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Abstract 

The use of Environmental DNA (eDNA) in monitoring ecosystems is now gaining 

attention in the field of research. The technique has shown a snapshot of the organisms 

present in the ecosystem being studied. Recent studies have demonstrated that the 

distribution and biomass of aquatic organisms can be estimated through detection and 

quantification of eDNA samples in the studied ecosystem. The approach is very rarely used 

in studying the detection and distribution of jellyfish in marine ecosystem. To investigate 

the technique’s applicability in detecting and monitoring marine gelatinous zooplankton, 

eDNA was used to monitory the compass jellyfish (Chrysaora hysoscella) in the southern 

North Sea. eDNA samples were collected from the surface water of the nine studied stations 

in the Belgian part of the North Sea (BPNS) from 2014 to 2016. In this study, eDNA samples 

from October 2014, March, May, August and October 2015, January, March, May and 

August 2016 were extracted using CTAB. eDNA extracts were run in a qPCR for C. hysoscella 

eDNA detection and quantification.  

This study detected C. hysoscella eDNA in the BPNS across the sampling months with 

a reduction in the frequency of detection in 2016. The target eDNA was found to be more 

common in Oostende then in Nieuwpoort and least in Zeebrugge stations. C. hysoscella 

eDNA was common and abundant in offshore stations and least in the shoreline stations. 

Peaks of eDNA abundance were recorded in spring, summer and autumn periods (October 

2014, March, May and August 2016, March and August 2016). The recorded eDNA 

abundance was found to be not correlated with temperature (p = 0.4254). The results also 

revealed that the abundance of C. hysoscella eDNA somehow exhibited temporal and 

spatial variations. The results of this study imply that eDNA approach can be used to study 

the presence, patterns of distribution and the estimates of C. hysoscella biomass in the 

BPNS. This study confirms the broad potential of eDNA method in surveying ecosystems. 

The eDNA protocol used in the present study can be developed further to monitor jellyfish 

population in the BPNS obtaining a more detailed estimates of jellyfish abundance and 

distribution. 
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Chapter 1: General Introduction 

 

1.1. Background of the study 

Jellyfish blooms are considered natural population events observed in marine 

ecosystems (Hammer and Dawson, 2009) but the increasing incidence of jellyfish blooms 

has become a topic of recent scientific interest and research (Laakmann and Holst, 2013).  

In fact, several reports on huge jellyfish blooms have been documented in the Black Sea 

(Vinogradov et al., 1989), eastern Mediterranean Sea (Lotan et al., 1994), in the Bering Sea 

(Brodeur et al., 1999), off Japan (Uye and Ueta, 2004), northeast Atlantic and 

Mediterranean Sea (Licandro et al., 2010). These reports suggest that jellyfish blooms are 

not new events in marine ecosystem. According to Cho (2011), jellyfish blooms have been 

a problem since 1990s in the Sea of Japan, the East China and Yellow Seas, the Northern 

Benguela Current off Namibia, the Black Sea, the Baltic Sea, coastal Middle Eastern waters, 

and off the coasts of Spain and France. Recent evidence shows that there is a surge in the 

abundance of Cnidaria around the globe’s oceans and blooms are now occurring more 

frequently in many water bodies (Purcell et al., 2007).  

Reports of blooms of the most common jellyfish species in Belgian waters such as 

Chrysaora hysoscella, Aurelia aurita or Cyanea lamarckii have been circulated in the general 

and local media (Van Ginderdeuren et al., 2012). These species together with Cyanea 

capillata and Rhizostoma octopus are the most common jellyfish species in the North Sea 

with their blooms reported since 2000 (Van Ginderdeuren et al., 2012). At present, jellyfish 

research is attracting scientists around the globe because of their interactions with 

anthropogenic activities and the implications of their blooms on the society and on the 

economy (CIESM, 2001). One of the most important consequences of jellyfish blooms is its 

impacts and dangers on fisheries and aquaculture.  Such blooms may lead to massive fish 

mortality (Doyle et al., 2008), damaged fishing equipment and vessels (Mills, 2001; 

Richardson et al., 2009 and Uye, 2008) or injured fishermen and reduced fish harvests (Dong 

et al., 2010; Quinoñes et al., 2012). Being considered as major planktonic predators (Barz 

and Hirche, 2005), increase in jellyfish population can also have negative effects on fish 
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larvae (Purcell et al., 2007; Boero, 2013). In addition, jellyfish stings may also threaten 

human population. Various reports worldwide show that jellyfish envenomation can cause 

injuries and deaths which subsequently results to losses in tourist revenue (Richardson 

et al., 2009). Additionally, when present in large numbers, jellyfish potentially cause 

clogging of salt water intakes of power plants leading to emergency situations for nuclear 

stations, significant economic losses, and threats to human lives (Purcell et al., 2007). 

Recent advances on jellyfish proliferation studies link their blooms to several human-

related factors like climate change, overfishing, eutrophication, industrialization and 

development of coastal regions (Lynam et al., 2004, 2005; Mills 2001, Purcell et al., 2007, 

Pauly et al., 2009). Even though there is an increasing research on jellyfish blooms 

worldwide in the last decade (Condon et al., 2012), there has been no single and clear 

explanation on the occurrence of such phenomena. Moreover, the ecological and 

evolutionary studies remain poorly integrated in studying jellyfish blooms (Lucas and 

Dawson, 2014). Lucas and Dawson (2014) stressed that research on jellyfish blooms is still 

far from elucidating which extrinsic (abiotic and biotic environmental) features of the 

modern seas and which intrinsic (functional biological) traits of these evolutionarily diverse 

taxa interact to cause jellyfish blooms. 

The increase in jellyfish abundance has been widely argued and a general agreement 

on this issue has not been reached yet (Licandro et al., 2014). Some researchers are 

convinced that there is an increasing frequency of jellyfish blooms in the marine and 

estuarine ecosystems (Brodeur et al., 1999; Mills, 2001; Xian et al., 2005; Kawahara et al., 

2006; Atrill et al., 2007; Licandro et al., 2010; Brotz et al., 2012) while others believed that 

the observed increase in jellyfish abundance is just a stage of up- and downward 

fluctuations characterizing jellyfish’ long-term periodicity (Condon et al., 2013). 

Accompanying this issue and debate is the accepted fact that there is a lack of reliable 

jellyfish data (Purcell, 2009; Brotz et al., 2012; Condon et al., 2012). However, it is of great 

importance to evaluate jellyfish population sizes quantitatively to monitor population 

changes over time regardless of the cause of jellyfish outbreaks (Brierley et al., 2004).  
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1.2. Statement of the problem 

Since jellyfish blooms are becoming more frequent, an urgent need to enhance our 

understanding on their population dynamics and distribution is necessary (Ionescu et al., 

2016). Since blooms of C. hysoscella in the Belgian part of the North Sea (BPNS) and its 

negative consequences in tourism have been reported in the Flemish media (Van 

Ginderdeuren et al., 2012), monitoring this jellyfish species is important to manage its 

future increase in number. According to Uye et al. (2003), to properly evaluate and quantify 

the real impact of jellyfish in the marine ecosystem, it is necessary to assess their temporal 

and spatial distribution.  

In addition, conventional methods of studying jellyfish distribution and abundance in 

the marine environment have several limitations (Fearon et al., 1991; Brierley et al., 2001; 

Brierley et al., 2004). Moreover, the intrinsic characteristics of jellyfish species like their 

large size, fragility and non-dispersed distributions contribute to the problems on field 

sampling and laboratory experiments involving many gelatinous zooplankton species 

(Raskoff, 2003). These limitations and problems necessitate the development of a more 

effective technique that would provide quantitative estimates of jellyfish abundance. 

Hence, the emerging environmental DNA (eDNA) approach for monitoring marine species 

can be a candidate to fill the loopholes brought about by the conventional methods for 

surveying jellyfish.  

Specifically, the present study aims to answer the following questions: 

1. Does the designed C. hysoscella primer used in the present study specifically detect 

the target DNA fragments from the collected water samples? 

2. Can the presence of the jellyfish C. hysoscella be determined by using its eDNA in 

the water samples collected from the surface of the nine study locations in the 

BPNS? 

3. Can the spatial and temporal distribution variations and the abundance of the 

jellyfish C. hysoscella be evaluated based from the qPCR analysis of its eDNA in the 

water samples collected from the surface of the nine study locations in the BPNS? 
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4. Is the eDNA approach applicable and effective in monitoring the presence, 

distribution and abundance of a jellyfish species from marine environment? 

1.3. Significance of the study 

To know if jellyfish blooms are happening more frequently and if such outbreaks are 

lasting longer compared to the previously recorded blooms, long time-series observations 

are necessary (Kogovšek et al., 2010; Licandro et al., 2010; Uye, 2008). This is not available 

in the literature for C. hysoscella in the BPNS. Monitoring the spatial and temporal 

distribution as well as the abundance of C. hysoscella will improve our understanding of 

their population dynamics and bloom frequency. This study could provide a baseline for a 

long-term monitoring study concerning the distribution and abundance of C. hysoscella and 

of other jellyfish species in the BPNS. Moreover, at present, there are only limited studies 

published on literature that are linked to jellyfish in the North Sea (Lynam, 2004; Lynam et 

al., 2005; Van Ginderdeuren et al., 2012; Laakmann and Holst, 2014; Vansteenbrugge et al., 

2015). Thus, the present study could also provide additional scientific knowledge to the 

scarce collection of jellyfish research in the North Sea. The present study would also 

evaluate the applicability and effectivity of using eDNA as a tool for monitoring jellyfish 

distribution and abundance. Thus, this study contributes to the application of eDNA in 

monitoring marine environments and organisms. 
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Chapter 2: Literature Review 

 

2.1. Jellyfish diversity 

 The term “jellyfish” is used and limited only for a defined plankton functional group – 

the gelatinous carnivores under Phyla Cnidaria and Ctenophora (Licandro et al., 2014). 

Phylum Cnidaria to which jellyfish belongs contains approximately 10,211 species around 

the globe (Appletans et al., 2012). According to Jankowski et al. (2008), this diverse phylum 

is composed of anemones, corals, medusae and other polyps and is unusually prosperous 

in the marine environment (7000+ identified or described species). Phylum Cnidaria is 

composed of three main groups namely: Scyphozoa, Cubozoa and Hydrozoa. As stated by 

Rizman-Idid et al. (2016), the World Register of Marine Species recognized 187 Scyphozoan 

species and 46 Cubozoan species. Four orders of the Scyphozoan jellyfish are widely 

distributed: Coronatae (crown jellyfish), Rhizostomeae (true jellyfish), Stauromedusae 

(stalked jellyfish) and Semaestomeae (sea nettle) (Kramp, 1961; Pitt, 2000; Brusca and 

Brusca, 2002; Shao et al., 2006 and Richardson et al., 2009). The box jellyfish or the 

Cubozoan jellyfish are distributed into two orders, the Carybdeida and Chirodropida 

(Gershwin 2005a, 2005b, 2006a, 2006b & Daly et al., 2007). The most diverse group of the 

Cnidarian jellyfish is the Hydrozoan group with 3,676 recognized species in the World 

Hydrozoa database (Schuchert, 2015). Cnidarian jellyfish differ in size from few millimeters 

to a few meters and can be described as solitary like the medusae species of Hydrozoa, 

species of Scyphozoa and Cubozoa or colonial as the Hydrozoan siphonophores (Pugh, 1975; 

Gamulin and Krsinie, 1993).  

 

2.2. Study species: Chrysaora hysoscella (Linnaeus, 1767)  

Commonly known as “compass jellyfish”, C. hysoscella (see Figure 1) is a yellowish 

medusa characterized by 16 gold-brown or yellow-brown lines or bands (the V-shaped 

markings) on the upper surface of the umbrella radiating from the central region. The bell 

is hemispherical and flattened with 32 pigmented semi-circular marginal lappets and 24 

tentacles. This species has four very long oral arms with several fringings in the upper part 
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and are scallop-edged in the lower part. Compared with other scyphozoan jellyfish species, 

C. hysoscella is a protandric hermaphrodite species (Vaissiere, 1984; Jellyrisk, 2014; 

Cornelius, 2004).  

Generally, this jellyfish species appears 

in cold and temperate waters and can live 

in waters of temperature 4°C to 28°C 

(Vaissiere, 1984). It also occurs in the 

upwelling areas such as in the Benguela 

ecosystem extending from northern 

Namibia to south of Cape Point in South 

Africa (Sparks et al., 2001). Several C. 

hysoscella outbreaks were recorded in 

different parts of the globe. It was found 

abundant in the Southern Adriatic Sea and in the Northern Ionian Sea (Scalera-Liaci, 1991). 

Although it was scarcely found in the Northern Adriatic Sea (Zavodnik, 1991), early 

appearance of the species was already reported (Issel, 1922). Coastal blooms of this species 

were also recorded in the spring of 1989. It was observed in the Gulf of Trieste (Del Negro 

et al., 1992). C. hysoscella sightings were accounted for around 3.5% of total jellyfish 

appearance along the Ligurian Riviera (Carli, 1991). The species was also reported to appear 

in large number in Belgian coast (Van Ginderdeuren et al., 2012). To date, there are no 

recent studies dealing with the patterns of distribution and abundance of C. hysoscella over 

time.  

Knowledge on the toxicity of C. hysoscella seems to be very scarce (Del Negro et al., 

1991, 1992; Kokelj et al., 1990; Parodi et al., 2009). The earliest documentation of its toxicity 

was a report on cutaneous lesions caused by this jellyfish in subtropical waters (Vine, 1986). 

Despite of this limited knowledge on its envenomation, the species is considered a 

dangerous one due to its wide wounding surface, long tentacles and a large umbrella 

(Vaissiere, 1984). According to Dr. Tom Doyle of the Coastal & Marine Resource Center 

(CMRC) of the University College Cork, Ireland, the species has the ability to sting and the 

Figure 1. C. hysoscella in its environment.  
Source: Jellyrisk, 2014 
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sting may pose high risk to human health (Jellyrisk, 2013). Dermatitis accompanied by 

itching and burning sensation due to contact with C. hysoscella were observed within 20 

minutes after contact. These effects disappeared within few hours (Kokelj et al., 1989). 

Massive stinging events took place in the zone of Grado (Gulf of Trieste, Italy) between 

May–August 1997 injuring a total of 90 people. Sampling during these periods revealed that 

C. hysoscella was the only dermatoxic jellyfish constantly appearing during that time (Kokelj 

et al., 1999). Studies dealing with fractions of this species tested for dermatoxicity through 

scratch-patch test in some volunteers showed that five out of 25 volunteers reacted to the 

jellyfish and demonstrated itching, erythema and edema after 48 hours (Del Negro et al., 

1991) while in some studies volunteers showed itching and burning sensation within 40 

seconds after the contact and developed erythema and vesicles after three minutes (Del 

Negro et al., 1992). The hemolytic fraction of the venom coming from C. hysoscella showed 

at least a partial proteinaceous nature with the presence of a cationic protein (Del Negro et 

al., 1991). It is possible to state from Del Negro et al. (1991) that C. hysoscella nematocysts 

have a cytotoxic and dermatoxic activity, even though the substance (or the substances) 

involved are not known at present. Recent studies showed that C. hysoscella crude extract 

induced 55% mortality with 0.14 μg/μL IC50 in cultured keratinocytes at the dose of 0.15 

mg/mL proteins when assessed with neutral red assay (Parodi et al., 2009). When toxicity 

is concerned, C. hysoscella is not harmless and the absence of previous reports on its toxicity 

might be due to its sporadic presence. Therefore, accumulations during the holiday season 

might involve a risk to public health (Del Negro et al., 1991, 1992). 

 

2.3. Ecological and societal roles of jellyfish 

Although various reports had been established on the negative impacts of jellyfish 

(especially when blooms occur), their presence whether in small or large number brings 

some ecological and societal benefits. Generally, gelatinous marine species contributes to 

four categories of ecosystem services defined by the Millennium Ecosystem Assessment 

(Doyle et al., 2014). These ecosystem services are regulating, supporting, provisioning and 

cultural services (see Figure 2). Most of the Cnidarian jellyfish are often considered as 
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Source: Scientific illustration by William Helps as adopted 
from Doyle et al. (2014).  
 

stressors of the marine ecosystems or can be indicators of highly disturbed systems (Doyle 

et al., 2014) but they can also be described as ecosystem service providers. 

  

 

2.3.1. Regulating services 

In this regard, jellyfish contributes to carbon sequestration which in effect 

helps to regulate climate as they become sources and sinks for greenhouse gases. 

Lebrato et al. (2012) indicated that accumulation of jellyfish remains at the seabed 

(known as jellyfish-falls) also plays a significant role in the movement of carbon from 

the surface waters to the seabed. In fact, a single jellyfish-fall may deposit carbon 

which is four times the annual carbon input to the seabed (Lebrato and Jones, 2009) 

with this, it is possible that accumulation of jellyfish remnants in the seabed can 

alleviate some of the losses of carbon from the soon to be decreasing classical 

phytoplanktonic carbon flux (Lebrato et al., 2012).  

Figure 2. The ecosystem services 
provided by the jellyfish. 

Regulating services: (1) salps consume 

phytoplankton and transport carbon 

to the benthos via faecal pellets (2). 

(3) Accumulation of jellyfish carcasses 

(pyrosomes) on the seabed plays an 

important role in the transfer of 

carbon from surface waters to the 

benthos. Provisioning services: (4) 

jellyfish harvested for food and other 

uses. Supporting services: (5) sloppy 

feeding provide nutrients to support 

primary production, (6) swimming 

jellyfish contribute to oceanic mixing 

due to displacement of water as they 

move through it, (7) jellyfish provide a 

prey source for hundreds of different 

animals, (8) jellyfish are important 

predators in pelagic marine systems, 

and (9) jellyfish provide habitats and 

refugia for a large variety of taxa. 

Cultural services: (10) citizen science 

programmes encourage the public to 

count and identify jellyfish 



9 
 

Additionally, jellyfish species can also contribute to pest regulation. Kideys 

(2002) reported that the introduction of of Mnemiopsis sp. (through ballast water) 

into the Black Sea in 1980s had disastrous consequences for the pelagic fish 

populations which led to large economic losses to the Turkish fishing industry. The 

introduction of an invasive jellyfish Beroe sp. in 1997, a predator of Mnemiopsis, has 

helped the ecosystem to recover. The invasive jellyfish consequently disappeared 

with the decline of its prey showing that the introduction of this invasive species did 

not pose any threat to the ecosystem (Kideys, 2002).  

Lastly, jellyfish can also play a role in biodiversity regulation which can impact 

the delivery of ecosystem services (Díaz et al., 2005). For example, when jellyfish are 

at low densities they may serve as keystone species (Piraino et al., 2002; Pauly et al., 

2009) and act as the main predator of commercially important or numerically 

abundant fish populations (Purcell, 1989; Purcell and Grover, 1990). By controlling 

such fish populations (by preying on fish eggs and larvae), jellyfish indirectly frees 

resources for less well-established fish species leading to enhanced local biodiversity 

(Boero et al., 2008). 

2.3.2. Provisioning services 

Ecosystem resources that deliver food, fiber and fuel are considered to 

provide provisioning services (Anonymous, 2005). Jellyfish are considered as 

traditional food in many Asian countries. In China for example, it is a tradition to 

prepare jellyfish salad during a wedding or formal banquet while in Japan jellyfish 

are served as an appetizer (Hsieh et al., 2001; Omori and Nakano, 2001). As the 

population in China is increasing rapidly, the demand for jellyfish as food also surges 

(Doyle et al., 2014). There are at least 10 jellyfish species (all are Rhizostomeae) 

which are harvested commercially mainly from China, Japan and other parts of 

South East Asia (e.g. Indonesia, Malaysia, the Philippines, Thailand, Singapore), with 

Rhopilema esculentum as the most important one (Doyle et al., 2014). The 

consumption of jellyfish is believed to bring health benefits even though they have 
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a low nutritional value (Doyle et al., 2007; You et al., 2007; Hsieh et al., 2001; Addad 

et al., 2011).  

Jellyfish can also provide novel biomolecules. Indeed, one of the paramount 

benefits that jellyfish have provided to society was the discovery and subsequent 

development of the green fluorescent protein (GFP) (Tsien, 1998; Chalfie and Kain, 

2006; Zimmer, 2009). Since the discovery of fluorescent proteins (FP) in jellyfish and 

other marine fauna, science was able to produce different variety of such FP ranging 

from violet to far red (Chudakov et al., 2010). FPs and their derivatives have shown 

promising and wide applications in research and biomedical fields (Chudakov et al., 

2010; Doyle et al., 2014). Extensive research efforts are made to extract other 

biomolecules from jellyfish species. Recently, ‘qniumucin’, a mucin molecule was 

found in six jellyfish specimens examined by Ohta et al. (2009). This molecule is a 

glycoprotein with lubrication and protective functions. This mucin molecule has 

important potential as currently, there are no methods to produce large quantities 

of mucins artificially for therapeutic use (Ohta et al., 2009) whereas jellyfish could 

be harvested in sufficient quantities to meet this demand (Doyle et al., 2014).   

