning tools to acous-

tic time-delay estimation for cetacean localization, looking for a reliable estimator in

pseudo-real conditions. Furthermore, rather than trying to model the whole propaga-

tion system, we exploit the statistical structure of the corrupted observation signals.

Therefore, our goals are,

1. To design a controlled database. It should reflect the real data structure while

keeping under control complexity parameters, such as noise, range of animal

species, special cases...

2. To find a suitable estimator.

2.1. Robust features are extracted via signal processing techniques.

2.2. A multidimensional time-delay response is estimated from these features

with neural networks.
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1.3 Cetaceans bio-acoustics

It is essential to understand the peculiarities of the acoustic signals treated in this

work, as they determine the design of the database, and by extension, the architecture

of the time-delay estimator.

Moreover, there is a strong motivation for localizing cetaceans through the sounds

they produce. Back in 1930’s, for the first time small cetaceans were successfully

kept in captivity, and an impressive vocal behaviour was noticed. It was however

no surprising; through a long evolution cetaceans have adapted to their environment

and developed adequate and efficient techniques for navigation, prey localization and

communication using sound. Likewise, this active acoustic behaviour allows us the

remote study of these animals, who cover vast ocean areas and are rather evasive.

1.3.1 Passive acoustic monitoring

Passive acoustic monitoring (PAM) is an essential tool for surveying and studying

cetaceans, since they use sound in their ordinary activities. These sounds are, so

far, the only feasible mechanism to sense underwater life in hostile sea environments.

Furthermore, passive monitoring does not disturb the animals, unlike active acoustic

technologies which require high radiation of energy.

We propose a passive acoustic time-delay estimation for the localization of cetaceans,

sensing the acoustic output from these animals in a non-invasive manner. In fact, this

procedure is specialized in some specific vocalizations (Section 1.3.3), approaching all

cetaceans species capable to produce tonal sounds.

1.3.2 Cetaceans classification

Before attempting to enter in the cetacean acoustic framework, it is worth to state

some terminology associated to its biological classification.

The taxonomic order Cetacea consist of whales, dolphins and porpoises, which is

divided into two extant suborders, Odontoceti (toothed whales) and Mysticeti (baleen

whales or mustache whales). These are further divided into families, e.g. Delphinidae
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(ocean dolphins) or Ziphiidae (beaked whales). Within families, cetaceans are classi-

fied into genera and species. For our purposes, only suborder taxonomies, odontocetes

and mysticetes, are considered since their vocalizations are remarkably different.

Within the odontocetes suborder, dolphins are its main exponents, but the orca

“killer whale” -who is actually in the dolphin family- and the sperm whale are also in

this category. On the other side, some examples of mysticetes are the minke whale,

the blue whale and the right whale.

1.3.3 Vocalizations

Earliest studies of cetacean vocalizations surveyed bottlenose dolphins and registered

a wide variety of sounds they produce: ‘whistles, rasping and grating sounds, rasping

sounds, barks, and yelps’ are some of the words used to describe them [31]. So far,

despite the terminology being extensive and quite subjective, the cetacean vocaliza-

tions have been properly classified either by its biological function or by its acoustic

characteristics.

In general, from an acoustics standpoint, these sounds can be considered either

periodic, or aperiodic (rather short pulse-like). While tonal sounds are used for

communication, shorter pulses are related to echolocation. However, there is no

precise matching between signal properties and biological function; there are pulses

with very short interclick intervals used for communication and short tonal signals

emitted for echolocation, among other examples [32].

For our concerns, this classification can be summarized into two major categories:

echolocation clicks and communication whistles.

The former are emitted by toothed whales (Odontoceti) during foraging. Baleen

whales (Mysticeti), however, do not produce them. These clicks are highly directional

broadband pulses of short duration.

On the other side, communication whistles are uttered by dolphins and baleen

whales1. They are low directional, continuous frequency modulated signals, that

often have harmonic components.

1Some toothed whales, dolphins, and porpoises do not produce whistles though [24]
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Moreover, this signal characterization reveals the advantages of using communi-

cation whistles over echolocation clicks, for passive mammal cetacean localization:

1. Directivity of clicks renders cetacean localization more difficult to us; as the

angle between the click’s emitter and the sensor increases, the signal becomes

attenuated and distorted. Therefore, it cannot simultaneously reach very sparse

hydrophones. On the other hand, whistles propagate in a uniform way, allowing

its detection in a wider coverage area.

2. Communication whistles are larger and have a more rich and dynamic spec-

tral content to convey the information to the receiver in a noisy or complex

environment [32].

In fact, in most areas, whistle sounds propagate much further than echolocation

clicks, so whistles are likely to be more useful for long-distance applications [25].

Time-delay estimation is a clear example of this, where it is vital to synchronously

sense the signal at various hydrophones, ideally placed far away from each other.
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Chapter 2

State-of-the-art

Time-delay estimation (TDE) is the first stage of many signal processing systems,

from direction of arrival, range estimation and tracking to motion compensation in

moving images and stereo vision. The estimation covered in this work is specialized in

the localization of cetaceans, and may be followed by a series of processing blocks, such

as multi-hydrophone ranging, triangulation and transmission loss modelling. While

the two former procedures have well-established analytical solutions, transmission loss

modelling is estimated as a complicated function of the environmental parameters

(Figure 2-1).

Figure 2-1: Transmission loss estimation using Bellhop

The efficiency of the whole system is limited by its first processing stage. There-

fore, an accurate time-delay estimation is required in order to produce precise results.
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2.1 Time-delay estimation

Depending on the application, TDE is known either as time of arrival (TOA) esti-

mation or as time difference of arrival (TDOA) estimation. Active sonar and radar

applications measure the time of arrival of the resulted echo of a transmitted pulse

signal, whereas time difference of arrival is passively estimated as the travel-time-

delay of a wavefront between two spatially separated receivers. The latter approach

is the aim of this study, since it can be considered a PAM system (Section 1.3.1).

Both methods, despite being closely related, are intrinsically based on opposing

principles. Time of arrival assumes that the concerned signal s[n] is known, so it

can be written as in Equation 2.1 under ideal free-field conditions. Therefore, the

time-delay can be estimated on a single sensor, from x[n] and s[n], commonly by the

matched filter approach.

x[n] = αs[n− τ ] + w[n] , n = 0, 1, . . . , N − 1 (2.1)

Conversely, through passive estimation the reference signal s[n] is no longer avail-

able beforehand. In this case, the time difference of arrival (Equation 2.3) is computed

by comparing the signals, x1 and x2, received at two spatially spaced sensors.

x1[n] = α1s[n− τ1] + w[n]

x2[n] = α2s[n− τ2] + w[n]
(2.2)

τ12 = τ1 − τ2 (2.3)

A wide variety of methods have been deployed since sensor arrays were introduced

to measure propagating wave-fields. It is beyond the scope of this section to review

all of them, we rather describe several approaches from different backgrounds to

contextualize the supervised estimation developed in this work.

The methods herein presented can be characterized by how they approach time-

delay estimation1. Data modeling emphasizes inference; to get insights into the pro-

1See [23] for a detailed discussion between data and algorithmic modeling

20



(a) Data modeling (b) Algorithm modeling

Figure 2-2: Statistical modeling. Figure credit from [23]

cess by which time-delay is generated (Figure 2-2a). On the other hand, algorithmic

modeling, machine learning approaches, focus directly on learning from data to make

predictions, without attempting to understand the underlying process2 (Figure 2-2b).

2.2 Data modeling

Time-delay estimators that are derived from a mathematical model, lie on this cate-

gory. Most approaches are built upon the ideal free-field model (Equation 2.1), which

allows to develop a close-form solution. Nonetheless, more complex propagation mod-

els are also considered.

Historically, this problem was approached from the perspective of estimation the-

ory, so several unbiased estimators were evaluated in terms of variance [19][7][8][21].

However, there are sub-optimum methods in terms of approaching the CRLB, which

perform better in real environments, since they suffer less from non-modeled factors3.

This is a direct consequence of analyzing the potential of a method through its radi-

cal model; the conclusions are about the model's mechanism, and not about nature's

mechanism [23].

Alternatively, recent studies improve substantially traditional approaches, such as

[10], where the popular GCC method is revised and outperformed. Especially when

facing reverberation and noise, by exploiting redundancy among multiple channels.

2It does not imply that no understanding can be extracted from algorithmic modeling. This only
means that its main goal are the predictions, rather than the inference of the generation process

3For instance, the phase transform (PHAT), which is a sub-optimum method in relation to others
of its family (GCC) from a statistical point of view, copes better with reverberation
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2.2.1 Signal models

Mainly, three signals models are covered in the literature, which describe quite dif-

ferent acoustic scenarios: the ideal free-field model, the multipath model and the

reverberant model.

2.2.1.1 Free-field model

It is the most used model, which represents the ideal single-path propagation of a

wave-front to an array of sensors in an anechoic open space. It considers two signals

acquired at two spatially separated sensors, as attenuated and delayed versions of a

source signal plagued with additive noise (Equation 2.2). Zero time-delay means that

the source bearing is broadside to the sensor pair; and maximum time-delay occurs

when the source bearing is endfire.

xk[n] = αks[n− t− fk(τ)] + wk[n] , k = 0, 1, 2 . . . K − 1 (2.4)

It can be extended to K hydrophones, as stated in Equation 2.4, where αk (0 6

αk 6 1) are the attenuation factors due to propagation losses, s[n] is the unknown

source signal, t is the propagation time from the source to the reference sensor 0, wk[n]

is an additive noise signal at the k-th hydrophone, τ is the relative delay between

hydrophones 0 and 1, and fk(τ) is the relative delay between hydrophones 0 and k,

with f0(τ) = 0 and f1(τ) = τ . For k > 2, the function fk(τ) depends on both; the

relative time-delay and the hydrophones array geometry.

