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Abstract

Over the last few years, standardisation efforts are consolidating the role of the Routing Protocol for Low-Power and
Lossy Networks (RPL) as the standard routing protocol for IPv6-based Wireless Sensor Networks (WSNs). Although
many core functionalities are well defined, others are left implementation dependent. Among them, the definition of an
efficient link-quality estimation (LQE) strategy is of paramount importance, as it influences significantly both the quality
of the selected network routes and nodes’ energy consumption. In this paper, we present RL-Probe, a novel strategy for
link quality monitoring in RPL, which accurately measures link qualities with minimal overheads and energy waste. To
achieve this goal, RL-Probe leverages both synchronous and asynchronous monitoring schemes to maintain up-to-date
information on link qualities and to promptly react to sudden topology changes, e.g. due to mobility. Our solution relies
on a reinforcement learning model to drive the monitoring procedures in order to minimise the overhead caused by active
probing operations. The performance of the proposed solution is assessed by means of simulations and real experiments.
Results demonstrated that RL-Probe helps in effectively improving packet loss rates, allowing nodes to promptly react to
link quality variations as well as to link failures due to node mobility.
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1. Introduction

The future Internet of Things (IoT) foresees information
systems seamlessly integrated with smart objects, i.e. daily
objects empowered with computation and communication
capabilities. This vision will require sensors and actuators
deployed on a large scale for ubiquitous sensing and remote
control of physical systems. In this context, Wireless Sensor
Networks (WSNs) will represent a key enabler to guarantee
low-cost and rapid deployment of IoT devices exploiting
multi-hop data delivery over wireless links. Efficiency and
reliability of multi-hop data forwarding will be essential to
support future IoT systems and guarantees their robustness
[1].
In general, the main objective of WSN routing proto-

cols is to enable reliable communication while minimising
resource consumptions [2]. This is particularly important
in low-power and lossy networks (LLNs), because they
are characterised by unreliable links whose quality might
significantly fluctuate over time influenced by external in-
terference or obstacles. In this context, the selection of the
optimal path is, however, challenging, as gathering topol-
ogy information requires communication and processing
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overhead that contrasts with the limited computational
and energy capabilities available to constrained devices
that are usually battery powered.

Recently, significant efforts were put into defining a com-
mon routing protocol for IP-based WSANs, which have led
to the standardisation of RPL, a gradient-based routing pro-
tocol that aims at building a robust multi-hop mesh topol-
ogy over lossy links with minimal state requirements [3].
However, several studies have demonstrated that RPL is
affected by reliability issues. The root cause of this un-
reliability is the lack of responsiveness to variations of
network conditions that arise in real-life scenarios due to
node mobility, or environmental factors, such as interfer-
ence, multi-path effects, irregular radios patterns among
the others [4]. Hence, many extensions have been recently
proposed for the original RPL specification to support
routing optimisations and more efficient mechanisms for
route discovery and topology repair, especially under mo-
bility [5, 6, 7, 8, 9, 10, 11]. However, tweaking routing
procedures does not solve the core problem of how to proac-
tively maintain up-to-date information about links quality
and network routes in a highly efficient manner.

More generally, the availability of a highly efficient, accu-
rate, and adaptive link-quality estimation (LQE) framework
is essential to allow any routing protocol to select the best
routing path under time-varying network conditions. Thus,
LQE in wireless sensor networks has received significant
attention over the past years [12, 13]. Unfortunately, there
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are several limitations in using existing LQE techniques
with RPL. In particular, broadcast-based probing is com-
monly adopted for LQE in low-power wireless networks
because it incurs a lower overhead than unicast-based prob-
ing. However, RPL employs the Trickle algorithm [14]
to dynamical control the dissemination of routing control
information, which makes complicate the implementation
of broadcast-based probing without affecting normal RPL
operations. Furthermore, even with broadcast-based prob-
ing the measurement overhead increases almost linearly
with the number of neighbours and the probing frequency,
thus consuming precious energy resources and worsening
network congestion. On the other hand, infrequent or on-
demand probing would yield poor measurement accuracy
and reduce routing ability to adapt to the link dynam-
ics in real time. A few approaches have been proposed
to support adaptive LQE in multi-hop wireless networks
to minimise measurement overhead. Unfortunately, these
existing techniques cannot be used in LLNs because they
require the maintenance of large link-state tables or exploit
cross-traffic overhearing [15].

To address the above issues, in this paper we propose a
novel lightweight link monitoring scheme, called RL-Probe,
which ensures a good trade-off between routing reliabil-
ity, responsiveness to variable network conditions, and low
overheads. The salient features of RL-Probe can be sum-
marised as follows. First, RL-Probe combines synchronous
and asynchronous monitoring mechanisms to maintain up-
to-date information about link qualities and their temporal
variations while promptly reacting to sudden and unpre-
dictable changes in network and link conditions. Secondly,
RPL-probe uses a reinforcement learning technique based
on the multi-armed bandit model [16] to dynamically control
the probing procedures in order to automatically minimise
measurement overheads without affecting responsiveness
to route chances. Thirdly, RL-Probe preserves backward
compatibility with standard RPL, i.e., enabling the inter-
operability of standard and enhanced nodes in the same
network. It is also important to point out the objective
of RL-Probe is not to provide a better routing metric for
RPL, but a new measurement methodology that can be
applied to generic link metrics, such as ETX [17].
To evaluate the effectiveness of our solution, we have

integrated RL-Probe within the Contiki RPL/6LowPAN
protocol stack. The proposed solution has been compared
against the standard RPL configuration, in which no ac-
tive probe is employed, and RPL with periodic probing,
in which active probe traffic is exploited to monitor links
and handle channel quality variations. In addition to static
scenarios, experiments involving mobile nodes have been
run to analyse the performance of RL-Probe in challeng-
ing conditions. Indeed, mobile nodes are characterised
by rapidly-changing link quality conditions that are usu-
ally managed using ad-hoc extensions of RPL rather than
standard LQE solutions. In order to offer a fair compari-
son, mRPL, a state-of-the-art RPL enhancement explicitly
designed to cope with mobility, is also considered in the

scenarios in which mobility is involved. We conduct both
simulations and experiments in an indoor testbed in a broad
range of static and dynamic scenarios. Results obtained
under static conditions show that RL-Probe can handle link
quality variations with a significant advantage over existing
solutions. The results of the experiments involving mobility
show that RL-Probe can rapidly detect sudden link quality
variations on the mobile node representing a viable alterna-
tive to handle mobility through accurate LQE. Specifically,
experiment results show that RL-Probe guarantees similar
performance compared mRPL with an overhead that is
significantly lower in terms of control messages and energy
consumption.

