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Abstract: Medical X-ray appliances use high-voltage power supplies that must be able to work
with very different energy requirements. Two techniques can be distinguished in X-ray medical
imaging: fluoroscopy and radioscopy. The former involves low power radiation with a long exposure
time, while radioscopy requires large power during short radiographic exposure times. Since the
converter has to be designed by taking into account the maximum power specification, it will exhibit
a poor efficiency when operating at low power levels. Such a problem can be solved by using a
new multilevel LCC topology. This topology is based on a classical series-parallel resonant topology,
but includes an additional low-voltage auxiliary transformer whose function depends on the X-ray
technique considered. When radioscopy operation is selected, the transformer will allow the power
to be shared between two full-bridges. If fluoroscopy mode is activated, the auxiliary full bridge
is disconnected and the magnetizing inductance of the auxiliary transformer is used to increase
the resonant inductor in order to reduce the resonant currents, thus improving the efficiency of
the converter.

Keywords: AC/DC converter; fluoroscopy; high voltage; multilevel; radioscopy; resonant conversion;
X-ray

1. Introduction

Many industrial and medical applications (X-ray generation, electron beam welding, electrostatic
precipitators [1–5]) need to generate high output voltages (as high as 200 kV) together with large
power variations. In the case of X-ray applications, the power delivered to the X-ray tube usually
varies widely (<1 kW–100 kW), depending, among others, on the radiographic technique used
(fluoroscopy, radioscopy) or the material type and thickness. As far as voltage specifications are
concerned, they range from 50 kV to 150 kV (Figure 1).

Not only do the electrical specifications represent a technological problem for the power stage
that has to cope with such a wide power range: the design is also complicated by the tolerances in the
power grid as defined by different AC grid regulations all around the world. Taking this into account,
the DC input voltage for this power stage is set to have a value ranging from Vi = 400 V to Vi = 750 V,
which is suitable to be used with a three-phase rectifier.

Taking into account all of the conditions indicated above, it is necessary to select a topology
that can deal with the variation ranges considered for the input voltage and for the output power,
without affecting its performance. LCC resonant topology is commonly used for these applications
(Figure 2) [6,7]. The steady state analysis of this converter has been previously introduced, as we
can see in references [8–12]. Other specific design for optimal control, SiC (Silicon Carbide) rectifier
modeling or small signal model are also presented in [13–19].
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Figure 1. Output power and output voltage specifications for X-ray power supplies. 

 
Figure 2. Series-parallel LCC resonant topology. 

The fact of using resonant inductors and capacitors makes the LCC-PRC (Parallel Resonant 
Converter) specially suited for high-voltage DC power supplies and distributed DC/DC applications, 
where the transformer parasitic elements are usually incorporated into the basic operation of the 
whole circuit. Due to the high output voltage demanded, a high transformer ratio is required. The 
large number of turns in the secondary side of this transformer will determine the value of the 
parasitic capacitance in the topology. In a similar way, the leakage inductance will depend on the 
winding geometrical structure and the number of turns in the primary side. These parasitic elements 
will affect the converter operation, so including them in the power topology becomes mandatory; as 
mentioned above, the PRC-LCC converter fulfils this objective. 

Compared to the series resonant converter or the parallel resonant converter, the LCC-PRC also 
exhibits better performance at output voltage regulation, and a better reliability with short-circuit or 
open-circuit condition [12–14]. Therefore, the LCC-PRC combines the good behaviour of SRC (Series 
Resonant Converter) under short-circuit with that of PRC at no load, thus being capable to operate 
with a wide output voltage and output power ranges. LLC resonant converter uses the magnetizing 
inductance as a resonant element trying to increase the power density, but it does not include the 
transformer parasitic capacitance in the resonant tank which is very important in high voltage 
applications due to the large value it exhibits. Burst mode operation is other interesting alternative 
for light load, and there are recent applications that use this alternative for controlling LLC converters 
[20,21]. However, this technique has also some drawbacks for the application presented in this paper. 

