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Abstract: Multiple sclerosis is a multifactorial and heterogeneous neurological 
disease; hence, several experimental animal models had to be developed to mimic 
the different features of human pathology. Three main classes of animal models 
have been developed:experimental autoimmune encephalomyelitis (EAE), cupri-
zone intoxication, and Theiler’s murine encephalomyelitis virus (TMEV) infection. 
The EAE model is the most versatile as it allows the reproduction of different 
patterns of multiple sclerosis; it is mostly relevant for relapsing-remitting multiple 
sclerosis and has allowed the development of several first-line, disease-modifying 
drugs for the treatment of multiple sclerosis. The other two models are less flexi-
ble than the EAE model and, to date, have not led to the discovery of any clinically 
relevant therapies. The cuprizone model mostly mimics the acute and chronic 
courses of multiple sclerosis, and it may represent a useful tool to develop novel 
therapies to protect oligodendrocytes and stimulate remyelination. Finally, the 
TMEV infection is the reference model to specifically study viral-mediated mecha-
nisms of acute and primary progressive multiple sclerosis.
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Introduction

Multiple sclerosis is a complex and heterogeneous neurological illness with regard 
to its pathological phenotype (e.g., primary progressive, secondary progressive, 
and relapsing-remitting) (1) and etiology (e.g., autoimmune-dependent and auto-
immune-independent) (2, 3). Although many conflicting hypotheses exist about 
the nature of the primary hit triggering this pathology (e.g., multiple genetic pre-
disposing factors in interaction with different environmental factors) (4), multiple 
sclerosis is characterized by the concomitant manifestation of a wide range of 
specific biological alterations. For instance, demyelination, inflammation, astro-
gliosis, microglia activation, macrophage and lymphocyte infiltration, and axonal 
damage represent common hallmarks of this pathology (5–8). Due to the large 
number of molecular mechanisms, variability of this disease among patients, and 
uncertain etiology, the following three experimental animal models, each repro-
ducing different features of human pathology, have been developed: the experi-
mental autoimmune encephalomyelitis (EAE) model, the cuprizone intoxication 
model, and the Theiler’s murine encephalomyelitis virus infection (TMEV) model. 
In this chapter, the characteristics of these animal models, the procedures of 
induction, the main biological features, and their relevance in multiple sclerosis 
research are described.

The EAE Model of Multiple Sclerosis

Since 1947, when Walt and colleagues suggested that the EAE is a suitable exper-
imental model for multiple sclerosis, many research projects have employed this 
model to investigate the pathophysiological mechanisms underlying human 
multiple sclerosis and to test new therapies (9). EAE is characterized by an auto-
immune reaction against the myelin proteins in the central nervous system. Two 
distinct protocols are used to induce EAE, the administration of activated 
T-lymphocytes that act specifically against myelin antigens or, more frequently, 
the administration of myelin-derived peptides, which, in turn, cause an immune 
reaction against specific antigenic myelin proteins. Different types of peptides, 
such as the myelin basic protein (MBP), proteolipid protein (PLP), myelin oligo-
dendrocyte glycoprotein (MOG), and several of their encephalitogenic epitopes 
are used to induce EAE (10). The peptides are generally administered via subcu-
taneous injection, solubilized in complete Freund’s adjuvant solution, which 
functions as a depot of antigens for a prolonged and continuous release of the 
active peptides. However, in 2002, it was pointed out that this adjuvant exerts 
some inhibitory activities on EAE pathology, suggesting that it should be used 
with caution (11). More recently, it has been shown that EAE can be induced 
even without the Freund’s adjuvant (12).

Three lymphocytic cell populations mediate the induction of EAE, Th1, and 
Th17 types of the CD4+ cells, and CD8+ T-lymphocytes, with the CD4+ lympho-
cytes being the main mediators; after entering the central nervous system, these 
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cells target myelin proteins and mature oligodendrocytes causing myelin degrada-
tion, axonal damage, and oligodendrocyte apoptosis (13–16). The addition of the 
pertussis toxin to the injection mixture facilitates the migration of the lympho-
cytes across the blood–brain barrier (17). The migration of T-cells into the brain 
is typically accompanied by monocyte and/or macrophage infiltration and activa-
tion (18). Moreover, resident microglia and astrocytes actively respond to the 
insult and undergo activation as well. All these cell types have been shown to 
produce and release inflammatory mediators, such as chemokines and cytokines, 
thus contributing to the axonal damage and demyelination (18, 19).