It is further assumed that s[n] is stationary and rather broadband and wk[n] is

a zero-mean, Gaussian stationary random process, which is uncorrelated with the

source signal as well as the noise signals at other channels.

For this model, TDE aims to determine an estimate τ̂ of the true time-delay τ

using a set of finite observation samples, where the signal and noise remain stationary.

The techniques originated from this model are therefore usually employed in slowly

varying environments.
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2.2.1.2 Multipath model

The free-field model, which lays the basis of the most extended time-delay estimators,

does not accurately describe the complexity of real channels though. For instance,

in many cases, the received waveform at a sensor consists of delayed and weighted

replicas of the original signal, in addition to the direct-path signal. This is the result

of multiple reflections and attenuation of the signal along the channel.

In this scenario, the measured signals at each k hydrophone can be modelled as in

Equation 2.5, where αkm is the attenuation factor from the source to the k-th sensor

via the m-th path, t is the propath, t is the propagation time from the source to

sensor 0 via direct path, s[n] is the unknown source signal, wk[n] is an additive noise

signal at the k-th hydrophone, τkm is the relative delay between sensor k and sensor

0 for path m with τ01 = 0 and M is the number of different paths, which is usually

unknown.

xk[n] =
M∑
m=1

αkms[n− t− τkm] + wk[n] , k = 0, 1, 2 . . . K − 1 (2.5)

The assumptions about s[n] and wk[n] are exactly the same that those applicable

to the ideal free-field model; mainly, both are mutually uncorrelated and stationary.

This model is widely used in oceanographic environments, where the multipath

propagation can be reduced to the strongest first-order reflections, that come from

the surface and the bottom of the sea (Figure 2-3). As well as the ideal model, this

model seek to estimate the relative time-delay of each sensor via the direct-path.

Figure 2-3: Sea reflections. Figure credit from [11]
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2.2.1.3 Reverberant model

This model arises to address the shortcomings of the multipath model when the

number of echoes (M) is large. This is the case of room acoustics, where the received

direct-path wavefront is embedded in a substantial number of reflections of different

orders.

The reverberant model represent the acoustic impulse response of the channel

with an FIR filter. Thus, the received signals are expressed as in Equation 2.6, where

xk[n] is related with the source signal s[n] through the convolution with the channel

impulse response hk. The same signal assumptions, previously made for the ideal and

multipath model, affect to this model.

xk[n] = hk ∗ s[n] + wk[n] , k = 0, 1, 2 . . . K − 1 (2.6)

In this situation, there is no explicit reference to the time-delay τ within the

mathematical model (Equation 2.6). It is, however, hidden within the channel impulse

response. Therefore, the time-delay can be measured only after blindly4 estimating

the channel impulse responses.

2.2.2 The family of the GCC methods

The family of generalized cross-correlation (GCC) algorithms are so far the most

used approaches to time-delay estimation. The work [19] provided a new understand-

ing of the problem, which allowed to integrate several techniques within the GCC

framework. Even nowadays, GCC methods are extended to face TDE in complex

environments [10]. In particular, this extensive family encompasses all the set of

algorithms composed by a cross-correlator preceded by pre-filters.

2.2.2.1 Cross-correlation (CC)

This is the earliest and most direct time-delay estimation method. It is based on the

ideal free-field model stated in Equation 2.4 and employees two hydrophones (K = 2).

4since the source signal is unknown (PAM)
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Herein, the true time-delay τ is estimated as the lag time that maximizes the cross-

correlation function between two observation signals x1[n] and x2[n], as stated in

Equation 2.7, where Rx1x2 represents the cross-correlation function.

τ̂12 = argmax
m

Rx1x2 [m] (2.7)

The cross-correlation function (CCF) is likewise defined as the expectation of the

sliding inner-product of both signals along the range of possible delays (Equation 2.8).

This range depends on the array geometry, which bounds the maximum time-delay

τmax, thence the CCF is computed for m ∈ [−τmax, τmax].

Rx1x2 [m] = E{x1[n]x2[n+m]} (2.8)

Nonetheless, because of the finite observation time, the CCF is unknown and can

only be estimated. In general, the CCF general, the CCF is therefore replaced by its

time-average estimate (Equation 2.9).

R̂CC
x1x2

[m] ,


1
N

∑N−m−1
n=0 x1[n]x2[n+m], m ≥ 0

1
N

∑N−1
n=−m x1[n]x2[n+m], m < 0

(2.9)

2.2.2.2 Generalized cross-correlation (GCC)

The GCC algorithm [19] emerged as a revision of the cross-correlation (CC) function,

so it also relies on the ideal free-field model (K = 2). As before, the time-delay is

obtained as the lag time that maximizes the CCF, but unlike the CC method, this

correlation is computed in the frequency domain with filtered observation signals.

Therefore, the problem can be formulated as in Equation 2.7 and the CCF (Equation

2.8) to be estimated, is substituted by the GCC (Equation 2.10).

RGCC
x1x2

[m] , F−1{φ(f)Sx1x2(f)} =

∫ ∞
−∞

φ(f)Sx1x2(f)ei2πfmdf (2.10)

Equation 2.10 states the generalized cross-correlation function, where F−1 stands

for the inverse discrete Fourier transform, Sx1x2(f) is the cross-spectrum of x1[n]
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and x2[n], and φ(f) is a frequency domain weighting function. The cross-spectrum

(Equation 2.11) has to be estimated, it is usually obtained by approximating the

expected value by its instantaneous value (Equation 2.12).

Sx1x2(f) , E{X1(f)X∗2(f)} (2.11)

Ŝx1x2(f) , X1(f)X∗2(f) (2.12)

Note that when the weighting function is constant, the GCC becomes a frequency-

domain implementation of the CC. Besides, back in 1976 [19] showed the derivation

of others TDE algorithms from the GCC by changing the weighting function φ(f).

So far, this method has become extensively popular due to the flexibility it provides;

since several weighting functions have been proposed to adopt the GCC to diverse

environments. While some of them behave better at ideal conditions, as for instance

the ML processor5, others are more robust in demanding surroundings, such as the

PHAT transform which deals with reverberation.

2.2.2.3 Phase Transform (PHAT)

The phase transform is a particular case of the GCC, since it discards the magnitude

and only keeps the phase. It is motivated by the fact that the time-delay information

is conveyed in the phase, rather than the amplitude, of the cross-spectrum. Thus, it

is achieved by setting the weighting function as in Equation 2.13.

φ(f) =
1

|Sx1x2(f)|
(2.13)

The GCC for the PHAT weighting is therefore given by Equation 2.14.

RPHAT
x1x2

[τ ] ,
∫ ∞
−∞

ei2πf(τ−τ12)df =

∞, τ = τ12

0, otherwise

(2.14)

5This algorithm (ML) can achieve the CRLB under various assumptions: no reverberation, no
multipath, constant time-delay, uncorrelated stationary Gaussian signal and noises and spectra of
noises is known a priori
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In this case, the PHAT correlation only depends on the time-delay to be estimated

τ12 (Equation 2.14). The estimation no longer relies upon the observation signals

(under free-field conditions), unlike the classical cross-correlation6. This makes the

phase transform a more suitable TDE method for non-stationary signals, whose cross-

spectrum is continuously changing.

Furthermore, by placing equal emphasis on each frequency, the PHAT weighting

is sub-optimal under ideal conditions, but tends to be less susceptible to adverse

conditions, especially reverberation [19].

2.2.3 Adaptive eigenvalue decomposition algorithm (AED)

The techniques heretofore presented address TDE by measuring the cross-correlation

between two signals. Nevertheless, despite PHAT coping better with reverberation,

the whole family of GCC methods fails when acoustic reflections become significant,

since they are based on a direct-path signal model that does not represent real en-

vironments. The adaptive eigenvalue decomposition algorithm proposed in [3], ap-

proaches TDE from a different model. It assumes the reverberant model (K = 2),

so it blindly estimates both channel impulse responses and afterwards measures the

time-delay between the identified direct-paths. Actually, an accurate estimation of

the whole propagation model is not straightforward, however, this algorithm only

seeks to detect the direct-paths of both impulse responses for further TDE.

For the reverberant signal model introduced in Equation 2.6, the particular case

of two receivers can be expressed as in Equation 2.15, by neglecting the noise terms.

x1[n] ∗ h2 = s[n] ∗ h2 ∗ h1 = x2[n] ∗ h1 (2.15)

6As discussed in [23], these conclusions are about the model’s mechanism. Herein, for instance,
PHAT only depends on the time-delay because of the ideal free-field model. Nonetheless, when the
derivation of the PHAT GCC comes from the reverberant model, it also depends on both channel
impulse responses. Hence, the conclusions should be drawn with caution
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This cross relation can be rewritten in matrix form as in Equation 2.16.

xT [n]u = xT1 [n]h2 − xT2 [n]h1 = 0 (2.16)

where,

x[n] =
[
xT1 [n] xT2 [n]

]T
, u =

[
hT2 − hT1

]T
and the channel impulse response vectors h2 and h1 of length M ,

hi = [hi,0, hi,1 . . . hi,M−1]
T , i = 1, 2

Multiplying Equation 2.16 by x[n] from the left-hand side and taking expectation

yields Equation 2.17.

Rxxu =

Rx1x1 Rx1x2

Rx2x1 Rx2x2

u = 0 (2.17)

where Rxx stands for the covariance matrix of the received signals,

Rxixj = E{xi[n]xTj [n]}, i, j = 1, 2

Equation 2.17 indicates that u is in the null space of Rxx, which means that the

impulse responses vector u is the eigenvector of the covariance matrix Rxx corre-

sponding to the eigenvalue 0. Moreover, the covariance matrix Rxx has one and only

one eigenvalue equal to 0 assuming the following conditions:

1. The two impulse responses h1 and h2 have no common zeros

2. The autocorrelation matrix Rss of the source signal is of full rank

Nonetheless, the so far ignored independent white noise term, regularizes the

matrix Rxx, which tends to be positively definite and does not have a zero eigenvalue

anymore. Therefore, the channel responses u can be identified as the normalized

eigenvector of Rxx which corresponds to its smallest eigenvalue (Equation 2.18).
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û = argmin
u

uTRxxu, ||u||2 = 1 (2.18)

From Equation 2.18, the optimum filter weights uopt of the impulse responses

can be estimated adaptively by using a constrained LMS algorithm, as in Equatse

responses can be estimated adaptively by using a constrained LMS algorithm, as in

Equation 2.19.