2.3.3. Supporting services 

2.3.3.1. Jellyfish as prey 

Jellyfish species may also serve as prey (therefore food) to other animals 

(Pauley et al. (2009), Purcell (1997), Ates (1988) and Arai (1988, 2005)). Various 

records show that some other jellyfish taxa, fish, arthropods, molluscs, reptiles 

and birds regularly or occasionally prey on gelatinous organisms. For example, 

Purcell (1991) showed that Aurelia aurita was a prey to Cyanea capillata (a 

scyphomedusae). Aequorea victoria (a hydromedusae) was proven to feed up to 

10 jellyfish species which are mostly hydromedusae species (Purcell, 1991). One 

of the few cases where a jellyfish feeds solely on another jellyfish is Beroe cucumis 

(a ctenophore) and Mnemiopsis feeding greatly on Bolinopsis infundibulum (a 

ctenophore) (Doyle et al., 2014). Fish are one of the most common predators of 

jellyfish. Various reports on different fish species feeding on jellyfish have been 
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documented and compiled by Arai (1988, 2005). Fish preying on jellyfish so far 

includes 69 fish species in 34 families and this number tends to increase with time 

(Arai, 2005). In fact, Pauly et al. (2009) revealed a total of 124 fish species which 

were reported to consume sporadically or regularly on jellyfish. This number was 

obtained after using information from FishBase, data published by Arai (1988, 

2005) and other relevant resources. 

2.3.3.2. Jellyfish as predators 

The jellyfish group is certainly considered as a very important predator 

in the pelagic marine environment (Pauly et al., 2009). Because of their 

prolonged existence and evolutionary head start on other taxa (evolved 500 to 

540 MYA) (Richardson et al., 2009) and their different array of armature and 

prey-capture mechanisms, jellyfish have perhaps shaped pelagic marine 

ecosystems (Doyle et al., 2014). Furthermore, Doyle et al. (2014) emphasized 

that due to jellyfish’ diverse way of feeding behaviors and varying body sizes, 

they become capable of feeding on preys of different sizes and types ranging 

from micro-heterotrophs, zooplankton, other jellyfish and fish. Several factors 

contribute to the different diets observed in jellyfish species – different feeding 

mechanisms, prey behavior and escape ability, nematocyst and colloblast 

structures, toxicity of nematocysts, life cycle and life history (Purcell, 1997; 

Boero et al., 2008). Most species of scyphomedusae, hydromedusae and 

siphonophores are carnivorous and have wide-ranging diets which includes a 

variety of zooplankton taxa from copepods, veliger larvae, fish eggs/larvae and 

other jellyfish but some are considered specialists as they feed on specific prey 

like Hippopodius hippopus (a siphonophore) preying only on ostracods (Purcell, 

1981). As predators, jellyfish have the tendency to consume and deplete 

resources that are vital and available to commercial fish stocks (Brodeur et al., 

2002; Lynam et al., 2005; Hong et al., 2008) and this ability brings a serious 

problem to the fish industry. When jellyfish in the marine ecosystem occurs in 

large numbers (during blooms) their group prey-consumption rate can be so high 
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that their prey-consumption impacts directly or indirectly the population size of 

other zooplankton organisms including larval fish (Purcell, 1989). 

2.3.3.3. Jellyfish as habitats and nurseries 

Considering the large size of most jellyfish as compared to other 

planktonic organisms, their slow swimming characteristics compared with 

nektonic animals of a similar size or mass, their complex morphology combined 

with a marine environment that is unusually barren of physical habitat, jellyfish 

create structurally intricate assortment of surfaces and constantly changing 

place or habitat for other marine organisms. Jellyfish provide a three-

dimensional structure in pelagic habitats like coral reefs and oyster beds do 

(Breitburg et al., 2010). Three possible relationships between jellyfish and 

symbionts can be described. These relationships are based on how symbionts 

use and exploit this largely transparent but solid substrate (jellyfish). Jellyfish can 

provide (1) pelagic refugia or shelter, (2) pelagic substratum and (3) a host for 

algal symbiotic associations (Doyle et al., 2014). 

Pelagic refugia: The biological relationship between the jellyfish and 

juvenile fish is considered as the best example of the jellyfish’ role in providing 

shelter for marine organisms. This interaction is commonly considered to be a 

facultative symbiotic relationship. It occurs only when a jellyfish becomes the 

only available refuge in a pelagic environment for juvenile fish (Doyle et al., 

2014). This claim has been supported by Castro et al. (2001) as they showed that 

there are more than 333 fish families that display aggregative behavior beneath 

floating objects. From these, nine fish families are known to interact with 

jellyfish. According to Mansueti (1963), four of these families are pelagic, three 

are demersal and two are deep-sea inhabitants. The juvenile fish interacting with 

the jellyfish may obtain food from the association by feeding directly on (a) prey 

encountered by the fish as the jellyfish swims through the water column, (b) 

zooplankton taken from the host, (c) the jellyfish itself and (d) predation upon 

amphipod parasites present on the host jellyfish (Mansueti, 1963; Purcell and 
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Arai, 2001). Jellyfish’ ability to provide shelter and food to fish juveniles tends to 

increase the survival of such juveniles to adulthood (Brodeur 1998; Lynam and 

Brierley, 2007). Doyle et al. (2014) claimed that the interaction between the 

juvenile fish and the jellyfish does not exclude the competition or predation for 

resources between the two. Instead, the relationships are complex and not 

always detrimental to the fish. 

A pelagic substratum: In addition to their shelter provision to juvenile 

fish, jellyfish also provide habitat for a wide range of taxa starting from 

microorganism to invertebrates including crustaceans like crabs, shrimp, 

brachyuran, barnacles, copepods, amphipod (Perissinotto and Pakhomov, 1997; 

Pagès, 2000), digeneans (Martorelli, 2001), pycnogonids (Pagès et al., 2007), and 

protists (Moss et al., 2001). A study revealed that an amphipod ectosymbiont 

Hyperia medusarum parasitizes the jellyfish Phacellophora camtschatica 

through direct consumption of the host’s tentacles and other tissues, (with 100% 

infestation rates at times and as high as 446 individuals parasitizing a single 

jellyfish (Towanda and Thuesen, 2006). The same study demonstrated the 

symbiotic interaction between brachyuran crabs and jellyfish. At least eight 

species of brachyuran crabs are found to interact with jellyfish (Towanda and 

Thuesen, 2006). Martorelli (2001) showed that other parasitic marine organisms 

use jellyfish as their intermediate hosts before infecting their definitive host 

(normally a fish). 

Hosts for algal symbiotic associations: Many jellyfish groups are in 

symbiotic relationship with the photosynthetic dinoflagellates zooxanthellae. 

For example, the golden jellyfish (Mastigias papua) exhibits daily horizontal 

migrations and has a behavior of avoiding shadows in landlocked marine lakes 

in Palau in to keep their zooxanthellae in direct sunlight (Dawson and Hamner, 

2003). Another unusual behavior of a jellyfish harboring zooxanthellae is that of 

the upside-down jellyfish Cassiopea sp. The striking behavior of this jellyfish is 

that they spend most of their time upside down resting on the seabed to make 
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the most of photosynthesis as they contain zooxanthellae in their oral arms. 

Their activities have shown to increase the benthic oxygen production almost 

100-fold (Welsh et al., 2009). Additionally, the algal host pleustonic jellyfish 

Velella velella is known to be found in surface waters across the globe in tropical 

and temperate open ocean waters (Purcell et al., 2012). The zooxanthellae on 

these jellyfish perform photosynthesis and support the host’s energy budget 

(Doyle et al., 2014). 

2.3.4. Cultural services 

Jellyfish species are now being displayed in large aquaria fascinating people 

with their unfamiliar forms such as having floating parachutes with trailing tentacles 

(Hardy, 1956). To this purpose, the Monterey Bay Aquarium in California has been 

known to show exquisite displays of jellyfish such as the Pacific Sea Nettle 

(Chrysaora fuscescens). From 2002 to 2008, the aquarium showed a special 

exhibition (Jellies: Living Art) that showcased 25 species of jellyfish with works of art 

portraying jellyfish (Monterey Bay Aquarium, 2004).  

Humans have also exploited the ecosystems sheltering jellyfish populations 

as ecotourist attractions as shown by the well-known Jellyfish Lake (previously 

Ongeim’l Tketau) in Palau, a landlocked marine lake on Eil Malk Island. The lake 

houses several million-golden jellyfish (Mastigias sp.) and common jellyfish (Aurelia 

sp.) yearly (Dawson et al., 2001). 

2.4. Anthropogenic causes of jellyfish bloom 

The ability of the jellyfish to bloom lies to their capacity to reproduce both sexually and 

asexually (Purcell et al., 2007). Their life cycle includes a planktonic stage or a benthic polyp 

stage (Boero et al., 2007) (see Figure 3).  According to Lucas (2001), most coastal jellyfish 

reproduce asexually through budding from an attached stage in the life cycle, a scyphistoma 

for scyphozoans, and a hydroid (often colonial) for hydromedusae. These attached stages 

were referred to as polyps (Purcell et al., 2007). These polyps have the tendency to produce 
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more polyps by budding and many 

jellyfish can be budded from a 

single polyp. Meanwhile, 

cubozoan polyps are an 

exemption since they develop into 

individual jellyfish without 

budding. Swimming jellyfish in 

turn reproduce sexually. They 

have excessive fecundity and may 

brood the larvae, which settle to 

become polyps. Temperate and 

tropical jellyfish life cycle could 

differ. According to Lucas (2001) in 

the tropics, jellyfish production can occur all year round while temperate species usually 

have an annual cycle. The small jellyfish, about 1 to 2 mm ephyrae for scyphozoans are 

being produced in fall or spring, and they grow and become sexually mature over the 

summer. By contrast, ctenophores and siphonophores (also cnidarians) are holoplanktonic 

and lack an attached stage in the life cycle. The siphonophores also have asexual stage of 

reproduction followed by sexual reproduction. Ctenophores are considered hermaphroditic 

and characterized by having direct development and high fecundity. Because of these 

modes of reproduction, siphonophores and ctenophores occur in multiple generation in a 

year, in contrast to many species in the other jellyfish taxa (Purcell et al., 2007). Many 

hydrozoans are well-known for reproductive diversity (Boero et al., 2002). Many 

hydromedusae are holoplanktonic while this is uncommon in scyphozoans, some 

hydromedusan jellyfish reproduce asexually (Boero et al., 2002). Therefore, the capacity of 

ctenophores and pelagic cnidarians to bloom in good conditions is inherent. 

Naturally, jellyfish may reach great densities in enclosed embayment and at physical 

oceanographic discontinuities such as fronts (Graham et al., 2001). Some of these 

population fluxes are strongly seasonal in nature, reflecting the life cycle characteristics of 

Figure 3. General life cycle of jellyfish.  
(1) Adults reproduce sexually with external fertilization; (2) 
The planula larvae swims freely for a short time; (3) The 
planula fix on a substrate and transform into a polyp; (4) The 
polyp undergoes the strobilation process; (5) Dividing itself 
in segments and producing ephyras; (6) Each ephyra or juve-
nile jellyfish swims freely until it becomes a new adult 
jellyfish. Source: Jellyrisk, 2014 
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the Cnidarian species involved while the peaks in abundance are reflected by seasonal 

variations to the structure of marine plankton communities (Feigenbaum and Kelly, 1984 as 

cited by Purcell et al., 2007). Yet, studies showed that blooms of some species are 

happening more frequently and for longer extent in recent years, and this observation can 

be a natural response to the altered functioning of marine ecosystems (Mills, 2001; Purcell 

et al., 2007; Richardson et al., 2009). The recently observed fluctuations in jellyfish 

abundance have hypothetically associated with climate indices such as the North Pacific 

Decadal Oscillation (NPDO) and the North Atlantic Oscillation (NAO) (Lynam et al., 2004, 

2005b; Purcell, 2005) as well as with the variation in sea surface temperature (SST) (Lynam 

et al., 2011), salinity (Bastian et al., 2011a), pH (Attrill et al., 2007), eutrophication (Purcell 

et al., 2007) and habitat modification (Richardson et al., 2009). Climate change could 

possibly alter marine ecosystem dynamics which could influence the distribution and 

abundance of marine planktonic communities (Hays et al., 2005). Modification of 

oceanographic dynamics may also be linked to increases in abundance related to 

opportunistic expansion, following decreased predatory pressure as a result of declining 

fish abundance due to commercial fisheries (Pauly et al., 1998; Mills, 2001; Lynam et al., 

2006). Changes occurring in many of the coastal waters worldwide as consequences of 

anthropogenic activities and practices could benefit pelagic cnidarian and ctenophore 

populations over fish (Purcell et al., 2007). Several authors have speculated how some of 

these factors may contribute to jellyfish blooms (Arai, 2001; Mills, 2001; Purcell et al., 

2001b; Parsons and Lalli, 2002; Oguz 2005a, b; Purcell, 2005; Graham and Bayha, 2007). The 

previously mentioned factors possibly causing jellyfish blooms are linked to human 

activities and these factors might act synergistically (Purcell et al., 2007; Richardson et al., 

2009).  

2.4.1. Climate change 

Long-term data revealed fluctuations of pelagic cnidarian and ctenophore 

abundance that are correlated with temperature (Purcell, 2005). As reviewed by 

Purcell et al. (2007), the most studied moderate-temperature jellyfish species (18 of 

24) have been reported to increase in abundance in warm temperatures. The NAO 
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Index, have been related to jellyfish abundances instead of, or in addition to, 

environmental measurements (Lynam et al., 2004, 2005; Molinero et al., 2005). 

Increased temperature may result to jellyfish proliferation (Purcell et al., 2007; Boero 

et al., 2002) and may affect and shift their population distributions (Sullivan et al., 

2001; Faase and Bayha, 2006; Hansson, 2006). Rising temperature also changes the 

timing and duration of the pelagic stages of jellyfish reproduction (Purcell et al., 2007). 

Raskoff (2001) noted that one meroplanktonic hydromedusan species increased 

during an El Niño, contrastingly, a holoplanktonic species did not. Chrysaora 

melanaster was found to increase in the Bering Sea with warming from the shift to a 

positive NPDO from 1976 to 1977, increasing most dramatically in the 1990s, but then 

decreased with further warming since 2000 (Brodeur et al. in press). However, the 

trends in jellyfish and ctenophore abundance in warm conditions were found to be 

contradictory to the trends in the North Sea. Lynam et al. (2004) showed that the 

jellyfish Cyanea capillata, Cyanea lamarckii and Aurelia aurita increased in abundance 

with decreased temperature in the North Sea during 1971 to 1986. Attrill et al. (2007) 

conducted a different study using Continuous Plankton Recorder (CPR) data on 

nematocyst occurrence as an index of jellyfish abundance in the North Sea during 

1958 to 2000. The study indicated that nematocysts were increased with increasing 

NAO Index, but not with temperature. Both studies discussed the fact that the trends 

in jellyfish abundance are dependent on the region of the North Sea and on the 

current regime. As climate warming carries on, the NAO is predicted to move into a 

stronger positive phase (Osborn, 2004), which according to Attrill et al. (2007) would 

lead to a greater abundance of jellyfish. Further related investigations of jellyfish in 

the North Sea seem necessary to resolve these apparently conflicting results. 

 

2.4.2. Cultural eutrophication 

Cultural eutrophication is eutrophication that is accelerated by human 

activities. Eutrophication is a phenomenon linked with increased nutrients, changed 

nutrient ratios and increased turbidity in coastal regions where humans develop 
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(Daskalov, 2002). Indeed, this phenomenon is considered to be one of the major 

global pollution problems (Howarth, 2002). In effect, increased nutrients during 

eutrophication lead to greater biomass at all trophic levels (Daskalov, 2002). The 

availability of more foods for the polyps and jellyfish escalates asexual production 

of jellyfish (Purcell et al., 1999a; Stibor and Tokle, 2003) and their sexual 

reproduction (Lucas, 2001).  

The recent jellyfish blooms in the Yangtze River estuary was thought to be 

related to the increased nutrient input in the river (Zhang et al., 1999) as a result of 

rampant use of nitrogen fertilizer after the 1970s (Glibert et al., 2005). Since 1993, 

annual blooms of Rhizostoma pulmo and Cotylorhiza tuberculate (both rhizostome 

scyphomedusae) in Mar Menor, Spain was attributed to agriculture and 

development which elevated nitrate levels 10-fold while wastewater treatment 

decreased phosphate by one-tenth. Both conditions facilitated the observed blooms 

(Pérez-Ruzafa et al., 2002). These cases clearly suggest that high nitrogen ratios may 

favor jellyfish blooms (Purcell et al., 2007). Eutrophication can also induce intricate 

changes in the food web favoring the increase in jellyfish abundance (Greve and 

Parsons, 1977; Nagai, 2003; Uye, 1994).  As a result of eutrophication, dissolve 

oxygen level in bottom waters is usually reduced (hypoxic condition) (Breitburg et 

al., 2003). Reports indicated that fish may avoid or die in waters with ≤2–3 mg O2 

per liter (Breitburg et al., 2001). However, many jellyfish species are able to tolerate 

waters with ≤1 mg O2 per liter (Purcell et al., 2001b). Supporting this claim were 

studies on ctenophores and Aurelia labiate which showed great tolerance to low 

dissolved oxygen (Rutherford and Thuesen, 2005; Thuesen et al., 2005). Condon et 

al. (2001) showed that polyps are also tolerant in hypoxic conditions and may find 

additional home where other epifauna is reduced in hypoxic waters (Ishii, 2006). 

Planktonic ctenophores and some other jellyfish species don’t have a polyp stage, 

and these species may persist where hypoxic bottom waters prevent others with 

vulnerable benthic stages (Arai, 2001). Eutrophication decrease water clarity and 

light penetration, which may alter the feeding environment benefiting gelatinous 
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predators over fish. Fish are considered feeders whereas jellyfish are not. In effect, 

turbid water could reduce feeding by fish but not in jellyfish (Purcell et el., 2007). 

2.4.3. Fishing 

Pelagic cnidarian and ctenophores benefit positively from fishing activities by 

eradicating the predators of these gelatinous species (Purcell and Arai, 2001; Arai, 

2005). Various reports have shown that gelatinous organisms are consumed by 

commercially important fish species like Peprilus triacanthus, Onorhynchus keta and 

Squalus acanthias (Arai, 1988, 2005; Purcell and Arai, 2001). Other predators of 

gelatinous species were found to decline partly due to fishing (Purcell el at., 2007). 

For example, Dermochelys coriacea (leatherback turtle) populations have dwindled 

intensely in the Pacific Ocean according to Spotila et al. (2000). Zooplanktivorous 

forage fish species are known to feed on jellyfish and other gelatinous species. 

Forage fish species competes with the other gelatinous predators for food. The diets 

of these two groups of predators overlap (both feeding on gelatinous organisms). 

Therefore, fishing for zooplanktivorous forage fish species may have two effects: it 

removes potential competitors for jellyfish feeding (beneficial for other predators) 

and may lessen the number of predators that feed on the gelatinous organisms 

(beneficial for the prey) (Purcell and Sturdevant, 2001; Brodeur et al., unpubl.).  

Mills (2001) put forward that the observed rise in the siphonophore Nanomia 

cara in the Gulf of Maine could be a consequence of the reduction of 

zooplanktivorous fish through fishing. The decrease in the number of 

zooplanktivorous fish populations was evidenced by the replacement of some fish 

in the Black Sea and the Benguela Current by ctenophore and jellyfish (Shiganova, 

1998; Daskalov, 2002; Oguz, 2005b; Lynam et al., 2006). Overfishing other organisms 

like mollusks and crustaceans may also result in severe changes in the ecosystem 

(Jackson et al., 2001) which may facilitate jellyfish and ctenophore blooms.  Pauly 

and Watson (2003) considered overfishing or overharvesting of marine resources as 

a severe problem. Several discussions on how overharvesting one resource after 
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another, in combination with other ecosystem damage, may result to greater 

jellyfish and ctenophore populations (Jackson et al., 2001; Daskalov et al., 2007). 

2.4.4. Aquaculture 

Purcell et al. (2007) pointed out that aquaculture brings unintended benefits 

to jellyfish populations in different ways. Firstly, using feeds in aquaculture may 

result to eutrophic waters and results to consequences that were previously 

mentioned in this paper, most of which end up in increasing jellyfish and ctenophore 

populations. Secondly, the used aquaculture structures may serve as additional 

substrates on which benthic stages of jellyfish life cycle may live and attach leading 

to a more successful maturation, development and greater jellyfish production. 

Thirdly, the harvesting of forage fish (such as menhaden, anchovies and sardines) as 

aquaculture feed unintentionally benefits the jellyfish and other jellyfish predators 

(Kristofersson and Anderson, 2006). The removal of such zooplanktivorous fish may 

provide opportunities for gelatinous population to grow as previously mentioned. 