The remaining of this paper is organised as follows. Sec-
tion 2 provides an overview of related work. In Section 3,
we present RL-Probe and we evaluate its performance in
Section 4. Finally, in Section 5 we draw our conclusions.

2. Background and Related Work

In the following subsections, we first provide background
information on RPL, then, we overview the works that are
the most relevant to our study. Specifically, we review both
LQE approaches for RPL aimed at monitoring links quality,
and mechanisms proposed to improve mobility support in
RPL.

2.1. Background on RPL

RPL is an IPv6-based routing protocol specifically designed
for lossy environments and resource-constrained embedded
devices [3]. Specifically, RPL employs a distance vector
routing algorithm which builds a logical topology on top of
the physical network. In particular, the topology is a Desti-
nation Oriented Directed Acyclic Graph, DODAG for short.
The root node of the DODAG initialises the DODAG for-
mation by emitting DODAG Information Object messages
(hereafter DIOs for short). Non-root nodes listen for DIOs
and use the included information to join a DODAG. As
a node joins a DODAG, it starts advertising its presence
through the emission of DIO messages. Each DIO message
specifies the rank of the sender, which is a scalar measure of
the distance of that node from the root1. To avoid loops in
the logical topology the rank must monotonically decrease
along an upward path towards the DODAG root.

As DIO messages are received from the neighbours, each
node updates its view of the topology. In particular, node’s
neighbours with lower rank are selected to form a parent
set which is used for data forwarding. Among them, a
preferred parent is selected to forward traffic towards the
root. Other important RPL control messages are the: (i)

1The rank of each node is computed on the basis of an Objective
Function (OF for short), which also defines how nodes select parents.
Although the rank is not meant as a path cost, it is typically obtained
from path metrics that are somehow function of the distance from
the root, e.g., number of hops or each-to-end packet delays.
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DODAG Information Solicitation (DIS ), which is a mul-
ticast message used to trigger the transmission of DIO
messages from neighbours; and (ii) Destination Advertise-
ment Object (DAO), which is propagated upward (along
the DODAG) to build the downward routes. To reduce the
overhead associated to routing signalling RPL use a Trickle-
based strategy [18, 14], an adaptive beaconing scheme that
exponentially increases the transmission timers when the
network conditions are considered stable. Thus, the pe-
riodic transmission of control packets, scheduled by the
Trickle algorithm, is the main mechanisms employed by
RPL to detect topological changes. In addition, RPL uses
the Neighbour Discovery Protocol (NDP, defined in RFC
4861 [19]) to determine if a neighbour is no longer reachable
on a link. However, in NDP a router advertises its pres-
ence flooding the network with special messages, the router
advertisements, which may easily lead to excessive proto-
col overheads. Therefore, in 6LowPAN networks router
advertisements are typically sent only in response to router
solicitation messages, which limits the responsiveness of
the neighbour unreachability detection. Finally, when a
network inconsistency is detected (e.g., a network loop or
preferred parent change) a repair procedure is triggered.
This repair mechanism can be local (e.g., the node detaches
from the DODAG and tries to reconnect) or global (the
current DOAG is invalidated and a new DODAG is built).

2.2. LQE in RPL

There is a large body of research on LQE in WSNs and it
is out of the scope of this paper to overview the several link
quality metrics that exist in the literature (the interested
reader is referred to the comprehensive survey [13]).
From a general perspective, a LQE framework consists

of three components: i) link monitoring, which is the mech-
anism used to collect link measurements; ii) link measure-
ment, which specifies the information to be retrieved, and
iii) metric evaluation, which defines the metric to assess the
link quality. First RPL implementations employed simple
passive monitoring techniques, which leverage on statistics
of transmission failures for the links used by data traffic [20].
However, data-driven link estimation methods do not apply
to idle links, and the reactivity of such methods heavily
depends on the network traffic patterns. Furthermore, over-
hearing is required to monitor links to neighbouring nodes
that are not the preferred parent [21]. Thus, recent RPL
implementations prefer active monitoring to measure link
qualities through probes. The Contiki 3.0 RPL implementa-
tion, for instance, includes an optional probing mechanisms
(dubbed RPL-PP), in which neighbours are probed peri-
odically through unicast DIO messages. The target of the
probe is selected following a round robin strategy, except
the link to the preferred parent that pre-empts the other
links to neighbouring nodes in the probing schedule if its
quality has not been updated in a given interval.
It is generally agreed that unicast-based probing pro-

vides accurate link measurements [22]. The downside is
that neighbours are assessed individually, which results

into long convergence times for link quality estimation,
especially when large or dense networks are considered. In
order to reduce the measurement delay, a broadcast-based
probing has been proposed in many RPL extensions. This
is implemented in different ways, e.g. forcing the periodic-
ity of routing control messages [23], or sending bursts of
RPL control messages during specific phases of network
operations (e.g. at network formation) or at the occurrence
of certain events (e.g. during parent changes) [8]. Those
schemes are sender-initiated, as the transmitting node gen-
erates the probe packets. One the other hand, some RPL
variants use receiver-side probing schemes, which use infor-
mation from received probes to estimate link quality. For
instance, in [7] each node triggers the link monitoring by
sending a multicast DIS message to its neighbours, which
reply with a train of unicast DIS messages. The advantage
is that multiple neighbours can be monitored in parallel
even if unicast probes are used. One potential drawback of
this approach is that the metric computation is performed
on the opposite direction to data transmission. However,
many experimental studies show the symmetry of wireless
links in real use cases of WSNs [12, 24].

All the above-described mechanisms adopt basic mea-
surement schemes. However, there are a few examples of
more sophisticated solutions for LQE, which use a hybrid
approach by combining multiple complementary methods.
For instance, a link-quality measurement framework is
proposed in [15], which combines three measurement tech-
niques: passive, cooperative, and active monitoring. How-
ever, this framework cannot be easily applied in low-power
wireless networks because it requires the maintenance of
large link-state tables and leverage on cross-traffic overhear-
ing. Differently from this prior work, RL-Probe proposes
a lightweight framework that can be implemented in con-
strained devices in which different methods for LQE are
adopted.