û[n+ 1] =
û[n]− µe[n]x[n]

‖û[n]− µe[n]x[n]‖
(2.19)

where µ is the updating step-size and the error signal e[n] is given by,

e[n] = ûT [n]x[n]

It can be seen that minimizing the square value of e[n] is approximately equivalent

to solving the eigenvalue problem of Equation 2.18 [3].

Besides, it is crucial to provide a convenient initialization to ensure convergence,

especially into the two direct-paths of the impulse responses. Considering that the

first half of matrix u is an estimation of h2, [3] suggests to initialize it by 1 at a sample

somewhere in the middle (M/2, where is able to represent positive and negative delays

during the adaptation). Conversely, as the second half of u represents an estimate of

−h1, a negative peak should dominate it (-1), modeling the direct-path of −h1.

Once the algorithm has converged, the time-delay is estimated as the time differ-

ence between the direct-paths of the impulse responses h1 and h2. It means that the

time-delay is measured as the difference between the indices of the highest peaks of

each estimated impulse response (Equation 2.20). This procedure is therefore assum-

ing that the direct-path is the principal contribution to the received signal.

τ̂AED12 = argmax
m

∣∣ĥ1,m

∣∣− argmax
m

∣∣ĥ2,m

∣∣ (2.20)
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2.3 Algorithmic modeling

Data modeling approaches have provided major insights into time-delay estimation

and they are as well the only deployed methods in real applications. Nevertheless,

their assumptions are hard to catch in some areas of interest, including underwater

Figure credit from for cetacean localization, where these general methods fail to meet

the demands of such a complex framework. In particular, the observation signals do

not match the assumptions of the methods described in the above section. While

these time-delay estimators assume that the received signals are broadband and sta-

tionary, whistles are narrowband and non-stationary, due to their chirp-like nature.

Most of these algorithms have also proved their effectiveness at rather high SNR, how-

ever, an efficient cetacean localization application should be able to confront adverse

conditions, such as extremely low SNRs.

Apart from the observation signals, traditional methods barely handle the com-

plexity of underwater propagation. On the other side, machine learning techniques

can be tuned to match specific acoustic surroundings.

Given all these facts, algorithmic modeling may approach better Figure credit from

for whale localization, avoiding unsuitable data models. Unfortunately, as far as an

artificial database is concerned, data still relies upon a generation model. Nonetheless,

the dependency between the estimator and the model is certainly weaker, since they

are indirectly connected through the data. In other words, the estimator does not

optimize an error derived from an assumed generation model anymore, but rather an

error that comes from the predictions of data synthetized by a generation model.

So far, little has yet been published using machine learning techniques besides the

sub-sample estimation of [26][27], and the sample estimation of [15][16]. These works

achieve satisfactory results training artificial neural networks, specifically multilayer

perceptrons. Both approaches can be characterized by the output they provide: while

the former [26][27] brings a nominal continuous time-delay, the later [15][16] yields a

multidimensional discrete distribution.
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2.3.1 Nominal continuous estimation

The method presented in [26] was the very first supervised Figure credit from, it

estimates a constant time-delay, providing sub-sample precision, through the use of

artificial neural networks. The model is trained with a handmade database composed

of one thousand data for training and one thousand data for test.

2.3.1.1 Data generation

Data is generated from an ideal free-model (Equation 2.4), where the time-delay varies

randomly from 1 to 10 sampling intervals, the noise levels have standard deviation

values that goes from 0.1 to 0.5 and the input length is as large as 256 samples.

It is further assumed that the reference signal is known, as well as its position

within the segment. In particular, it is a sinusoidal of frequency w0 rad/s starting at

the first sample of the segment. This method performs therefore TOA, rather than

TDOA estimation, so it can not be used as a PAM system.

The reference signal and a delayed replica of it are both filtered by a fourth-

order bandpass infinite impulse response (IIR) filter. The filtered signals are locally

normalized with respect to its highest values.

Finally, the training is supervised by labels that represent nominal time-delays in

seconds, real values from 0.0 to 0.5 seconds (1 to 10 samples).

2.3.1.2 Architecture

The network is arranged in a regression architecture; a feed-forward network with

few hidden layers and a single output neuron with linear activation, in addition,

typically a MSE is optimized through a variant of gradient descendent (Figure 2-4).

In this case, two hidden layers with hyperbolic tangent activations are used. The first

hidden layer consists of 10 neurons and the second one is composed of 5 neurons. The

model is trained with resilient backpropagation, which means that only the sign of

the gradient is considered in order to update the weights. Besides, the input signals

are not extra pre-processed, the filtered waveform is directly applied to the network.
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Figure 2-4: Regression architecture of [26]. Figure credit from [26]

Data is applied to the network in three different ways:

Parallel input form the reference signal sf [n] and its delayed replica rf [n], both of

length N = 256 samples, are concatenated in x =
[
sf [n], rf [n]

]
of length 2N .

Difference input form the difference between both signals, x = sf [n] − rf [n] of

length N , is applied to the network.

Single input form only the filtered and normalized delayed signal rf [n] is used.

This reveals that the reference signal does not provide further information in

TOA estimation, since the network is actually measuring the absolute time-

delay of a known signal.

2.3.1.3 Revision

This model was revised in [27], but minor changes were reported. The only relevant

update, is the introduction of a pre-processing stage. The filtered waveform is now

transformed by the Discret Cosine Transform into DCT coefficients. Afterwards, the

optimal combination of hidden neurons and number of DCT coefficients is determined

with a validation dataset. Consequently, only the most sensible coefficients to time-

delay variations, for a specific sinusoidal, are kept. Finally, the feature compression

reduces the size of the previous model [26] to one hidden layer with 15 neurons.
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2.3.1.4 Results

To sum up, this supervised Figure credit from shows comparable results to those

obtained by the cross-correlation technique. Moreover, the obtained error is normally

distributed, where the 99.9% laid within ±0.153 sampling intervals (Figure 2-5).

Figure 2-5: Figure credit from error histogram for noise std = 0.5. Figure credit from
[27]

On the other hand, this model is extremely limited to a specific scenario, where

the source signal is known and rather deterministic, both reference and replica signals

can be easily represented in a low-dimensional space and the time-delay range is quite

narrow (from 0 to 10 samples).

2.3.2 Multidimensional discrete estimation

The work reported in [15] estimates a multidimensional discrete time-delay, which

implies sample precision, training multi-layer perceptrons. This model is trained

with 8 handmade datasets, containing each one 400000 samples.

2.3.2.1 Data generation

Herein data is generated from the ideal free-model as in [26], time-delays and noise

standard deviations are larger though. While the maximum time-delay of [26][27] can

be addressed by beamforming techniques, in [15] its range is wider, in such a way that

it falls below the spatial Nyquist range.

In this case, both reference and replica signals, as well as their positions within

the processing segment, are unknown. Therefore, this system performs indeed TDOA
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estimation. In addition, this database is composed of chirp signals which featured

random characteristics; there are linear and quadratic chirps, its duration vary from

10 to hundreds of samples at a sampling rate of 16 kHz, and its frequency range also

changes among examples.

In overall terms, seven artificial datasets with increasing white Gaussian noise and

one dataset with varying noise are constructed (Table 2.1).

Dataset id 1 2 3 4 5 6 7 8

SNR ∞ 5 2.5 2 1.67 1.25 1 varying

Table 2.1: Signal-to-noise ratio in linear scale of each dataset

2.3.2.2 Architecture

Multilayer perceptrons architectures including a single hidden layer and 30 hidden

units are used. Sigmoid and linear activation functions are respectively used for the

hidden and output units. The training procedure is conducted through a standard

backpropagation algorithm, with a fixed mini-batch size of 100, during 100 epochs.

Weight decay and a sparsity penalty along with L2 regularization are set to improve

generalization over the validation dataset.

Moreover, the concatenation of both signal waveforms is directly processed by

the network, as in the parallel input form of [26]. On the other side of the network,

the labels represent the ideal time-delay response, a Kronecker delta function at

the discrete nominal delay (Equation 2.21). It means that the labels are one-hot

encoded; a maximum value of 1 at the true time-delay and zeros elsewhere. The

author also proposed to use some other label functions in further researching, for

instance, Gaussian windows.

Label(n, τ12) = δ(n− τ12) (2.21)
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2.3.2.3 Results

This work not only focus on the nominal time-delay, but it also analyzes the pre-

dicted delay distribution, since most post-processing stages, such as tracking, can

take advantage of a smooth multidimensional time-delay estimation.

Therefore, on one hand, the error between the estimated nominal time-delay and

the true time-delay is evaluated in terms of bias and variance, and on the other, the

similarity of the output of the neural net with the ideal target is measured with the

symmetric Kullback-Leibler divergence.

Table 2.2 summarizes the evolution of the error as the SNR decrease, where the

best trained model in terms of mean error is compared with the non-supervised meth-

ods described in the previous section. As noise increases, the neural network proves

to perform consistently better than any other method at stake; its error remains con-

fined, while non-supervised approaches face large variance error and strongly biased

estimates (more than one order of magnitude higher).

