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Effect of nematic ordering on the elasticity and yielding in disor-
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ABSTRACT The relation between elasticity and yielding is investigated in a model polymer solid

by Molecular-Dynamics simulations. By changing the bending stiffness of the chain and the bond

length, semicrystalline and disordered glassy polymers - both with bond disorder - as well as nematic

glassy polymers with bond ordering are obtained. It is found that in systems with bond disorder the

ratio τY /G between the shear yield strength τY and the shear modulus G is close to the universal

value of the atomic metallic glasses. The increase of the local nematic order in glasses leads to the

increase of the shear modulus and the decrease of the shear yield strength, as observed in experi-

ments on nematic thermosets. A tentative explanation of the subsequent reduction of the ratio τY /G
in terms of the distributions of the per-monomer stress is offered.
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INTRODUCTION

The understanding of the microscopic mechanisms un-

derlying the plastic response of amorphous solids to ex-

ternally driven deformations is a current issue in mate-

rial science research both for the lack of a complete the-

oretical background and its importance in technical ap-

plications.1–4 Solids subjected to small deformations re-

spond linearly as expected from elasticity theories.5–8 An

increasing strain on the system causes the increase of in-

ternal stress. Focusing on pure shear deformation, the

elastic modulus G of the system under the studied defor-

mation can be derived from the slope of the stress-strain

curve in the small strain regime3 both locally and glob-

ally9. Upon increasing strain, amorphous solids show

complex and far from linear behavior10–12, with hetero-

geneous and protocol-dependent13,14 phenomena taking

place mainly due to the absence of long-range order1.

Having reached a characteristic yield strain, correspond-

ing to the shear yield strength τY , the transition from the

(reversible) elastic state to the (irreversible) plastic one

takes place2,15,16. In an ideal elasto-plastic body (Hooke-

St.Venant) τY is the maximum stress2.

Despite the complexity of the plastic behavior in amor-

phous solids at the local scale, some general features have

been found in the macroscopic quantities. An interesting

aspect of yielding is that the yield stress is proportional to

the elastic modulus. In particular, for a linear, dislocation-

free array of atoms Frenkel derived long time ago the rela-

tion τY /G ≃ 1/(π
√
3) ≃ 0.18 at T = 0K 2,17,18. A more

recent experimental work found τY /G ∼ 0.11 for poly-

mers1 and the universal value 0.036± 0.002 for metallic

atomic glasses19. The ratio τY /G depends on the temper-

ature and, for a given temperature, is universal for metal-

lic glasses up to slightly below the glass transition tem-

perature19. The finding has been interpreted in terms of

similar inter-particle potentials20. The microscopic ori-

gin of the proportionality between τY and G has been

rationalized by noting that in both metals and polymers

the yield stress is primarily governed by energy storing

elastic processes: dislocation line energy in metals, strain

energy around molecular kinks in polymers5. Since the

elastic modulus in glassy polymers is dominated by inter-

molecular forces21, it was concluded that the energy barri-

ers to plastic flow in glassy polymers were dominated by

intermolecular rather than intra-molecular interactions1,

A

B

C

Figure 1: Illustrative snapshots of the different polymer solids

under study: semicrystalline polymer (A), disordered glassy

polymer (B), nematic glassy polymer (C). Monomer position

is emphasized in the left column, bond orientation is empha-

sized in the right column. Differently from the nematic glassy

polymer, both semicrystalline and disordered glassy polymers

exhibit local bond disorder. The snapshots refer to chains with

bond length lb = 1.12 and bending stiffness kθ = 0 (A), 4 (B),

12.5 (C).

so some similarities can be found in the comparison be-

tween atomic and polymeric systems22. On the other

hand, the intra-molecular interactions can have a primary

role in determining the structure of a polymer solid upon

cooling from the liquid phase, which is of great impor-

tance to determine the elastic properties of the final struc-

ture13,14.