In the EAE model, the peak of demyelination is reached after 10–15 days from 
the injection, primarily confined to the spinal cord, although a certain degree of 
demyelination is also detected in the optic nerve, cerebral cortex, and cerebellum 
(20, 21). Moreover, axonal damage and generalized paralysis are progressively 
developed with demyelination (8). Specifically, the paralysis starts from the tail, 
then affects the hind limbs, and ultimately compromises the forelimbs.

The pathological characteristics of EAE are not uniform as they considerably 
vary depending on the type of the epitope and the type of the animal used. For 
instance, in C57BL/6 mice, encephalitogenic epitopes of MOG induce a chronic 
progressive disease, whereas in NOD/Lt and SJL mice and Lewis rats they cause 
a chronic relapsing-remitting disease with variable severity (17, 22, 23). 
Susceptibility to EAE is modulated by genetic factors that influence the response 
to myelin antigens. For instance, B6 and SJL mice are resistant to MBP immuni-
zation, but they respond well to MOG treatment. This variability seems to be 
modulated by some polymorphic regions within the major histocompatibility 
complex genes (24–25). In PL/J mice, the epitope injection induces a noncanoni-
cal form of relapsing-remitting disease (26). Interestingly, in SJL mice, a sponta-
neous relapsing-remitting EAE can be induced if the mice have been previously 
engineered to carry a specific T-cell receptor for myelin oligodendrocyte glyco-
protein (27). Finally, the disease course differs between genders; for example, 
SJL, ASW, and NZW females show a higher incidence of EAE, resembling the 
higher prevalence of multiple sclerosis in women when compared to men (28).

Lewis is the most commonly used rat strain for EAE. Lewis rats develop brain 
pathology without the need of pertussis toxin that represents an artifact with 
regard to human pathology. However, inducing EAE in Lewis rats presents several 
drawbacks, as the obtained pathological phenotype lacks fundamental hallmarks 
of human multiple sclerosis. In particular, different to the human pathology, 
demyelination is not clearly detected and inflammation is not widespread in the 
whole brain, but mostly localized in the spinal cord. Even though rats have been 
considered valid experimental animals to study the activity of the immune cells in 
the central nervous system, they have been gradually supplanted by mice for mul-
tiple sclerosis research. Mice are easier to handle and particularly convenient for 
genetic manipulation (29). In addition to mice and rats, EAE can be induced in 
many other animal species like primates, rabbits, and guinea pigs (30–33). In 
summary, EAE reproduces many aspects of multiple sclerosis in terms of disease 
course, pathogenic mechanisms, and pathological features. In particular, myelin 
degradation and axonal damage are prominent in the spinal cord, consequent to 
autoimmune processes primarily mediated by the infiltrating CD4+ T-lymphocytes. 
EAE is broadly deemed to be a good model to test immunosuppressive therapeu-
tic agents, as demonstrated by the fact that it led to the establishment of several 
clinically relevant therapies (34, 35).
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The Cuprizone Model of Multiple Sclerosis

The intoxication models of demyelination are based on the administration to lab-
oratory animals of bioactive molecules that specifically target oligodendrocytes 
causing their degeneration and death, ultimately leading to severe demyelination 
in the brain. Several toxins such as ethidium bromide, lysolecithin, and cuprizone 
have been shown to efficiently trigger demyelination in the central nervous sys-
tem (36). Of these, cuprizone is widely used in multiple sclerosis research.
Cuprizone, bis-cyclohexanone oxaldihydrazone, is a neurotoxic copper chelator 
agent. Its deleterious effects on rodent brain were discovered by the pioneering 
work of Carlton in 1966 (37). Administered in the past, in addition to Swiss, 
CD1, and ICI mice (38), to other species, like guinea pigs, today cuprizone is 
prevalently used in mice (37, 39). It has been suggested that rats do not develop 
demyelination with cuprizone as consistently and reproducibly as mice do and 
that several rat brain areas remain completely unaffected (40). However, recent 
studies show that Wistar rats, in response to cuprizone, develop widespread 
demyelination of the cortex, corpus callosum, and cerebellum (41, 42) suggesting 
that rats, similarly to mice, are suitable for longitudinal studies. Indeed, rats could 
be a better choice for imaging studies due to their larger size (42).