2.3. Machine Learning and LQE

Machine learning techniques are frequently used for LQE,
also in low-power wireless networks. For instance, fuzzy
logic is used in [9] and [25], and fuzzy rules are defined to
combine multiple link metrics while compensating for the
uncertainties in the wireless channel conditions. Supervised
and online regression classifiers are proposed in [26] and [27,
28], respectively, to predict the quality of a wireless link in
the near future based on historical information. Differently
from prior work, in this study we do not apply machine
learning methods to the metric evaluation but to the process
of link measurement.

2.4. RPL Mobility Extensions

A survey of recent RPL extensions and modifications to
improve mobility support is provided in [10]. Prior work
has shown that RPL provides a fast network setup but
that mobility support is not adequate and it should be
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improved [29]. Most of existing solutions for mobility man-
agement in RPL focus on modifying native RPL mecha-
nisms to improve RPL ability of detecting link failures, or
to speed up the handoff and local repair procedures.
In ME-RPL [5] nodes are separated as mobile nodes

(i.e. nodes with unstable links) and fixed nodes, with
mobile nodes forced to act only as leaf nodes to avoid
network paths through them. Then, mobile nodes must
advertise their mobility status in control messages and
generate frequent DIS messages to update their parent set
information. The time between DIS messages is computed
based on the frequency of preferred parent changes using
a simple multiplicative increase/multiplicative decrease
algorithm.
MoMoRo [9] quickly reacts to packet transmission fail-

ures by immediately resending the lost packet, and starting
a new route search (by broadcasting beacons and collecting
updated routing information from the neighbours) if the
second attempt also fails. Furthermore, MoMoRo uses a
fuzzy estimator that combines different link metrics (ETX,
average RSS, symbol error rate variance) to classify links
based on their probability of disconnection.

As for ME-RPL, the authors in [6] proposes that mobile
nodes only connect as leaves in the DODAG. Furthermore,
a reverse Trickle timer – the timer starts from the maxi-
mum value and halves the DIO sending intervals after each
new DIO transmission – is used by the preferred parents
of mobile nodes to trigger DIO messages. The implicit
assumption of this approach is that mobile nodes’ stability
decreases with time. An adaptation of the Trickle timer
algorithm for better mobility support is also proposed in
mod-RPL [11]. Specifically, mod-RPL takes into account
the trajectory and velocity of mobile nodes when selecting
the sending interval of DIO messages, and it dynamically
adapts the timer to the distance between the mobile node
and its preferred parent.

KP-RPL is a position-based extension of RPL to provide
mobility support [30]. Standard RPL is used for routing
between fixed nodes, while mobile nodes make their routing
decisions using positioning information obtained by apply-
ing a Kalman filter on RSSI measurements. Furthermore,
mobile nodes generate a blacklist to discard neighbours
that could not be reachable due to positioning errors.

In conclusion, all the above-described schemes are specif-
ically designed to handle mobility through ad-hoc mech-
anisms that usually do not perform accurate LQE. Dif-
ferently from such solutions, our proposed approach is
not restricted to support only node mobility, but it can
seamlessly manage node mobility through fine-grained LQE,
without requiring modifications of standard RPL or a-priori
knowledge of which nodes are mobile.

Overview of mRPL. We present mRPL [8] in more details
as it will be used as benchmark in the following evaluation.

Basically, mRPL integrates smart-Hop, a handoff scheme
for low-power networks [31], in RPL. As in [5, 6, 30] mo-
bile and fixed nodes are separated. Then, mobile nodes

monitor the link quality by receiving DIO messages from
their preferred parents. A mobile node disconnects from
the preferred parent and enters a discovery phase if the
average received signal strength is below a given thresh-
old or if no packets are received by the parent before a
connectivity timer (TC) expiration. To avoid that the
high variability of wireless links causes frequent handoffs
a hysteresis mechanism is applied to this RSSI threshold.
During the discovery phase, the mobile node multicasts
DIS messages to all neighbouring nodes and collects their
unicast DIO replies to decide which new preferred parent
to select based on the average RSSI level. As an additional
stability mechanism, a mobile node repeats the discovery
procedure m times after switching to a different preferred
parent to check the stability of that node.
mRPL introduces additional timers to increase handoff

efficiency and reliability. In particular, the mobility detec-
tion timer (TMD) is used to detect connection losses due
to the existence of external objects (obstacles between the
sender and the receiver). The handoff timer establishes the
transmission period of DIS messages to the neighbouring
parents. Finally, a reply timer (TR) is used to select the
time instant at which a parent should reply to the mobile
node to reduce the probability of collision between control
messages during the handoff process.

3. The RL-Probe framework

This section describes RL-Probe in details. First, we pro-
vide background material on the multi-armed bandit model.
Then, we explain the design rationale behind RL-Probe.
Finally, we detail the main mechanisms and algorithms
used in RL-Probe.

3.1. Multi-armed Bandit Background

Generally, a multi-armed bandit (MAB) model is used to
describe a learning problem in which an agent must repeat-
edly choose among different options, or actions [16]. After
each choice, the agent receives a reward chosen from an
unknown stationary probability distribution that depends
on the selected action. The objective of the agent is to
maximise the expected total reward over a time horizon.
The MAB model is so named by analogy to a slot machine
that has multiple levers, with different but unknown prob-
abilities of hitting the jackpot. Then, the player should
try to find the best levers that maximise the winnings by
repeatedly playing.