The aim of this work is to investigate the existence of

the correlation of shear elastic modulus G and yielding

stress τY in polymer solids by means of molecular dy-

namics (MD) simulations. A model is presented in which

the systematic variation of characteristic parameters of the

intra-molecular interactions, namely the bond length lb
and the bending stiffness kθ of pairs of contiguous bonds
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in a chain, leads to different semicrystalline, disordered or

nematic structures, see Fig. 1. For fully-flexible chains

with no bending potential ( kθ = 0 ) we find that the yield

stress increases with the elastic modulus in a way which

is very close to the universal law of the atomic metallic

glasses19, suggesting that, in the absence of bending stiff-

ness, connectivity and structure play minor roles in the

yield process of the present polymer model. Increasing

the bending stiffness of the chains causes the increasing

growth of the local nematic ordering of near chains. It is

seen that the onset of nematic order increases the elastic

modulus G and decreases the yielding stress τY , thus ev-

idencing the different influence of the local order on the

plasticity and the elasticity. A tentative explanation of the

subsequent reduction of the ratio τY /G in terms of the

distributions of the per-monomer stress is offered.

NUMERICAL METHODS

We consider a coarse-grained polymer model of Nc =
160 linear, unentangled chains with M = 25 monomers

per chain. The total number of monomers is N = 4000.

Non-bonded monomers at distance r interact via the trun-

cated and shifted Lennard-Jones (LJ) potential:

ULJ(r) = ε

[

(

σ∗

r

)12

− 2

(

σ∗

r

)6
]

+ Ucut (1)

for r ≤ rc = 2.5σ and zero otherwise, where σ∗ =
21/6σ, is the position of the potential minimum with depth

ε. The value of the constant Ucut is chosen to ensure that

ULJ (r) is continuous at r = rc. Henceforth, all quan-

tities are expressed in terms of reduced units: lengths in

units of σ, temperatures in units of ε/kB (with kB the

Boltzmann constant) and time τMD in units of σ
√

m/ε
where m is the monomer mass. We set m = kB = 1. The

bonding interaction is approximated via the harmonic po-

tential

Ubond(r) = kb(r − lb)
2 (2)

where lb is the equilibrium bond length and kb = 300ε/σ2

is the bond rigidity. Differently from previous studies

concerning fully-flexible chains23–26, the bending angle

interaction between adjacent chemical bonds is included

through a potential of the form27:

Ubending = kθ(1− cos θb) (3)

where kθ is the bending stiffness, cos θib = ~bi+1 ·
~bi/||~bi+1|||~bi|| and the bond vector~bi = ~ri+1 − ~ri, where

~ri is the position of the i-th monomer. Periodic bound-

ary conditions are used. The study was performed in

the NPT ensemble (constant number of particles, pres-

sure and temperature). The integration time step is set to

∆t = 0.005 time units26,28. The simulations were car-

ried out using LAMMPS molecular dynamics software

(http://lammps.sandia.gov).29

A systematic study is performed by changing the bond

length lb and bending stiffness kθ . We focus on two fam-

ilies of systems: fully flexible polymers (kθ = 0) with

0.91 ≤ lb ≤ 1.12, and semi-flexible/stiff polymers with

lb = 1.12 and 1.0 ≤ kθ ≤ 12.5. All samples are equili-

brated in the NPT ensemble at P = 0. They are initially

equilibrated at the following temperatures: T = 1.2 for

kθ < 7, T = 1.4 for 7 ≤ kθ < 12.5, T = 1.6 for

kθ = 12.5. Then, they are isobarically cooled down to

T = 0 with a constant quench rate of |Ṫ | = 2 ·10−6. Both

the equilibration and the quench procedures are close to

the one adopted in Ref.27. Isobaric quenches have also

been considered in other MD investigations of plastic

yield in glassy polymers.16 After the quench, simple shear

deformations of the polymer solids at T = 0, P = 0 are

performed via the Athermal Quasi-Static (AQS) protocol

described in details in Ref.3. Initially, the undeformed

simulation box containing the sample is a cube with side

L. An infinitesimal strain increment ∆ε = 10−5L is ap-

plied, after which the system is allowed to relax in the

local potential energy minimum via a suitable minimiza-

tion algorithm. The procedure is repeated up to the total

strain εtot = 15 · 10−2L.