MLP PHAT XCOR AED
SNR µe σe µe σe µe σe µe σe

∞ 0.98 1.32 0.16 3.86 0 0 43.29 32.86
5 2.13 8.89 196.38 115.70 222.51 119.86 207.95 79.63

2.5 4.86 16.55 181.09 113.27 271.72 114.09 200.99 78.34
2 6.60 19.43 171.02 110.21 292.26 106.84 197.93 78.47

1.67 8.55 21.82 161.57 106.70 304.85 102.86 195.04 78.82
1.25 13.09 26.29 147.38 99.47 313.32 102.37 191.80 79.08

1 18.74 30.23 138.22 94.24 312.02 106.29 191.41 78.87
varying 8.84 23.35 171.35 110.48 274.01 117.78 199.54 79.61

Table 2.2: Mean and standard deviation of the error of [15] as a function of the SNR

In the general case, when the SNR is variable, all the trained models (MLPx)

outperform non-supervised methods (Figure 2-6). Besides, half of the data is roughly

unbiased, and the mean error does not exceed 10 samples.

Likewise, a similarity measure, named QKL, is derived from the Kullback-Leibler

divergence (Equation 2.22). It quantifies how the output of the estimator NN12,

diverges from the ideal target δ(n− τ12).
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Figure 2-6: Error distribution of various estimators for variable SNR ∈ [5, 1]. Figure
credit from [15]

QKL = KL(NN12, δ(n− τ12))−KL(δ(n− τ12), δ(n− τ12)) (2.22)

where KL(P, R) is the symmetric Kullback-Leibler divergence between distributions

P and R,

KL(P,R) = −
∑
x

p(x)log(r(x)) +
∑
x

p(x)log(p(x))

This metric behaves as a distance, since it approaches 0+ when the output of the

neural network resembles its ideal target. For the noiseless and noisy case, the measure

QKL is evaluated for the neural network and the cross-correlation estimator (Figure

A-1). In both cases, the shape of the target distribution is much closer to the shape

of the neural network, and thus QKL produces higher values for the cross-correlation

estimator (Table 2.3).

QLK(Target) QLK(MLP ) QLK(XCOR)

SNR =∞ 0 0.0022 13.82
SNR ∈ [5, 1] 0 0.1895 14.30

Table 2.3: QKL pseudo-distance from the neural network output (MLP) and cross-
correlation output (XCOR) to the target δ(n− τ12)
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Chapter 3

Database

This chapter covers the foundations of this work. From the motivation of building a

custom database to its design and implementation. Some examples of the time-delay

segments generated for this database are showed in Figure A-6 and Figure A-5.

3.1 Motivation

Nowadays there is no standardized database of underwater acoustics, neither for

localization nor classification of marine mammals species. Given the large number of

species and their very different vocalizations, a general database for classification or

localization is a challenge.

In the literature, authors who develop analytical approaches work with small real

datasets, while those who require a training stage synthesize their own artificial sets

[27][26][22].

On the other hand, despite the database synthesized in [15] being quite useful to

validate a supervised approach for time-delay estimation, it is not intended to work

with real data. There is still a gap between these data and real recordings, because

of its artificial nature. For our concerns, it is worth to build the database from real

signals to get closer to the real implementation.
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3.2 Objectives

The main goal is to build a database to approach time-delay estimation for cetaceans

whistles. Furthermore, we consider several secondary objectives:

• To find out the factors that have the most influence on time-delay estimation

for these particular acoustic signals. We should build the database accordingly,

devoting major efforts to the crucial information.

• Motivated by [15], where the introduction of a time-delay distribution as a

target was a really big step forward, we attempt to develop a suitable label

probability distribution to train a supervised model.

• To build a scalable database, by using the most established input formatted

data. In such a way, that the present database could be extended with more

labeled whistles through the current generation software. Furthermore, despite

there being no standard, the tendency moves towards the format implemented

in [30] and [12].

• To study the introduction of more channels for time-delay estimation, inspired

by previous work [4][10] which shows relevant advantages.

3.3 Design

The design of this database is the most important building block of this work, con-

sidering that the time-delay estimator relies on the statistical structure of the data.

It should reflect the main features of real cetaceans vocalizations.

We started this database with the DCL 2011 workshop dataset [12], which is also

available in Tethys. It is likewise a collection of recordings described in detail in [28]

and [2]. Briefly, it consist of whistles and echolocation clicks from five species gath-

ered from ships and platforms in the Southern California Bight and around Palmyra

Atoll: bottlenose dolphins (Tursiops truncatus), melon-headed whales (Peponcephela
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electra), short- and long-beaked common dolphins (Delphinus delphis and D. capen-

sis), and Grays spinner dolphins (Stenella longirostris longirostris). In all cases, single

species schools were visually verified and no other species were sighted during each

encounter. Nonetheless there are multiple, and sometimes overlapped sources, corre-

sponding to multiple individuals of the same school. Measurements were taken using

either towed or dipped hydrophones as described in the cited papers. Hydrophone

response was flat across most of the whistle bandwidth, although the custom pream-

plifiers which were designed to whiten ambient ocean noise varied. Data were sampled

at 192 kHz with 16 or 24 bits of quantization.

A subset of the DCL 2011 was examined to provide a ground-truth for the as-

sessment of the workshop [12]. These labels define how frequency evolves with time1.

In general, these signals are whistles, so they look like complex pseudo-chirps, which

may have a very rich harmonic like structure 2. They are a great challenge, due to

their quick frequency sweeping, where the well-known uncertainty principle of time-

frequency representations (STFT, Wavelet...) can be observed.

These clean labels are indeed a good starting point for developing our time-delay

database, mainly due to two reasons:

• To avoid having to perform preprocessing tasks which are out of the scope of

this work, for instance, automated whistle extraction, blind source separation

and classification.

• To take control over the different factors that affect real recordings. Once

we have the clean annotations, we can integrate each component in the signal

independently (SNR, number of channels...). As a result, we get a further insight

into the problem.

For this purpose multiple sub-datasets were created with a complexity gradually

increasing towards resembling real environments.

1This time-frequency function is usually referred by the word contour
2Actually, when it is about cetacean vocalization, harmonics are related with overtones [32]
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3.3.1 Simulation scenario

An array of omnidirectional hydrophones simulates the time-delay response for an

acoustic source placed in the coverage area. Although the specific array disposition

does not make a difference for time-delay estimation, it asserts time-delay approaches

over other methods under particular conditions.

In the present study, we simulate a widely used array arrangement. It was pro-

posed in [1] for dealing with dolphin echolocation clicks3. This setup is motivated by

the fact that, with four hydrophones arranged in a configuration other than a line, it

is possible to analytically determine the exact position of the sound source to one of

two points [29]. Likewise, more channels provide a better elimination of disturbances

of different backgrounds. Especially if they are located far from each other, since

this background noise would usually become more and more incoherent, which is in

general easier to disregard.

2

y

x

z

1

3

4

Figure 3-1: Array arrangement

The four sensors array is arranged in a symmetrical star configuration, with one

center hydrophone and three extending arms spaced 120◦ apart (Figure 3-1). Where

hydrophone 1 is the master; the time-delay reference point.

Echolocation clicks are very directional and can not be recorded at very sparse

hydrophones simultaneously. Therefore, this array arrangement usually has a shorter

array size. However, for our purposes, it is worth to place the sensors far away from

the master in order to wider the coverage area.

3Despite [1] being about clicks, rather than tonal sounds, the array arrangement has nothing to
to with that
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It has been defined a space between master and slave hydrophones of 1 km. In

other words, hydrophones 2, 3 and 4 lie on a circumference of radius 1 km from

the master. This configuration constraints the maximum time-delay, from any slave

hydrophone to the master, to 625ms.

3.3.1.1 Array processing outlook

Besides, from the array processing theory, a wave source is considered to come from

far-field if it satisfies Equation 3.1, where D refers to the sensor spacing.

|r| > 2D2

λ
=

2D2fmax
ν

(3.1)
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Figure 3-2: Fraunhofer distance versus frequency

Figure 3-2 shows the Fraunhofer distance for the frequency range of interest, which

defines the limit between the near and far field. It reveals the infeasibility of a far-field

assumption, seeing that a source can not be sense at such a large distance. Therefore,

a plane wave model does not apply to this scenario.

Furthermore, the spatial aliasing requirement, stated in Equation 3.2, must be

adhered to exploit the variety of array processing methods. In our scenario the

maximum non-aliased frequency is 0.8 Hz, which overtakes our minimum frequency.

D <
λmin

2
(3.2)
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3.3.2 Segment assembling

Unlike generating a whole large waveform full of whistles, we built small signals

segments4. This method provides us with the best balance of realism, control and

flexibility. The segments simulate the output frames of a sliding window segmentation.

In this way, we can better handle the signal generation. As segments are generated

contour by contour, we can ensure at each generation step a proper distribution of

all the control factors; such as time-delay, relative position of the contour inside the

segment, noise properties...

3.3.2.1 Segment length

The segment length should be fixed to a certain value, taking into consideration the

trade-off between contour length and computing resources. The larger portion of

contour the model processes, the better the estimation; however, larger segments are

also computationally expensive.

This length has been fixed at 2 seconds, based on a statistical analysis of the con-

tours length of [12]. Furthermore, the whistle duration proposed in [32] is considered

as a guidance.

While in [32] the bottlenose whistle length is claimed to be around 1 second, our

analysis of the whistle length along the different species of [12], shows that 75% of

the segments are below 1 second (Figure 3-3). In fact, the bottlenose whistle length

appears to be a little bit larger than the common and melonheaded dolphin one, yet

it is not quite significant. Moreover, neither of the outliers correspond to a very large

whistle, but to a time overlap of shorter signals that compose a rather wide segment5.

Therefore, taking into account a maximum time-delay of 625ms, computed in

Section 3.3.1, and a whistle length as large as 1s, a segment length of 2s offers a good

balance between time-delay estimation reliability and resources consumption.

On the other hand, parts of larger contours -and especially of its delayed versions-

could leave the segment scope, but the time-delay estimation should still be feasible

4Henceforth the reserved word segment, refers to the input processing unit of our model
5It is actually a result of the segmentation algorithm of 3.4.2.1
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Figure 3-3: Segment lengths distribution along species

using the remaining signals.