The inclusion of a large dead time between each pulse, like that associated to burst-mode 
operation, involves a large low-frequency ripple in the output voltage, which, due to the higher 
harmonic content, could be audible. Additional low-pass-filter is required at the high-voltage side 
and also at the input of the converter to minimize EMI (electromagnetic interference) problems. 
During stand-by mode (period between burst pulses), a resonance appears between LS, CS, and CP 
with a current similar to the nominal one, which involves an important reactive energy in the 
converter. Also, if the stand-by period is too large, a new transient process appears in each burst 
pulse.  

Appropriate design of the LCC-PRC converter is always made for the worst operating 
conditions (lowest input voltage, highest output power, and voltage); this is the way to guarantee 
that the converter specifications are met for any other operating point. When these worst-case 
conditions are considered, transferring the maximum power to the load while providing a high 
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The fact of using resonant inductors and capacitors makes the LCC-PRC (Parallel Resonant
Converter) specially suited for high-voltage DC power supplies and distributed DC/DC applications,
where the transformer parasitic elements are usually incorporated into the basic operation of the whole
circuit. Due to the high output voltage demanded, a high transformer ratio is required. The large
number of turns in the secondary side of this transformer will determine the value of the parasitic
capacitance in the topology. In a similar way, the leakage inductance will depend on the winding
geometrical structure and the number of turns in the primary side. These parasitic elements will affect
the converter operation, so including them in the power topology becomes mandatory; as mentioned
above, the PRC-LCC converter fulfils this objective.

Compared to the series resonant converter or the parallel resonant converter, the LCC-PRC also
exhibits better performance at output voltage regulation, and a better reliability with short-circuit
or open-circuit condition [12–14]. Therefore, the LCC-PRC combines the good behaviour of SRC
(Series Resonant Converter) under short-circuit with that of PRC at no load, thus being capable to
operate with a wide output voltage and output power ranges. LLC resonant converter uses the
magnetizing inductance as a resonant element trying to increase the power density, but it does not
include the transformer parasitic capacitance in the resonant tank which is very important in high
voltage applications due to the large value it exhibits. Burst mode operation is other interesting
alternative for light load, and there are recent applications that use this alternative for controlling LLC
converters [20,21]. However, this technique has also some drawbacks for the application presented in
this paper.

The inclusion of a large dead time between each pulse, like that associated to burst-mode operation,
involves a large low-frequency ripple in the output voltage, which, due to the higher harmonic content,
could be audible. Additional low-pass-filter is required at the high-voltage side and also at the input
of the converter to minimize EMI (electromagnetic interference) problems. During stand-by mode
(period between burst pulses), a resonance appears between LS, CS, and CP with a current similar to
the nominal one, which involves an important reactive energy in the converter. Also, if the stand-by
period is too large, a new transient process appears in each burst pulse.

Appropriate design of the LCC-PRC converter is always made for the worst operating conditions
(lowest input voltage, highest output power, and voltage); this is the way to guarantee that the
converter specifications are met for any other operating point. When these worst-case conditions
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are considered, transferring the maximum power to the load while providing a high output voltage
requires that a high parallel capacitance and a low series inductance be present in the circuit.

Once the LCC resonant tank is obtained considering these worst-case operating conditions
(maximum output power), it must be guaranteed that the power topology can also work under
low-power conditions (some tens of watts), while keeping the output voltage at values of hundreds of
kV. Since it is necessary to have a high resonant current in the topology in order to obtain the nominal
output voltage and regardless of the power demanded, the converter efficiency will be penalized when
operating under low-power conditions. This high resonant current is necessary to provide the voltage
required across the parallel resonant capacitor in order for the topology to work properly. Note that the
maximum value for this voltage does not depend on the power demanded: its value is determined by
the output voltage only. Hence, Equation (1) shows how to calculate the value of the resonant current:

ICp−max = VO−max · ω · CP (1)

Thus, the main drawback of the LCC topology appears because of the wide power range associated
to X-ray applications. In this case, the efficiency at low power decreases dramatically, which makes it
essential to adapt the LCC topology in such a way that it is possible to control the value of the resonant
current as a function of the power being transferred to the load.