Simple shear is performed independently in the planes

(xy, xz, yz), and at each strain step in the plane αβ the

corresponding component of the macroscopic stress ten-

sor τα,β is taken as the average value of the per-monomer

stress τ iα,β :

τα,β =
1

N

N
∑

i=1

τ iα,β (4)

In an athermal system the expression of the per-monomer

stress in the atomic representation is30:

τ iα,β =
1

2 v

∑

j 6=i

rαijFβij (5)

3
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where Fγkl and rγkl are the γ components of the force be-

tween the kth and the lth monomer and their separation,

respectively, and v is the average per-monomer volume,

i.e. v = L3/N . For each plane we then obtain a stress-

strain curve, an illustrative example of which is given in

Fig. 2. The result is quite analogous to what reported for

many other systems under athermal conditions31–36 with

an initial linear increase followed by increasing bending

and onset of the plastic regime. In particular, similarly

to other MD studies of glassy polymers37, one notices

that, in the plastic regime, the stress levels off to a plateau

with fluctuations caused by subsequent loading phases

and sudden stress drops. We point out that the initial non-

zero stress in the unstrained solid seen in Fig. 2 is a well-

known phenomenon usually ascribed to the limited size

of the simulation cell38.

We measure the shear elastic modulus G as the slope

of the stress-strain curve in the linear regime (ε ≤ 0.01),

via the relation G = τ/2ε, see inset of Fig. 2. Following

Ref.20, the yield stress τY is taken as the average value of

the stress after the first significant plastic event, defined

as the first stress drop of at least ∆τth = 0.1, see Fig. 2.

This choice is consistent with other definitions in the pres-

ence16, or not15, of strain softening, i.e. the reduction in

stress following yield. The results are robust with respect

to changes of ∆τth. Data concerning 16 distinct simula-

tion runs are gathered for each physical state. Each run is

averaged over the three planes xy, xz and yz.

RESULTS AND DISCUSSION

Structural analysis during quench-cooling

The elastic properties of amorphous solids strongly de-

pend on the sample preparation13,14. Thus, we prelimi-

narily characterize the most relevant structural changes of

our systems occurring during the isobaric quench from the

liquid to the athermal solid.

In order to study more rigorously the structural order of

the systems, we resort to the order parameters defined by

Steinhardt et al.39. One considers in a given coordinate

system the polar and azimuthal angles θ(rij) and φ(rij)
of the vector rij joining the i-th central monomer with the

j-th one belonging to the neighbors within a preset cutoff

distance rcut = 1.2 σ∗ ≃ 1.3539. rcut is a convenient

definition of the first coordination shell size40. The vec-
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Figure 2: Typical stress-strain curve of our polymer solids

under athermal, quasi-static, simple-shear deformation. After a

first ’loading’ phase, a plateau-like plastic regime sets in where

a series of sudden stress drops are observed. The yield stress

τY is defined as the average value of τ in the plastic regime 20.

The elastic modulus G (see inset) is measured via a linear fit of

the stress-strain curve in the linear regime of small deformations

2ǫ < 0.02. The plot refers to a system of fully-flexible chains

(kθ = 0) with bond length lb = 1.12.

tor rij is usually referred to as a “bond” and has not to

be confused with the actual chemical bonds of the poly-

meric chain. To define a global measure of the order in

the system, one then introduces the quantity:

Q̄glob
lm =

1

Nb

N
∑

i=1

nb(i)
∑

j=1

Ylm [θ(rij), φ(rij)] (6)

where nb(i) is the number of bonds of i-th particle, N is

the total number of particles in the system, Ylm denotes a

spherical harmonic and Nb is the total number of bonds:

Nb =
N
∑

i=1

nb(i) (7)

The global orientational order parameter Qglob
l is defined

by39:

Qglob
l =

[

4π

(2l + 1)

l
∑

m=−l

|Q̄glob
lm |2

]1/2

(8)

4



The above quantity is invariant under rotations of the co-

ordinate system and takes characteristic values which can

be used to quantify the kind and the degree of rotational

symmetry in the system39. In the absence of large-scale

order, the bond orientation is uniformly distributed around

the unit sphere and Qglob
l is rather small since it vanishes

as ∼ N
−1/2
b

41. On the other hand, Qglob
6 is very sensitive

to any kind of crystallization and increases significantly

when order appears42,43. A local orientational parameter

Qloc
l can also be defined. We define the auxiliary quantity

Q̄loc
lm(i) =

1

nb(i)

nb(i)
∑

j=1

Ylm [θ(rij), φ(rij)] (9)