C57BL/6 is the most widely used strain of mice for the induction of the 
cuprizone-mediated multiple sclerosis. In this strain, a minimal dosage of the 
compound is sufficient to cause highly reproducible brain pathology with limited 
peripheral side effects, such as weight loss and liver toxicity. As established by 
Hiremat and colleagues in 1998, cuprizone is administered per os by using a 
0.2% w/w powdered rodent standard chow ad libitum for 5–6 weeks to C57BL/6 
mice aged 8–10 weeks (43). After 6 weeks of cuprizone diet, a maximum of 
demyelination is reached within the gray and white matter, especially in the cor-
pus callosum area (43) and the superior cerebellar peduncles (44, 45), but not in 
the spinal cord (46); motor disabilities become prominent (43). The demyelin-
ation process is characterized by selective and progressive apoptosis of mature 
oligodendrocytes, axonal pathology, activation of astrocytes and microglia, infil-
tration of macrophages and inflammation (43–45, 47–49). The inflammatory 
burden is characterized by the production of cytokines, interleukins, tumor 
necrosis factor, and arachidonic acid metabolizing enzyme, and by the conse-
quent production of lipoxins, thromboxane, and proinflammatory prostaglandins 
that play an active role in the severity of demyelination (47, 48, 50, 51). An intact 
blood–brain barrier with no signs of lymphocyte infiltration have been observed 
in the cuprizone model (52, 53).

The interruption of cuprizone feeding after 6 weeks of continuous intoxica-
tion, immediately after peak demyelination has reached, allows for a spontaneous 
remyelination of the brain and a complete recovery in a time lapse of six addi-
tional weeks (47). For this reason, the cuprizone model is also used to investigate 
the mechanisms of remyelination. Prolonged administration of cuprizone, for 6–7 
months, impairs remyelination as in progressive multiple sclerosis (54). Cuprizone 
can also be administered in repeated doses mimicking the course of relapsing-
remitting multiple sclerosis (55). In summary, cuprizone allows an experimental 
reproduction of different pathological courses, such as the acute, chronic, and 
relapsing-remitting forms of multiple sclerosis.
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Given these characteristics, the cuprizone model allows investigators to 
selectively study demyelination and remyelination processes, independently 
from the effects of the immune system. It is mostly used to test new pharmaco-
logical treatments to counteract demyelination and to favor remyelination. 
Remyelination, in fact, can be severely impaired in multiple sclerosis, because 
of dysfunctional and inefficient maturation of oligodendrocyte precursors. 
However, the recommended pharmacological therapies, currently used in clin-
ics, have no specific activity on remyelination; thus, the need to develop novel 
therapies in this direction makes the cuprizone model a useful tool.

Theiler’s murine encephalomyelitis virus

Viral infections have been hypothesized to be directly or indirectly implicated in 
the initiation of multiple sclerosis (56). The TMEV infection method was devel-
oped by Theiler in 1934 (57, 58) and later established as a model of multiple 
sclerosis by Lipton (59). This model is induced only in mice. When compared to 
TMEV, the rat TEV is not as highly virulent. With the exception of evidence pub-
lished in 2005, rats do not seem to develop brain demyelination (60). In mice, 
susceptibility to TMEV is modulated by genetic factors. Several susceptibility 
polymorphic loci have been identified in the mouse genome within the major 
histocompatibility complex genes and the gene that codes for the beta-chain of 
the T-cell receptor. These loci modulate the severity of TMEV infection and the 
length of viral persistence in the brain (61, 62).

In mice, the pathology is induced via an intracerebral injection of 
Picornaviridae, which is a family of single-stranded RNA viruses belonging to the 
Cardiovirus genus. Two main types of TMEV are known, one highly aggressive 
that causes an extremely severe neuropathology leading to death within 1 week 
(induced by GDVII and FA strains of TV), and the other, less aggressive and not 
fatal (induced by DA and BeAn strains) (63). The latter can induce either a 
monophasic or a biphasic disease, depending on the mouse strain. The mono-
phasic disease is inducible in most of the murine strains, whereas the biphasic 
form is inducible only in specific susceptible strains (64). The monophasic type 
and the first phase of the biphasic type are characterized by acute apoptosis of 
neurons in gray and white matter, appearing 1 week after the injection of the 
virus. The monophasic disorder clears out within three weeks and the biphasic 
disease (usually from 1-month post injection) sets the stage for chronic and pro-
gressive inflammation, and demyelination begins. This phase is characterized by 
the activation of glial cells and macrophages, apoptosis of oligodendrocytes, 
demyelination, and axonal damage, mostly in the spinal cord. The peak demye-
lination is reached from the third month of virus injection (65). In parallel with 
the worsening of the pathology, motor disabilities are observed (66). The neuro-
logical effects of TMEV seem to be mediated by the activation of T-lymphocytes, 
such as the CD8+ T-cells, rather than by a direct interaction of the virus with the 
myelin proteins; moreover, the permanence of the virus in the central nervous 
system seems to depend on the astrocyte activity that supports viral replication 
(67). In summary, TMEV is useful to reproduce acute or chronic/progressive 
phases of the disease (64, 68).
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From Animal Models to Human Pathology: Critical Issues