The goal of this paper is trying to overcome this problem by modifying the resonant inductor
during fluoroscopy (low-power) operation. The proposed multilevel converter solves these problems
by including an additional full bridge that can also contribute to increasing the maximum output
power (>100 kW), which is the actual tendency in X-ray generators. In reference to [22], the basics of
the converter operation were introduced. Reference [23] explains the basics of the converter operation
again and includes experimental results at power scale 1:100. The present paper further illustrates the
advantages of using a multilevel LCC converter in both operation modes (fluoroscopy and radioscopy)
and includes new experimental results at nominal power; the tests performed show the important
efficiency improvement achieved. Additionally, this work provides key rules (materials, structure,
connections to power topology) for designing the high voltage transformer. Topics related to the
output filter capacitor and voltage conversion ratio are also presented.

2. Materials and Methods

2.1. Topology

As already indicated, depending on the X-ray technique used, there are two different conditions
that the multilevel must operate at. Each of these situations defines two different output specifications,
whose nominal operation values are:

- Fluoroscopy: 1.2 kW–120 kV
- Radioscopy: 100 kW–150 kV

So, different power specifications may be covered by using a multilevel converter like that in
Figure 3. In this topology, an auxiliary isolation transformer is used at the low-voltage side to connect
in series two FB (full bridges). When needed, each full bridge will contribute with one half of the total
power demanded by the load.

The utility of the auxiliary transformer is twofold. On the one hand, it allows the voltage across
the resonant tank to be defined by varying the duty cycle of the two full bridges included in the
topology. On the other hand, it can be used to increase the value of the resonant inductance when
using the fluoroscopy technique. This increase of the resonant inductor is achieved by turning the slave
bridge off, which results in the resonant inductance being the series association of the magnetizing
inductance of the auxiliary transformer plus the leakage inductance of the high-voltage transformer of
the main bridge. This new situation involves a specific design of the auxiliary transformer in order to
avoid saturation during the fluoroscopy operation.



Energies 2017, 10, 1573 4 of 16

During the radioscopy mode operation, both full-bridge converters are synchronized in such a
way that the voltage generated by each one (VA, VB) is reflected at the primary side of the HV (high
voltage) transformer as VAB = VA + VB thanks to the isolation that introduces the auxiliary transformer.
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Figure 3. Multilevel topology proposed.

The current, handled by the resonant tank, is the same as the one that flows through the main and
auxiliary full-bridge converters. Figure 4 shows the voltage and current waveforms at the input of the
resonant circuit. The use of two full-bridges increases the number of control variables: the duty cycle
of the main bridge, τ1, and that of the slave bridge, τ2.

The multilevel converter proposed in this paper allows two control actions. By changing the duty
cycle of the auxiliary bridge, τ2, the first harmonic amplitude of the voltage at the input of the resonant
tank, VAB1, is kept constant regardless of any variations in the grid DC voltage, Vi (Figure 3). For the
case considered in this paper, this value is chosen to be VAB1 = 750 V. The other control parameter, τ1,
should be used to keep the output voltage constant during the radiography process.

Knowing that the voltage across the resonant tank will always have the same value (VAB1 = 750 V)
poses a great advantage in the design: all the components of the resonant tank need to be calculated
for a single, high-value voltage. If this high-voltage value were not unique, the only way to ensure that
the nominal output power demanded by the X-ray tube can be provided would be by designing all of
the components for the lowest input voltage (VAB1 = 400 V), which always results in a larger parallel
capacitor, CP, and higher resonant currents according to Expression (1). Consider, for instance, the
following typical radioscopy specifications: input voltage: 400–750 V, output voltage VO = 50–150 kV,
output power PO = 100 kW, lower frequency fcmin = 50 kHz; the resonant current obtained with a
traditional design, where the voltage considered at the input of the resonant tank must be 400 V, can be
compared to that obtained in a converter where this voltage is set to 750 V, thanks to τ2 allowing input
voltage control (Figure 4).