The local order parameter Qloc
l is defined as39:

Qloc
l =

1

N

N
∑

i=1

[

4π

(2l + 1)

l
∑

m=−l

|Q̄loc
lm(i)|2

]1/2

(10)

In general Qloc
l ≥ Qglob

l . In the presence of ideal order,

all the particles have the same neighborhood configura-

tion, and the equality Qloc
l = Qglob

l follows.

We first examine the density and the global order of

fully-flexible chains (kθ = 0). The global positional or-

der of the monomers is monitored via the Steinhardt or-

der parameter Qglob
6 . Fig. 3 plots the increase of both

the density ρ and the order parameter Qglob
6 for differ-

ent bond lengths lb while decreasing the temperature at

constant pressure P = 0 from the initial liquid state to

the final solid state. Fully flexible polymers either exhibit

global order or glassify upon cooling, depending on the

bond length lb. Global order is revealed by sharp jumps

in density ρ and Qglob
6 for lb = 1.06, 1.09, 1.12. A local-

order analysis, presented later in the paper, clarifies that

the states with global order are semicrystalline polymers

with coexisting polymorphs at T = 0. Systems with

shorter bond length form glassy polymers, with no signif-

icant global order. If the bond length is comparable to the

monomer size, lb ≈ σ∗ ≃ 1.12, the formation of ordered

structures is to be expected43–47, whereas shorter bonds

are known44,48–50 to cause geometrical frustration which

hinders the crystallization process, thus favoring the for-

mation of disordered glassy polymers.

We now turn to semi-flexible and stiff chains (kθ > 0).

Since the reduced flexibility favors local nematic order-
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Figure 3: Density ρ (upper panel) and global order parameter

Q
glob
6

(lower panel) of a melt of fully-flexible chains (kθ = 0)

with different bond length lb during the isobaric quench from the

liquid to the solid phase. Chains with short bond length (lb ≤

1.03) form disordered glassy polymers since the bond length

is incommensurate with the Lennard-Jones length scale σ∗ ≃

1.12. Chains with bond length comparable to σ∗

≃ 1.12 exhibit

steep increase of the density ρ and the global order parameter

Q
glob
6

upon cooling. In the latter case, the local-order analysis

presented in Fig.6 clarifies that the corresponding solids at T =

0 are semicrystalline polymers with coexisting polymorphs.

ing, i.e. the alignment of near bonds, we divide the sample

in n3 cells with side L/n and define the bond-orientation

order parameter in the i-th cell as51

Si =

√

3

2
Tr(q2i ), qi,αβ = 〈b̂αb̂β − 1

3
δαβ〉i (11)

where 1 ≤ i ≤ n3, Tr is the trace operator, qi is a 3 × 3
orientational tensor with components of qi,αβ , b̂α and b̂β
are the Cartesian components of the normalized bond vec-

tors ~b and the statistical average 〈...〉i is performed on all

the bonds of the i-th cell. Following Karayiannis and

coworkers27, we initially choose n = 6 corresponding

to cells with side of about 2 − 3 monomer diameters. An

average local bond-orientation order parameter is then de-

fined as51

Sbond
loc =

1

216

216
∑

i=1

Si (12)
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Figure 4: Density ρ (top), global order parameter Q
glob
6

(mid-

dle) and local bond-orientation order parameter Sbond
loc (bottom)

of a melt of chains with increasing bending stiffness during the

isobaric quench from the liquid to the solid phase. Bond length

lb = 1.12. For fully-flexible chains (kθ = 0) a steep increase of

the density ρ and the global order parameter Q
glob
6

is revealed

at T ≃ 0.5. For semi rigid/stiff chains (kθ > 0): i) all the final

solid states are glassy polymers (Q
glob
6

< 0.05), ii) on cooling,

the bending stiffness triggers a transition to a nematic state with

bond ordering occurring in the liquid phase and freezing below

the glass transition.