Aquaculture may also enhance jellyfish population intentionally. This has been 

observed in China where Rhopilema esculentum is being cultured in response to a 

dramatic decline in catches of such species. About one hundred million 1 cm jellyfish 

are released annually in the marine environment in February and March, and by 

August, these released jellyfish are expected to 50 cm in length from which they can 

be caught for use. The success of jellyfish aquaculture in China had triggered 

Malaysia to start a similar aquaculture program in 2004 (Anonymous, 2004). Purcell 

et al. (2007) asserted that such jellyfish enhancement programs seem certain to 

have ecological consequences that are unstudied. 

 

2.4.5. Construction 

Construction pertains to different human destructions to aquatic habitats 

which added structures to or had modified the characteristics of the coastal waters. 

Such structures may include marinas, oil platforms, docks, breakwaters, and 

artificial reefs. These structures provide surfaces for attachment of polyps although 
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the importance in not known (Purcell et al., 2007). Majority of the recorded jellyfish 

blooms took place in heavily populated areas surrounding semi-enclosed water 

bodies. These areas are often characterized by eutrophication, fishing and extensive 

construction (Arai, 2001). Hydrological alterations may affect the Yellow Sea, where 

Nemopilema nomurai blooms may originate (Purcell et al., 2007). Alterations in the 

water flow towards the Black Sea were seen to contribute changes that benefits 

jellyfish and ctenophores (Oguz, 2005b). Establishment and activities of nuclear and 

thermal power plants near coastal regions also contribute to jellyfish bloom. These 

installations use coastal waters for cooling and discharge the heated water back into 

the marine environment (Purcell et al., 2007).  

 

2.4.6. Alien invasion 

Accidental introduction of jellyfish species in many places worldwide were 

documented (Dawson et., 2005) and had caused serious destruction of the 

ecosystem and economic losses (Graham and Bayha, 2007). Jellyfish can be 

transported from one place to another mostly via ballast water and sometimes 

aquarium trade (Bolton & Graham, 2006). Introduction of new jellyfish species is 

usually characterized by large initial blooms that become less intense; however, the 

stage is set for subsequent large blooms when fortuitous conditions prevail, and for 

expansion of the population into new areas (Purcell et al., 2007). The first 

appearance of Rhopilema nomadica was recorded in the Mediterranean in the mid-

1970s and now is found along all coastlines of the eastern Mediterranean Sea 

(Graham and Bayha, 2007). Similarly, the infamous ctenophore, Mnemiopsis leidyi, 

first invaded the Black Sea in early 1980s, then it spread to the Sea of Azov and the 

Mediterranean and Caspian seas (Purcell et al., 2001c; Graham and Bayha, 2007). 

Recently, Mnemiopsis leidyi appeared in the North Sea and was suspected to be a 

separate introduction and this introduced species had spread to the Baltic Sea 

(Faasse and Bayha, 2006; Hansson, 2006). Thus, with introduction of jellyfish species 
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in different places, blooms may occur in areas where the species did not previously 

occur (Purcell et al., 2007). 

 

Most of the recorded jellyfish blooms worldwide were attributed to the interaction 

of multiple contributing factors. For example, blooms in Chinese waters occurred after 

warming, extensive eutrophication, fishing, construction and invasion (Purcell et al., 2007). 

Equally, blooms in Mar Menor, Spain were due to the interaction of several factors like 

eutrophication, construction, modification of bottom habitat from sand to mud, invasion of 

an algal invader Caulerpa prolifera followed by sea grasses replacement by the algal species, 

introduction of oysters which provides additionl substrate to the jellyfish polyps, hypoxic 

bottom waters and vigorous fisheries decline (Pagés, 2001). The success of the introduced 

ctenophore, Mnemiopsis leidyi, in the Black Sea was perhaps due to previous ecosystem 

damage (Oguz, 2005a, b), climate variations (Oguz, 2005a), overfishing (Shiganova, 1998; 

Daskalov, 2002) and the initial absence of a controlling predator (Purcell et al., 2001c). Table 

1 shows the summary of the interacting multiple factors which had contributed to the major 

jellyfish blooms worldwide.  
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Table 1. Summary of possible contributing factors to major jellyfish blooms around the world. 
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Tokyo Bay, Seto 
Sea 

Aurelia aurita 
(s.I) 

+ + + + + + Ishii (2004), Uye & 
Ueta (2004) 

East Asian 
marginal seas 

Nemopilema 
namorai 

+ + + ? + - Uye (in press) 

 
 

Yangtze River 
estuary 

Aequorea sp., + + + ? + + Ding and Cheng 
(2005), Cheng et 

al. (2005), Xian et al. 
(2005) 

Cyanea sp., 

Sanderia 
malayensis 

  

Black Sea Mnemiopsis 
leidyi* 

+ + + - + + Orguz (2005a,b) 

Mar Menor Cotylorhiza,  ? + + + + + Pages (2001) 

Rhizostoma 

Mediterranean 
and 

Pelagia 
noctiluca* 

+ - + - - - Goy et al. (1989), 

Adriatic seas  Purcell et al. (1999b) 

 
Benguela 
Current 

Chrysoara 
hysoscella, 

? - + - - - Lynam et al. (2006) 

Aequorea 
forskalea 

 
Chesapeake Bay 

Chrysaora 
quinquecirrha, 

+ + + - - - Purcell and Decker 
(2005) 

Mnemiopsis 
leidyi* 

Bering Sea Chrysoara 
melanaster 

+ - + - - - Brodeur et al. (in 
press) 

Lurefjorden Periphylla 
periphylla* 

? - ? - - - Eaine et al. (1999) 

Species indicated with asterisk (*) are holoplanktonic; all others have a benthic stage. + = probable, 
? = unknown or not examined, – = unlikely. Source: adopted from Purcell et al. (2007).  
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2.5. Consequences of jellyfish bloom 

When jellyfish bloom, they can cause several problems greatly impacting human 

activities. Lucas et al. (2014) stressed that when jellyfish are abundant, they largely affect 

the provisioning and cultural ecosystem services. Generally, socio-economic effects like 

impacts on fisheries and aquaculture (Richardson et al., 2009; Dong et al., 2010; Gibbons 

and Richardson, 2015; Purcell et al., 2007; Doyle et al., 2008; Nagata et al., 2009;), power 

and desalination operations (Daryababard and Dawson, 2008; Galil, 2007; Gibbons and 

Richardson, 2015), tourism industries (Ozturk and İşinibilir, 2010; Cinar et al., 2011; Lucas 

2001; Purcell et al., 2007) were reported. Additionally, impacts on human enterprise and 

health and on the ecosystem, were also documented although rigorous analysis is 

hampered by a lack of quantitative evidences (Lucas et al., 2014; CIESM, 2001).  

 

2.5.1. Net-based fisheries 

The most frequently media or literature-reported problem occurring as a result 

of increased jellyfish abundance is the intervention with fishing operations (Purcell et 

al., 2007) and this direct physical interference on net-based fisheries is non-debatable 

and financially demonstrable (Lucas et al., 2014). Jellyfish blooms result in serious 

annoyance by (a) clogging and bursting fishing nets, (b) reducing fish harvest, (c) killing 

and spoiling fish, (d) stinging fishermen as they try to remove jellyfish, (e) increasing 

the time and labor effort during the removal of medusae from the nets in some 

instances, (f) causing fishing boats to capsize (Kawahara et al., 2006; Purcell et al., 

2007; Uye, 2008; Dong et al., 2010; Quinoñes et al., 2012). The above-mentioned 

problems are common for Japanese and Korean fisheries located in the Sea of Japan, 

Yellow Sea and East China Sea, where most set-net fisheries have been negatively 

affected by blooms of the giant jellyfish Nemopilema nomurai and the ubiquitous 

moon jellyfish, Aurelia aurita (Uye, 2008). Following the 2005 bloom, Aomori 

Prefecture in Honshū, Japan lost two billion JPY (US$ 25 million) while the nationwide 

loss was estimated to be 30 billion JPY (US$ 380 million) (Uye, 2008). 
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Blooms of Lychnorhiza lucerna also resulted in fishing problems in northern 

Argentina through reduction of fish captures and catch quality, damaging nets and 

preventing fishing operations (Schiariti et al., 2008). The Peruvian anchovy fishery 

(largest single-species fisheries in the world) was seasonally affected by the 

semaeostome Chrysaora plocamia. Blooms of this species in 2008-2009 led to an 

economic loss of US$ 200,000 in just over one month (Quinoñes et al., 2012). Shrimps 

fisheries around the globe also suffer from jellyfish blooms. The shrimp fishery in the 

Gulf of Mexico had suffered from US$ 10 million revenue lost as a consequence of the 

Phyllorhiza punctata (an invasive rhizostome) bloom (Graham et al., 2003). Shrimp 

fishery in southeastern Brazil also suffered from the year-round bloom of the 

rhizostome Lychnorhiza lucerna through displacement of hauls, as well as clogging of 

nets (Nagata et al., 2009). 

2.5.2. Aquaculture 

The impact of jellyfish and ctenophore blooms in the aquaculture industry is 

evident but not well known (Båmstedt et al., 1998). The blooms of the holoplanktonic 

Pelagia noctiluca and the massive transport of the developed jellyfish into coastal 

waters and their aggregation around fish farm cages by tidal currents may damage 

cultured fish (Doyle et al., 2008). Indirect damage to fish cultures can be through 

hypoxia and following suffocation when there is inadequate water exchange between 

the cage and surrounding water column. Direct damage can be through stinging of the 

fish skin and gills as bloomed jellyfish pass through the mesh of the cages, either intact 

or becoming broken up into smaller pieces (Baxter et al., 2011a; Mitchell et al., 2012).  

Lucas et al. (2014) listed some economic losses associated to jellyfish blooms. The 

costs according to Lucas et al. (2004) are attributed to: (a) direct losses caused by fish 

mortalities and disposals; (b) reduced growth during or after exposure to harmful 

agents such as jellyfish, harmful algae, parasites and bacteria; (c) increased 

operational costs; (d) production losses during emergency slaughtering and the 

resulting reduced prices and (e) increased insurance premiums. Fish kills in 

aquaculture pens associated with jellyfish blooms were common problems in Japan 
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and Scotland (Purcell et al., 2007). In 2007, a major Irish Sea salmon fish kill at 

Glenarm, Northern Ireland caused a loss of ~ US$ 1.2 million. It was suggested that 

aquaculture platforms and cages benefited certain jellyfish species such as Aurelia 

aurita and some hydrozoans (Guenther et al., 2009, 2010) by providing a suitable 

substrate for the settlement and subsequent growth and development of the 

biofouling polyp phase of the jellyfish life cycle (Lo et al., 2008; Duarte et al., 2013). 

This aggravated the detrimental effects of hydroids (Guenther et al., 2009, 2010) and 

jellyfish blooms on aquaculture operations. Reports on jellyfish bloom affecting 

decapod cultures in India and the USA were also studied (Purcell et al., 2007).  

2.5.3. Tourism and human health 

The most well-known example of the impact of jellyfish bloom in the society is its 

damaging effect on coastal tourism. Coastal tourism is one of the world’s largest 

economies and in tropical and subtropical regions, coastal tourism has huge economic 

importance. Countries like Spain, Portugal, Italy and Greece have economies that 

depend heavily on tourism, with 130 million visitors, mainly coming from Germany 

and the UK. Few of the most popular beach destinations in the world include the 

northern rim of the Mediterranean, the north and north-east coasts of Australia, the 

Indo-Pacific and the southern United States, (particularly Florida). Several of these 

regions were seriously and adversely affected by the presence of jellyfish which gave 

nasty or even fatal stings (Carukia barnesi, Cyanea lamarckii, Physalia physalis, 

Rhopilema nomadica, Chironex fleckeri) (Purcell et al., 2007 as cited by Lucas et al., 

2014). Commonly, jellyfish may be present in the shallow waters where people swim 

and snorkel or they may get washed up onto the beaches following strong onshore 

winds (Lucas et al., 2014).  

Serious implications of jellyfish abundance on tourism were reported from 

Thailand, the Philippines, the northern coast of Australia and other Pacific nations 

where cubozoan jellyfish were found (Fenner and Williamson, 1996; Fenner et al., 

2010). Approximately 10,000 jellyfish sting each summer were caused by Physalia 

physalis on the east coast of Australia. Stings caused by Catostylus sp. and Cyanea sp. 
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were also reported (Fenner and Williamson, 1996). Dong et al. (2010), listed the most 

common causes of jellyfish stings in Chinese coastal waters. The list included Physalia 

physalis, Aurelia aurita, Nemopilema nomurai, Rhopilema esculentum, Cyanea nozakii 

and Pelagia noctiluca. There were at least 13 known fatalities and several thousand 

hospitalizations between 1983 and 2007 due to these species.  

Gershwin et al. (2010) presented the severe health effects from the sting of the 

box jellyfish Chironex fleckeri and other jellyfish species. Serious effects of 

envenomation include cardiac and respiratory arrest which may prove to be fatal in 

only 2–3 min. Recently, Irukandji Syndrome was attributed to Carukia barnesi and 

several other unnamed carybdeids. Signs of the syndrome includes abdominal cramps, 

nausea, vomiting, intense lower back and chest pain, difficulty in breathing, headache, 

anxiety and severe hypertension that may last for 1–2 days (Gershwin et al., 2010). 

Fenner and Hadock, 2002 reported that the first death case from Irukandji Syndrome 

in Australia occurred in 2002 while Fenner and Harrison (2000) stated that Chironex 

had caused 67 deaths in Australia between 1884 and 1996. In Malaysia and the 

Philippines, jellyfish related fatalities are far more common, where between 20 and 

50 people die each year due to jellyfish stings (Fenner et al., 2010). 

2.6. Environmental DNA (eDNA): a new research tool 

The first critical phase of biodiversity studies is the assessment of species distribution 

which is needed for fields like biogeography, conservation biology and ecology (Margurran, 

2004). However, species detection which is part of assessing species distribution sometimes 

becomes difficult, potentially creating biased study results (Gotelli and Colwell, 2001; 

MacKenzie et al., 2006). For marine species detection for example, conventional sampling 

tools like nets, grabs, trawls, dredges and corers are requiring a lot of efforts and equipment 

to use (Sohier, 2013). Some techniques become ineffective when sampling species of low 

densities. Other limitations of traditional detection and monitoring methods are related 

with non-standardized sampling procedures, taxonomic identification and the invasive and 

sometimes destructive nature of some survey techniques. Because of these limitations and 

difficulties, a new method of species detection using environmental DNA (eDNA) has 
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recently been developed and seen as an alternative approach for monitoring aquatic 

ecosystems (Ficetola et al., 2008). This newly immerging detection technique offers a vastly 

more sensitive, high-throughput, potentially cheaper, less time consuming and less invasive 

approach to investigate biodiversity as compared with traditional detection techniques 

(Port et al., 2016).  

Environmental DNA refers to small DNA fragments derived from cellular DNA shed by 

various organisms through their mucus, feces, urine and skin and left behind by the 

organisms in their environments (Foote et al., 2012; Taberlet et al., 2012a). Sources of eDNA 

can be microbes and macroorganisms in the environment (Taberlet et al., 2012). Finding 

eDNA from collected water samples rather than looking for the target species in aquatic 

environments is considered a relatively fresh and immerging research method (Ficetola et 

al., 2008, Rees et al., 2014, Thomsen and Willerslev, 2015). The collected eDNA from water 

samples can provide a snapshot and a record of the species present in the studied 

environment over the period that the DNA persists in that environment (Hofreiter et al., 

2003; Dejean et al., 2011). Procedurally, eDNA technique requires getting sample from the 

appropriate environment (water or sediment sample for example) followed by the 

development of genetic markers specific to the desired species. Having developed the 

genetic markers for the target species, target eDNA fragments can be detected using a 

variety of molecular methods including traditional or End-Point PCR, and visualization of the 

PCR product through gel electrophoresis, quantitative or real time PCR (qPCR or rtPCR), 

Sanger sequencing or the latest Next-generation DNA sequencing (NGS) (Taberlet, et al., 

2012b; Yoccoz, 2012). Originally, eDNA approach has been used to study microbial 

abundance and diversity (Venter et al., 2004; Rusch et al., 2007). Only recently, this 

technique has been applied to investigate macro and higher eukaryotes like invertebrates 

(Goldberg et al., 2013; Deiner and Altermatt, 2014; Machler et al., 2014), amphibians 

(Ficetola et al., 2008; Pilliod et al., 2014), fishes (Thomsen et al., 2012a, b; Jerde et al., 2013) 

and mammals (Andersen et al., 2012; Foote et al., 2012). Moreover, reports show that 

eDNA has the power to monitor and quantify rare and endangered freshwater crustaceans, 

amphibians, insects, fish and mammals. Therefore, the approach has the capacity to 
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account diversity of the whole lake fauna (Thomsen et al., 2011). Previous macroorganism 

detection using eDNA has been species specific, however, multi-species PCR in combination 

with high-throughput sequencing (i.e. metabarcoding) can reveal whole-community eDNA 

(Port et al., 2016). Despite the increasing number of studies published in the literature 

employing eDNA technique in surveying and assessing aquatic ecosystems, none has been 

conducted on the detection of C. hysoscella in the North Sea using eDNA. A pioneering study 

is therefore required to examine the possibility of using this new monitoring approach in 

studying the abundance and distribution of gelatinous organisms in the North Sea.  

Diaz-Ferguson and Moyer (2014) summarized the potential applications of eDNA 

approach to the fields of marine and terrestrial ecology and conservation biology. Such 

applications may involve detection of aquatic invasive species (AIS), biodiversity and 

community assessment, population dynamics and ecosystem health.  

Environmental DNA approach can contribute to the growing studies on using molecular 

methods used for AIS detection. Molecular based AIS detection has become easier through 

the development of molecular markers specific for the target species. These markers are 

useful tools for conservation managers that aim to monitor AIS. With eDNA technique, the 

chance of confirming AIS detection in hours or days instead of weeks or months is possible. 

This allows managers to respond quickly to limit dispersal and settlement of the invader 

(Darling and Mahon, 2011). Moreover, AIS detection by eDNA offers clues to determine 

origin of the introduction and potential routes of invasion (Diaz-Ferguson and Moyer, 2014).   

DNA metabarcoding and eDNA approach can be used together to assess biodiversity 

and community structure of the target environment. According to Taberlet et al. (2012b), 

DNA metabarcoding is used to perform identification of various species using eDNA. This 

method depends on NGS, which allows the sequencing of billions of 100 base pair reads, 

and the creation of taxonomic reference archives which contains sequences for various 

species (Barcode of Life as an example). In an eDNA metabarcoding approach, it is likely to 

identify the eDNA of any species or taxon (rather than just identifying a single taxon) 

collected from a single water sample given that the DNA sequences of these species are 

already stored in the library. Thus, metabarcoding is a more advantageous tool for 
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biodiversity assessment as it provides estimates that are rather taxonomically 

comprehensive, quicker to produce, and less reliant on taxonomic expertise (Ji et al., 2013). 

It is also possible to use the detected and quantified eDNA fragments from a sampled 

environment as baseline or indirect measurement of population characteristics like 

distribution, biomass and abundance. In fact, it was established that eDNA concentrations 

are correlated with organism distribution and biomass in freshwater environments 

(Takahara et al., 2012, 2013). Several authors used eDNA concentration as representation 

of population distribution of various faunas like amphibians (Ficetola et al., 2008; Goldberg 

et al., 2011), fishes (Mahon et al., 2012; Minamoto et al., 2012) and reptiles (Piaggio et al., 

2013). Not many studies on the correlation of marine eDNA concentration with the species 

distribution, abundance and biomass have been published in the literature (Diaz-Ferguson 

and Moyer, 2014).  However, temporal and spatial fluctuations of bacterial and 

phytoplankton communities had been associated with DNA concentration in coastal waters 

during blooming events (Bailiff and Karl, 1991). 

Ecosystem health can be affected by of the presence of AIS and introduced pathogens 

such as viruses or fungi as these can have serious demographic and genetic impacts to 

existing native populations (Blanc, 2001). Applications of eDNA approach to monitor virus 

concentration (Minamoto et al., 2009) or invasive species (Forsstrom and Vasemagi, 2016) 

help managers to indirectly screen and assess ecosystem health. Additionally, eDNA is a 

promising tool to investigate changes in community composition and reductions in species 

diversity, both of which determine ecosystem health (Diaz-Ferguson and Moyer, 2014). It 

was reported by Strayer (2010) that changes and reduction of species diversity have direct 

and indirect impacts on the ecosystem as it can reduce water quality, changes nutrient 

dynamics (Didham et al., 2005) or affect submerged macrophytes distribution (Strayer, 

2010). Because of these eDNA potentials, recent claims on the usefulness of eDNA for 

environmental impact assessments (Veldhoen et al., 2012) and for future risk-based 

decision making of natural resources (Wilson and Wright, 2013) were published.  
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Chapter 3: Methodology 

 

Water samples from the study locations established in the BPNS were collected on field 

from 2014 to 2016. These water samples were immediately filtered onboard RV Simon 

Stevin to collect the eDNA from the established study locations. The filters were then stored 

immediately in a freezer to prevent eDNA degradation. From these filters, a selection was 

made for detection and analysis of the target eDNA. The eDNA was first extracted from the 

selected filters using CTAB. The quality and quantity of the extracted eDNA was then 

analyzed using a NanoDrop. The specificity of the designed primer in the study was tested 

in a PCR reaction and products were evaluated in a gel electrophoresis. With the working 

primers, the extracted eDNA samples were then subjected to qPCR analysis for estimating 

concentration of the target eDNA as well as its distribution in the study locations.  