More formally, let us assume that time is discretised and
time slots are numbered as n = 1, 2, . . .. Then, let U be the
set of actions (or arms). At round n, the arm pulled is u(n)

and the reward received is W (n+1). We assume that the
reward provided by arm u follows a random distribution
Fu(x), which is unknown. Now, let s(n) be the represen-
tation of the system state at round n and let S be the
discrete set of possible states. The history of the system at
a given stage is the sequence of decisions, observed states
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and collected rewards. For the sake of tractability, MAB
models usually assume the Markov property, i.e., rewards
depend only on the current state and the current action
and not on the full history of previous actions and states.
Then, the core of a MAB model is the policy π, namely
the mapping function between states and actions, which
should maximise the amount of rewards the agent receives
over time. Several methods have been proposed in the
literature to learn the optimal policy without requiring
a model of the system behaviours, but leveraging only
on the experience obtained by iteratively interacting with
the system. As discussed more in depth in the following
sections, these learning techniques have to cope with the
exploration/exploitation dilemma, which implies balancing
immediate gains (i.e., selecting the action with the maxi-
mum expected reward) with knowledge creation to make
better decisions in the future (i.e., selecting actions that
appear to be worse but could potentially be the best).
Typically, a probabilistic learning strategy is defined that
assigns a probability to each possible action in a state
according to an estimation of the current state value.

3.2. Overview of RL-Probe

One of the main distinct features of RL-Probe over exist-
ing probing strategies for LLNs is that it adopts a hybrid
approach to adaptively combine synchronous and asyn-
chronous LQE techniques. More precisely, the synchronous
LQE technique relies on unicast probes to provide accurate
link quality measurements. However, we design two novel
mechanisms to make unicast-based probing more adaptive
and responsive, without introducing excessive probing over-
heads. First, we formulate the selection of the probing
period as a multi-armed bandit problem to dynamically
adjust the probing frequency to the link variability in real
time. Our learning-based approach provides a good trade-
off between overhead and responsiveness to varying link
qualities. Secondly, we cluster neighbours into groups and
we assign different probing priorities to each group. The
clustering and the priority selection are based on the impor-
tance of each node in RPL route maintenance and recovery
procedures. The rationale behind this approach is that
wireless link correlation (e.g., due to cross-network inter-
ference under shared medium) has been observed in many
recent studies [32]. Consequently, independent estimates
of link qualities are likely to be superfluous, especially in
dense networks.
Our asynchronous LQE mechanism is designed to effi-

ciently handle sudden and disruptive link variations. To
this end, we integrate in RL-Probe a receiver-side prob-
ing method first proposed in [33], which allows to rapidly
assess the quality of the links from a node to all its neigh-
bours with a sufficient accuracy. In principle, asynchronous
probing could facilitate the isolation of faulty nodes/links,
or the detection of preferred parent unavailability due to
mobility. Clearly, asynchronous probing must be activated
on-demand when it is most likely needed because it is costly
in terms of energy and bandwidth consumption. Thus, we

Algorithm 1 Main procedure of RL-Probe

Require: Ni � set of neighbours
1: loop
2: if (received packet p from j) then
3: rssi ← GetRSSI(p);
4: rssii,j [].add(rssi);
5: rssiTrendi,j ← CalcRSSITrend(rssii,j []);
6: if (p = ACK and j = pp) then
7: Δrssii,j = rcvTh−rssi

rcvTh
;

8: if (rssiTrendi,j < 0 and Δrssii,j ≤ α) then
9: do receiver-side probing;

10: for all j ∈ Ni do
11: UpdateLQE(i,j);
12: end for
13: end if
14: else if (p = NACK and j = pp and

cvi,j [].get(last) ≤ β) then
15: do receiver-side probing;
16: for all j ∈ Ni do
17: UpdateLQE(i,j);
18: end for
19: end if
20: else if (timer Tp expires) then
21: UpdateClusters(Pi,Oi);
22: x ← Uniform(0, 1);
23: if (x ≤ �) then � exploitation phase

24: u ← argmax
x

�
W (x)[].get(last)

�
;

25: else � exploration phase
26: u ← random(D1, D2, D3);
27: end if
28: if (x = D1) then
29: j ← BestNode(Pi)
30: else if (x = D2) then
31: j ← BestNode(Oi)
32: end if
33: if (x �= D3) then
34: do unicast probing to j;
35: UpdateLQE(i, j);
36: UpdateUtility(i, j);
37: end if
38: UdapteReward(i,j,u)
39: end if
40: if (sent data packet to pp) then
41: UpdateLQE(i, pp);
42: UpdateUtility(i, pp);
43: end if
44: end loop
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also propose specific triggering mechanisms for our asyn-
chronous LQE technique, which are based on the trend
of received signal strength indicator (RSSI) values and
link qualities. Our solution reduces the cost of recovering
RPL connectivity by ensuring quick detection of network
disruptions without depleting the limited resources of the
devices.

For the sake of clarity, the pseudocode of the main mech-
anisms of RL-Probe are provided in Algorithm 1 and Algo-
rithm 2.

3.3. Asynchronous Probing

As outlined above, the proposed asynchronous probing
scheme exploits the measurements of RSSI values to detect
sudden link variations. More precisely, whenever a node i
receives a packet from a neighbour j, it obtains the RSSI
value from the wireless transceiver (line 3 in Algorithm 1).
A list of recent RSSI values is maintained for each link
li,j (line 4), which is used to estimate the trend in RSSI
variations (line 5). For the sake of computational efficiency,
in our implementation we estimate the RSSI trend using
a simple moving average (SMA) filter over the last three
measurements of RSSI differences between consecutively
received packets. Then, our asynchronous probing has
both a proactive and reactive phase. The proactive phase
tries to anticipate topology changes and it is activated
when a packet is successfully transmitted to the preferred
parent pp (i.e., the sender receives a MAC ACK from the
preferred parent). If both the RSSI trend is negative and
the last RSSI sample is close to the receiver sensitivity
rcvTh, we predict that the link quality of li,j is worsening
(line 8). This condition triggers our receiver-side probing2

to update the link qualities to all neighbours and to quickly
search for alternative links (lines 9-11). On the other
hand, the reactive phase is designed to facilitate local
repair operations after unexpected network disruptions.
In this case, the receiver-side probing is activated when
there is a transmission failure (i.e., the sender receives a
MAC NACK from the preferred parent) on a link that
has a stable link quality. The link quality stability is
measured using the coefficient of variation of the link quality
(defined as the ratio between the standard deviation σi,j

and the mean µi,j), which is maintained by the function
UpdateLQE(i, j). More precisely, a link is considered
stable if cvi,j ≤ β (line 14). Note that the selection of
threshold β is dictated by the variability of the wireless
links. Links with cvi,j lower than one are considered low-
variance. Summarising, both a successful transmission on
a rapidly degrading link and a packet loss on a stable link
activates the asynchronous probing for updating the link
quality to all nodes in the neighbourhood (lines 15-17).