The Sbond
loc order parameter ranges between Sbond

loc = 1
(perfect alignment) and Sbond

loc = 0 (random orientation).

Fig. 4 plots the density ρ, the order parameter Qglob
6 and

the local bond-orientation order parameter Sbond
loc of sys-

tems with bond length lb = 1.12 and different bending

stiffness kθ , during the isobaric quench from the initial

liquid state to the final solid state. The latter exhibits

global order only if the chains are fully flexible (kθ = 0),

as signaled by the jumps of both the density and the global

order parameter at T ≃ 0.5, otherwise glassy polymers

with small global order (Qglob
6 < 0.05) are obtained. It

0 2 4 6 8 10 12
kθ

0

0.1

0.2

0.3

0.4

0.5

S
R

ee

gl
ob

   
,  

 S
bo

nd

gl
ob S

Ree
glob

S
bond
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Figure 5: Dependence of the global bond-orientation order pa-

rameter Sbond
glob and the global chain-orientation order parameter

SRee
glob on the bending stiffness by increasing kθ at T = 0. Bond

length lb = 1.12. Note that, even for high bending stiffness,

the global order is not strong despite the local ordering shown in

Fig.4 (bottom). See Fig.1 for selected snapshots.

is seen that the increasing bending stiffness of the chains

triggers a transition to a nematic state with considerable

local alignment of the bonds, as detected by the increase

of the bond-orientational order parameter Sbond
loc . The re-

sulting local orientational order freezes below the glass

transition, yielding a nematic glassy polymer.

It is interesting to consider the global bond-orientation

order. To this aim, we set n = 1 and define the global

bond-orientation order parameter Sbond
glob as S1 from eq.11

to perform the average of the bond orientation over a sin-

gle cell coinciding with all the sample. The quantity is

plotted in Fig.5. On increasing the bending stiffness kθ at

T = 0, Sbond
glob starts from ∼ 0.05 for fully-flexible chains

(kθ = 0), then increases and levels off at the plateau level

Sbond
glob ≃ 0.38 for kθ & 8.5. This suggests that the sam-

ple is locally oriented (high Sbond
loc ), but macroscopically

nearly isotropic (small Sbond
glob ) for strong bending stiff-

ness. To corroborate the previous conclusion, we consider

the alignment of the end-to-end unit vector of the chains

via the global chain-orientation order parameter SRee
glob

27.

By construction, SRee
glob spans the range between SRee

glob = 1

(perfect alignment of all the chains) and SRee
glob = 0 (ran-

dom orientation). Fig.5 shows that SRee
glob increases with

the bending stiffness but it is not large.

In order to gain more insight into the structure of the

polymeric solids Fig.6 presents the correlation plots of the

local order parameters Qloc
4 and Qloc

6 , characterizing the

order of the first neighbor shell of each monomer. Fig.6a

6
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Figure 6: Bivariate distributions of the local order parameters

Qloc
4 and Qloc

6 for characteristic states at T = 0: (a) semicrys-

talline polymer with lb = 1.12 and kθ = 0; (b) semicrystalline

polymer with lb = 1.06 and kθ = 0; (c) disordered glassy poly-

mer with lb = 1.12 and kθ = 4; (d) nematic glassy polymer

with lb = 1.12 and kθ = 12.5. In panel a) the regions corre-

sponding to the BCC, FCC and HCP structures at the level of

the first neighbor shell are marked. The region ”D” labels states

with first neighbor shell different from the BCC, FCC and HCP

ones. The contour lines have equal contour interval and divide

the whole elevation range evenly.

shows the complex nature of the solid state with lb = 1.12
and kθ = 0, corresponding to fully-flexible chains with

bond length comparable to the monomer size. Four dif-

ferent regions with highly-correlated pairs (Qloc
4 , Qloc

6 )
are apparent. According to previous studies43,52, two

of them signal face-centered cubic (FCC) and hexago-

nal close packed (HCP) local packings. For the same

polymer model with kθ = 0 and lb = 1.12 at T = 0,

FCC and HCP close packed structures together with other

(unspecified) non close-packed environments were de-

tected27. We also identify high correlations in the re-

gion (Qloc
4 , Qloc

6 ) ≃ (0.12, 0.4). These values are as-

cribed to a deformed body-centered cubic (BCC) struc-

ture with (Qloc
4 , Qloc

6 ) pair significantly different from the

ideal BCC due to poor stability of the BCC lattice43,53.