As stated above, when a traditional design is considered (Figure 2), the lowest input voltage must
be used to calculate the resonant elements [9,10] in order to guarantee that the maximum output power
can be achieved for any value of the input voltage.

LS =
1

(2 · π · f cmin)
2 · CS

(2)
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C = LS ·
[

POmax
Kα · Vi2min

]2
(3)

C =
CS · CP

CS + CP
(4)
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Figure 4. Voltage (VAB) and current (iL) at the input of the resonant tank. ξ1, ξ2 represent the gate
delay signals.

Using Equations (2)–(4) above, and considering a minimum operation frequency fcmin = 50 kHz
and a converter conversion ratio kα = 3.4 (Equation (5), experimentally obtained), the components of
the resonant tank in the converter of Figure 2 are calculated to be: CS = 950 nF, CP = 630 nF and LS = 10 µH.

kα = 12.67α2 − 21.65α + 11.75 (5)

α =
CS

CS + CP
(6)

Considering these values, the current through the series inductor at fc = 75 kHz is IL = 450 A if
100 kW, 125 kV are to be obtained at the output when Vi = 400 V (Figure 5).
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However, if a multilevel structure, like the one in Figure 3, is used instead of a traditional converter,
the values of the resonant components will be different. Since the first-harmonic amplitude of the
voltage across the resonant tank can be considered constant (VAB1 = 750 V for Vi = 400 V), the values
obtained in this case are: CS = 270 nF, CP = 180 nF and LS = 38 µH.

Figure 6 evinces that the resonant current in the multilevel structure for the same operating point
has been halved due to the inclusion of an additional bridge (IL = 228 A) and that the switching
frequency is also slightly lower (fc = 64 kHz).
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This situation was to be expected, since now the same power transferred to the load comes from
two full bridges with the same input voltage (Vi = 400 V); therefore, each one supplies half of the power,
which means half of the resonant current. This is so because both duty-cycles, τ1 and τ2, are almost
the same to supply the maximum power.

The number of switches in the multilevel converter is doubled, but their specification of maximum
current is halved; thus, the final cost does not increase significantly as far as the switches are
concerned [23,24]. The other important advantage offered by the auxiliary transformer is the capability
to modify the resonant tank of the topology depending on the X-ray technique used. If the converter
must supply the maximum voltage and power (radioscopy), the two bridges of the topology operate
simultaneously, but with a different duty cycle. Since the voltage gain of the multilevel LCC converter
depends on several parameters (fC, τ1, τ2, RO), by using normalized values where VX = VO/Vi,
R = RO/ZB, ZB = (LS/C)0.5, some plots can be obtained to observe the boost capability of this converter
(Figure 7).
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VAB(t) ≈ FAB1S(τ1, τ2, Γ, Vi) · sin(ωt) + FAB1C(τ1, τ2, Γ, Vi) · cos(ωt) (7)

FAB1S =
2Vi
π

((2 + Γ) sin(πτ1)− Γ sin(π(τ1 − 2τ2))) (8)

FAB1C = −2ΓVi
π

(cos(πτ1) + cos(π(1 − τ1 + 2τ2))) (9)
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From the equations above, the first harmonic of the input voltage to the resonant tank can be
obtained. This first harmonic can be used to determine the gain of the converter by using the set of
equations published in reference [9], which must be solved by using numerical methods. The multilevel
converter operation is the same as that of the traditional one, only changing the input voltage to the
resonant elements, which is defined by Equation (7).

However, in the fluoroscopy mode, when low output power is required, the slave bridge is turned
off and the auxiliary transformer participates in the topology by leaving its magnetizing inductance in
series with the resonant inductance (Figure 8). This results in the actual resonant inductor now being
LS + Lm, which reduces the capability of the main bridge to transfer power, as well as the maximum
value of the resonant current.