2We recall that with receiver-side probing a node sends a multicast
DIS message and its neighbouring nodes reply with a train of unicast
DIS messages.

3.4. Synchronous Probing

Differently from conventional unicast-based probing
schemes, our synchronous probing does not use a fixed
probing interval, which would cause unacceptable conver-
gence delays for the link quality estimation, especially in
dense networks. On the contrary, RL-Probe clusters nodes
into separate groups and adaptively adjusts the probing
period for each group. Different approaches for such link
clustering can be devised, taking also advantage of cross-
layer information from the network layer. For instance, in
this study we define a link clustering that considers the
importance of a neighbour to maintain good RPL connec-
tivity. More precisely, let us denote with Ni the set of
neighbours of node i. We define the set Pi that contains
the best mp parents of node i, i.e. parents that have the
lowest path cost to the sink if selected as next hop by node
i. Similarly, we define the set Oi that contains up to mo

nodes from the set Ni \ Pi, which have the lowest path
cost to the sink if selected as next hop by node i. The
mp and mo parameters should be selected as a trade-off
between reliability and responsiveness. Large mp and mo

values provide coarse grained information about the links
and decrease the responsiveness of the system. On the
other hand, low mp and mo values reduce the possibility
to discover good alternative paths in case of loss of the
preferred parent. In general, mo > mp as it is more critical
to have detailed information on nodes of the parent set.

The decision-making process that determines which set to
probe and how frequently to probe it is formalised through
a MAB model. Specifically, we define three possible actions
as follows:

D1 : probe a node in Pi;

D2 : probe a node in Oi;

D3 : skip the probing.

Each of the above decisions corresponds to an independent
arm in the MAB problem. The reward associated to each
probing decision, say W (x) with x ∈ {D1, D2, D3}, corre-
sponds to the potential gain provided by probing a node
in a specific group. For instance, the gain can be a mea-
sure of the improved network responsiveness to link quality
variations. Details on reward estimation are provided later
in this section.
First of all, let us explain which is the policy used by

node i to select the probing action given the knowledge
of the average rewards. In this study, we adopt the well-
known �-greedy algorithm, which selects with probability
� the action with the maximum accumulated reward, or
greedy action (lines 23-24), and with probability (1 − �)
selects a random action (lines 25-26). By properly tuning
the � parameter it is possible to balance exploration and
exploitation phases to fast converge to the optimal action
selection. If action D1 or D2 are selected it is necessary
to decide which neighbour to probe in the set Pi and Oi,
respectively. As anticipated above, we exploit a measure
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Algorithm 2 Functions for reward computation

1: function UpdateUtility(i, j) � li,j probed link
2: ωi,j [].add(µi,j [].get(last)+σi,j [].get(last);
3: Δωi,j [].add(ωi,j [].get(last)− ωi,j [].get(last− 1);
4: if (Δωi,j .get(last) ·Δωi,j .get(last− 1) > 0) then
5: Ui,j ← Ui,j + |Δωi,j [].get(last)|;
6: else
7: Ui,j(n) ← 0 ;
8: end if
9: end function

10: function ComputeReward(i, j, u) � u MAB action
11: if (u == D1) then

12: W
(D1)
i [].add

�
max

�
0,max

j∈Pi

Ui,j(n)−C1

��
;

13: else if (u == D2) then

14: W
(D2)
i [].add

�
max

�
0,max

j∈Oi

Ui,j(n)−C2

��
;

15: else
16: W

(D3)
i [].add (max [0, Gnp − Ui,pp(n)]);

17: end if
18: end function

of the utility of a node for the RPL topology maintenance
procedure. Note that this utility measure is also used in
the reward computation. In the following we formalise the
algorithms used in RL-Probe to compute the utility and
reward metrics.

Utility and reward computation. In RL-Probe, the reward
function is mainly used to estimate the trends in link quality
variations (e.g., quality degradation for an interfered link).
To this end, we follow the same approach as in [34] and
we use the mean and the standard deviation of the link
quality metric. More formally, let us assume that each
node maintains a list of the estimated values of the mean
µi,j and standard deviation σi,j of link li,j

3. We introduce
an aggregate measure ωi,j of the link quality variability,
as the sum of µi,j and σi,j (line 2 in Algorithm 2).We can
easily compute the incremental variation of the link quality
variability as the difference of two consecutive samples of
ω,j (line 3). Intuitively, it might be appropriate to monitor
more frequently links that are showing a clear trend, in
order to timely identify a link that is quickly degrading (e.g.,
due to an external interference) or improving. Thus, we
associate a high utility to links that show a consistent link
quality variation in the last two probes (lines 4-5), while
we assign a null utility to links that are not characterised
by a steady (positive or negative) trend (line 7). Now, we
can also clarify how the BestNode(A) function chooses
the neighbour to probe in set A. In the simplest case, it
could select the node with the highest utility. However, this
would make impossible to check, even infrequently, links
with small utilities (i.e., more variable links). Following

3An exponential moving average (EMA) filter with smoothing
factor 0.8 is used to update these estimates.

the same line of reasoning of the above-discussed �-greedy
exploration strategy, the BestNode(A) function selects
the node with the highest utility with probability �, while
a random link in the set A in the other cases.
Commonly, reward functions for learning problems

should include a positive term and a negative term to
be well specified. The positive term measures the gain of
performing that action. For the case of actions D1 and D2

the gain is given by the highest utility value in the group
(lines 12 and 14). Thus, the reward of a link cluster is
high if there is at least one link in the set with a consistent
variability pattern for its link quality. Intuitively, the cost
for actions D1 and D2 should be a measure of the cost of
a unicast probe. Since we want to give higher priorities
to probing parents than other neighbours, we have that
C1≥C2. For the same reason, we assume that skipping a
probing phase provides a gain Gnp, in terms of saved node
and network resources (line 16). As a cost for the action
D3 we use the utility of the link with the preferred parent
because if the link with the preferred parent is not stable
a node should keep looking for alternative links.