On the basis of previous studies54, we believe that such

BCC structures were nucleated as metastable regions dur-

ing the quench and frozen in the solid phase at T = 0.

BCC structures have been reported for the present model

with kθ = 0 and lb ≃ 0.97 in the crystallization of a

polymer melt exposed to well-ordered walls44 and in the

spontaneous isothermal crystallization of an unbounded

polymer melt43. The D region in Fig.6a represents envi-

ronments with first neighbor shell different from the BCC,

FCC and HCP ones.

In summary, the solid state of fully-flexible chains

with bond length comparable to the monomer size, lb =
1.12 ≈ σ∗, is semicrystalline with coexisting poly-

morphs. The structure of the solid appears to be much

less heterogeneous by decreasing the bond length or in-

creasing the bending stiffness. In fact, Fig.6b shows that,

if lb = 1.06 with kθ = 0, the D region is enhanced to

the detriment of the BCC, FCC and HCP regions. For

lb ≤ 1.03 and kθ = 0 the solid is a disordered glass and

only the D region is apparent (not shown). A similar find-

ing is observed by keeping lb = 1.12 and increasing the

strength of the bending potential, see c) and d) panels of

Fig.6. Then, we see that the D region is characteristic of

our glassy systems.

We note that Fig.6d shows two weak lobes located at

Qloc
6 ≃ 0.48 with Qloc

4 ≃ 0.09 and 0.175. By comparison

with panels a) and c) of Fig.6, the finding suggests reen-

trant FCC and HCP ordering on increasing the strength

of the bending potential with lb = 1.12. The finding is

consistent with the results reported by Karayiannis and

coworkers27 where the fraction of sites with close-packed

order (FCC or HCP similarities) is close to one in systems

with SRee
glob ≃ 1, i.e. nearly straight chains, and high local

orientation order, Sbond
loc ∼ 0.95. We remind that in our

case SRee
glob and Sbond

loc are not larger than about 0.33 and

0.7, respectively. Incidentally, the fact that we find less

global and local orientational order with the same poly-

mer model with respect to Ref.27 is ascribed to the smaller

size of our sample.
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Figure 7: Correlation plot of the elastic modulus G and the

average yield stress τY for the athermal solids made by fully-

flexible chains with different bond lengths. The error bars of

τY and G reflect the fluctuation of the stress during the steady

state of the plastic regime, and the uncertainty of the fit in the

linear elastic regime, see Fig. 2, respectively. Semicrystalline

polymers and disordered glassy polymers exhibit correlations in

two different regions, inside of which the influence of the bond

length is minor. The black continuous line is the universal law

of metallic glasses τY = mG with slope m = 0.036±0.002 19 .

The uncertainty on the m parameter is bounded by the two

dashed lines.

Correlation between yield stress and shear mod-

ulus

Fig. 7 is a correlation plot of the average yield stress τY
and the elastic shear modulus G for the solids made by

fully-flexible chains with different bond lengths lb. The

plot presents the data on a run-by-run basis, i.e. no aver-

age between runs with the same bond length is performed.

A general tendency of the yield stress τY to increase

with the modulus is observed. It is seen that disordered

glassy polymers exhibit limited changes of both τY and

G, whereas semicrystalline polymers show a wider distri-

bution across the different runs. We ascribe the effect to

the polymorphic character of the ordered solids43. Also,

semicrystalline polymers show higher G and τY values

with respect to disordered glassy polymers, meaning that

the increased order of the monomeric arrangement causes

0 5 10 15 20 25 30 35 40 45 50 55 60
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τ Y