3.3.2.2 Segment structure

Once the segment length has been worked out, the format of the segment can be

defined. In general, a segment unit is composed by 4 building blocks:

Offset a left zero padding referenced to the master channel, which ideally goes from

zero to segment length (in samples). Its objective is to avoid overfitting when

the model detects -either implicitly or explicitly- a contour within a segment.

Conversely, it simulates the fact that a contour may appear at any position in

the segment.

Delay another zero padding which depends on the computed time-delay for a certain

pair of sensors. It goes from minus maximum time-delay to maximum time-

delay in samples. For the master reference hydrophone the delay is always zero.
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Contour the whistle itself. Despite its length being variable, most of the time it is

between zero and 1 second (Figure 3-3).

Padding the right zero padding required to fulfill the segment.

Offset Contour Padding

Offset Delay Contour Padding
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Offset Delay Contour Padding


Number
of channels

Figure 3-4: Segment structure

Figure 3-4 shows the segment format, where negative delays are also allowed. It

means that the offset is reduced when there is a negative delay. In that case, the

contour may even exit the segment from the left part. On the other hand, a too

positive delay may cause the equivalent effect. These circumstances are handled as

limit cases and might be avoided on demand. Since unequivocally, an uncompleted

contour cannot be as highly correlated with its original version as when it appears

unchanged.

3.3.3 Noise embedding

We have extracted real noise from non-labeled signal segments of the original record-

ings, since we aim to keep close to the actual implementation. In addition, this noise

has been manually cleaned from hidden whistles, which are not labeled.

Moreover, not only the quantity of noise may perturb the time-delay estimation,

but also its quality. Therefore, we focus on the coherence of the noise when building

the segments, but always from a realistic point of view.

Simulating the conditions of sparse hydrophones, different segments of noise are

randomly sampled for each channel, looking for high incoherence between them. Ac-

tually, we found that coherence of the noise changes between segments, since we
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sample from a large signal which presents different characteristics (sometimes it is

broadband, its spectrum has diverse patterns, random time impulsive components...).

Furthermore, as noise is rather non-stationary and shows a wide variety of patterns,

the coherence between channels is usually quite low.

3.3.4 Labeling

So far, authors who develop supervised approaches, have labeled its target time-delays

in several ways. While [26][27] learn a continuous function with nominal delay labels,

[9] discretize these delays in classes6, and [15] build a target distribution.

In general the real time-delay is discretized into classes through a time-delay

resolution. For instance, in [9] for a uniform linear array (ULA) the DOA space is

divided in 91 classes. On the other hand, one of the major novelties of [15]7, was

to encode the target delays into distributions, instead of one-hot vectors classes [9].

Soft labels which assist the learning procedure by allowing a controlled uncertainty

around the predicted time-delay.

Thence, building on the progress of [15], a time-delay distribution label is pro-

posed. It outperformed previous experiments with the data of [15] where the ideal

target δ(n − τ12) was considered, and also provided an advantageous smooth multi-

dimensional output for further post-processing.

In fact, in this work, both approaches are combined. Firstly, a discretization of

the time-delay is mandatory, in order to limit the number of neurons in the output

layer when coping with ANN and distribution labels. Secondly, a distribution around

the discretized time-delay is built.

3.3.4.1 Time-delay discretization

Essentially, we should discretize either the time-delay range or the distribution label to

achieve an efficient learning of the time-delay response. Thence, we propose several

6Despite [9] dealing with direction of arrival (DOA) rather than time-delay, the same procedure
applies to TDE

7Label distributions are actually covered in further research, there is no explicit reference to soft
distribution labels in [15]
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resolutions (Table 3.1), for the scenario defined in Section 3.3.1, which relates the

angle resolution with the time-delay.

Resolution
(samples)

Resolution
(ms)

Resolution
(degrees)

Size of
output layer

1 0.0052 0.0005 240001
1047 5 0.5 251
2094 10.9 1 126
5235 25 2.5 51

Table 3.1: Time-delay resolution

Firstly, we started with the lowest resolution (25 ms). Afterwards, when the model

achieved good performance, the resolution was progressively increased to the maxi-

mum of 5 ms. The results and conclusions are therefore extracted at the maximum

resolution of 5 ms.

3.3.4.2 Distribution label

Before building this database, we did several experiments with data from [15]. A two

hidden-layer multilayer perceptron architecture with sigmoid activations was used.

The training procedure was conducted using Adam backpropagation, optimizing a

MSE. Likewise, we set a dropout of 0.4 and we split the data in sixty percent for

training, twenty percent for validation and twenty percent for test.

Thus, we relate the estimation accuracy with the distribution label. After different

experiments, the normal distribution with a MSE was the most suitable choice.

Moreover, Table 3.2 shows the effect of widening that distribution; by increasing

the allowed uncertainty around the true time-delay in the labels, the global mean error

and its variance decrease in the predictions. This characterization of the error comes

from an overall statistical analysis of all the independent errors, which are computed

as the absolute difference in samples between the maximum of the predicted function

and the ground-truth. It has nothing to do with the minimized MSE through back-

propagation, which refers to the error in the predicted label function.

It is consistent with the bias-variance decomposition of the error. As the estima-
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Distribution
labels σ

Predictions
mean error

Predictions
median error

Predictions
std error

1 17 6 27.7
2 15.9 6 26.5
3 15.1 7 24.7
4 14.7 7 23.2

Table 3.2: Distribution of the error in samples vs distribution label std

tion, the distribution label, allows more variance, it becomes more and more unbiased.

Besides, larger variance in the distribution label may damage our ability to resolve

multiple sources, but it is out of the scope of this work.

Despite this study coming from quite different data, it is a pretty good reference

for developing the labels of the first release of our database. Summing up, we use as

a target a Gaussian of standard deviation one around the discretized time-delay8.

3.3.5 Datasets generation

We have generated multiple sub-datasets with diverse features, fitting our estimator

to various environments of interest. The goal is to study the generalization capabilities

of our model when the conditions becomes more demanding, in search of the most

robust architecture.

Dataset Limit cases Channels Species SNR (dB)

1 7 2 1 0
2 7 2 1 -6
3 7 2 1 -9
4 7 2 1 -12
5 7 2 1,2,3 mix

Table 3.3: Datasets’ features

Table 3.3 shows the characteristics of each dataset, where limit cases refers to the

circumstances presented in section 3.3.2.2, channels means number of hydrophones,

species may include from only the bottlenoise dolphin to all the available classes;

8These units are on a difference scale than Table 3.2, where the time-delay has sample resolution
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melon-headed whales and common dolphins, and SNR specify the quantity of noise.

3.4 Implementation

The following section briefly details how a new time-delay database is constructed

from the classification datasets of [12], based on the previous design.

Firstly, we introduce the general approach for reassembling pseudo-real signals

from the annotations of [12], labeled time-frequency contours (Figure A-4). After-

wards, the data generation procedure simulates the time-delay response in a particular

scenario, the signals are embedded in noise and the labels are built.

3.4.1 Spectrogram reconstruction

The main idea is rather straightforward, to paint the time-frequency annotations on a

canvas; the spectrogram. However, the major part of them are marked at an unfeasible

time-frequency resolution. In other words, the window length does not match such

a high frequency resolution. Actually, the labeler had used his intuition, smoothing

and interpolating the time-frequency contours in a convenient way. Process which is

thoroughly described in the metadata of [12].

After gathering all the quantized contours at a reasonable time-frequency resolu-

tion, a clean version of the original spectrogram is resembled. Nonetheless, although

these annotations completely describes the instantaneous frequency magnitude along

time, some signal information is lost during the labeling. These information gaps are

approached in accordance with its implications on time-delay estimation.

3.4.1.1 Assumptions

We have made two major assumptions, due to the lack of information in the annota-

tions of the DCL 2011 workshop dataset:

1. All the overlapped contours within an annotation segment arise from the same

source, considering a source as either one or several mammal cetaceans emitting
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sound waves from roughly the same point. This has not got significant reper-

cussions on time-delay estimation, since the source is seen by the sensors as a

random combination of real acoustic sources which share the same time-delay,

the same relative localization to the sensors.

2. The amplitude is assumed to be constant. Firstly, because there is no ampli-

tude information in the annotations. Yet also it is not even worth to estimate

it from the recordings; seeing that these recordings are quite noisy, a sophis-

ticated algorithm would be required to get a reliable estimator. Actually, we

tested this approach with unsatisfactory results. The time evolution of the es-

timated amplitude was not consistent, in fact, it did not measure anything but

noise. Likewise, we do not expect, that neither the amplitude itself nor its time

evolution, could provide too much information for our purposes. Commonly,

it is disregarded in applications that deal with cetacean vocalizations, such as

specie classification or whistle contour extraction.

3.4.1.2 General approach

Firstly, the canvas where the contours are printed is defined. Formally speaking, we

reserve memory for a large magnitude spectrogram matrix, due to memory concerns,

it is define as a boolean -since the amplitude is assumed constant- sparse matrix. In

this way, we use the memory resources efficiently, storing only the nonzero elements

and their row indices.

For each annotations contour, the time-frequency pairs are quantized in order to

match the desired resolution of the spectrogram. Lastly, its respective frequency bins

are marked as true along the required frames.

3.4.1.3 Standardization

Despite being a direct reconstruction, a standardization of the data is required, since

the data of [12] is an heterogeneous compilation of different recordings -at different

places, labeled by various teams...- its annotations are different too; while some of
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them have a huge time resolution, others are sampled at a lower one.

Figure A-2a shows the great variety of time resolutions used for labeling a certain

dataset. There is a strong difference among datasets, while some of them present

very high resolution (Figure A-2a), others are low quality (Figure A-2b). Besides, the

sampling frequency may change over different contours, but also along the contour.

Thence, we should resample all the contours at a uniform rate without introduc-

ing aliasing. Either decimation or interpolation, accordingly as the sampling rate

decreases or increases, is required. For the later case, we use cubic spline interpola-

tion, which properly fit the smooth contours of our complex pseudo-chirps.