3.1. Decontamination of the materials 

Following and observing clean laboratory practices in all stages of the eDNA research 

is important to produce accurate and reproducible results and to avoid contamination 

(Taberlet et al., 1999). Decontamination was done to remove any DNA present in the work 

bench and in all the materials used in the experiment. This would also prevent cross 

contamination in the eDNA experiment.  The materials or supplies used in the experiment 

– from water sampling, eDNA extraction to eDNA detection and amplification were 

decontaminated prior and after each use. A 10% laboratory-prepared bleach solution was 

used for the decontamination of all materials as well as the laboratory workplace. Materials 

were exposed to the bleach solution for 20 minutes and were rinsed completely with 

deionized water.  

 

3.2. Water sampling for Environmental DNA (eDNA) 

Water samples were taken from the nine established study stations in the Belgian part 

of the North Sea onboard the RV Simon Stevin. Sampling was done in 2014, 2015 and 2016. 

For this study, selected sampling months for each year were chosen for eDNA extraction: 

October for 2014; March, May, August and October for 2015 and January, March, May and 
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August for 2016.  Water sampling was done using a carrousel with six Niskin Bottles with 

CTD (to record conductivity, temperature and depth). The map of the sampling stations is 

shown in Figure 4. The station’s corresponding coordinates and depth are shown in 

Appendix 1. For surface water samples, the carrousel was lowered to a depth of 3 meters 

from the surface in every station from which the water samples were collected. After 

collecting the water samples from the desired depth, the carrousel was pulled up to the 

surface.  Then, two pre-sterilized 1 L bottles (washed with 10% bleach solution followed by 

cleansing with deionized water) were used to collect the sampled water from the Niskin 

bottles. Prior to this, the clean bottles were rinsed with a small portion of seawater from 

the Niskin bottles. After rinsing, the bottles were filled with the collected water samples. 

For each station and period of sampling, two 1 L bottles were filled with the collected water 

samples. Each bottle corresponded to the replicate of the water sample per station.  

The collected water 

samples in the 1 L bottles of 

each station were 

immediately filtered on 

board using a magnetic filter 

funnel (Pall). The membrane 

filters were made from 

polyethersulfone (47 mm 

diameter, Pall) with 0.45 µm 

pore size. After filtration, 

the filter was placed in a 2 

mL Eppendorf tube. The 

Eppendorf tubes were labeled 

with the name of the sampling 

station, sampling depth and date of sampling. The filtration procedures were repeated for 

the other replicates of the collected water samples. The filters were then stored at -20oC to 

prevent DNA degradation. They were then transported to the laboratory using a coolbox 

Figure 4. The map showing the locations of the nine study 
stations of the present study in the Belgian part of the North 
Sea. 
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with freezer blocks or ice and stored in the laboratory freezer (-20oC) until eDNA extraction 

started.  

3.3. eDNA extraction 

The previously stored filtered samples (the filters) were removed from the freezer (-

20oC) and brought to the workbench. Using dissecting knife and forceps, the filter paper for 

each sampling station was equally divided into six sections. Each section was carefully and 

separately placed into an autoclaved and pre-labelled 2 mL Eppendorf tubes. For each 

round of eDNA extraction, six samples were worked on. It was made sure that all the 

residues from the filter paper were placed into the tubes to maximize the amount of eDNA 

collected in the tubes. The dissecting materials were washed with 10% bleach solution and 

then subsequently with deionized water before using it for the next sample to avoid 

contamination. Then, clean glass beads were placed into each Eppendorf tube containing 

the cut filter paper. After this, 300 µL of freshly prepared and warm CTAB extraction buffer 

(65oC) was introduced into each Eppendorf tube using an appropriate pipette (see eDNA 

extraction protocol for CTAB preparation in Appendix 2). The tubes were then locked 

properly and then the content was mixed using the MS1 Minishaker for about one minute. 

During the mixing period, the cut filter paper was made sure to be completely immersed 

into the extraction buffer. After vortexing, the tubes were warmed by placing them into the 

heat block (65oC) for one hour and were quickly vortexed every 20 minutes. After heating, 

the tubes containing the filter material were placed into an Eppendorf tube rack and were 

placed under a fume hood. Then, 300 µL of phenol:chloroform:Isoamylalcohol (P:C:I) was 

pipetted in each tube.  When pipetting the P:C:I, the top aqueous layer was avoided and 

only the bottom layer was pipetted. The tubes containing the P:C:I were then vigorously 

vortexed to mix until the filter paper inside the tubes was dissolved in the solution.   

Next, the tubes were then spun at 15 000 rcf for 20 minutes in a cooled (4oC) microfuge 

(Mikro 200R Hettich Zentrifugen). After centrifuging, two layers of liquid became visible 

inside the tubes. The supernatant (the clearer upper layer) was carefully pipped out from 

the 2 mL tube using the appropriate pipette and transferred into an autoclaved and pre-

labeled 1.5 mL Eppendorf tube. During pipetting, all the supernatant was removed and the 
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debris (the dirt below the supernatant) was left behind and not drawn together with the 

clear liquid. Then, each 1.5 mL Eppendorf tube containing the supernatant was pipetted 

with 5 µL RNase (Qiagen, 19101). The tubes were incubated on the bench top for 20 

minutes. After incubation, the tubes were again brought under the hood and each was 

pipetted with 500 µL chloroform:isoamylalcohol and were subsequently centrifuged at 15 

000 rcf for 15 minutes at room temperature (22oC). After centrifuging the tubes, the 

supernatant (the clear top layer of solution) was again transferred into autoclaved and pre-

labeled 1.5 Eppendorf tubes. Again, the scum or milky dirt layer below the supernatant was 

avoided and was not pipetted. Each of the tube containing the supernatant was then 

pipetted first with 27 µL of 3 molar sodium acetate and then with 500 µL of 2-propanol. 

Each tube was hand-inverted three times to mix and was incubated on the bench top for 10 

minutes.  

After this, the samples were spun at 10 000 rcf, 4oC for 15 minutes (or more) until 

pellets were observed at the bottom of the tubes. After pellet formation, the 2-propanol 

was then slowly pipetted out the tubes and discarded. Extra careful was observed to not 

include the pellet during pipetting. After removing the 2-propanol from all the tubes, 500 

µL of 70% ethanol was then pipetted into each tube to wash the pellet. Then, the tubes 

were centrifuged at 10 000 rcf, 4oC for 15 minutes. Then, the ethanol was completely 

removed in a similar manner the propanol was previously removed. Then, for the second 

time, 500 µL of 70% ethanol was added to each tube then all the tubes were centrifuged 

again in 1000 rcf, 4oC for 15 minutes. Finally, the ethanol was removed after centrifugation. 

The pellets were then air-dried until the methanol was completely evaporated from the 

tubes (maximum 1 hour of air drying). After drying, the first tube (of the four tubes) of each 

sample was re-suspended with 30 µL of 1X TE buffer. The pellet was allowed to dissolve in 

the buffer solution by slowly pipetting the solution up and down. The TE buffer used in the 

first tube was used to re-suspend all the filterpieces of the remaining tubes coming from 

the same sample.    
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3.4. Measuring the purity of extracted eDNA: NanoDrop 

After eDNA extraction, the quality or the purity of the DNA extracts were determined 

using a NanoDrop. Prior to sample measurement, the blank (1X TE buffer) was measured 

first. To start blank measurement, 1.2 µL of 1X TE buffer was dropped on the center hole of 

the Nanodrop’s pedestal. After this, the pedestals were cleaned and then 1.2 µL of the DNA 

extract was pipetted in the pedestal for sample measurement. During pipetting of the 

samples into the pedestal, it was made sure that bubbling of the pipetted samples was 

avoided (see NanoDrop manuals online). After eDNA quality determination, completely 

labeled samples were then stored in the freezer (-20oC) for future use.  

 

3.5. Testing primer specificity: PCR 

Prior to qPCR analysis of the C. hysoscella eDNA samples, forward and reverse primers 

for the target DNA were initially designed (see PCR/PCR primer design protocol in Appendix 

3). The primers used in the present study were pre-designed by Tara Grosemans and were 

made available prior to the start of the PCR/qPCR reactions. Details about the designed 

primers are shown in Table 2. The information of the amplicon product is also shown.  

 

Table 2. Primer information for the used C. hysoscella primers used in the study. 

 

Amplicon C. hysoscella:      Amplicon length: 94 

TTAGTTTACATTGTGCGGGTGCCTCCTCCATTATGGGGGCTATTAATTTTATTACTACTATCTTAAAT

ATGAGAGCCCCAGGAATGACAATGGACAAAATCCCTCTGTTTGTTTGGTCCGTTTTAATTACAGCT

ATCTTATTACTATTATCTTTACCTGTATTAGCAGGGGCGATTACGATGTTATTGACAGACAGAAATT

TTAATACTACATTCTTTGAACCCCCAAGGGGGAG 

Primer Start Stop Length Tm GC% 

Forward 77 98 21 63 47.6 

CCCAGGAATGACAATGGACAA (Sense) 

Reverse 143 171 28 62 35.7 

CCCTGCTAATACAGGTAAAGATAATAGT (AntiSense) 

Figure 5. C. hysoscella amplicon product used in the study. 
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The designed forward and reverse primers for the experiment were received in 

lyophilized form. Hence, the primers were processed and 100 µL of 10 µM of working primer 

stock (for forward and reverse primers) were prepared (see PCR protocol in Appendix 4 for 

details). Before testing the designed primers on the eDNA samples of the present study, its 

specificity was first tested using eight DNA extracts of various jellyfish species (Aurelia 

aurita, Hydrozoa sp., Beroe sp., Cyanea lamarkii, Aurelia vikrina, Mnemiopsis leidyi, Eutonia 

indicans) which included a positive control (C. hysoscella DNA extract). A negative control 

which was composed of a solution of PCR reaction reagents (with no DNA extract) was also 

included. Each PCR reaction tube contained: 2 µL DNA, 1 µL of forward primer (10 µM), 1 

µL of reverse primer (10 µM) 6 µL of water and 10 µL of master mix (Roche FastStart 

Essential Green Master mix 2.0X) and was run on the following conditions: 95oC for 10 

minutes; 50 cycles of 95oC for 30 seconds, 50oC for 30 seconds and 72oC for 20 seconds; 

95oC for 10 minutes; 65oC for 60 seconds; 97oC for 1 second. 

3.6. Verification of primer specificity: gel-electrophoresis 

To check if the previously prepared working primer stock solutions were properly 

prepared and if these primers demonstrate specificity by binding only to the target DNA 

fragments (which results to its amplification), PCR products were analyzed on a gel 

electrophoresis. This step visualized the amplified target DNA as DNA bands in the gel. Prior 

to running the gel electrophoresis, the buffer solution was first prepared. 5X TBE was 

prepared by weighing 54 g Tris base and 27.5 g boric acid. Both were then transferred in a 

1000 mL beaker and then dissolved with 900 mL deionized water. Then, 20 mL of 0.5 M 

EDTA (pH 8) was added to the solution and the solution was adjusted to a final volume of 1 

L. From the 5X TBE, 1X TBE was prepared and used as the buffer solution for the gel 

electrophoresis.  

Before running a gel electrophoresis, the gel tray, comb and buffer tank were rinsed 

with ethanol followed by deionized water. These were again rinsed with ethanol for final 

cleaning and then air dried to remove the ethanol. The gel tray was then clamped into its 

holder and the comb was inserted into the gel tray. After this, 0.9 g of agarose was weighed 

in a 200 mL beaker. The beaker with the agarose was then added with 60 mL of 1X TBE. The 
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mixture was then melted in the microwave for one minute in a power stand of seven.  After 

melting, the beaker was carried under the hood to cool down to 60oC for 5 minutes. After 

cooling, 6 µL of GelRed was carefully added to the melted agar wearing purple nitrile gloves 

and using the dedicated pipette and pipette tips for this purpose. The beaker was then 

gently swirled to mix the GelRed into the gel solution. The gel was then gently poured into 

the gel tray and let to solidify for about 15-20 minutes.  

While waiting for the gel to solidify, the PCR products were prepared in 0.2 mL 

Eppendorf PCR tubes.  In each tube 3 µL of the PCR product (DNA extract), 2 µL of molecular 

grade water and 1 µL loading dye was pipetted. The content of the tube was mixed by slowly 

pipetting it up and down. The tubes were then spun in a Galaxy Ministar vortex for about 5 

seconds to collect all the liquid at the bottom of the tube. After preparing the PCR products, 

gel tray was placed into the buffer tank with the gel wells facing the positive electrode of 

the tank. The tank was then filled with 1X TBE buffer until the gel was completely immersed 

into the buffer solution. It was made sure that the wells were also filled completely with the 

buffer solution. Loading the gel with the DNA extracts followed. First, 6 µL of the DNA ladder 

was carefully loaded in the first gel well. Same volume of the PCR products was loaded to 

the remaining wells. The gel was then run for 10 minutes at 50V then for 60 minutes at 

100V. When the bromophenol blue migrated for about 2/3 in the gel towards the negative 

pole, the power source was turned off to stop the gel electrophoresis.  

After running the gel electrophoresis, the gel was scanned using a UV-light source to 

see the distribution of the DNA bands into the gel. Working primers which amplified the 

target DNA from the positive control (C. hysoscella DNA extract) should show DNA bands 

on the well where the target DNA extract was injected and bands should appear 

approximately on the 90-100 base pair DNA ladder fragments (see gel electrophoresis 

protocol in Appendix 5). After scanning the gel for amplified products, the gel tray, comb 

and buffer tank were cleaned using soap in a plastic bucket used for this purpose. Then, 

these materials were rinsed with deionized water and then dried using a paper towel. All 

the washings were disposed to a container which collects all the liquid wastes from the gel 

electrophoresis procedure.  
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3.7. Detection and quantification of C. hysoscella eDNA from the samples: 

qPCR 

The qPCR analysis of the eDNA samples was done in the Marine Research Station of 

VLIZ in Oostende. Prior to qPCR analysis, a series of 1/10th standard dilutions (STD) of the C. 

hysoscella amplicon (see Figure 6) with an initial concentration of 10 ng/µL were made. 

Then, the working primer stocks were prepared in the similar manner as how it was done 

for the PCR reaction. The master mix was then prepared for the qPCR. To prepare the 

master mix needed for every qPCR cycle using a 96-well plate, exactly 576 µL of molecular 

grade water was pipetted in the 2 mL Eppendorf tube. This was then pipetted with 96 µL of 

the reverse working primer and with 96 µL of forward working primer. Finally, 960 µL of 

DNA master green (2.0 X) was added to the tube. The master mix was then slowly mixed by 

pipetting it up and down. The master mix tube was then wrapped with aluminum foil to 

prevent photodegradation of its sensitive components.  

After preparing the master mix solution, the 96-well plate for qPCR was made ready in 

the workbench together with the template (see Figure 6) which shows the position of the 

STDs, controls and eDNA samples in the plate. Then, 18 µL of the master mix was pipetted 

into each well of the plate using an Eppendorf Multipipette Stream. These wells were then 

added either with 2 µL of the appropriate STD (=standard), 2 µL of the sample, 2 µL of DNA 

green master molecular grade water (NTC= no template control) and 2 µL C. hysoscella DNA 

extract (positive control) giving a total qPCR reaction volume of 20 µL. The positive control 

was included to check if the working primer solution used in the qPCR contained the 

designed primer and if the primers worked well. The negative control (NTC) was included 

to monitor contamination during the qPCR reaction. The STDs, eDNA samples, negative 

control and the positive control were all replicated three times in the wells of the plate. 

After loading the wells, the plate was covered with an adhesive film. Care was taken to not 

touch the part of the film that will cover the plate. The film was held only on its edge to 

avoid contamination. A plastic spatula was then used to tightly press the film over the plate. 

The plate was then spun down for few seconds in the PCR plate spinner to spin down the 

contents of the plates and to eliminate bubbles from the solution inside the plate. The plate 
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Figure 6. Plate template or guide generated through LightCycler® 96 Roche. Blue blocks (STDs) 

represent standard dilutions, pink blocks (NTC) represent negative controls, green blocks (C. 

hysoscella) represent positive controls and grey blocks represent eDNA samples.  

 

was then loaded in the qPCR machine (LightCycler® 96, Roche) and run for two hours in the 

same conditions previously mentioned in the PCR reaction.  
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Chapter 4: Results  

 

4.1. eDNA extraction 

The eDNA samples collected from the different sampling stations of the considered 

sampling periods were extracted from the filter materials using the CTAB protocol. The 

extracted DNA was then measured using a NanoDrop. The eDNA concentration (ng/µL), 

A260/280 and A260/230 ratios were measured. For the extracted eDNA samples to be 

considered in good quality and purity their A260/280 ratio should be between 1.7 to 2.0 

and the A260/230 ratio should be 2.0 or greater. The A260/280 ratio is generally used to 

determine protein contamination in the nucleic acid sample. A lower ratio indicates the 

sample is protein contaminated. The presence of protein contamination may have an effect 

on downstream applications that use the nucleic acid samples such as PCR and qPCR. The 

A260/230 ratio indicates the presence of organic contaminants. Samples with 260/230 

ratios below 1.8 are considered to have a significant amount of these contaminants that 

will interfere with downstream applications. A total of 76 eDNA samples were extracted 

and analyzed in the study. Form these extracts, 30 met the standards for 260/280 and 

260/230 ratios, 25 met the standards for 260/280 but has 260/230 ratios below the 

standards, 2 met the standards for 260/230 but has 260/280 ratios below the standards 

extracts and 19 extracts have both ratios below the ideal values. All the extracted samples 

were analyzed in the qPCR. The quality of the eDNA extract per station is shown in Table 5. 

The details of the NanoDrop measurements of the extracted eDNA samples are presented 

in Appendix 6.  

4.2. C. hysoscella primer specificity 

Before the qPCR analysis of the extracted eDNA samples using the designed C. 

hysoscella primer in this study, the primers’ specificity to the target DNA was first verified 

using tissue DNA extracts of different jellyfish species namely: Aurelia aurita, Hydrozoa sp., 

Beroe sp., Cyanea lamarkii, Aurelia vikrina, Mnemiopsis leidyi and Eutonia indicans through 

PCR reaction. Tissue DNA extracts of C. hysoscella was used as the positive control and a 

solution of PCR reaction reagents (with no DNA extract) was included as the negative 
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Figure 7. Gel electrophoresis of the PCR products from tissue DNA extracts of various jellyfish species 

using the designed C. hysoscella primers used in the study.  

 

control. The PCR products were run in a gel electrophoresis to verify specific amplification 

of the target DNA. Figure 7 below shows the result of the gel electrophoresis. The result of 

the gel electrophoresis showed specific amplification of the C. hysoscella target DNA using 

the designed primers resulting to an amplicon product of approximately 100bp. However, 

as seen on the gel electrophoresis, slight/weak DNA bands were observed for A. aurita 

(approximately 60bp) and Beroe sp. (approximately 100bp) tissue extracts. These very small 

amounts of amplified products were suspected to be primer dimers formed during the PCR 

reaction in case of A. aurita. In the case of Beroe sp., it could be that the primer binds to a 

similar but not identical part in the genome of Beroe sp. But no molecular or genomic 

information on this species is available, so it is not possible to confirm this claim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: L = 50bp DNA ladder; Aa 

= A. aurita; Hs = Hydrozoa sp.; Bs 

= Beroe sp.; Cl = C. lamarkii; Av = 

A. vikrina; Ml = M. leidyi; Ei = E. 

indicans; Ch = C. hysoscella DNA 

extracts; N = negative control 
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4.3. qPCR analysis of eDNA samples 

qPCR of the eDNA extracts was made to determine the presence or the absence of 

the C. hysoscella eDNA from the water samples collected from the different study locations 

during the sampling periods considered. If present, qPCR enables the estimation of the 

amount of the target eDNA originally present in the analyzed samples. 

4.3.1. Presence or absence of C. hysoscella eDNA 

 The presence or absence of the C. hysoscella eDNA from the nine studied 

stations in the BPNS was evaluated through the qPCR of the extracted samples. The 

results of the qPCR analysis for detection and non-detection of the target eDNA is 

presented in Table 3. As reflected on the table, C. hysoscella eDNA is commonly 

present in the studied stations during October 2014 (6 out of 7 sampled stations), 

March 2015 (present in all stations), May 2015 (6 out of 8 sampled stations) and 

August 2015 (6 out of 8 sampled stations).  