0.0
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2.5
4.0
7.0
8.5
12.5

kθ

l
b
 = 1.12

semicrystalline polymers

glassy polymers

disordered
polymers

glassy polymers

nematic

disordered

glassy polymers

nematic
glassy polymers

semicrystalline

Figure 8: Correlation plot of the elastic modulus G and the

average yield stress τY for the athermal solids made by chains

with different bending stiffness. Bond length lb = 1.12. As in

Fig. 7 the black continuous line is the universal law of metallic

glasses τY = mG with slope m = 0.036±0.002 19 . Differently

from semicrystalline and disordered glassy polymers, nematic

glassy polymers exhibit large deviations from that law.

the system to react to shear deformations with stronger in-

ternal stresses with respect to its amorphous counterpart

both in the linear regime and at the yield point. In Fig. 7

we superimpose to our data the characteristic universal

law of the metallic atomic glasses, i.e. the line τY = mG
with m = 0.036 ± 0.00219. Deviations are apparent but

not large, thus suggesting that, in the absence of bending

stiffness, connectivity and structure play minor roles in

the yield process of the present polymer model.

The introduction of bending stiffness, kθ 6= 0, and

the subsequent nematic order provide a different scenario.

This is clearly visible in the correlation plot of the average

yield stress τY and the elastic shear modulusG, see Fig. 8.

For low and intermediate bending stiffness, kθ ≤ 4, the

solids are semicrystalline polymers or microscopically

disordered glassy polymers respectively, with ratio τY /G
close to the characteristic universal value 0.036 ± 0.002
of the atomic metallic glasses19, as in Fig. 7. For nematic

glassy polymers, kθ ≥ 7, the ratio τY /G decreases by

increasing the bending stiffness of the chain.

We have investigated the origin of the deviations of the
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Figure 9: Correlation between the elastic modulus (top)
and the yield stress τY (bottom) with the local bond-
orientation order parameter Sbond

loc , Eq.12. Bond length
lb = 1.12. The dashed line divides the regions pertaining
to disordered (left) and nematic (right) glassy polymers.
It is seen that in nematic glassy polymers the increasing
local bond alignment increases the elastic modulus and
decreases the yield stress.

ratio τY /G from the characteristic universal value of the

atomic metallic glasses. Elasticity and yielding of poly-

meric solids are both affected by density2 and local ne-

matic order55–57, two properties which are changed by

varying the bending stiffness, see Fig. 4. We first con-

sider the influence of nematic order. Fig. 9 shows that

in nematic glassy polymers, on increasing the local ori-

entational order of the bonds, the elastic modulus in-

creases and the yield stress decreases. A similar effect

has been observed by Ortiz et al57 in the glassy phase of a

macroscopically disordered, liquid-crystalline thermoset,

where changing the densely cross-linked network struc-

ture from an ensemble of randomly oriented rigid-rods

to local nematic increases the modulus and decreases the

yield stress, see Table 3 and 4 of Ref.57. Since the increase

of the nematic order is accompanied by the decrease of

the density (apart from a small inversion on increasing kθ
from 7 to 8.5, see Fig. 4 top), we have also examined the

role of the density. Fig. 10 shows that in disordered glassy

polymers, in spite of a density change of about 6% neither

0.860.880.90.920.940.960.981
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ρ
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0.9

1
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kθ

l
b
=1.12

disordered

nematic
glassy polymers

glassy polymers

Figure 10: Correlation between the elastic modulus (top)
and the yield stress τY (bottom) with the density. Bond
length lb = 1.12. The dashed line divides the regions
pertaining to disordered (left) and nematic (right) glassy
polymers. Notice that the nematic glassy polymers with
kθ = 7 and kθ = 8.5 have nearly identical densities but
rather different local nematic order, see Fig. 4 top. The
fact that their modulus and yield stress are appreciably
different signals the influence of the bond ordering.

G nor τY change appreciably. Changes are visible in ne-

matic glassy polymers where density changes are smaller

due to the better packing. This suggests that density plays

a minor role, with respect to nematic order, in setting both

the modulus and the yield stress. In this regard, the com-

parison between the nematic glassy polymers with bend-

ing stiffness kθ = 7 and kθ = 8.5 provides more insight.