Group management. As explained above link clustering is
controlled using the path cost. It is important to point out
that link quality variations, especially for neighbours with
intermediate link qualities, may yield to frequent changes
in the cluster composition. However, this can negatively
affect the convergence of the learning algorithm. Therefore,
we define a hysteresis margin for the sojourn time of a node
in the set Pi. Specifically, when a node j in the set Pi is
not anymore among the best mp neighbours for node i it
would be removed only if this condition persists for at least
a time thyst. This check is implemented in the function
UpdateClusters(Pi,Oi) (line 21 of Algorithm 1).

Preferred parent monitoring. In RL-Probe the link quality
to the preferred parent is estimated by passively monitoring
the data traffic, as in legacy RPL. For this reason, the
preferred parent is not part of the set Pi. However, the link
quality measurements are still used to update the utility
estimates for the preferred parent (line 42 of Algorithm 1).

4. Performance Evaluation

In order to implement and evaluate RL-Probe, we opted for
the Contiki 3.0 operating system (OS). The main reasons
for selecting Contiki are: i) the support of Cooja simulator,
which allows to easily port the software on real hardware,
(ii) the availability of a standard RPL implementation
that is widely used, and (iii) the availability of several
plugins that already implement mobility models, interfer-
ence models and probing techniques. Table 1 summarises
the RL-Probe parameters used in both Algorithm 1 and
Algorithm 2, which have been fine-tuned with extensive
simulations.
In this section, we evaluate RL-Probe against standard

implementations of legacy RPL, RPL-PP and mRPL using
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Table 1: RL-Probe Protocol Parameters.
Parameter value

α 3%
β 1
mp/mo 3 / 10
C1/C2 1 / 5
Gnp 10
� 0.7
thyst 10 minutes
Tp 1 minute

both simulations and experiments. Specifically, we consider
a basic RPL implementation that measures the quality of
links through passive monitoring of the links used by data
traffic [20]. Secondly, we consider RPL-PP, included in
Contiki 3.0 RPL implementation, as a solution specifically
designed to handle link quality variations. Finally, mRPL
is also considered as a term of comparison, to verify the
efficacy of RL-Probe in handling mobility. To this aim,
we ported the mRPL implementation described in [8] and
available for Contiki 2.6.1 to the latest version of the Contiki
OS. It is important to point out that mRPL needs to
differentiate between mobile nodes and fixed nodes (called
Access Points) as mobile nodes are forced to act only as
leaf nodes in the routing tree. For this reason, we compare
mRPL with RL-Probe only in scenarios in which mobility
is involved, or there are many unstable links.
Metrics. We consider three main performance metrics

in our evaluation. First, we measure the packet loss ratio
(PLR) at the sink, defined as the percentage of failed packet
transmissions over the total number of packets sent by a
node. Secondly, we consider the packet overhead measured
as the sum of the RPL control messages, including probe
packets. Thirdly, we measure the total energy consumed
during the experiments.

4.1. Simulation Analysis

A simulation study is needed to investigate the performance
in controllable and easily reproducible network conditions.
Thus, we use Cooja to simulate Tmote Sky nodes. In
WSNs, a radio duty cycling (RDC) mechanism is typically
implemented to switch on and off the radio transceiver in or-
der to save energy. ContikiMAC is the default RDC scheme
used in our tests [35]. To model realistic radio propagation
and interference we use the Multipath Ray-tracer Medium
(MRM), which supports multi-path effects [36]. We have
configured MRM parameters to achieve a 100% success
rate at 10 meters and an interference range of 20 meters.
Figure 1 shows the packet loss rate as a function of node
distance for a link under the MRM model. The traffic flows
generate a Constant Bit-Rate (CBR) traffic consisting of
small UDP messages (40 bytes) sent every one minute from
all the nodes to the sink. We simulate 24 hours of network
operations and 95% confidence intervals are computed by
replicating each simulation five times with different random
seeds.
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Figure 1: Link characterisation in Cooja simulator under the MRM
model.
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Figure 2: Simulation scenarios (the triangle is the root node).

To evaluate the proposed scheme, we consider two net-
work scenarios. The first one is depicted in Figure 2a, and
it exemplifies a corridor monitored with fixed and mobile
nodes. Specifically, 16 sensor nodes are deployed following
a square layout at a distance of 10 meters each. Then, a
mobile node moves at a constant speed v from one corner
to the following one, and every time it reaches the location
of a fixed node it pauses for p minutes. The second scenario
is depicted in Figure 2b, and it exemplifies sensor nodes
deployed in a challenged industrial environment (e.g., an
assembly line) with large moving obstacles that can impair
wireless communications. Specifically, we have three par-
allel rows of 5 sensor nodes each with one large obstacle
that moves from the left to the right corners and back, and
another large obstacle that moves in the opposite direction.
We assume that each obstacle moves to the next node in the
row and remain fixed for a time p. Furthermore, each ob-
stacle is able to completely filter out wireless transmissions
between adjacent nodes. It is important to remind that in
mRPL mobile nodes are forced to act only as leaf nodes.
This implies that mobile nodes cannot forward traffic from
other nodes. However, in a network in which there are
many mobile nodes, or many nodes experiencing unstable
links, it might be difficult to build an optimal network
topology using mRPL. Clearly, assuming that there is only
a single mobile node as in Figure 2a corresponds to consider
a best case for mRPL. On the other hand, in the network
scenario depicted in Figure 2b nodes are static but link
qualities vary significantly. In this case, it is not straight-
forward to properly configure mRPL. To fairly compare
mRPL with RL-Probe we firstly conducted an extensive
set of simulations by varying the number of nodes that
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are configured as mobile in mRPL. Then, we selected the
configuration that provided the best performance in terms
of PLR. Finally, nodes that are configured as mobile in
RL-Probe are forced to be leaf nodes also when RL-Probe
is used to avoid that the higher flexibility of RL-Probe
in topology construction might provide an advantage over
mRPL.

4.1.1. Results with mobile nodes

In this section, we report the results for the scenario il-
lustrated in Figure 2a. First of all, Figure 3a shows the
average packet loss rate of the mobile node for various
speeds and pause times. Important conclusions can be
drawn from these results. First, as expected packet loss
rates increase when increasing speed and decrease when
increasing pause times for all considered schemes. This is
due to more frequent handoffs. Secondly, passive monitor-
ing is unable to promptly cope with topology changes and
packet loss rates range from 35% to 65% in the considered
scenarios. Thirdly, unicast-based probing improves RPL
ability to detect handoffs but packet loss rates still range
from 18% to 55%. On the contrary, RL-Probe and mRPL
have similar performance and they dramatically improve
communication reliability, with packet loss rates that now
range from 2% to 12%. An in-depth explanation of the
root cause of such improvement is provided later in this
section.