 

Table 3. Detection and non-detection of C. hysoscella eDNA in the established study 
locations in the BPNS. 

 
 

Sampling time 

Stations 

 
120 
(S) 

 
130 
(S) 

 
700 
(S) 

 
215 
(M) 

 
230 
(M) 

 
710 
(M) 

 
ZG02 
(OS) 

 
330 
(OS) 

 
780 
(OS) 

Oct-14 NS 1 1 1 1 0 NS 1 1 

Mar-15 1 1 1 1 1 1 1 1 1 

May-15 1 0 0 NS 1 1 1 1 1 

Aug-15 0 1 1 0 1 0 1 1 1 

Oct-15 0 NS 0 1 0 0 1 1 0 

Jan-16 0 0 0 NS 1 0 1 1 0 

Mar-16 0 1 0 1 1 0 1 1 0 

May-16 0 0 0 1 0 0 1 0 0 

Aug-16 1 0 0 0 1 1 1 0 0 

Note: NS – no sample analyzed; 1 – detected; 0 – not detected; S – shoreline stations; M – middle 
stations; OS – offshore stations; 120, 215 and ZG02 are Nieuwpoort stations; 130, 230   and 330 are 
Oostende stations; 700, 710 and 780 are Zeebrugge stations. 
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The occurrence of the target eDNA for the selected months in 2016 

decreased. For 2016, the target eDNA is frequently present during March (5 out of 

9) and August (4 out of 9). Table 3 also shows that C. hysoscella eDNA is commonly 

detected in Oostende stations then in the Niewpoort stations and least detected in 

Zeebrugge stations. Additionally, the target eDNAs are commonly present in 

stations farther from the shoreline (see Figure 4). 

4.3.2. Tracing the possible cause of false positive results 

Some of the NTCs did result in a positive amplification during the qPCR 

analyses done in the study. To determine whether this was a false positive, potential 

primer dimerization or contamination, a verification test was done. The same 

master mix used in the qPCR analysis was run in the PCR. This test also run a PCR for 

the used positive control (C. hysoscella tissue sample 249 extract and dilutions of 

such extract); it additionally included a no primer PCR reaction solution and the 

same no template control PCR reaction solution.  After the PCR, each PCR product 

was run in the gel electrophoresis in three replicates except for the tissue sample 

which was tested in two replicates to allow the best use of the available wells in the 

gel. The components run in the PCR are shown in Table 4. The result of the gel 

electrophoresis is shown in Figure 8.  

 

Table 4. Solutions used in the qPCR analysis tested for contamination in the gel 
electrophoresis. 

Well Master mix 
(uL) 

Primer 
(uL) 

DNA 
(uL) 

Water 
(uL) 

Content 

1 - - - - 50bp DNA ladder 

2 10 2 2 6 C. hysoscella tissue 
sample 249 3 10 2 2 6 

4 10 2 2 6 1:1 C. hysoscella 
tissue sample 249 

(1/2 dilution) 
5 10 2 2 6 

6 10 2 2 6 

7 10 0 0 10  
Master mix 8 10 0 0 10 

9 10 0 0 10 
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Figure 8. Gel electrophoresis of the components tested in Table 4. 

 

10 10 0 2 8  
No primer 11 10 0 2 8 

12 10 0 2 8 

13 10 2 0 8  
No template 
control (NTC) 

14 10 2 0 8 

15 10 2 0 8 

The figure reveals that the master mix used in the qPCR analysis was not 

contaminated by the target DNA as samples containing only mastermix did not result 

in amplification (wells C in the figure). Also, based from the gel analysis below, no 

amplified products were formed for PCR reaction solutions that were not added with 

C. hysoscella primers (wells D in the figure) while amplified products of 

approximately 100bp were produced in the NTCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend:  
L = 50bp DNA ladder; A =  
C. hysoscella tissue 
sample 249; B = 1:1 C. 
hysoscella tissue sample 
249 (1/2 dilution); C = 
Master mix; D = No 
primer; E = No template 
control (NTC) 
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4.3.3. Cq means of the eDNA samples 

 The quantitation cycle (Cq) means as measured through the qPCR of the 

extracted eDNAs from each sampling station and sampling time are presented in 

Table 5. Each extracted sample was replicated three times in the qPCR plates. If the 

target eDNA is present in each replicate, a Cq value for each replicate is given. The 

mean of these values is taken into account.  Cq means are chosen to represent the 

abundance or concentration of the target eDNA since the estimated concentrations 

based from the qPCR analysis are very small and the difference in the magnitudes of 

the estimated values are great (see Appendix 7). Hence, graphical representation of 

the results would be better using the raw Cq means, as these are values on a log 

scale, rather than doing a transformation of the data. In qPCR, the cycle in which 

fluorescence can be detected is represented by Cq. The fluorescence on the other 

hand gives an idea on the initial amount of the target eDNA in the sample. The higher 

the initial number of the target eDNA in the sample, the faster the increase in the 

fluorescence during the qPCR cycles. Therefore, lower Cq values mean higher initial 

amount of the target eDNA while higher Cq values mean lower initial amount of the 

target eDNA.  

 

Table 5. Cq means obtained from the qPCR analysis of the extracted eDNA samples. 

 
 

Sampling time 

Station and Cq mean 

 
120 
(S) 

 
130 
(S) 

 
700 
(S) 

 
215 
(M) 

 
230 
(M) 

 
710 
(M) 

 
ZG02 
(OS) 

 
330 
(OS) 

 
780 
(OS) 

Oct-14 NS 34.13 29.46 29.19 32.46 - NS 30.25 33.19 

Mar-15 32.65 40.34 39.91 31.01 37.63 35.93 31.90 32.12 31.52 

May-15 43.38 - - NS 40.11 39.88 44.66 41.41 40.23 

Aug-15 - 33.78 41.58 - 44.51 - 40.83 30.10 38.86 

Oct-15 - NS - 41.30 - - 42.50 42.41 - 

Jan-16 - - - NS 40.52 - 44.04 37.33 - 

Mar-16 - 41.04 - 40.02 38.86 - 43.40 40.10 - 

May-16 - - - 41.61 - - 43.06 - - 

Aug-16 44.98 - - - 40.50 2.35 39.77 - - 
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Note: NS – no sample analyzed; – means non-detection; S – shoreline stations; M – middle stations; 
OS – offshore stations; 120, 215 and ZG02 are Nieuwpoort stations; 130, 230   and 330 are Oostende 
stations; 700, 710 and 780 are Zeebrugge stations; green – 260/280 and 260/230 ratios are ok; yellow 
– 260/280 ratio is ok but 260/230 not ok; blue – 260/280 ratio not ok but 260/230 ok; red – both 
260/280 and 260/230 ratios are not ok.  

 

 Based from the Cq means in Table 5, C. hysoscella eDNA is usually in greater 

abundance in the middle stations (215 for October 2014, 215 for March 2015, 710 

for May 2015, 215 for October 2015, 230 for March 2016, 215 for May 2016 and 710 

for August 2016) and in the offshore stations (330 for August 2015 and January 

2016). From the three middle stations, higher amount of the target eDNA is 

frequently found in the Nieuwpoort station across the sampling months and with an 

occasional detection of increased amount of eDNA in Oostende station and in 

Zeebrugge station. For the offshore stations, higher abundance is commonly 

observed in Oostende station. Very low detection to non-detection of the C. 

hysoscella eDNA is common in the shoreline stations across the sampling months. 

The abundance of the target eDNA in the shoreline stations has decreased in 2016 

as compared to the previous years. Additionally, as seen in Table 5, the target eDNA 

started to disappear from October 2015 onwards in all Zeebrugge stations except 

for a sudden re-appearance and increase in abundance in station 710 during August 

2016. In the Nieuwpoort stations, C. hysoscella eDNA becomes commonly detected 

when moving away from the shoreline. In the middle and offshore Nieuwpoort 

station, there is an increase-decrease trend of the target eDNA across the sampling 

months. However, there is a noticeable increase in the abundance of the eDNA in 

the offshore station (ZG02) in August 2016 as compared to the previous months 

(except March 2015).  A similar increase-decrease trend is observed in all Oostende 

stations across the sampling months. However, in August 2016, the target eDNA is 

detected only in Oostende in the middle station (230) in low amount.  
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4.3.4. Spatial and temporal variation in the eDNA distribution 

 The Cq values from the qPCR analyses were used to see if there is a spatial 

and temporal variation in the distribution of the C. hysoscella eDNA. To evaluate a 

possible temporal variation across stations, the average of the Cq mean per station 

across the sampling times was considered. For spatial variation within the same 

sampling period, the average of the Cq mean of all stations per sampling time was 

considered. The standard deviation of the Cq mean in a station across the sampling 

times and that of all stations per sampling time was also calculated. These are 

presented in Table 6.   

 

Table 6. Average of the Cq means and the standard deviation of the Cq means per month 
and per station. 

 
Sampling 

time 

 
Average 
Cq mean 

per month 

Standard  
deviation of 

the 
Cq mean per 

month 

 
Station 

 
Average Cq 

mean 
per station 

Standard  
deviation of 

the  
Cq mean per 

station 

Oct-14 31.45 2.09 120 40.34 6.70 

Mar-15 34.78 3.73 130 37.32 3.90 

May-15 41.61 1.98 700 36.98 6.57 

Aug-15 38.28 5.36 215 36.63 6.02 

Oct-15 42.07 0.67 230 39.23 3.66 

Jan-16 40.63 3.36 710 26.05 20.62 

Mar-16 40.68 1.70 ZG02 41.27 4.12 

May-16 42.34 1.03 330 36.25 5.35 

Aug-16 31.90 19.83 780 35.95 4.24 

  

 The data in Table 6 are presented in Figures 9 and 10. The figures show that 

there are some spatial and temporal variations in the amount of C. hysoscella eDNA 

as predicted in this study. Although the average of the Cq means across all stations 

per sampling months differ, the values do not follow the exact same pattern as the 

changes in temperature (see Figure 9). Nevertheless, it is important to mention that 

Figure 9 reveals that the average Cq mean from all stations for the months of 
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Figure 9. eDNA abundance and temperature across sampling months. 

Figure 10. eDNA abundance across sampling stations. 
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October 2014, March 2015, August 2015, and August 2016 are lower compared to 

the other sampling months. This indicates that eDNA abundance are a bit higher in 

these mentioned sampling months.  From these months, lowest Cq mean (highest 

eDNA abundance) is recorded for August 2016. The average temperature of all 

sampling stations per sampling month is also plotted in the graph to see if 

temperature influences the abundance of the target eDNA across the different 

sampling months (see Appendix 8 for the temperature profile of all the sampling 

stations per sampling month).  
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Figure 9 shows that there is no relationship between the average temperature 

across all stations per sampling month and the abundance of the target eDNA. This 

is confirmed by a correlation test performed between the Cq means and 

temperatures from all stations from the different sampling months (p = 0.4254). 

Figure 10 reveals that the amount of C. hysoscella eDNA detected per station across 

the sampling months does not vary very much. However, the Cq mean for station 

710 is obviously lower compared to the other stations. This implies that throughout 

the sampling periods considered, highest C. hysoscella eDNA is found in this station.   

 To see the fluctuations or the trends in the change in the abundance of C. 

hysoscella eDNA in stations near the shoreline, in the middle stations and in the 

offshore stations, Figure 11 is presented. The trend in the temperature per station 

is also shown. Clearly, the trends in the temperature do not affect the trends in the 

Cq mean (or C. hysoscella eDNA abundance).  There is no consistent and clear trend 

on the changes in the C. hysoscella eDNA abundance across the sampling months 

per station. However, based from the figure, it is clear that from start of the 

sampling time (October 2014), the target eDNA’s abundance has decreased or 

disappeared in all stations except for a one time dramatic increase in station 710 

during August 2016 (also see Appendix 9) Additionally, detection is common in 

offshore stations, hence, the fluctuations in these stations are a bit clearer.   

 

 

 

 

 

 

 

 

 



50 
 

0

10

20

30

40

50

C
q

 m
ea

n

Sampling month

120 130 700

0

5

10

15

20

25

Te
m

p
er

at
u

re
 (

o
C

)

Sampling month

120 130 700

0

10

20

30

40

50

C
q

 m
ea

n

Sampling month

215 230 710

0.00

5.00

10.00

15.00

20.00

25.00

Te
m

p
er

at
u

re
 (

o
C

)

Sampling month

215 230 710

0

10

20

30

40

50

C
q

 m
ea

n

Sampling month

ZG02 330 780

0

5

10

15

20

25

C
q

 m
ea

n

Sampling month

ZG02 330 780

Figure 11. Fluctuations in the Cq mean (eDNA abundance) and temperature per station across the 
sampling months.  
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Chapter 5: Discussion 

5.1. C. hysoscella (scyphozoa) and its eDNA in the Belgian coast 

To date, there is limited knowledge about the distribution of scyphozoans in the North 

Sea. Most of the available information about this jellyfish group is quite old and only few 

recent studies are available.  Some studies focused on the entire North Sea but provided 

limited data for the southern part of North Sea (Möller, 1980c; Hay et al., 1990), others 

studied only the Dutch coast (Verwey, 1942) and the British Isles (Russel, 1970). Researches 

on scyphozoans in the southern North Sea (Hartlaub, 1894; Künne, 1952; Kopacz, 1994) and 

the Elbe Estuary (Kühl, 1964; Thiel, 1966) were also obsolete. Some of the most recent 

studies concerning jellyfish in the North Sea which provided data on scyphozoans include 

Lynam et al. (2005), Barz and Hirche (2007), De Blauwe (2013), Duliere et al. (2014), Bastian 

et al. (2014), Vansteenbrugge et al. (2015) and Gambill (2016).  Despite these recent studies 

about scyphozoans in the North Sea, little is known about the scyphozoan jellyfish C. 

hysoscella. C. hysoscella occurs mainly in the southern North Sea (Hay et al. 1990). Although 

this species is one of the most common scyphozoans in the southern North Sea and in the 

BPNS, it is the least studied species compared to A. aurita and C. lamarckii. Even the 

literature does not provide sufficient information about C. hysoscella. Hence, there is a need 

to gather and build information about this species. The need to study this species is more 

important in locations where the species has been reported to impact the marine 

environment as well as tourism such as the Belgian coast.  

The present study is the first attempt to monitor the presence and the distribution 

of the compass jellyfish C. hysoscella in the BPNS using the eDNA approach. The results 

obtained from the present study showed that C. hysoscella eDNA is present in the BPNS 

depending on the sampling time and the location in the Belgian coast. The presence of such 

eDNA can be an indication of the species’ presence in the study areas. Additionally, the 

amount of eDNA present in the study areas may reflect the abundance of the C. hysoscella 

present in the study locations. In this study, C. hysoscella eDNA abundance varied 

depending on the sampling month and the location within the Belgian coast.  According to 

the Marine Life Information Network (MarLIN) (2017), C. hysoscella is distributed in British 
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and Irish coasts. The jellyfish occurs in coastal waters all around the British Isles and 

prevalent off the south and west coasts of England and Wales. It is also found off the 

Cumbrian coast, the Isle of Man and north coast of Ireland. The Ocean Biogeographic 

Information System (OBIS) also recorded the occurrence of C. hysoscella in the southern 

North Sea particularly in the coasts of Belgium, Netherlands and Germany. The jellyfish also 

occurs in the North Atlantic (France) and South Atlantic (South Africa).  

Based on the records of occurrence from OBIS (2017), there are 229 records of C. 

hysoscella occurrence in the United Kingdom since 1960, 167 records in Ireland since 2005, 

10 records in Belgium since 1997, 5 records in Germany since 1990 and 2 records each for 

the Netherlands, France and South Africa. In Belgium, the jellyfish is found to be common 

in Oostende, Nieuwpoort and in Zeebrugge (OBIS, 2017) and this coincided with the results 

of the present study wherein C. hysoscella eDNA was found frequently in Oostende stations 

and least in Zeebrugge stations. From 2002 onwards, records on the overall occurrence of 

C. hysoscella tend to fluctuate. However, from 2008 until 2011, there was a consistent 

increase in the occurrence of the jellyfish. But from 2012 to 2014, the occurrence of the 

jellyfish dramatically declined (OBIS, 2017). The results of this study showed that the 

frequency of occurrence of C. hysoscella eDNA in the BPNS has decreased from October 

2014 to August 2016 (see Table 3). Additionally, a decreasing trend in the concentration of 

C. hysoscella eDNA and even disappearance (non-detection) of the jellyfish’ eDNA has been 

observed in most stations after October 2014 to August 2016 except for stations 710, ZG02 

and 780 from which an increase in the eDNA abundance has been recorded (see Table 5). If 

the trend in the occurrence, distribution and change in abundance of the target eDNA 

recorded in this monitoring study reflected the actual trend in the existence, patterns of 

distribution and the actual density of C. hysoscella, a decreasing occurrence and number of 

the jellyfish in the BPNS can be claimed. 

The current study frequently detected C. hysoscella eDNA in offshore stations of the 

BPNS and less in the shoreline stations. This result contradicted those of other studies on C. 

hysoscella which showed that the jellyfish species is mostly coastal (Russel, 1970). C. 

hysoscella ephyrae were usually found in shallow areas (e.g., inshore or coastal). The 
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frequency of occurrence of C. hysoscella ephyrae was highest inshore (with a depth of 

approximately 50 meters) and decreased in depths more than 50 meters (offshore) 

(Buecher and Gibbons, 1999). However, the definition of shallow and deep study area varies 

per study location. Considering the southern North Sea to which the study locations were 

established, the offshore stations (ZG02, 330 and 780) can still be considered shallow 

considering their depths (see Appendix 1). The BPNS is a temperate shallow shelf. The water 

depth near the coastal area is usually less than 20 m and this increases to approximately 

less than 50 meters further off the coast (Emeis et al., 2015; Belgische Staat, 2012; Barz and 

Hirche, 2007). With a shallow offshore as compared to the other coasts, it is therefore 

possible for C. hysoscella species to occur in the offshore stations and this was confirmed 

by the presence of its eDNA farther from the coastline. Doyle et al. (2007) has shown that 

C. hysoscella was frequently observed in the shallow Celtic Sea (Transect 1) and absent in 

the part of the Celtic Sea closer to the St. George’s Channel (Transect 2) and in the deeper 

Irish Sea (Transect 3). Along the first transect nearer to Ireland, C. hysoscella was observed 

in greater density offshore compared to the most coastal section of the transect. Barz and 

Hirche (2007) examined the horizontal and vertical distribution of scyphozoan jellyfish 

(which included C. hysoscella) in the southern North Sea. Considering the horizontal 

distribution of the scyphozoans, most of them were found near the shore including C. 

hysoscella. For the vertical distribution, they revealed that C. hysoscella medusae were 

caught deeper stations (15 to 20 m depth). In the current study, the middle and offshore 

stations established in the BPNS is from 7 to 24 m depth (see Appendix 1), almost close to 

Barz and Hirche’s (2007) station depth where C. hysoscella were caught. The results of these 

cited studies imply that despite being described as coastal species, the distribution of C. 

hysoscella can’t just be limited near the shore. They could also be found in slightly deeper 

regions. Knowing this possibility, it is therefore possible to recover C. hysoscella eDNA in 

deeper regions in the BPNS as what was observed in the current study. 

This study demonstrated that the abundance of C. hysoscella eDNA in the BPNS 

somehow varied spatially and temporally although the degree of the observed variations is 

small (see Figures 9 and 10).  The qPCR of the eDNA samples from the BPNS consistently 
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showed small amount of C. hysoscella eDNA when present (see Appendix 7). Based on the 

average Cq means from the qPCR of the eDNA samples, peaks on the eDNA abundance 

occurred in October 2014, March 2015, August 2015 and August 2016 (see Table 5). 

However, the general trend observed in this study was that the eDNA abundance from 

October 2014 to May 2016 had decreased and was recorded to increase during the last 

sampling time (August 2016). Although C. hysoscella is one of the common gelatinous 

species in the North Sea, its density compared to the other North Sea gelatinous species is 

noticeably low. Vansteenbrugge et al. (2015) revealed that the scyphozoans (to which C. 

hysoscella is included) in the BPNS had the lowest total average density (individual per cubic 

meter) compared with ctenophorans and hydrozoans. Looking at the density of the 

scyphozoan species, C. hysoscella together with A. aurita had a density of <0.01 (C. lamarckii 

being the most abundant). The occurrence in low density of C. hysoscella in the BPNS might 

possibly explain why the amount of detected eDNA from this species in the Belgian coast is 

low. The dilution of the target eDNA, its degradation and transport by current might have 

contributed more to the low amount of eDNA collected in the sampling stations in the BPNS. 