The two systems have rather comparable density but quite

different local nematic order, see Fig. 4. Fig. 10 shows

that their moduli (yield stress) are distinctly different, in-

creasing (decreasing) with the local nematic order. All in

all, the discussion of Fig. 9 and Fig. 10 points to the con-

clusion that in the polymer model under study elasticity

and yielding are more affected by the local nematic order

than packing. The weak role of packing was also noted in

other studies concerning the fast dynamics of polymers58.

Finally, Fig. 11 plots the per-monomer shear stress dis-

tributions in semicrystalline polymers (kθ = 0), disor-

dered (kθ = 4.0) and nematic (kθ = 12.5) glassy poly-

9



mers. It is seen that the nematic glassy polymer exhibits

the broadest distribution with heavy non-gaussian tails.

This finding suggests a tentative explanation of the reduc-

tion of the ratio τY /G in nematic glassy polymers with

respect to semicrystalline polymers and disordered glassy

polymers, see Fig. 8. In fact, it is known that application

of a local stress τ ′ decreases the energy barrier ∆E for

plastic rearrangements to ∆E − τ ′V ⋆ where V ⋆ is an ac-

tivation volume2,5. If the energy barrier is due to the elas-

tic resistance of the surroundings treated as an isotropic

continuum, one finds ∆E = GV †, where V † is a fur-

ther activation volume distinct from V ⋆ 1,2,59,60. If one

assumes that yielding at T = 0K occurs when the en-

ergy barrier vanishes, one finds that the local yield stress

τ ′Y = V †/V ⋆G. If the stress distribution is narrow, the

local stresses little differ from the average stress, τY ≃
τ ′Y = V †/V ⋆G, and one recovers the usual coupling

between the elastic modulus and the macroscopic yield

stress. Otherwise, if the distribution broadens, highly

stressed regions yield when the average stress is much

less than their stress τ ′, so that τY < V †/V ⋆G, namely

the ratio τY /G decreases with respect to the characteristic

value for systems with narrow stress distribution. We are

aware that our arguments are rather rough. Nonetheless,

they offer a consistent picture leading to the scenario of

Fig. 8.

CONCLUSIONS

Elasticity and yielding in polymer solids have been in-

vestigated by MD simulations of a coarse-grained model

of linear chains with different bending stiffness and bond

length. Following the isobaric quench at T = 0, three

kind of distinct structures are observed:

• disordered glassy polymers: systems with no posi-

tional order and and no bond-orientational order,

• nematic glassy polymers: systems with no local po-

sitional order but a strong degree of local bond or-

dering,

• semicrystalline polymers: systems with local posi-

tional order and no bond-orientational order.

Note that in this model system semicrystalline polymers

do not have any bond orientational order but in other mod-

els, e.g. the CG-PVA model61, short chains with M ≤ 30
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τ’

)

semicrystalline
polymers
disordered
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nematic
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Figure 11: Distribution of the per-monomer shear stress,
Eq.5, in semicrystalline polymers (kθ = 0), disordered
(kθ = 4.0) and nematic (kθ = 12.5) glassy polymers. All
systems have bond length lb = 1.12 and subjected to aver-
age stress τ = 0.5, exceeding the linear elastic regime but
still far from the region where the sharp plastic drops are
observed, see Fig. 2. Inset: comparison between the dis-
tributions of the disordered and the nematic glassy poly-
mers. The dotted curves are the best-fit with gaussians
showing that the distribution of the nematic glassy poly-
mer exhibits heavy non-gaussian tails.

form unfolded semicrystalline structures with both local

positional (2D hexagonal) and local bond-orientational

order62,63.

Under simple shear deformations, it is found that in

systems with bond disorder the ratio τY /G between the

shear yield strength τY and the shear modulus G is close

to the universal value of the atomic metallic glasses. In the

presence of increasing nematic ordering the shear modu-

lus of the glassy polymer increases while the shear yield

strength decreases, thus reducing the ratio τY /G. The

finding parallels similar experimental results concerning

nematic thermosets. The results suggest that nematic or-

der has stronger influence than density on elasticity and

yielding. A tentative explanation of the reduction of

the ratio τY /G in nematic glassy polymers with respect

to semicrystalline polymers and disordered glassy poly-

mers is offered, pointing out the larger width of the per-

monomer stress distributions.
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