However, before applying the resampling filter, we must take care of the endpoint

effects. These artifacts arise because the filter assumes that the signal is zero outside

the borders of the signal. This is avoided through padding the contour symmetrically,

just by repeating its extreme values, and afterwards subtracting from the signal,

linear or higher order trends. Finally, once the signal has been resampled, the trend

is recovered and the padding is removed from it (Figure A-3).

Furthermore, we should detect the intra-silences within a contour before attempt-

ing to interpolate it. Otherwise, these silence holes are filled with signal. It is im-

portant highlight, that these signal drop-outs are very characteristically features of

cetaceans whistle vocalizations, which are worth to remain unaffected.

Fortunately, this silence information is implicit in the annotations; whenever there

is a too large space -in relative terms- between two consecutive samples in the time

array of a contour, it is likely to be silence. Therefore, a silence detector can be

implement as follows:

1. Compute the approximated derivative of the time vector; by calculating n order

differences between adjacent elements. In our case, order 10 works.

2. Find the peaks of the derivative, constraining the searching to a minimum peak

distance of 8 samples.

Once we have retrieved all the silence intervals of a contour, they can be restored

from the interpolated whistle.
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3.4.2 Contour reconstruction

We aim to reassemble each independent whistle waveform from the reconstructed

magnitude spectrogram. So firstly, we segment each contour from the whole spectro-

gram, and afterwards each waveform is estimated from its spectrogram magnitude

information and its noisy audio signal.

3.4.2.1 Spectrogram segmentation

The whole spectrogram is fragmented in smaller units, called contours, due to design

reasons (section 3.3.2). This procedure also provides an efficient waveform recon-

struction, since despite processing a large spectrogram, only segments which contains

signal are reassembled. Likewise, no blind source separation is carried out, which

seems to be fuzzy and unclear even manually9.

As far as, this is a segmentation of clean signals, we just need to apart whistles

one from the other, through the gap between them. Therefore, the spectrogram

is processed frame by frame, in such a way that when there is no signal during a

minimum number of frames, between two consecutive contours, they are considered

as independent vocalizations.

3.4.2.2 Waveform reconstruction

At this point, we have already reconstructed and fragmented the magnitude spectro-

gram. Nonetheless, there is no phase information at all, which would allow an exact

waveform reconstruction, yet an estimated reassemble of the original time domain

signal is still feasible.

This is an extended audio processing practice, normally known as short-time syn-

thesis. Nevertheless, some of the most common methods require also the phase in-

formation, such as filter bank summation (FBS) and overlap-add (OLA). For our

concerns, a least-squares approximation does the trick.

This approach seeks to estimate a sequence xe[n] whose STFT magnitude |Xe(n,w)|

9For the discussion of the motivations and implications, see the first assumption of section 3.4.1.1
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is closest (in a least-squared-error sense) to the known spectrogram magnitude |X(n,w)|.

The iteration takes place as follows:

1. An arbitrary sequence (usually white noise) is selected as the first estimate of

the synthesized waveform x1e[n]

2. The STFT of the initial estimate x1e[n] is computed, and its magnitude replaced

by the target magnitude |X(n,w)| (Equation 3.3).

X1(m,w) = |X(n,w)| X
i
e(m,w)

|X i
e(m,w)|

(3.3)

3. Finally, the waveform is re-estimated taking into account the sliding window

effect. Therefore, ensuring that the sum of all the analysis windows add up to

a constant (Equation 3.4).

xie[n] =

∑∞
m=−∞w[m− n]gi−1m [n]∑∞

m=−∞w
2[m− n]

(3.4)

where, gi−1m [n] : is the inverse DFT of X i−1(m,w)

4. The process continues iteratively until a stopping criterion is met. The simplest

one is to limit the number of iterations.

It can be shown that this process reduces the distance between the estimated

magnitude spectrogram and the target one at each iteration. Thus, this approach

converges to a local minimum, though not necessarily a global minimum.

Besides, this algorithm takes advantage of all the available information, since

instead of white noise, real noisy recordings play the role of a first reliable estimation.

An initial guess which, despite being considerably noisy, contains some worthwhile

phase knowledge.

At the end of the process, the reconstructed waveforms look absolutely like real

noiseless cetaceans vocalizations. However, whereas a constant contour amplitude has

been assumed (section 3.4.1.1), the target magnitude spectrogram behaviours rather
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like a binary mask during the iterative process. It therefore causes abrupt changes

in the waveform, which are acoustically perceived as audio clicks. Phenomenon of

minor significance, seeing that these signals are afterwards embedding in noise.

3.4.3 Time-delay data generation

We generate several multichannel segments from each reconstructed contour. Par-

ticularly, the user defines how many delays per contour and offsets per delay are

generated. Thence, for each contour, segments are built as follows (Figure A-7):

1. If limit cases are not allowed, firstly we check the length of the contour, when

it is larger than the maximum expected, one second10, the contour is skipped.

2. We reserve memory for output buffer, a data structure that contains all the

serializable information, both multichannel signals and labels.

3. Then, time-delays are generated according to an ideal free-model. We have

implemented two approaches; it can be randomly sampled, either directly from

a uniform distribution, or from a localization (azimuth and elevation). For our

purposes, we prefer well distributed time-delay data, rather than sampling from

random directions11.

4. For each time-delay various offsets are sampled from a uniform distribution,

generating several multichannel segments with the same time-delay.

5. We randomly sample one segment of noise for each channel, as in Section 3.3.3.

6. Once we have the position of the contour in the master channel (offset), the

required delays for the rest of channels and all the noise signals, we can build

the segments.

7. We label the segments with distributions around the generated time-delays.

10Since segments are designed for contours as large as one second (Section 3.3.2.1)
11This second approach is direction of arrival (DOA) oriented
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8. After doing all the data generation computations with double precision, we cast

output buffer to single precision. Finally, we serialize output buffer into disk,

releasing physical memory.

3.4.3.1 Segment assembling

When building multichannel segments we should handle four different cases:

Positive delay When the delay is positive, the segment is formed by concatenating a

zero padding of offset length, another zero padding of delay length, the contour,

and a right padding, if it is required to fulfill the segment.

Very positive delay The segment is built as before, and if the length of the seg-

ment is greater than the maximum one, the segment is cropped. In this case,

the contour appears incomplete, leaving the segment scope by the right side.

Negative delay When the delay is negative and lower than the offset, the segment

is built by concatenating a zero padding of offset plus delay length, the contour,

and a right padding.

Very negative delay When the delay is negative and greater than the offset, the

segment is composed by the most right part of the contour and a right padding.

Therefore, the contour leaves the segment scope by the left side.

Afterwards, the segment is embedded in noise and it is normalized between minus

one and one, in order to match the wav audio format.

3.4.3.2 Noise embedding

Segments are embedded in noise through the SNR introduced by the user. Thence,

we should first estimate the power of noise that we aim to add.

Therefore, we compute the power of contour, then we measure the power of the

noise only in the contour scope, looking for a reliable SNR estimator within the whistle
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area. Lastly, we figure out the gain of the noise (Equation 3.6), adding both signals

in the right proportions (Equation 3.5).

x[n] = s[n] + h ∗ w[n] (3.5)

h =
RMS (c[m])

10SNR/20RMS (w[m])
(3.6)

where, x[n] : is the noisy segment waveform
s[n] : is the noiseless segment
w[n] : is the noise segment
c[m] : is the contour, the whistle waveform
w[m] : is the noise segment along the duration of the whistle
SNR : is the desired signal-to-noise-ratio in dB
h : is the gain of the noise

3.4.4 Labeling

For label the segments, the time-delay range is mapped into the output layer range12,

from one to size of output layer. Later on, a normal distribution is build around the

true discretized time-delay (Equation 3.7).

Label ∼ N (τ12, 1.0) (3.7)

12The output neurons can be understood as quantization levels of the time-delay (Section 3.3.4.1)
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Chapter 4

Time-delay estimation

During the development of the time delay estimator, several models were trained for

a wide variety of low-level features1 and, despite that large effort, our attempts were

unsuccessful. In fact, our best performing estimator, thoroughly described in Section

4.2, is fed from high-level features. In the interests of clarity and concision, only the

most ambitious model which deals with low-level features is briefly stated.

4.1 Earliest attempt

Following the trend towards building end-to-end learning systems and after failing to

learn directly from the waveform, we designed a model that works over the spectro-

gram of both hydrophone channels.

This model is fed with two channel spectrograms images, magnitude and phase,

for both the reference and delayed signal. The neural network is arranged in a CNN

siamese architecture2. Thus, two identical subnetworks, sharing the same parameters

and weights, as well as backpropagation, which is also mirrored across both subnets.

Each subnetwork aims to produce a low dimensional representation of its input,

feature vectors with the same semantics, making them easier to compare in upper

layers, where the time-delay is to be estimated. Besides, sharing weights across the

1These include, among others, the waveform, the spectrum, the unwrapped phase, both magni-
tude and phase spectrograms, the cepstrum, MFCC coefficients. . .

2Architecture proposed in [6] to constrain the network to extract similar features
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two subnetworks means also fewer parameters to train for, which in turn means less

data required and less tendency to overfit.

Figure 4-1: CNN siamese network graph

Figure 4-1 shows the baseline graph3 of the trained network, where the cross-

connections between siamese convolutional layers represent the shared tensors (fil-

ter weights). Several variations of this architecture were also considered, including

stacked LSTM networks within upper layers of the siamese subnetwork.

This model aims to project the data into a low-dimensional space via four convo-

lutional layers, where the information of each hydrophone flows in parallel through

the siamese subnetworks, while the time-delay is estimated within the two upper fully

connected layers.

Nevertheless, after several variations in the architecture, different initializations,

regularizations, backpropagation methods and hours of GPU training, the model was

3The framework used for the implementation, TensorFlow, uses a dataflow graph to represent
the computation in terms of the dependencies between individual operations
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unable to learn from the data. Therefore, we found that we can not efficiently learn

from such a high dimensional feature space.