But this assumption must be investigated since it was not studied in the present study.  Barz 

and Hirche (2007) previously made a study on the abundance and distribution of the 

scyphozoan medusae A. aurita, C. lamarrckii, C. capillata and C. hysoscella in the southern 

North Sea in 2004 and 2005. They were able to record the presence of C. hysoscella during 

2004 only in the months of August and September (summer and autumn) in the Dutch 

coast. In 2005, C. hysoscella was only recorded in the month of July (summer) in the coastal 

region of Heligoland Island, Germany. A survey of gelatinous plankton within the harbor of 

the North Sea (part of Dunkirk, France) recorded the occurrence of C. hysoscella from April 

to August (spring to summer) Bastian et al. (2014).  Vansteenbrugge et al. (2015) detected 

the compass jellyfish only during summer and autumn in the BPNS. However, the present 

study was able to detect compass jellyfish’ eDNA across the sampling months. The results 

of the stated studies imply that there is time variability in sighting or catching C. hysoscella 

medusae. But based on the recently available data, C. hysoscella appearance occurs during 

spring, summer and autumn period. These periods of appearance coincided with the results 
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obtained from this study which showed that C. hysoscella eDNA is at its peak during spring, 

summer and autumn.  

The detailed description of C. hysoscella’s life cycle has not been elucidated yet. 

However, Agassiz (1860) was able to firstly document the life cycle of two scyphozoan 

species (A. aurita and C. capillata) known as the Metagenic Life Cycle (MLC) (as cited by Ceh 

et al., 2015). Agassiz’ (1860) MLC model remains the fundamental model for understanding 

the ecology of scyphozoans and is thought to reflect the extremely seasonal environment 

of many scyphozoans. Generally, the MLC reflects that when environmental conditions and 

abundant resources are favorable for growth and reproduction, medusae (motile and 

pelagic life forms of scyphozoan) is maintained. When resources become limiting and when 

the environmental conditions downgrade, polyps (sessile and benthic life forms) are 

maintained and adapted (Boero et al., 2008). According to Agassiz’ model (1860) as cited by 

Ceh et al. (2015), in early spring, scyphozoan ephyrae develop into young medusae which 

marks the start of the pelagic phase of the scyphozoan life cycle. The young and motile 

medusae grow into sexually mature medusae through summer. After sexual reproduction, 

the mature medusae subsequently die (occurs during fall or autumn). The pelagic planulae 

which were previously produced by the sexually mature medusae sink to the seabed and 

metamorphoses into sessile polyps (scyphistoma) and marks the start of the benthic phase 

of the scyphozoan life cycle (starts during fall or autumn). Scyphistomae reproduce 

asexually through strobililation resulting to the production of cysts (occurs until winter). In 

early spring, scyphistomae develop into strobilae and releases the ephyrae. These ephyrae 

then develop into young medusae which again marks the beginning of the pelagic period of 

the life cycle.  

Ceh et el. (2015) revisited the metagenesis in scyphozoan jellyfish. They studied the 

population dynamics of Chrysaora plocamia for three years (2010-2013). They found out C. 

plocamia traits that were difficult to interpret in the light of the Agassiz’ (1860) MLC model. 

C. plocamia medusae demonstrated uneven seasonal pattern. Medusae were observed 

from early to late summer (November-February). However, the months where C. plocamia 

medusae were detected in all the years were limited to November, December and January 
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(autumn and winter). Additionally, medusae were also recorded as early as October 

(autumn), as late as March (spring), in April (spring) and even in winter months (June and 

July). In 2011/2012, the medusae re-appeared after the summer season (autumn and 

winter). Upon reviewing a wide range of literature about scyphozoans which reported 

diversions with the MLC model and after analyzing the results of their study, they had 

suggested additions to the current MLC model. According to Ceh et el. (2015), scyphozoa 

medusae in surface waters in late spring are large and sexually mature while the medusae 

found in the later season (summer) tend to be smaller in size. In late summer, medium-sized 

medusae sink to the sea bed and spend the autumn and winter periods near the deep 

benthos and ascend as large and sexually mature medusae to surface waters in the late 

spring. During summer period, polyps produce a mobile planuloid through external/internal 

gemmation, bypassing the medusa-stage. The planula-larvae produced during this season 

can directly develop into ephyrae by-passing the medusa-stage. Strobilation during the 

summer period supplies new and smaller medusae at summer time. These suggestions 

imply that scyphozoan medusae overwinter. This means that not all the medusae die during 

the medusa-season (spring and summer). Some sink to deeper water, overwinter and may 

re-appear to surface waters as large and sexually mature medusae during spring. 

Additionally, Ceh et el. (2015) implied that polyps produce ephyrae throughout spring and 

summer and that polyp-and medusa generations are not temporally and spatially 

separated.  

It is difficult to conclude which life cycle perfectly and truly fits C. hysoscella’s 

especially that Ceh et al. (2015) did not include data on C. hysoscella in making their 

suggestions to the scyphozoan life cycle. Additionally, the present study used eDNA 

approach in detecting the compass jellyfish and not based on sightings or catches. 

Therefore, it is impossible to see the variation in the size of the C. hysoscella medusae 

present in the BNPS throughout the sampling periods.  However, aside from basing their 

conclusions from C. plocamia, they also used literature data from Chrysaora melanaster.  

Knowing that C. hysoscella belongs to the same genus as C. plocamia and C. melanaster, the 

three species are therefore closely linked to each other and there is a possibility that their 
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life cycle would have greater resemblance. It is therefore safe to assume that C. hysoscella 

life cycle may follow closely the proposal of Ceh et al. (2015) than that of Agassiz’ proposal 

as the latter was based on a more distant relatives of C. hysoscella. But this claim must be 

verified in C. hysoscella future studies. In the present study, water samples were collected 

on surface waters (3 m from the water surface) and eDNA’s were extracted from the 

collected water and then analyzed for the presence of C. hysoscella eDNA. Following the 

MLC model of Agassiz (1860), the detected C. hysoscella eDNA could have been from C. 

hysoscella ephyrae and medusae since these are both pelagic forms and therefore found in 

the surface waters. With Ceh et al.’s (2015) proposal, the collected eDNAs might have been 

derived from the polyps, ephyrae and medusae. There were detections of C. hysoscella 

eDNA across the sampling months in the present study with August 2015 and August 2016 

(summer periods) consistently revealing higher eDNA abundance. This is expected as during 

this period, actively sexually reproducing C. hysoscella medusae could be present in the 

water surface. However, considering the MLC model, it is possible that the collected eDNAs 

were derived from remnants of dead medusae or could be from the ephyrae, young 

medusae or remnants of dead larger medusae if the new proposal is to be considered. 

Although not consistent, greater amount of eDNA during the months of October 2014 

(autumn) and March 2015 (spring) was recorded (even higher that the amount of eDNA 

during August 2015). One possible explanation for this is the nutrient availability in the 

water column during these months. Spring is characterized by a strong phytoplankton 

bloom (diatoms and flagellates) followed by a zooplankton bloom (Daro et al., 2006; Van 

Ginderdeuren et al., 2014). Copepods might increase during this zooplankton bloom.  

Copepods are known as food sources for jellyfish. Their increase may lead to the 

simultaneous increase of jellyfish. Finally, in autumn, a smaller secondary bloom occurs, as 

increased mixing breaks down the thermocline and nutrients are released again (Hay et al., 

2011). Changes in the hydrodynamics in the North Sea such as warming and changes in 

wind-driven water currents and vertical mixing do not only shift the timing for spring 

phytoplankton bloom and the composition of zooplankton (Graham et al., 2001; Hay et al., 
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1990; Lynam et al., 2005a, 2004) but also significantly affect the development, survival and, 

hence population size of jellyfish (Purcell, 2005). 

Whether jellyfish blooms occur globally or not is still an issue in the field of marine 

research (Gibbons and Richardsons, 2013). There are inconsistencies on the findings 

concerning jellyfish blooms. A research outcome suggests that there is no increase (Condon 

et al., 2012) and another suggests that global increase in jellyfish is happening (Duarte et 

al., 2013). Contributing to these inconsistencies and inconclusive findings is the fact that 

reliable jellyfish data is lacking (Purcell, 2009; Brotz et al., 2012; Condon et al., 2012). 

Additionally, the language to describe the increase in the jellyfish population is another 

problem which can contribute to misconception and misinterpretation of jellyfish data 

(Lucas and Dawson, 2014). It must be noted that the commonly used terms associated with 

jellyfish population increase such as accumulation, mass occurrence, aggregation, blooms, 

outbreak and swarm technically mean differently. Consistency of term usage is important 

for understanding the causes and consequences of blooms (Lucas and Dawson, 2014). The 

observed increase in the number of C. hysoscella in several locations in the Belgian coast on 

August 2013 (De Blauwe, 2013) was described to be a jellyfish swarm by Duliere et al. 

(2014). A numerical model based on the Lagrangian particle approach was used to backtrack 

the origin of the C. hysoscella swarms in August 2013. The model predicted that the 

observed C. hysoscella in the Belgian coast originated from an offshore area within the 

Belgian waters (Duliere et al., 2014). The same approach was used to backtrack the origin 

of the stranded jellyfish swarms in the Belgian coast (Oostende) on May 2013. The model 

showed that the stranded jellyfish originated from the UK coast (Duliere et al., 2014). 

Knowing that C. hysoscella occurs more frequently in the whole United Kingdom and that 

these species may follow the water current movement, it is possible that most of the 

jellyfish found in the BPNS could somehow originated from the UK coast. The evident 

surface current in the southern North Sea (Vlaeminck et al., 1989; Lacroix et al., 2004) can 

possibly transport jellyfish from UK to the Belgian coast. Water current passing through the 

English Channel to the Belgian coast and the water current on the eastern coast of England 

moving south-east could bring jellyfish to the BPNS. The physical boundaries of the North 



59 
 

Sea serve as aggregation sites (Graham et al., 2001; Hay et al., 1990; Lynam et al., 2005a, 

2004), since jellyfish as part of the plankton community are not able to actively swim against 

currents (Gambill, 2015). Their distribution seems to be forced by the effects of density 

driven currents and the presence of frontal zones. High abundances of scyphomedusae are 

expected in stratified waters, bordering estuaries (Doyle et al., 2007; Nielsen et al., 1997) 

and pycnoclines (Graham et al., 2001). 

Higher oceanic temperature may lead to the proliferation of many populations of 

gelatinous species since sea temperature can influence jellyfish life cycles and their 

reproductive performance and output (Purcell et al., 2007; Boero et al., 2002). Rising marine 

temperature changes the timing and duration of the pelagic stages of jellyfish reproduction 

(Purcell et al., 2007; Ceh et el., 2015). Moreover, warming of the ocean may also affect and 

shift the population distributions poleward of some species, as appears to be occurring for 

the ctenophore Mnemiopsis leidyi (Faase and Bayha, 2006; Hansson, 2006). However, 

warming temperature does not always lead to increase in jellyfish number since it can be 

lethal in some species (Dawson et al., 2001). C. melanaster was found to increase in the 

Bering Sea during the warming from 1976 to 1977, increasing most dramatically in the 

1990s, but then decreasing with further warming since 2000 (Brodeur et al. in press). The 

present study investigated the correlation between the temperature of the sampling 

stations recorded during sampling and the amount of eDNA present in the sample (as 

represented by the Cq values generated by the qPCR). The result suggests that temperature 

is not correlated with the amount of eDNA present in the BPNS (p value = 0.4254). This 

absence of correlation is expected and evident in Figures 9 and 11. Considering the general 

claim that warmer temperature leads to higher number of jellyfish, it can somehow be 

expected that at warmer sampling months at least we should have detected more C. 

hysoscella eDNA (e.g., lower Cq mean). Although lower Cq means were recorded for 

warmer months (October 2014, August 2015, August 2016), there were warmer sampling 

months wherein higher Cq means were recorded (October 2015, May 2015, May 2016) and 

colder months (March 2015, January 2016, March 2016) where Cq means were lower than 

in warmer months. Buecher and Gibbons (2000) demonstrated that C. hysoscella ephyrae 



60 
 

are eurythermal however, their frequency of occurrence is higher in lower temperature. 

Interestingly, there is a possibility that higher amount of eDNA was detected in colder 

months due to the absence of light or presence of low light intensity during these periods 

than in warmer months. Hence, less degradation of eDNA occurred in colder months than 

in warmers months. Further investigations relating the amount of C. hysoscella eDNA in the 

BPNS with temperature is required to settle the inconsistencies recorded in the present 

study.  

5.2. eDNA approach as a tool in monitoring C. hysoscella in the BPNS 

 Species detection using eDNA can potentially contribute to our understanding on the 

ecology of aquatic species. This monitoring approach has been claimed by many as more 

effective   technique in detecting and monitoring species than the conventional detection 

methods (Thomsen et al., 2012a, Dejean et al., 2011; Keskin, 2014;). Detection and 

quantification of species-specific eDNA can possibly eliminate the downsides of traditional 

sampling methods. eDNA sampling requires small amounts of water (e.g., 1 L or less) 

(Thomsen et al., 2012a; Takahara et al., 2013) and species-specific primers and probes for 

target eDNA quantification through qPCR. With this, the eDNA approach has species-

specific sensitivity and obviously requires less time for field sampling compared to the 

conventional surveying methods. Therefore, eDNA technique can be a promising tool for 

marine species detection and for monitoring species dispersal and patterns of distribution 

(Takahara et al., 2013). Looking for eDNA rather than direct sampling of organisms can 

reduce impacts on sensitive species and increase the power of field surveys for rare and 

elusive species (Goldberg et al., 2016). With its potential, determining how well eDNA can 

serve as a proxy for directly observing organisms must be intensively explored to reliably 

apply the technique in monitoring all types of ecosystem.  

 This study showed that the presence or absence of C. hysoscella in the BPNS can be 

determined using the eDNA approach. The qPCR data of the eDNA samples from the BPNS 

showed that C. hysoscella eDNA abundance somehow exhibited spatial and temporal 

variation. Hence, the eDNA approach provided an insight on the locations and the sampling 

months C. hysoscella appeared in the Belgian coast. Additionally, the differences in the Cq 
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means (or abundances) of the eDNA samples provided a snapshot on the abundance of C. 

hysoscella in the sampling stations across the different sampling time. This monitoring 

technique showed the patterns of distribution of the compass jellyfish in the Belgian coast. 

The monitoring approach used in this study interestingly showed that from 2014 to 2016, 

the frequency of occurrence of C. hysoscella in the Belgian coast had decreased.  Since 

monitoring and detection of C. hysoscella using eDNA is the first to be conducted based on 

the absence of similar studies in the literature, it is difficult to validate the results obtained 

from this eDNA study. However, using the limited information about the surveys, 

occurrences, sightings, catches, temporal and spatial distributions of C. hysoscella in the 

North Sea and in other locations previously presented in this paper, the time and space 

distribution as well as the abundance of the compass jellyfish as predicted by the eDNA data 

of this study reflected the findings obtained from actual observations of the jellyfish. 

However, it is important to note that the eDNA results obtained in this study were 

interpreted without considering and investigating the possible impacts of eDNA dilution, 

degradation and transport by surface water movement. These could be interesting topics 

that need to be explored to further develop the method in monitoring species from marine 

environment.  

 The sensitivity of eDNA technique demands a sensitive awareness and consideration 

to quality assurance and quality control protocols. Also, multiple factors are need to be 

considered when interpreting eDNA data and results (Goldberg et al., 2016). In eDNA study 

like this, following the protocols is very important. The extraction procedure needs to be 

performed accurately. The eDNA extraction method used in this study was considered 

efficient as for all extracted samples, NanoDrop measurements showed extracted eDNA. 

However, to have a good quality of eDNA extracts, care should be considered during 

extraction. Simple things like working on eDNA filters must be dealt with dedication. The 

forceps and the scalpel used to cut filters must be always decontaminated after and before 

using it to another eDNA filter. This reduces the chance of cross-contamination. 

Additionally, the collection of the filtered material into the Effendorf tubes must be 

maximized. Even those adhered into the forceps or knife must be collected into the tubes 
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to not miss the filtered eDNA from the water samples. Pipetting of reagents, the time of 

exposing the eDNA extract with these reagents must be accurate. Pipetting the supernatant 

from eDNA extract solution must be done with utmost care and dedication. This is very 

critical for determining the purity of the eDNA extract. When cleaning the eDNA pellets with 

the solvent, pipetting should be done correctly as to not remove the pellets from the tube 

and be discarded with the solvent. This obviously can affect the result of the detection of 

the target eDNA.  

Not all of the eDNA extracts used in this study had the ideal 260/280 and 260/230 

ratios. The NanoDrop also gave negative ratios. These negative ratios are usually due to a 

blank measurement that was made either using a solution with more absorbance than the 

sample buffer or on a dirty pedestal (ThermoScientific, 2017). However, the blank solution 

used in the NanoDrop and the buffer solution used in the sample were the same and the 

pedestals were always cleaned using the appropriate wiping paper. Even after re-blanking 

and re-cleaning the pedestal, negative ratios still appeared. It is strongly recommended that 

eDNA samples that did not meet the standards for both 260/280 and 260/230 ratios be not 

included in the qPCR analysis to reduce issues on qPCR inhibition in the outcomes. This 

means multiple eDNA extracts from one sampling location must be prepared. However, it 

is important to mention that most of those extracts that did not reach the ideal ratios, still 

showed amplification in the qPCR (see Table 5). The qPCR results showed false positive 

results in some qPCR plates. A test was done to trace possible contamination during the 

qPCR step (see Table 4). The result of this test revealed that the mastermix used in the qPCR 

was not contaminated with C. hysoscella eDNA since it did not show any amplified products 

(see Figure 8). However, amplified products were present in the NTCs which only contained 

primers. This suggests that when primers were added in the PCR/qPCR reaction solution 

even without any template DNA, amplified products can be produced. This supports the 

claim that primer dimerization may have caused the appearance of the amplified products 

in the NTCs (e.g., resulting to false positive outcomes) during the qPCR.  Primer-dimer is a 

product of duplex formation between two primers. Primers bind to each other and 

elongated by DNA polymerase. Formation of primer-dimers not only decreases the 
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concentration of primers in the reaction mix but also initiates the formation of nonspecific 

DNA products (Das et al., 1999). Primer dimerization can be avoided by adding a sequence 

of nucleotides at the 5’-ends (inactive side) of the primers (Brownie et al., 1998). Primer-

dimers can also be reduced by optimizing the PCR/qPCR reaction conditions such as carrying 

out the annealing of the primer and synthesis at higher temperature (Wu et al. 1990, Rychlik 

et al. 1990). Roche® also has manuals which give suggestions on how to reduce primer-

dimer formation. To opmitize the eDNA protocol for C. hysoscella, these considerations 

must be taken into account. Focus must be given to the currently designed C. hysoscella 

primers and to the reaction conditions during qPCR/PCR to improve the currently developed 

protocol.   

eDNA studies in marine ecosystem comes with several challenges. eDNA in marine 

system is diluted due to a larger water-volume to biomass ratio, easily and rapidly dispersed 

due to sea-currents and wave action and less efficiently extracted from the water column 

due to saline condition (Thomsen et a., 2012a) due to these, it is not evident whether using 

eDNA technique can represent the distribution and biomass of marine organisms since 

various environmental factors are expected to affect eDNA distribution (Yamamoto et al., 

2016). Goldberg et al. (2016) made an interesting review paper pointing out critical 

considerations for the application of eDNA to detect aquatic species. The authors also 

presented issues for eDNA researches that must addressed to improve the application of 

eDNA method and non-biased result interpretation. Such issues include: inference across 

space and time, inferring presence versus viable populations and confounding sources of 

eDNA. The preliminary data obtained from this study suggests that eDNA can potentially 

detect the occurrence of C. hysoscella by sampling its eDNA from surface water. This implies 

that the method can be developed further to assess or monitor jellyfish species in marine 

ecosystem especially if abundance, temporal and spatial variations of jellyfish are to be 

investigated. Just recently, the first study on jellyfish (Chrysaora pacifica) distribution using 

eDNA has been published (Minamoto et al., 2017). Spatial and temporal distribution visual 

surveys of C. pacifica were conducted at Maizuru Bay, Kyoto which were coupled with 

collecting surface water and sea floor water samples for C. pacifica eDNA detection and 
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quantification. Interestingly, after eDNA data analysis, results reveal that C. pacifica eDNA 

distribution and abundance reflected the spatial and temporal distribution of jellyfish 

inferred by visual surveys. Additionally, their results suggested that the concentration in the 

bay was significantly higher on the sea floor than on the surface. The study of Minamoto et 

al. (2017) shows that eDNA approach can be effectively used to assess the spatial and 

temporal distribution of jellyfish. Therefore, with more intensive research and optimization 

of protocols, the distribution and abundance of C. hysoscella and other jellyfish in the North 

Sea can be effectively monitored by sampling their eDNA either from water surface or from 

the sea floor/bottom water.   
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Chapter 6: Conclusions and recommendations 

 The results obtained from this study suggest that C. hysoscella in the BPNS can be 

detected by sampling its eDNA. C. hysoscella eDNA in the BPNS are commonly found 

offshore and exhibited a rather less evident temporal and spatial distribution variations. 