Figure 3b shows the protocol overhead in terms of the
total number of RPL control messages sent during 24 hours.
Clearly, there is a significant increase in packet overheads
when active probing is used. As expected, the higher
the speed and/or the shortest the pause time (i.e., the
faster the network dynamics), the higher the protocol over-
heads. Interestingly, mRPL generates the highest protocol
overheads among the considered routing schemes, while
RL-Probe has similar overhead performance as RPL-PP.
Analysing more in details the results we found out that
the adaptive beaconing of RL-Probe reduces the number
of unicast-based probing that are generated with respect
to RPL-PP. However, these protocol overhead savings are
compensated by the receiver-side probing, which generates
trains of consecutive probes. On the other hand, handoff
process in mRPL is quite aggressive as it generates long
trains of multicast DIS messages to neighbouring nodes.

It may be argued that an increase in protocol overheads
would severely affect the node energy consumption. To
verify this conjecture, Figure 3c shows the total energy
consumption as estimated by Cooja. Clearly, RPL-PP,
mRPL and RL-Probe consume more energy than basic
RPL without probing. However, RPL-PP and mRPL have
similar energy consumption while RL-Probe consumes up
to 30% less energy than the other protocols, although
RL-Probe and RPL-PP have similar protocol overheads.
This counterintuitive result can be explained by observing
that retransmissions have a great impact on the energy
consumption. Thus, avoiding the use of lossy links can
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Figure 3: Simulation analysis of MN’s performance for different speed
values and pause times.
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Figure 4: Handoff events and packet losses (crosses) for MN when
p = 0.01 m/sec and p = 5 minutes.

balance the additional energy consumption due to active
probing.

To explain more in details the key advantages of RL-
Probe, Figures 4 show the sequence of handoff events and
packet losses for the case v = 0.02 m/sec and p = 5 min-
utes (the best case for both RPL and mRPL). The results
indicate that standard RPL with passive link monitoring
frequently changes the preferred parent, and it rarely se-
lects the optimal one. On the contrary, RPL-PP is able to
follow more closely the best parent. However, handoffs are
mainly triggered by packet losses and round-robin periodic
probing in RPL-PP causes a burst of packet losses before
discovering the new optimal parent. A similar issue is also
observed in mRPL, which triggers the discovery phase after
a packet loss. Furthermore, the handoff delays in mRPL
also cause short disconnections of the mobile node (pre-

ferred parent id equal to 0). On the contrary, the analysis
of link trends allows RL-Probe to anticipate changes of link
characteristics and to timely switch to a better preferred
parent. Finally, it is interesting to note that a higher num-
ber of packet losses occurs when the mobile node is close
to the sink. This can be explained by observing that an
inaccurate ETX estimation of the link to the neighbours
has a greater effect on the rank computation of nodes close
to the sink than on nodes far from the sink.

4.1.2. Results with mobile obstacles

In this section, we report the results for the scenario il-
lustrated in Figure 2b, where network topology changes
are due to variations of link conditions caused by mobile
obstacles and not handoffs. Figure 3a shows the average
(bars) ad maximum (squares) PLR of all nodes for differ-
ent pause times (p = 4, 8, 16 minutes). Results indicate
that RL-Probe achieves a three-fold decrease of both aver-
age and peak PLRs with respect to the other considered
schemes, including mRPL. On the contrary, mRPL per-
forms similarly to RPL and RPL-PP. Several factors con-
tribute to mRPL inefficient behaviour. First, the hysteresis
margin in mRPL assumes that the transitional region of
links is quite wide [31]. However, this decreases the abil-
ity of mRPL to detect sudden changes of link qualities
that occur within the transitional region. Furthermore,
if the quality of the link to the preferred parent is stable
mRPL does not trigger discovery phases, which are needed
to quickly detect if the quality of the links to neighbour-
ing nodes is suddenly improved (e.g., because an obstacle
has moved). Figure 5b shows the protocol overhead in
terms of RPL control messages. We can observe that RL-
Probe rapidly limits protocol overheads as the network
conditions become less variable (i.e., pause times increase).
Thus, RL-Probe generate higher protocol overheads than
mRPL for p = 4 minutes, but the overheads are similar for
p = 16 minutes. The same trend can be observed also for
the total energy consumption (see Figure 5c). Summaris-
ing, in case of link quality variability due to changes in
network conditions RL-Probe outperforms mRPL in terms
of communication reliability with similar network overhead
and energy waste.

4.2. Experimental Evaluation

In this section, we report the results obtained from real ex-
periments conducted in an indoor IoT testbed [37]. Specif-
ically, our low-power wireless network is composed of 23
wireless sensor nodes deployed in office spaces, student labs,
and corridors on two floors in the Department of informa-
tion Engineering of the University of Pisa. Figure 6 shows
the layout of the testbed. Sensor nodes are TelosB motes,
equipped with an MSP430 micro-controller that can run
a wide range of Operating Systems for sensors. Thus, the
same Contiki code used for Cooja simulations is loaded
on the testbed. IEEE802.15.4 connectivity is provided
through the cc2420 wireless chip equipped with an external
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Figure 5: Simulation analysis with mobile obstacles and different
pause times.
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Figure 6: Map of the testbed

Table 2: p-th percentiles of the average ETX of the wireless links in
the testbed.

p value
10% 25% 50% 75% 90%

Average ETX 1.0 1.0 1.025 1.245 2.776

5dBi antenna. The maximum number of active links in the
network is 178. Table 2 reports the main percentiles of the
average ETX across all links, as measured by unicast-based
probing without any data or control traffic in the network.