4.1.1 Curse of dimensionality

Despite many efforts being made, to reduce the number of learned parameters, we

failed to learn from the data we had. At this point, there is no other option, but to

revise the data features.

Therefore, an in-depth examination of the feature space, from the signal charac-

teristics to the time-delay information, can provide us valuable insights:

• The time-frequency features of the signals are very sparse. The duration of a

whistle may vary from 2ms to 2s (Figure 3-3), and its indispensable frequency

range goes from 5 kHz to 50 kHz. Besides, the database encompass variations

from narrowband whistles (BW ≈ 500Hz) to wideband ones (BW ≈ 20kHz).

It means that each hydrophone spectrogram image reach up to dimensions as

large as [2000 time steps, 300 frequencies, 2 channels]. Likewise, a waveform

based approach should use, at least, 2 seconds of segment sampled at 96 kHz

to catch the whole frequency range of the signals.

• On one hand, the model seek to estimate the delay between two segments of

length 2s. On the other hand, we know beforehand that the delay is constrained

by the physical model to 0.625s (Section 3.3.1). Thence, the data is actually

lying in a lower dimensionality manifold. Moreover, all time-delay approaches

significantly improve its performance limiting the maximum lag.

This data dimensionality leads us to a double handicap, as the feature dimension-

ality increase, the amount of data required to train efficiently the system increase

too. However, although more data is required, high dimensional features demand

more resources, so less data can be used at once.
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4.2 Final design

Motivated by the curse of dimensionality and under the premise that the time-delay

information lies on a lower dimensional manifold, this model is based on high-level

features, which are specialized in time-delay estimation.

4.2.1 Feature extraction

We have designed very specific features to approach time-delay estimation. These

features have proved to be robust against real noise and well-suited to the sparse

signal properties of whistles. Besides, they include the constrains of the physical

model, limiting the dimensionality of the features by the maximum time-delay.

Firstly, the magnitude spectrogram of both hydrophone channels is extracted,

with a time resolution at least equal to the labels’ one (Section 3.3.4.1). Secondly,

the energy of each frame is locally normalized. Afterwards, one hydrophone channel

spectrogram is padded on both sizes with the corresponding number of frames to

the maximum time-delay. Moreover, instead of zeros, the padding frames are filled

with the mean of each frequency bin along time. Finally both hydrophone channel

spectrograms are locally cross-correlated, sub-band by sub-band.

Figure 4-2: Local spectrogram cross-correlation
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The last step aims to highlight the time-frequency coherence between both spec-

trograms. The cross-correlation is therefore computed as the sliding inner product of

the spectrograms along time, but only over bins within a sub-band (Figure 4-2). Thus,

we extract several coherence functions of overlapped frequency sub-bands, building

an output image of partial cross-correlations functions. Each pixel rij of this image

is computed as in Equation 4.1, where S1 and S2 are the spectrograms of the input

signals, M is the number of frames, fmin and fmax define the frequency range of the

sub-band j and i ∈ [min lag, max lag] . Likewise, these cross-correlations are always

non-negative as the spectrograms, S1 and S2, also are.

rij =
M−1∑
m=0

fmax(j)∑
n=fmin(j)

S1(m+ i, n)S2(m,n) (4.1)

These features reveal a pattern, named coherence-print, where the correlation is

locally maximized (Figure 4-3). Therein, the time-delay can be determined by the

position of the coherence-print. Likewise, the shape of this print rather depends on

the cetaceans’ signals; as they carry more redundancy, the print becomes clearer.

Accordingly, broader signals in time and frequency produce better features, as the

coherence of the signal prevails over the coherence of the noise.

Figure 4-3: Local spectrogram cross-correlation (coherent-print features) of a narrow
band whistle under favourable conditions (SNR = 0 dB)
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Furthermore, we have implemented the whole procedure within the TensorFlow

framework, providing an efficient processing with GPU-compatible through native

APIs methods, such as usual convolutions4.

4.2.2 Architecture

Even though many configurations have been evaluated, including several classes of

recurrent networks, the fact is that none of them has improved the performance of an

AlexNet-like convolutional network [20], except a fully convolutional network, where

the fully-connected layers are replaced by convolutionals. We have compare both

architectures, an AlexNet-like network, comprising convolutionals and fully connected

layers, and a fully convolutional network.

4.2.3 AlexNet-like network

The input to our convolutional network is a fixed-size 1255 x 100 one channel image,

which corresponds to coherence-print features sampled at 1ms. Even though lower

resolution features, sampled at 2ms (627 x 100), show comparable performance, they

are also less robust against noise.

The features image goes through a stack of four convolutional layers, where we

apply filters with varying receptive field: 8 x 8 and 6 x 6 respectively for the first and

second layer, and 4 x 4 for the two uppermost convolutional layers (Figure A-8a).

The convolution stride is fixed to 1 x 1. In addition, the padding of all convolutional

layers is such that the dimensions of the input image are preserved after convolution.

The depth of the convolutional filters is 16, 32, 16, 8, from the first to the fourth

convolutional correspondingly.

After each convolutional layer, spatial pooling is conducted by max-pooling layers.

The first poling is performed only along the time dimension, over a 2 x 1 window,

with a stride of 2 x 1. The remaining poolings have a window size of 2 x 2, and a

stride of 2 x 2.

4TensorFlow convolutions, unlike Keras, are actually cross-correlations, since the filter is com-
bined with the input window without reversing the filter
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The stack of convolutional layers is followed by three fully-connected layers. The

first layer have 1024 hidden units and the second 512. The last one is the output

layer, with softmax activation (Equation 4.2).

σ(z)j =
ezj∑K
k=1 e

zj
(4.2)

where,

z = Woutx+ bout

Besides, all hidden layers, both convolutional and fully-connected, are equipped

with the rectification ReLu non-linearity (Equation 4.3).

ReLu(x) = max(x, 0) (4.3)

Furthermore, previous to all ReLu non-linearities we add the batch-normalization

transform [17]. Thus, the output of a layer is given by Equation 4.4.

z = ReLu(BN(Wx+ b)) (4.4)

where the batch-normalization transform (BN) is defined as in Equation 4.5, like-

wise, µ and σ are estimated via mini-batch statistics5, while the scaling factor γ and

the shift β are parameters to be learned.

BN(x) =
γ(x− µ)

σ
+ β (4.5)

For our concerns, BN has proved very helpful in reducing the dependency on

hyper-parameter tuning, such as the initialization of the learning rate and weights.

Considering the novelty of the proposed input coherence-print features, it is very

arduous to set a proper parameter initialization, so we easily got stuck in poor local

minima without using BN.

5They do not only depend on the current mini-batch, rather we update µ and σ, mini-batch by
mini-batch, through exponential moving average with a decay = 0.99
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4.2.4 Fully convolutional network

The architecture is the same as below, but we replace the last two hidden FC for

convolutional layers to produce a fully convolutional network with 6 hidden layers.

In addition, we have reduced the receptive field of the convolutional filters, 4 x 4

for the first and second layers, and 2 x 2 for the rest of layers (Figure A-8b). The

depth of the convolutional filters is 16, 32, 16, 8, 4 and 1 from the first to the sixth

convolutional respectively.

After each convolutional layer, except the uppermost, which is connected with the

output layer, max-pooling layers are used. The first poling is performed over a 2 x 1

window, with a stride of 2 x 1. The remaining poolings have a window size of 2 x 2,

and a stride of 2 x 2. The batch-normalization transform is also applied before each

ReLu activation.

4.2.5 Training procedure

Unlike the procedure adopted for the data of [15], where a MSE cost was mini-

mized, herein we use softmax regression because the classes are mutually exclusive

even though the labels’ probabilities are not. Thus, we constrain the model to learn

exclusive classes with an order given by the probability distribution label.

Therefore, the loss is defined as the cross-entropy function between the softmax

normalized predictions and the distribution labels (Equation 4.6). We also apply L2

regularization with a weight decay λ = 0.004 to all learned variables (Equation 4.7).

Moreover, we calculate the moving average of the total loss and we use these averages

during evaluation, executed together with train (in parallel).

Lxentropy(w) =
1

N

N∑
n=1

H(pn, ln) = − 1

N

N∑
n=1

τnlogτ̂n + (1− τn)log(1− τ̂n) (4.6)

Ltotal(w) = Lxentropy(w) +
λ

2N

∑
w

w2 (4.7)
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4.2.5.1 Gradient optimization

The training is guided by the gradient descendent Adam (Adaptive moment estima-

tion) optimizer [18]. In contrast to traditional stochastic gradient descent, where a

constant learning rate is used for all learned parameters, Adam computes individual

adaptive learning rates for each network weight. These learning rates are separately

updated from estimates of first and second moments of the gradient.

The algorithm is initialized with an initial learning rate α = 0.12, exponential

decay rates β1 = 0.9 and β2 = 0.999, for the first and second moment respectively

and ε = 10−8 that regularizes a division in the updating step.

4.2.5.2 Details of learning

We trained our models using a mini-batch size of 64 examples. On one hand, we

initialized the weights in each layer from ”Xavier” initializer [13], with scaled uniform

distributed random initialization. On the other, we initialized the neuron biases in all

convolutional layers, with the constant 0. The biases of the fully-connected hidden

layers are initialized with the constant 0.1, while the output layer biases are initially

set to 0.004.

4.2.6 Improving generalization

Below, we describe the primary ways in which we improve generalization, in addition

to the already presented L2 regularization.

4.2.6.1 Data augmentation

The most common practice to reduce overfitting, especially on image data, is to

artificially enlarge the dataset using transformations. We transform the data in two

different ways:

Flip vertical it consists of generating image vertical reflections, while keeping the

same time-delay label.
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Flip horizontal this reflection is, however, non-label preserving. Therefore, data is

horizontally reflected and its label array is reversed.