The compass jellyfish’ eDNA frequently occurs in Oostende, Nieuwpoort and least in 

Zeebrugge. Although the occurrence of the C. hysoscella eDNA has decreased from 2014 to 

2016, peaks in eDNA are observed in October 2014, March 2015 and August 2015 and 2016. 

The jellyfish’ eDNA abundance did not show any correlation with the surface water 

temperature. These results imply that eDNA approach can be used to detect C. hysoscella 

and other jellyfish in the North Sea to study their distribution and abundance. This 

monitoring technique is important in predicting possible blooms of the North Sea jellyfish 

which in turn is necessary to reduce the negative impacts of such blooms. 

 

 To further develop eDNA approach in monitoring C. hysoscella and other North Sea 

jellyfish, the following are recommended:  

1. Observe utmost precautions when doing eDNA experiment and optimize the 

PCR/qPCR part of the eDNA protocol. Explore the best PCR/qPCR condition for 

C. hysoscella and improve the primers designed for this species. 

2. Conduct a tank experiment to explore the degradation of C. hysoscella eDNA. 

3. To validate the applicability of eDNA in monitoring C. hysoscella this approach 

must be coupled with spatial and temporal surveys to compare outcomes of the 

two monitoring methods. 

4. Analyze the C. hysoscella eDNA distribution for all months in a year and include 

bottom waters to see clearer patterns and distribution and relate these to some 

abiotic factors.   

5. Use and verify eDNA approach with the most common and abundant jellyfish in 

the North Sea like Cyanea lamarckii or Mnemiopsis leidyi.  
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Appendices 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Station Latitude Longitude Depth (m) 

120 51°11.145 2°42.1 10 

215 51°16.648 2°36.797 24 

ZG02 51°19.962 2°30.052 13 

130 51°16.06 2°54.06 10 

230 51°18.473 2°50.916 12 

330 51°26.024 2°48.482 21 

700 51°22.563 3°13.183 10 

710 51°26.413 3°8.252 7 

780 51°28.292 3°3.523 19 

Appendix 1. The nine study locations established in the Belgian part of 

the North Sea (BPNS) with their corresponding coordinates and depths. 
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1. Goal 

For some molecular applications, such as sequencing and Copy Number Variation 

Analysis, high molecular weight DNA is needed. This protocol describes a method for 

obtaining such a high molecular weight DNA from Daphnia sp. The protocol is based on the 

use of a cetyltrimethylammonium bromide (CTAB)-based extraction buffer. Nucleic acids 

can be selectively precipitated with the cationic CTAB. RNA and DNA are soluble in CTAB 

and 0.7 M NaCl, but precipitate when the salt is reduced below 0.4 M.  

Extraction of high quality and high molecular weight DNA is recommended to use in 

downstream applications such as qPCR (CNV etc.) 

This protocol is time-consuming, but it is highly effective. It is based on a protocol 

obtained from Prof. Joseph Shaw, Indiana University, Bloomington, Indiana, USA, which in 

turn was a modification of the Lynch Lab protocol (Abe Tucker, 4/2009). 

2. Equipment and Reagents 

2.1 Cetyltrimethylammonium bromide (CTAB) (Sigma-Aldrich, H5882) 

2.2 β-mercaptoethanol (Sigma-Aldrich, M6250) 

2.3 Sodiumchloride (NaCl) (Merck, 27810.295) 

2.4 Tris-base (Sigma, T1503) 

2.5 HCl (Prolabo, 20252.290) 

2.6 Na2EDTA (Fluka, 03685) 

2.7 Ultrapure, DNase and RNase-free water (Teknova) 

2.8 Autoclaved Pestles 

2.9 Chloroform (Sigma, C2432) 

2.10 Iso-amylalcohol (VWR, 20796.298) 

2.11 Phenol-chloroform-isoamyl alcohol 25:24:1 (v/v) (Ambion) 

2.12 1,5 mL autoclaved Eppendorf tubes 

2.13 RNase A (Qiagen, 19101) 

2.14 70% (v/v) EtOH (Merck, 1.08543) 

Appendix 2. Protocol on CTAB-based extraction of high-molecular weight 

DNA from eDNA filters. (Responsible: Jana Asselman) 
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2.15 Sodium acetate (Merck, 6268) 

2.16 Microcentrifuge with cooling 

2.17 Warm water bath  

2.18 Pipettes  

2.19 Barriertips for pipettes  

2.20 Ice  

2.21 Paper 

2.22 Vortex  

2.23 Nitril gloves (VWR) 

2.24 Styrofoam box  

3. Solutions and preparations 

Note: It is important to use RNAse, DNAse and nuclease-free pipette barriertips when 

preparing solutions. 

Note: With the described quantities one can extract DNA from about 350 samples. 

Note: All solutions containing CTAB, β-mercaptoethanol, chloroform, phenol, isopropanol 

should be discarded in the appropriate waste container!  

Note: Some components are toxic or carcinogenic, take the necessary safety precautions 

(fume hood, gloves) as recommended by your tutor/advisor. 

3.1 Solutions 

3.1.1 1M Tris-HCl 

1M Tris pH 8.0 is generally available in a pre-made solution within the lab. 

If not, you can make Tris-HCL as follows: to make 100mL 1M Tris-HCl buffer pH 8.0, add 

12.11g Tris to about 50mL MilliQ H2O. Bring to pH 8.0 with HCl and bring volume up to 

100mL with MilliQ H2O. This solution can be stored at 4°C for up to 6 months. 

3.1.2 0.5M Na2EDTA  

0.5M EDTA is generally available in a pre-made solution within the lab. 

If not, you can make 0.5M EDTA as follows: to make 100mL 0.5M EDTA pH 8.0, add 18.61g 

Na2EDTA.2H2O to about 50mL autoclaved MilliQ H2O. Adjust the pH to 8.0 with NaOH 

solution (The reason to adjust the pH is that the EDTA will not dissolve until the pH is about 
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8). Bring volume up to 100mL with MilliQ H2O. This solution can be stored at 4°C for up to 

6 months. 

3.1.3 CTAB extraction buffer 

For 50mL CTAB extraction buffer, add 4.09g NaCl to 40 mL ultrapure H2O. Then add 5mL 1M 

Tris-HCl pH 8.0, 2mL 0.5M Na2EDTA pH 8.0 and 1g CTAB. Finally, after adding all the 

previous components, add 100µL 14.3M β-mercaptoethanol. Heat at 65°C. Make fresh 

extraction buffer every time. This solution can be stored for maximum 3 days at 4°C. 

3.1.4 3M Sodium Acetate 

3M Sodium Acetate is generally available in a pre-made solution within the lab. 

If not, you can make it as follows: for 50mL 3M NaAc, dissolve 12.3g NaAc in about 25mL 

MilliQ H2O. Add volume up to 50mL with ultrapure H2O. This solution can be stored at 4°C 

for up to 6 months. 

3.2 Preparations 

The following preparations need to be made before starting the DNA extraction: 

▪ Turn on a warm water bath at 65°C 

▪ Prepare the phenol:chloroform:isoamyalcohol (see instructions with bottle) 

▪ Prepare the chloroform:isoamylalcohol solution 24:1 (e.g. 48mL Chloroform + 2mL 

Isoamyl alcohol for ~50 samples) 

4. DNA extraction  

Note: It is important to use RNAse, DNAse and nuclease-free pipette barriertips. Clean used 

materials beforehand and afterwards with 70% EtOH. 

1. Option 1 – tissue. Add 300µL of warm CTAB extraction buffer (65°C) immediately.  

Option 2 – filter: Cut filter into smaller pieces with a clean dissection knife (soaked 

in 10% bleach for 10 min and rinsed with deionized water). Add 300µL of warm 

CTAB extraction buffer (65°C) to the filter samples.  

2. Option 1 - Grind tissue in warm CTAB extraction buffer using pestle. Twist, plunge, 

mash and grind for a good 30 seconds or more, being sure not to create to many 

bubbles by pulling the pestle in and out of the liquid.  
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Option 2 - Add beads to the filter sample and vortex vigorously for minimum 10 

minutes to disrupt the DNA from the filter. 

3. Quick vortex to mix. Incubate at 65oC (water bath) for 1 hour. Vortex every 20 

minutes during this 1-hour incubation. 

4. Remove tubes from 65oC water bath and in the fume hood, add 300 µL 

phenol:chloroform:IAA 25:24:1 (v:v:v). When pipetting the phenol solution, avoid 

the top aqueous layer and only pipet from the bottom layer. This solution is very 

sticky and requires slow aspiration. 

5. Vortex vigorously to mix and then spin tubes at 15000 rcf for 15-20 minutes in a 

cooled microfuge (4°C).  

6. Leaving debris and organic layer behind, carefully pipette out the supernatant into 

a clean autoclaved 1.5mL tube. 

7. Add 1 µL of RNase A to a final concentration of 10µg/mL (i.e. 5µL of 1000µg/mL 

RNase A). Incubate on benchtop 20 min. 

8. Prepare Phase Lock Gel (PLG) tubes by centrifuging them for 30s at high speed on 

room temperature. 

9. Add 500µL of 24:1 Chloroform: Isoamyl alcohol (C:I) (v/v) and mix vigorously. 

Transfer everything into the PLG tube. Centrifuge at 15000 rcf for 15 minutes at 

room temperature (on average 21°C). 

Note: Use glass instead of plastic to prepare the 24:1 Chloroform: Isoamyl alcohol 

solution! 

10. Transfer aqueous layer (supernatant) to clean 1.5mL tube avoiding scum at the 

interface.  

11. Add 27µL of Na Acetate (3M). Then add 500µL of 2-propanol. Invert to mix. Put to 

20 oC for 10 mins. 

12. Spin samples at 4oC, 10000 rcf for 15 minutes to pellet.  

13. Check for pellet. Then gently pipet off the 2-propanol. 

14. Add 500µL 70% EtOH to wash pellet.   

15. Spin samples at 4oC, 10000 rcf for 15. Then gently pipet off the 70% EtOH. 
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16.  Add 500µL 70% EtOH to wash pellet.  

17. Spin samples at 4oC, 10000 rcf for 15. Then gently pipet off the 70% EtOH. 

18.  Allow pellet to dry (air-dry or vacufuge) 

19.  Resuspend pellet in 50 µL 10 mM Tris, pH 8.0 or with 30µL of 1X TE Buffer  

20.  Store sample at - 20 oC 

5. Quality control 

Check purity of your extracted DNA on a Nanodrop (see protocol “Measuring DNA-RNA 

purity and concentration on the NanoDrop”). Values should be between 1.7 and 2.0 for 

260/280 ratio and greater than 2.0 for 260/230 ratio. 

Integrity of your DNA extract should be checked by gel electrophoresis. The gel image 

should show high molecular weight DNA (i.e. single band above the highest marker) with 

no other bands or smear present on gel. 
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Appendix 3. Protocol on primer and probe design for qPCR. (Responsible: 

Tara Grosemans) 

 

 

 

1. Goal 

The goal is to make good primers and probe that can be used in quantitative PCR (qPCR) 

experiments. Primers and probe are tested for specificity, hairpins, self-dimers and melting 

temperature. 

2. Method 

1. Go to Genbank (http://www.ncbi.nlm.nih.gov/) and choose the sequence for which 

you want to design primers and a probe.  

2. If you have the desired sequence, go to 

http://eu.idtdna.com/PrimerQuest/Home/Index  

3. You can paste the sequence in the sequence box and give the sequence a name. 

4. To adjust the parameters, click on Show Custom Design Parameters. 

5. Click on qPCR (2 primers + probe). Now you get different assays with their 

specifications. A good primer has a length around 20 bases, a melting\ temperature 

(Tm) between 60 and 64°C, which has a max. difference of 2°C between the two 

primers, and a GC content between 35-65%. The Tm for the probe should ideally be 

6-8°C higher than the primers. 

6. To test for hairpins and self-dimers, stand on the desired primer or probe row, 

hairpin and blast will now appear. Click on hairpin. Look in the result table at the 

free Gibbs energy (ΔG), which should be weaker (more positive) than -9.0 kcal/mole. 

Look also at the Tm of the secondary structure. The Tm should be much lower than 

the Tm of the primers. 

7. Primers and probe should be specific for the species you are interested in. You can 

test the primer pair specificity by blasting it. Go to 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/ and paste the primer sequences 

in the boxes. Put database on nr and do not specify for the organism (delete Homo 

sapiens), so that you get all possible bindings of the primers to organisms. Click Get 

Primers. 

http://www.ncbi.nlm.nih.gov/
http://eu.idtdna.com/PrimerQuest/Home/Index
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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8. Now you get an output with all sequences (of all organisms in the database) on 

which the primer can bind to. The returned results consist often of a long list of all 

possible bindings. The first results will ideally show no mismatches with the primers, 

meaning that on these species the primer can bind to. These top results should be 

sequences of the species and the gene you selected. The further you go down the 

list, the more mismatches will appear and the less likely it is that the primers will 

work with these species. 

9. Blast also the probe against the ncbi database. Stand on the probe row and click on 

blast. Now you are directed to the ncbi blast webpage. Settings are on blastn 

(blasting for nucleotides) and click blast. Now you get a table with the sequences 

containing a match with your probe sequence. The best results are in the top rows. 

First in the table is the name (description), next you see max score, total score, query 

cover, E value and identity. You have to look at the latter three columns. The query 

cover indicates if all nucleotides of your probe sequence are covered in the matching 

sequences. The E-value stands for the expected number of chance alignments; the 

smaller the E-value, the better the match. Last is the identity (%), which indicates if 

mismatches occur between the probe sequence and the output sequences.  

10. Keep in mind that these are all short sequences. The longer a sequence the more 

specific it can be. The combination of primers and probe makes sure that the 

specificity is high. 

11. When the primers and probe are species-specific, don’t form hairpins and self-

dimers and have the same Tm, it is a good assay for further qPCR experiments. 

References: 

Prediger, E., 25-11-2014, Designing pcr primers and probes, 

http://www.idtdna.com/pages/decoded/decoded-articles/pipet-

tips/decoded/2013/10/21/designing-pcr-primers-and-probes  
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Appendix 4. Protocol on PCR for eDNA.  (Responsible: Tara Grosemans) 

 

 

 

1. Goal 

The polymerase chain reaction (PCR) can be used to amplify the DNA with species-specific 

or general primers to obtain the desired sequence. For more information on designing 

primers, go to the primer protocol. This PCR protocol is based on the paper of Thomsen et 

al. (2012) for environmental DNA (eDNA). 

2. Equipment 

2.2 Molecular Grade H2O (Nuclease free water) 

2.3 Primers (lyophilized) 

2.4 1.5 mL autoclaved Eppendorf tubes 

2.5 0.2 mL Eppendorf PCR tubes 

2.6 TaqMan Environmental Master Mix 2.0 (Life Technologies) 

2.7 Extracted DNA 

Available protocols: CTAB-based high molecular weight DNA extraction from 

Daphnia, DNA extraction with Epicentre kit from fish (Actinopterygii)  

2.8 C1000TM Thermal Cycler (Bio Rad, Room B01.45/lab 8, inventory number 554) 

2.9 Galaxy MiniStar VWR (Room B01.45/lab 8, inventory number 553) 

2.10 Pipettes (0.5-2 µl and 2-20 µl) 

2.11 Gloves (VWR) 

2.12 Ice block 

Preparation 

Re-suspending primers 

Primers are usually received when they are frozen dry (lyophilized). The first thing to do is 

to spin down primer tubes before opening to make sure that the pellet is at the bottom of 

the tube. Make a master stock solution of the primers by adding Molecular Grade H2O (10 

times the number of nmol of primer).  

100 µM = X nmoles primer + (X × 10 µl of molecular grade H2O) 
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Prepare a working stock solution of 10 µM 

Now we want to make a working stock of our primer stock. This working stock will be used 

in further experiments. If contamination should happen, a new working stock can be made 

of the primer stock. Also, the primer stock does not need to be thawed for each reaction 

and thus will not be affected by repeated thawing-freezing cycles. So, it is important that 

the working stock solution is not too large, but also not too small. Ideally, we make a 

working stock of 100 µl (this is often enough for 100 reactions (1 µl per reaction)). If you 

plan to do more or less reactions, you can adjust this volume appropriately.  

Mix the primer stock very well before making a 1/10 dilution working solution from it. 

Take 10 µl of stock solution and add 90 µl molecular grade water. This is the solution that 

will be used to make a reaction volume for the PCR protocol. 

Validation of primers on gel 

It is always recommended to run your primer stocks on a gel to make sure there is actual 

primer in it. Otherwise you need to contact the company immediately.  

3. Methodology 

• Turn on the C1000TM Thermal Cycler and click run. The machine will give you an option 

to choose from the saved protocols or to create a new PCR protocol, depending on the 

PCR conditions you need.  

• Choose Thomsen protocol and click run with the following thermal conditions;  

95oC for 7 minutes; 

50 cycles of 94oC for 30 seconds, 50oC for 30 seconds, 72oC for 20 seconds; 

72oC for 5 minutes; 

4oC on hold forever 

• Select ‘ok’ (by pressing F1) and the machine will start heating up. 

• Thaw the primer work stocks and DNA on ice on time. Do not vortex! Mix by pipetting 

carefully up and down. Make a 25 µl reaction volume in the Eppendorf PCR tubes by 

adding the following: 

o 10 µl of molecular grade water 

o 11 µl of TaqMan Environmental master mix 
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o 1 µl of forward primer (10µM) 

o 1 µl of reverse primer (10µM) 

o 2 µl of DNA extract of water or tissue samples (concentration ranges between 

17 and 2400 ng/µL, optimisation can be needed dependent on the primer-DNA 

sample combination of the species). 

• When the reaction volume is ready, open the PCR machine and place the sample in. 

Tighten the knob just enough to keep the tubes from opening or being squashed. 

• Select ‘skip step’ (by pressing F3) in order to go to the next step (by pressing F1). 

Otherwise it stays at 95°C forever. The DNA sample will be amplified following the 

Thomsen procedure mentioned above. 

• The process will take about 2 hours to finish and when all is done the sample will be 

cooled and kept at 4oC forever. Press F2 to Stop the process, remove the sample(s) 

from the machine and switch it off. Keep the samples on ice while proceeding to annex 

1 or store them at -20 oC. 

• Next the PCR products can be evaluated by gel electrophoresis. See Annex 1 and the 

Gel Electrophoresis protocol. 

 

References 

Thomsen, P. F., et al. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental 
DNA from Seawater Samples. PLoS ONE 7(8): e41732. doi:10.1371/journal.pone.0041732 
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Appendix 5. Protocol for DNA gel-electrophoresis.  (Responsible: Dieter De 

Coninck) 

 

 

 

1. Goal 

DNA gel electrophoresis can be used to check the integrity of your extracted DNA. 

Note: It is strongly advised to contact a person who ran a gel before to get you informed 

about all precautions you need to take into account!  

2. Equipment 

2.1 Agarose (Merck, 162.0125, No. 172) 

2.2 EDTA (Fluka, 101135224, No. 36) 

2.3  Tris base (Sigma, T1503-1kg, No. 1) 

2.4 Boric acid (Sigma, 1.00165.0500, No. 13) 

2.5 Deionized water (room B01.45/lab 8) 

2.6 70% denaturated ethanol “Disolol” (ChemLab, CL00.1807.5000, No. BK52) 

2.7 Nitrile gloves (VWR) 

2.8 Filter tips 

2.9 Bio-rad MiniSub Cell GT buffer tank with gel tray and fitting comb for 15 slots 

(room B01.45/lab 8, red delineated zone) 

2.10 Bio-rad PowerPac 300 power source (room B01.45/lab 8, inventory number 464) 

2.11 Microwave (room B01.45/lab 8, inventory number 487) 

2.12 Eppendorf Reference micropipette (red delineated zone in lab 8) 

2.13 Micropipettes (lab 8) 

2.14 Bio-rad Gel Doc 2000 (inventory number 156) and CCD-camera (inventory number 

156A) 

2.15 Computer with Quantity One Software (inventory numbers 156B and 156C) 

2.16 GeneRuler 1kb Plus DNA Ladder (Fermentas, SM1334, No. -20|50) 

2.17  DNA Loading dye (comes with DNA ladder) 

2.18 GelRed coloring dye (rack red delineated zone under fume hood lab 8). 

CARCINOGENIC, WEAR APPROPRIATE PROTECTION (Long-sleeved labcoat and nitril 

gloves)!!! 
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2.19 PCR 0.2 mL strip tubes with attached strip caps (lab 8) (VWR, 82006-606) 

2.20  Microspin VWR Galaxy Ministar (inventory number 553) 

3. Preparations 

3.1  Prepare a Stock Solution of 0.5 M EDTA 

An EDTA (ethylenediamine tetraacetic acid) solution is prepared ahead of time. 