The EAE model is the most widely used model in multiple sclerosis research. 
This model is particularly useful to test disease-modifying agents with 
potential immunomodulatory activity; however, out of the hundreds of 
drugs tested in the EAE model, only a few have been approved for human use. 
Indeed, some drugs that attenuate EAE pathology in animals, like anti-tumor 
necrosis factor (TNF) drugs, actually worsen multiple sclerosis symptoms in 
humans (20, 69). Nevertheless, none of the recommended clinical medica-
tions for multiple sclerosis comes from pharmacological experimentations on 
the two other types of animal models. Despite the undeniable utility of EAE 
model to test novel medications, the consent of scientific community is not 
unanimous. For example, one of the main criticisms of the EAE model is that 
it fails to mimic some important features of multiple sclerosis, especially 
those concerning the immune system activation: EAE is mainly mediated by 
CD4+ T-cells, whereas, in multiple sclerosis, the CD8+ T-cells play a predomi-
nant role (70). To get around this limitation, researchers have developed a 
CD8+ T-cell-mediated EAE (71), thus making this model more suitable for the 
study of CD8-mediated pathology. In addition, EAE is usually characterized 
by spinal cord demyelination, and in contrast to human pathology, cortical 
lesions are nearly absent. Cortical demyelination is a prominent marker of 
chronic multiple sclerosis. This major limitation can actually be overcome by 
stereotaxic injection of the MOG directly into the rat cerebral cortex (72). 
Another critical point is the enormous variability of EAE pathology, due to the 
different activities of the available antigenic peptides, and to the variable 
immune responses by the different animal species and strains. For these rea-
sons, the choice of the peptide and of the animal species/strain is critical for 
study design and data interpretation.

Cuprizone, although it efficiently and consistently reproduces the demyelin-
ation and remyelination processes, it cannot be interpreted as an actual model 
of  multiple sclerosis. Nevertheless, it can be used to investigate the molecular 
mechanisms implicated in oligodendrocyte degeneration and remyelination, in 
order to identify biological markers for the development of new pharmacological 
treatments to protect mature oligodendrocytes and to prompt oligodendrocyte 
precursor maturation.

In contrast to the other two models, the TMEV can be considered an actual 
model of the pathogenic mechanisms of multiple sclerosis, as the virus infection 
probably plays a role in the onset of the human disease. In general, when trans-
lating from animal models to the human pathology, it is relevant to take into 
account and investigate why some animals, within the same experimental group, 
neither develop the disease nor respond to therapies. Most literature does not 
present negative data, and exclude the “nonresponder” animals from the statisti-
cal analysis as outliers. The number of “nonresponders” should also be reported 
and the origin of this usual variability investigated, as it might be helpful in 
understanding the human variability with respect to susceptibility to multiple 
sclerosis, the clinical course, the severity of the disease, and the response to 
treatment (73).
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Conclusion

Taking into account the intrinsic limitations of each animal model, we can sum-
marize that the EAE model is mostly relevant for relapsing-remitting multiple 
sclerosis, which affects the majority of patients (about 80%).The EAE model is 
extremely versatile and can be designed to mimic acute and chronic disease 
courses. The cuprizone intoxication model, although less flexible than the EAE 
model, is mostly relevant to the acute and chronic courses of disease, but it can be 
manipulated also to recreate a relapsing-remitting pathology. The TMEV infection 
is the reference model to study viral-mediated mechanisms of acute and primary 
progressive multiple sclerosis. Finally, data on animals that do not respond to the 
disease induction, or treatment, are also essential to explain the variability usually 
observed in multiple sclerosis patients.
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