Both transformations are performed randomly, at the time that data is collected

in batches. Thence, batches are quite dissimilar among epochs.

Furthermore, we have optimized our input pipeline with queues and multi-threading,

such as, batching and data augmentation are performed on the CPU at runtime, and

enqueued into a FIFO queue. Afterwards, data is dequeued as requested by the GPU

training thread. Therefore, this data augmentation strategy is indeed computation-

ally free (neither disk space nor GPU resources are required). Moreover, the GPU

throughput is increased, since it is released from secondary laborious tasks.

4.2.6.2 Dropout

Combining the predictions of different models is a very successful practice. This is

the case of random forest, where the prediction capability of the model is improved

by training various decision trees [5]. The efficient version of model combination for

deep learning is dropout.

It consists of setting to zero the output of each hidden neuron with a given prob-

ability. Thence, the neurons which are dropped out do not participate in backprop-

agation. So every time an input is presented, the neural network samples a different

architecture, but all these architectures share weights.

At test time, we use all the neurons but multiply their outputs by the dropout

probability, which is an approximation of taking the geometric mean of all the virtu-

ally trained models.

We use dropout in all fully connected layers of the AlexNet-like network, with a

probability of 0.5, prior to implementing batch-normalization. However, as stated in

[17], after adding batch-normalization, we have reduced the dropout probability to

0.3 without losing generalization. Thus, we have speeded up the training.

Alternatively, as we are not using dropout in the fully convolutional network, we

have increased the weight decay of the L2 regularization to λ = 0.025, only for this

architecture.
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Chapter 5

Results

Firstly, we have studied the feasibility of a real-time design. Afterwards, we have

evaluated our model for the datasets of Table 3.3.

Datasets 1-4 contain each 46100 examples, which are composed of 32000, 6400

and 7700 examples for train, validation and test respectively. Likewise, dataset 6

represents the most general case, it is composed of 31600, 6760 and 6780 examples

for train, validation and test correspondingly.

Datasets 1-4 analyze the robustness of various estimators against noise. The

signal-to-noise ratio is therefore the only degree of freedom among these datasets.

Alternatively, dataset 5 simulates a real scenario, where several species are present

and the signal-to-noise ratio is constantly changing.

5.1 Methodology

We have compare the supervised estimations developed in this work (Section 4.2), the

AlexNet-like and the fully convolutional neural networks, named CNN1 and CNN2

respectively, with the methods derived from the GCC family, comprising the GCC

(Section 2.2.2.2) and the PHAT (Section 2.2.2.3).

Though the AED method (Section 2.2.3) was originally intended to be tested,

it has proved to perform poorly in a first overview. It offers the weakest results in

terms of error, but it is also computationally intensive. This method was initially
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designed for room acoustics applications, where the number of samples is limited and

full advantage can be taken from a convolutive mixture. However, when the number

of samples becomes as large as 192000 samples per channel, the iterative process takes

more than two minutes per example to converge. In addition, as experimented in [15],

AED may bring poor results because of the absence of convolutive mixture.

For the purpose of a fair comparison, we have restricted the search of the time-

delay estimator to the maximum lag of 0.625s, for both cross-correlation transforms,

GCC and PHAT. Besides, all the neural network models CNN1, from dataset 2 to

dataset 5, are fine-tuned versions of a master model, trained with dataset 1. Alter-

natively, CNN2, trained with dataset 1, generalizes well enough, so it has not been

fine-tuned for any dataset.

Moreover, a first analysis shows that the data augmentation transformations are

not well-behaved. They degrade the estimation accuracy in the validation and pre-

diction dataset partitions. Therefore, we have determined that the time-frequency

distribution of the coherence-features provides relevant information for time-delay

estimation and should not be transformed.

5.2 Computation time

We have tracked the computation time of our model through TensorFlow debugging

tools. The batch size is fixed to one example and the FIFO queue size is set to zero,

simulating real-time conditions. Figure 5-1 shows the relative computation time, it

can be seen that the pre-processing node is not the bottleneck of the model. The most

demanding task is indeed the computation of the gradients and the optimization of

the parameters (Adam). The pre-processing takes between 258 µs and 327 µs, while

the optimization takes around 187 ms.

Considering these computation times as a guideline, a real-time design seems to

be feasible. On the other hand, the GCC and PHAT are very efficient algorithms,

which demand fewer resources than our pre-processing.
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Figure 5-1: Part of the graph of the fully convolutional network. More demanding
nodes, in terms of computation time, appears more reddish

5.3 First experiment

The performance of the GCC and PHAT estimators, as well as the the neural network

approach, is evaluated with respect to noise.

5.3.1 First overview

Figure 5-2 shows the results of applying the GCC and CNN1 algorithms to rather

narrowband whistles (BW ≈ 5kHz), of dataset 2. The target and the output of the

GCC and CNN1 are normalized to their respective maximums.

Upon initial inspection, the shape of the target distribution is much closer to

the shape of the CNN1 than to that of the GCC. In fact, the CNN1 output is well-

distributed around the target time-delay, which is one of our main objectives (Section

1.2). In addition, we have observed that this is the general behaviour. Actually, in

some cases the output distribution is slightly skewed, pointing to the true time-delay.

This provides an advantageous output for further post-processing.

Moreover, although the response of Figure 5-2 is normalized between 0 and 1,

the softmax layer provide us valuable probability outputs. On one hand, when the

estimation is poor, at very low SNR, CNN1 outputs very low probability values. On

the other, as the conditions becomes more favourable (larger signals and higher SNR)

CNN1 outputs greater values at its maximum peak. Therefore, a threshold time-delay

detector can be implemented without extra-processing, testing between two simple

hypotheses; the presence or absence of time-delay information.

The PHAT transform yields more noisy responses (Figure 5-3). However, PHAT
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Figure 5-2: Output of GCC and CNN1 estimators with respect to the target time-
delay. Input signals from dataset 2 at SNR = -6 dB, time-delay = -95 ms

resolves better the time-delay peak value, so it is also more accurate than the GCC

in terms of mean error, as we will see.
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Figure 5-3: Output of PHAT and CNN estimators with respect to the target time-
delay. Input signals from dataset 2 at SNR = -6 dB, time-delay = -95 ms

5.3.2 Statistical significance

Table 5.1 summarizes the evolution of the mean error and its standard deviation,

as the SNR decreases. Clearly, both supervised approaches and PHAT outperform

the GCC in all the evaluated scenarios, in terms of both mean error and standard

deviation. Likewise, at 0 dB the PHAT transform and CNN2 show similar results,

however, the estimations of CNN1 are weaker. Alternatively, CNN1 and CNN2 keep
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the error confined as the noise increase, while the estimations of the PHAT are less

reliable at negative SNRs.

SNR XCOR PHAT CNN1 CNN2
(dB) Boxplot µe σe µe σe µe σe µe σe

0 A-9a 194.0 318.1 24.4 123.0 46.2 202.3 24.0 123.3
-6 A-9b 347.9 358.9 81.1 200.5 25.9 149.2 20.4 110.1
-9 A-10a 419.6 347.8 178.5 262.4 78.0 243.6 76.9 223.0

-12 A-10b 454.4 338.3 264.8 280.5 177.9 338.0 192.9 324.4

Table 5.1: Mean µe and standard deviation of the error in milliseconds as a function
of the SNR (dB)

Moreover, although we expected that the error would increase monotonically as

the SNR decrease, that is not the case for CNN1 and CNN2 at -6 dB. Likely, it is

because the signals of dataset 2 are better represented in the coherence-print features1,

than that of dataset 1.

5.4 Second experiment

This experiment evaluates the performance of the estimators under scrutiny with

dataset 5, which is composed of 3 different species. In addition, the SNR is varying

from -18dB to 18dB.

SNR XCOR PHAT CNN1 CNN2
(dB) Boxplot µe σe µe σe µe σe µe σe

∈ [−18, 18] A-11 194.6 318.2 69 188.6 105.1 287.8 46.9 174.6

Table 5.2: Mean µe and standard deviation of the error in milliseconds as a function
of the SNR (dB)

Table 5.2 outline the results of applying the GCC, PHAT, CNN1 and CNN2

algorithms to the 3 species covered in this work for varying SNR. The observed

tendency is the same as in the previous experiment, both PHAT and neural networks

1As noted in 4.2.1, wider signals in time and frequency produce clearer coherence-print features
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perform better than the GCC. Besides, the estimations of CNN2 are the most accurate

in terms of both, mean and standard deviation of the error.
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Chapter 6

Conclusions and future

development

6.1 Conclusions

In general, we have fulfilled our main objectives (Section 1.2), designing a time-delay

database for cetacean localization and training a model for time-delay estimation.

Besides, although we have not been able to train an end-to-end deep learning

model, we have worked around the curse of dimensionality with high-level features.

In addition, we have proved their robustness against low SNR, which represents more

real scenarios. We have also realized that the fully convolutional neural network fit

better our features, providing the best results in a general scenario.

On the other hand, we have not faced the special cases proposed in Section 3, com-

prising limit cases and multi-channel time-delay estimation (more than two channels).

Although these cases are already implemented in our data generation application, we

have not considered them for the proposed final model.

6.2 Future development

We have developed an estimator based on coherence-print features and convolutional

neural networks, but the results herein presented can be potentially outperformed.
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Therefore, we propose the following future development:

• To develop an end-to-end, low-features based, model.

• To adapt and evaluate the model for limit cases and multi-channel.

• To add a convolutive mixture in the signals.

• To move the time-delay data generation software from Matlab to TensorFlow,

in such a way that the time-delay segments are generated at runtime. This

procedure is not computing demanding, so a new batch of data can be gener-

ated by the pre-processing thread before being required by the training thread.

However, in the current implementation, the learning capabilities of the model

are limited by memory resources.

Mainly, we expect that an end-to-end low-features based model can make one

step forward, outperforming the results herein presented in terms of accuracy and

computation time.
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Appendix A

Figures
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