EDTA will not go completely into solution until the pH is adjusted to about 8.0. For a 

50 mL stock solution of 0.5 M EDTA, weigh out 9.31 g EDTA disodium salt. Dissolve 

in 40 mL deionized water and adjust the pH with NaOH. Top up the solution to a final 

volume of 50 mL. 

3.2. Prepare a Stock Solution of 5x TBE 

Make a concentrated (5x) stock solution of TBE by weighing 54 g Tris base and 27.5 

g boric acid and dissolving both in approximately 900 mL deionized water. Add 20 

mL of 0.5 M EDTA (pH 8.0) and adjust the solution to a final volume of 1 L. This 

solution can be stored at room temperature but a precipitate will form in older 

solutions. Store the buffer in a glass Duran bottle and discard if a precipitate has 

formed. 

3.3  Prepare a Working Solution of 1xTBE 

For agarose gel electrophoresis, TBE can be used at a concentraion of 1x (1:5 

dilution of the concentrated stock). Dilute the stock solution by 5x in deionized 

water.  

3.4 Thaw samples, DNA ladder and loading buffer on ice. 

4. Methods 

Note: It is strongly advised to contact a person who ran a gel before to get you informed 

about all precautions you need to take into account! 

 

4.1. Gel preparation 

1. Clean gel tray, comb and buffer tank with ethanol. Rinse thoroughly with deionized 

water. Rinse again with ethanol and let air dry.  

2. Clamp the gel tray in its holder and insert comb. 
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3.  For a 1.5% 60 mL gel, add 60 mL 1x TBE buffer to 0.9 g agarose.  

4. Melt in the microwave (approx. 1 minute at power stand “7”).  

5. After cooling down to approx. 60°C, add 6 µL GelRed. GelRed should be added in the 

red delineated zone under the fume hood in lab 8 while wearing PURPLE nitril gloves 

and using the Eppendorf Reference pipette that is located in the red delineated zone 

in lab 8.  

6. Swirl gently to mix the GelRed into the gel solution. 

7.  Pour the gel in the tray. 

8. Let gel solidify during approx. 15-20 minutes. 

4.2 Sample preparation 

9.  Take a sample containing approx. 0.2 to 0.5 µg DNA (typically about 1-3 µL) 

10.   Add nuclease free-water to a final volume of 5 µL and add 1 µL loading dye. Do this 

preferably in a 0.2 mL PCR tube. Mix by pippeting up and down. 

11.  Briefly spin the samples them to collect them at the bottom of the tube.  

4.3 Gel loading and running 

12.  Unclamp gel tray from its holder and place it in the buffer tank; 

13.  Remove comb. 

14.   Fill buffer tank with 1x TBE buffer such that the gel is just covered in it. Make sure 

the buffer fills the slots made by the comb. 

15.  Load the samples on the gel.  

16.   Include a ladder on your gel. The ladder is ready-to-use and 6 µL can be pipetted 

directly into a slot. 

17.  Close the lid of the buffer tank. 

18.  Attach red and black power cords to the power source. 

19.  Run the gel at 50V for 10 minutes. Afterwards switch to 100V for another 20 minutes 

(or until the bromophenol blue in the Loading Buffer migrated through about 2/3 of 

the gel). Since DNA has a negative charge it will migrate through the gel from the 

negative (black) to the positive (red) pole.  

20. Turn off the power source when finished. 
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4.4. Gel scanning 

Note: Again, it is strongly suggested to contact someone who did this before as certain 

precautions need to be taken into account for your own safety and the safety of others! 

1. Wear PURPLE nitril gloves. 

2. Turn on the Gel Doc and open the cabinet. 

3. Take the gel tray out of the buffer tank, blot it dry with a paper towel and walk it over 

to the gel Doc. 

4. Carefully let the gel slide of the tray onto the cabinet. 

5. Close the cabinet and turn on the trans-UV light by pushing the button. 

6. Take off your gloves!!! 

7. Turn on the computer and start the Quantity One Software by clicking on the short-

cut on the desktop.  

8. Go to file > Gel Doc 

9. Check “UV” in “image mode”. 

10. Click on “auto-exposure”. An image of your gel will steadily appear. If the software is 

about to expose the gel to long, interrupt the auto-expose by clicking the “freeze” 

button. An alternate method is by choosing for “manual exposure” and adapt the 

exposure time manually. 

11. You can optimize and annotate your image if you like. 

12. Save your image. 

13. Turn off the computer. 

14. Wear again PURPLE nitril gloves 

15. Open the cabinet and remove the gel. Dispose it in the ‘risicohoudend medisch afval’ 

waste container (yellow bin under the Gel-Doc). 

16. Take off one glove 

17. Clean the cabinet tray with deionized water (ungloved hand) and some paper towel 

(gloved hand). Dispose this towel in the ‘risicohoudend medisch afval’ waste 

container (yellow bin under the Gel Doc). 

18. Close the cabinet and turn off the Gel Doc. 
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19. Dispose your glove in the ‘risicohoudend medisch afval’ waste container (yellow bin 

under the Gel Doc). 

4.5 Gel interpretation 

Intact total DNA will show one sharp band above the first band of the ladder loaded on your 

gel (Figure 1A). If other bands are observed on the lower part of your gel, this might indicate 

RNA contamination (Figure 1B). A smear indicated degraded DNA.  

PCR amplified DNA should show a clear band with expected size (size of the amplicon). The 

size can be relatively deduced from the markings of the loaded ladder. 

4.6. Clean up 

Clean, gel tray, comb and buffer tank with soap. You can use the bucket under the fume 

hood for this. Rinse with deionized water and dry with paper towel. Make sure not to touch 

the squirt bottle with deionized water with contaminated gloves!! 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A: Good DNA 

extracts with genomic 

DNA (green circles) and 

little or no RNA present 

(yellow circles). B: 

Excessive RNA present (in 

the yellow circle) in the 

DNA extract 
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Appendix 6. NanoDrop measurements of the extracted eDNA samples. 

 

 

 

Station Date of  
Sampling 

eDNA concentration 
(ng/uL) 

A260/A280 
ratio 

A260/A230 
ratio 

120 14-Oct-14 NS NS NS 

215 14-Oct-14 0.300  -0.580  -0.130  

ZG02 14-Oct-14 NS NS NS 

130 14-Oct-14 -10.600  1.280  0.310  

230 14-Oct-14 5.000  2.040  -0.190  

330 14-Oct-14 13.500  1.940  2.040  

700 14-Oct-14 3.100  2.830  1.560  

710 14-Oct-14 2.700  1.940  -0.110  

780 14-Oct-14 10.800  1.700  -0.540  

120 24-Mar-15 57.900  1.930  -25.760  

215 24-Mar-15 39.700  2.090  2.370  

ZG02 24-Mar-15 27.400  2.050  3.160  

130 24-Mar-15 13.900  1.830  -0.830  

230 24-Mar-15 20.300  1.890  -1.240  

330 24-Mar-15 43.000  1.990  2.820  

700 24-Mar-15 15.700  1.640  -1.560  

710 24-Mar-15 38.900  1.940  -4.490  

780 24-Mar-15 25.000  1.890  -1.400  

120 19-May-15 29.300  2.050  -1.750  

215 19-May-15 NS NS NS 

ZG02 19-May-15 45.900  1.980  4.320  

130 19-May-15 34.600  1.500  24.440  

230 19-May-15 4.500  1.580  -0.170  

330 19-May-15 9.900  1.770  -0.460  

700 19-May-15 6.300  1.600  -0.290  

710 19-May-15 11.000  1.710  -0.550  

780 19-May-15 14.300  2.040  -0.570  

120 18-Aug-15 451.100  1.930  2.280  

215 18-Aug-15 240.900  1.920  3.080 

ZG02 18-Aug-15 147.400  1.890  4.180  

130 18-Aug-15 499.500 1.880 2.210 

230 18-Aug-15 179.500  1.880  3.920  

330 18-Aug-15 47.200  1.930  -3.340  

700 18-Aug-15 122.800  1.810  10.210  

710 18-Aug-15 550.200  1.870  2.200  
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780 18-Aug-15 112.800  1.920 8.110  

120 28-Oct-15 109.300  1.700  2.720  

215 28-Oct-15 161.500  1.890  3.040  

ZG02 28-Oct-15 57.700  1.900  22.730  

130 NS NS NS NS 

230 28-Oct-15 405.000  1.480  0.810  

330 28-Oct-15 30.800  1.900  -4.820  

700 28-Oct-15 792.700  1.480  0.850  

710 28-Oct-15 1375.000  1.670  1.080  

780 28-Oct-15 33.300  1.830  3.570  

120 28-Jan-16 26.200  1.770  -6.980  

215 NS NS NS NS 

ZG02 28-Jan-16 9.500  1.350  -54.000  

130 28-Jan-16 -435.800  1.420  3.560  

230 28-Jan-16 -11.100  1.760  0.540  

330 28-Jan-16 12.900  1.940  -0.590  

700 28-Jan-16 630.000  1.220  1.000  

710 28-Jan-16 71.200  1.560  1.230  

780 28-Jan-16 356.700  1.210  1.190  

120 30-Mar-16 182.800  1.830  2.180  

215 30-Mar-16 44.000  1.940  3.380  

ZG02 30-Mar-16 44.800  1.940  4.160  

130 30-Mar-16 64.900  1.530  1.930  

230 30-Mar-16 89.100  1.940  3.340  

330 30-Mar-16 76.000  1.900  3.200  

700 30-Mar-16 172.200  1.700  1.710  

710 30-Mar-16 341.800  1.770  1.860  

780 30-Mar-16 189.600  1.830  2.470  

120 25-May-16 293.100  1.850  1.690  

215 25-May-16 48.900  1.890  -19.110  

ZG02 25-May-16 148.600  1.900  2.440  

130 25-May-16 1464.400  1.580  1.180  

230 25-May-16 2542.600  1.510  0.860  

330 25-May-16 119.800  1.930  3.000  

700 25-May-16 247.500  1.750  1.460  

710 25-May-16 448.500  1.830  1.950  

780 25-May-16 78.400  1.050  1.280  

120 23-Aug-16 294.400  1.870  2.490  

215 23-Aug-16 165.800  1.870  2.780  
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ZG02 23-Aug-16 -34.900  0.500  0.720  

130 23-Aug-16 214.800  3.410  3.000  

230 23-Aug-16 36.200  -1.150  -4.300  

330 23-Aug-16 216.600  1.910  2.470  

700 23-Aug-16 380.200  1.990  1.430  

710 23-Aug-16 765.500  1.500  0.920  

780 23-Aug-16 181.300  1.970  2.310  
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Appendix 7. C. hysoscella eDNA concentrations (in g/L and in pg/L) from each station across the sampling 

months.  

 

  

 

Sampling time Station Replicates Mean STDEV eDNA concen- 
tration (g/L) 

eDNA concen- 
tration (pg/L) 

STDEV pg/L 

1 2 3 

Oct-14 120 NS NS NS NS NS NS NS NS 

Oct-14 215 2.51E-12 2.51E-12 2.45E-11 9.85E-12 1.2708E-11 9.851E-15 0.009851 0.012708057 

Oct-14 ZG02 NS NS NS NS NS NS NS NS 

Oct-14 130 4.59E-33 1.71E-26 7.97E-29 5.73E-27 9.8498E-27 5.72656E-30 5.72656E-18 9.84977E-18 

Oct-14 230 2.49E-28 5.69E-22 2.40E-20 8.19E-21 1.3704E-20 8.19475E-24 8.19475E-12 1.37037E-11 

Oct-14 330 3.35E-17 1.08E-15 1.41E-15 8.42E-16 7.1979E-16 8.42293E-19 8.42293E-07 7.19785E-07 

Oct-14 700 8.95E-14 3.57E-13 5.67E-12 2.04E-12 3.1476E-12 2.03873E-15 0.00203873 0.003147609 

Oct-14 710 - - - - - - - - 

Oct-14 780 4.05E-28 9.15E-28 1.68E-22 5.60E-23 9.6994E-23 5.60004E-26 5.60004E-14 9.69945E-14 

Mar-15 120 1.01E-21 1.24E-23 2.63E-27 3.39E-22 5.772E-22 3.39E-25 3.39E-13 5.77198E-13 

Mar-15 215 2.16E-19 4.87E-19 6.42E-17 2.16E-17 3.6854E-17 2.16E-20 2.16E-08 3.68545E-08 

Mar-15 ZG02 5.88E-20 8.98E-24 4.72E-21 2.12E-20 3.2642E-20 2.12E-23 2.12E-11 3.26424E-11 

Mar-15 130 - 2.25E-47 1.99E-55 1.13E-47 1.5942E-47 1.13E-50 1.13E-38 1.59417E-38 

Mar-15 230 2.34E-42 5.19E-38 4.11E-45 1.73E-38 2.999E-38 1.73E-41 1.73E-29 2.99898E-29 

Mar-15 330 7.04E-24 7.27E-22 2.46E-21 1.07E-21 1.2617E-21 1.07E-24 1.07E-12 1.26175E-12 

Mar-15 700 - 5.52E-47 9.62E-53 2.76E-47 3.9022E-47 2.76E-50 2.76E-38 3.90216E-38 

Mar-15 710 6.54E-44 2.28E-31 3.80E-32 8.86E-32 1.2206E-31 8.86E-35 8.86E-23 1.22059E-22 

Mar-15 780 5.38E-23 1.10E-18 4.49E-19 5.16E-19 5.5247E-19 5.16E-22 5.16E-10 5.52471E-10 

May-15 120 1.15E-22 - - 1.15E-22 NA 1.15E-25 1.15E-13 NA 

May-15 215 NS NS NS NS NS NS NS NS 

May-15 ZG02 4.05E-24 4.04E-23 1.21E-24 1.52E-23 2.1876E-23 1.52E-26 1.52331E-14 2.1876E-14 

May-15 130 - - - - - - - - 

May-15 230 - - 2.30E-19 2.30E-19 NA 2.30E-22 2.301E-10 NA 

May-15 330 1.12E-20 - - 1.12E-20 NA 1.12E-23 1.12095E-11 NA 
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May-15 700 - - - - - - - - 

May-15 710 1.32E-19 - 1.17E-18 6.51E-19 7.3461E-19 6.51E-22 6.5115E-10 7.34613E-10 

May-15 780 - 1.74E-19 - 1.74E-19 NA 1.74E-22 1.74E-10 NA 

Aug-15 120 - - - - - - - - 

Aug-15 215 - - - - - - - - 

Aug-15 ZG02 8.71E-23 3.50E-19 2.64E-18 9.97E-19 1.434E-18 9.97E-22 9.96529E-10 1.43397E-09 

Aug-15 130 - - 5.64E-13 5.64E-13 NA 5.64E-16 0.0005643 NA 

Aug-15 230 8.33E-24 - - 8.33E-24 NA 8.33E-27 8.325E-15 NA 

Aug-15 330 1.88E-09 3.69E-09 3.52E-09 3.03E-09 9.9983E-10 3.03E-12 3.0315 0.999834111 

Aug-15 700 2.37E-24 4.65E-23 3.81E-15 1.27E-15 2.2014E-15 1.27E-18 1.271E-06 2.20144E-06 

Aug-15 710 - - - - - - - - 

Aug-15 780 1.12E-18 9.26E-18 7.17E-18 5.85E-18 4.2312E-18 5.85E-21 5.852E-09 4.23121E-09 

Oct-15 120 - - - - - - - - 

Oct-15 215 - 2.16E-19 2.55E-18 1.38E-18 1.6522E-18 1.38E-21 1.38473E-09 1.65219E-09 

Oct-15 ZG02 - 4.62E-20 - 4.62E-20 NA 4.62E-23 4.6155E-11 NA 

Oct-15 130 NS NS NS NS NS NS NS NS 

Oct-15 230 - - - - - - - - 

Oct-15 330 - 5.68E-20 - 5.68E-20 NA 5.68E-23 5.6805E-11 NA 

Oct-15 700 - - - - - - - - 

Oct-15 710 - - - - - - - - 

Oct-15 780 - - - - - - - - 

Jan-16 120 - - - - - - - - 

Jan-16 215 NS NS NS NS NS NS NS NS 

Jan-16 ZG02 7.64E-21 2.35E-22 - 3.94E-21 5.2349E-21 3.94E-24 3.93638E-12 5.23489E-12 

Jan-16 130 - - - - - - - - 

Jan-16 230 1.28E-18 1.94E-18 3.54E-17 1.29E-17 1.9513E-17 1.28716E-20 1.28716E-08 1.95129E-08 

Jan-16 330 1.97E-14 1.91E-15 9.18E-15 1.02E-14 8.9168E-15 1.02475E-17 1.02475E-05 8.9168E-06 

Jan-16 700 - - - - - - - - 

Jan-16 710 - - - - - - - - 

Jan-16 780 - - - - - - - - 
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Mar-16 120 - - - - - - - - 

Mar-16 215 6.69E-14 8.73E-14 2.09E-14 5.84E-14 3.3982E-14 5.8355E-17 0.000058355 3.39823E-05 

Mar-16 ZG02 - - 8.26E-16 8.26E-16 NA 8.2575E-19 8.2575E-07 NA 

Mar-16 130 1.45E-14 1.07E-14 1.88E-14 1.47E-14 4.0098E-15 1.46875E-17 1.46875E-05 4.00981E-06 

Mar-16 230 7.55E-14 7.81E-13 1.37E-13 3.31E-13 3.9074E-13 3.3094E-16 0.00033094 0.000390743 

Mar-16 330 2.58E-15 4.21E-13 8.42E-14 1.69E-13 2.2184E-13 1.69264E-16 0.000169264 0.000221836 

Mar-16 700 - - - - - - - - 

Mar-16 710 - - - - - - - - 

Mar-16 780 - - - - - - - - 

May-16 120 - - - - - - - - 

May-16 215 9.88E-15 - 5.33E-15 7.60E-15 3.217E-15 7.60125E-18 7.60125E-06 3.21698E-06 

May-16 ZG02 - 1.25E-15 - 1.25E-15 NA 1.2462E-18 1.2462E-06 NA 

May-16 130 - - - - - - - - 

May-16 230 - - - - - - - - 

May-16 330 - - - - - - - - 

May-16 700 - - - - - - - - 

May-16 710 - - - - - - - - 

May-16 780 - - - - - - - - 

Aug-16 120 3.92E-19 - - 3.92E-19 NA 3.9225E-22 3.9225E-10 NA 

Aug-16 215 - - - - - - - - 

Aug-16 ZG02 1.15E-16 9.03E-18 1.13E-15 4.19E-16 6.2048E-16 4.18949E-19 4.18949E-07 6.20481E-07 

Aug-16 130 - - - - - - - - 

Aug-16 230 1.96E-17 1.20E-16 - 6.98E-17 7.1064E-17 6.981E-20 6.981E-08 7.10642E-08 

Aug-16 330 - - - - - - - - 

Aug-16 700 - - - - - - - - 

Aug-16 710 - - 2.99E+01 2.99E+01 NA 0.029865 29865000000 NA 

Aug-16 780 - - - - - - - - 
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Appendix 8. Temperature profile of the different stations across the different sampling months.  

 
 

 

Note: - means no temperature was recorded 

 

 

Sampling time Station and Temperature (oC) Average 
temperature (oC) 

per month 

Standard deviation 
of the temperature 

(oC) per month 120 130 700 215 230 710 ZG02 330 780 

Oct-14 - 15.60 - 16.50 15.97 - - 16.10 15.70 15.97 0.36 

Mar-15 7.16 6.60 6.40 - 6.60 6.50 7.10 6.65 6.40 6.68 0.30 

May-15 13.30 13.70 13.30 12.40 13.60 13.30 12.20 12.60 13.10 13.06 0.53 

Aug-15 18.90 19.60 19.70 19.20 19.60 19.50 18.90 19.10 19.40 19.32 0.31 

Oct-15 12.72 12.34 12.71 13.75 12.73 12.86 13.65 13.53 13.09 13.04 0.49 

Jan-16 8.10 7.70 6.41 - 8.09 6.46 8.96 7.61 6.44 7.47 0.95 

Mar-16 8.66 8.39 8.25 8.38 8.33 8.20 8.44 8.05 7.91 8.29 0.22 

May-16 14.16 14.18 14.08 13.54 14.15 13.55 13.10 13.13 13.46 13.71 0.44 

Aug-16 19.40 18.99 19.55 18.76 18.80 19.40 18.63 18.97 19.38 19.10 0.34 

Average temperature 
(oC) per station 

12.80 13.01 12.55 14.65 13.10 12.47 12.62 12.86 12.76 
  

  

Standard deviation 
of the temperature 

(oC) per station 

4.69 4.73 5.31 3.82 4.67 5.20 4.45 4.70 5.01 
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Note: No bar means no detection or no sample analyzed.  

Appendix 9. Bar graphs comparing C. hysoscella eDNA detection and Cq mean 

for selected sampling months. 

 

 

 