The first set of results is obtained considering a static
scenario in which there are not mobile nodes. However, we
emphasise that our testbed is deployed in a dynamic envi-
ronment and the experiments have not been run at special
times to avoid interference. Thus, our testbed is susceptible
to changes in radio channel conditions due to interference
(e..g, from other 802.15.4 radios and from 802.11 radios),
and this interference is highly time-varying. In this scenario
all nodes are configured to generate a CBR traffic consist-
ing of 40-bytes UDP messages sent every minute to node 1.
The underlying MAC protocol is CSMA and ContikiMAC
is used as RDC layer. The radio transmission power is set
to the maximum value (0 dBm) to maximise the network
density and the number of available links. Figure 7 shows
the average packet loss ratio and energy consumption mea-
sured for RPL, RPL-PP and RL-Probe during experiments
that last three hours. We omit mRPL as we already know
that it is not optimised for static scenarios. The experi-
mental results confirm the trends observed in simulations.
Specifically, RL-Probe and RPL-PP help reducing the PLR
compared to legacy RPL because they provide faster rout-
ing adaptation to channel fluctuations. Such improvement
is paid with an additional energy consumption overhead,
caused by the active probing traffic. Note that the absolute
values of PLRs are low. This is explained by observing
that there is a careful planning of the sensor locations and,
the use of the maximum transmission power ensures the
existence of several good links.

The second set of results is obtained in a scenario in
which there is a mobile sensor node. Figure 8 illustrates
the trajectory of this mobile node. Specifically, after an
initial set-up phase of 5 minutes, the node moves at 0.5
m/s from one specified point to another, pausing at each
location for 2 minutes. The path is covered round-trip, i.e.
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consumption in the static scenario.
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Figure 8: Trajectory followed by the mobile node during the mobility
experiments.

from point 1 to 6 and then back from 6 to 1. Traffic is
only originated by the mobile node towards node number
1, which is selected as sink and RPL root node. A CBR
traffic is employed i.e. a 40-byte UDP message is emitted
every 10 seconds. In this scenario, RDC is disabled, i.e.
each node keeps its wireless transceiver on all the time, in
order to avoid any possible influence of duty cycling on
handoff procedures. Furthermore, the radio transmission
power is lowered to -7 dBm to make the network topology
sparser so as to reduce the number of neighbours of the
mobile node. This guarantees that each movement of the
mobile node results into a change of the parent node. Each
experiment lasts 30 minutes.

Figure 9 shows the average packet loss experienced by
the mobile node with different strategies. We can observe
that RL-Probe slightly outperforms mRPL, which confirms
the effectiveness of multicast probing in obtaining a rapid
assessment of the link quality when multiple neighbours
appear/disappear at the same time. On the other hand,
standard RPL experiences many packet losses every time
the mobile node changes its location, due to the lack of
an active strategy for LQE. RPL-PP achieves better per-
formance than basic RPL but it is less efficient than both
mRPL and RL-Probe. This can be explained by consid-
ering that unicast probing assesses links individually and
therefore more time is needed to discover a better preferred
parent when moving.

Figure 10, instead, quantifies the overhead produced by
each strategy. Specifically, the figure reports the average
number of RPL control packets (including both probe and
response packets) per second generated by the nodes in the
network. We distinguish between the overhead generated

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

RPL RPL-PP mRPL RL-Probe

%

Figure 9: Experimental analysis, average packet loss in the mobile
scenario.
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Figure 10: Experimental analysis, control message overhead in the
mobile scenario.

by static nodes and the overhead generated by the mobile
node. As expected, legacy RPL is the strategy characterised
by the least overhead, as nodes only transmit RPL control
packets for topology discovery without any probe packet.
RPL-PP, instead, shows a slight increase in the overhead as
a light unicast probe traffic is employed. Both mRPL and
RL-Probe are characterised by the highest overhead due to
the active probe traffic generated by each node. However,
the overhead generated by the mobile node using mRPL
is four times the overhead provided by the same mobile
node when using RL-Probe. This clearly shows that the
responsiveness of mRPL to node mobility is obtained at
the cost of introducing frequent probing. On the contrary,
RL-Probe does not penalise the mobile node, who requires
a minimal additional overhead with respect to fixed nodes
to detect link failures.

5. Conclusion

In this paper, we have proposed RL-Probe, link quality
estimation strategy for RPL-based WSNs. RL-Probe em-
ploys synchronous and asynchronous monitoring schemes
to maintain up-to-date information on link quality towards
the neighbours and react to sudden topology changes. RL-
Probe achieves a trade-off between low probing overheads
and responsiveness to changing network conditions by lever-
aging on a lightweight reinforcement learning technique to
control the active probing operations. This is crucial to min-
imised energy consumptions of tiny, resource-constrained
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devices. Furthermore, we have integrated our solution in
the RPL implementation that is included in the Contiki
operating system for embedded devices. A performance
evaluation based on both simulations and real-world ex-
periments has been carried out, demonstrating how the
proposed approach guarantees better performance with
respect to state-of-the-art LQE techniques for RPL. In par-
ticular, results show that the proposed approach does not
only properly react to link quality variations, but it is also
effective to handle topology variations due to mobility.
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D. do Rosário, M. Alves, L. B. Becker, F-LQE: A Fuzzy Link
Quality Estimator for Wireless Sensor Networks, in: Proc. of
EWSN’10, 2010, pp. 240–255.

[26] Y. Wang, M. Martonosi, L.-S. Peh, Predicting Link Quality Using
Supervised Learning in Wireless Sensor Networks, SIGMOBILE
Mob. Comput. Commun. Rev. 11 (3) (2007) 71–83. doi:10.

1145/1317425.1317434.
URL http://doi.acm.org/10.1145/1317425.1317434

[27] T. Liu, A. E. Cerpa, Temporal Adaptive Link Quality Prediction
with Online Learning, ACM Transactions on Sensor Networks
10 (3) (2014) 46:1–46:41.

[28] T. Liu, A. E. Cerpa, Data-driven Link Quality Prediction Using
Link Features, ACM Transactions on Sensor Networks 10 (2)
(2014) 37:1–37:35.

[29] N. Accettura, L. A. Grieco, G. Boggia, P. Camarda, Performance
analysis of the rpl routing protocol, in: Proc. of IEEE ICM’11,
2011, pp. 767–772.

[30] M. Barcelo, A. Correa, J. L. Vicario, A. Morell, X. Vilajosana,
Addressing Mobility in RPL With Position Assisted Metrics,
IEEE Sensors Journal 16 (7) (2016) 2151–2161.

[31] H. Fotouhi, M. Alves, M. Z. Zamalloa, A. Koubâa, Reliable
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