Thus, in radioscopy mode, the resonant inductance is made up by the main transformer leakage
inductance only (LS = 38 µH), whereas in fluoroscopy mode, the magnetizing inductance of the
auxiliary transformer (Lm-aux = 125 µH) is added to this leakage inductance. In the case of the operation
points defined in Table 1, the resonant current is divided by a factor as high as five.

Operation in fluoroscopy mode also evinces a different performance when using a single-full-bridge
topology (traditional design, Table 1(A)), and the multilevel topology proposed in this paper when the
slave bridge is off (Table 1(B)). These tables show large variations in the resonant current due to the
auxiliary transformer. This current reduction, in turn, gives rise to a reduction of conductive losses
in the IGBTs (Isolated Gate Bipolar Transistors) (FF300R12KS4). It must be noted that the frequency
drop also contributes to reducing the switching losses. Assuming the datasheet values: EON = 25 mJ
(Turn-on energy loss per pulse) and EOFF = 15 mJ (Turn-off energy loss per pulse) at VCE = 600 V,
IC = 300 A, which results in switching power losses of (EON + EOFF)·fC = 3.2 kW; by reducing the
current to 60 A, the energy losses are reduced to EON = 7 mJ, EOFF = 4 mJ with VCE = 600 V, IC = 60 A,
which gives rise to 594 W switching losses only.
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Table 1. Design comparison for Fluoroscopy operation. (Output voltage: 120 kV. Output power: 1.2 kW).

A. Full Bridge. Traditional Design

Vi VO PO IL fc
400 V 120 kV 1200 W 309 A 80.5 kHz
750 V 120 kV 1200 W 310 A 81.1 kHz

B. Full Bridge. Multilevel Design

400 V 120 kV 1200 W 60 A 53.7 kHz
750 V 120 kV 1200 W 61 A 54.5 kHz

2.2. High Voltage Transformer

One of the most critical parts in the design of the high-voltage power supply is the main
transformer. This is the component that must guarantee the equipment isolation and raise the output
voltage to the values specified by the load (150 kV). The inclusion of a high-voltage transformer has an
important effect in the topology operation. Due to the large values of the transformer parasitic elements,
they must be included as resonant topology elements. By doing so, the need of additional, bulky
reactive elements can be avoided. But parasitic elements can only be calculated before construction
if the transformer geometry is accurately characterized [25]; the use of FEA (finite-element-analysis)
tool helps designers in this task, making it possible to define the geometry of the transformer, and the
materials used for its construction, etc.

To facilitate the transformer parameters calculation and assembly, the secondary winding was
built by using two windings of n = 20 PCB’s (printed circuit board) each (Figure 9). Each secondary
winding is connected to a rectifier, both of which are externally connected in series to produce the
output voltage.
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The plastic material used to hold the PCB’s is Arnite, which exhibits low H2O absorption (0.1%
D-570 test), dielectric constant at 1 MHz ε = 3.2, electrical strength 22 kV/mm, and a good durability in
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industrial oil. The PCB’s were manufactured with Arlon material TC-600 (0.5 mm thick) 70 µm-thick
(double layer). This material has very good properties at high frequency (tens of GHz): ε = 6.1, electrical
strength 34 kV/mm, dissipation factor DF = 0.002. The transformer was built with two secondary
windings of 20 PCB’s; each PCB has 12 turns per layer, which means 24 turns/PCB. The maximum
voltage between secondary windings is 75 kV. The transformer is immersed in oil (20 kV/mm);
therefore, an isolation of 75 kV is guaranteed by a distance between windings of 20 mm. The oil also
helps to dissipate heat away from the whole structure. Using these construction parameters, it is
possible to calculate the electric and magnetic fields in the structure if information about the currents
and the expected voltages are included in the model; hence, the parallel capacitance and the leakage
inductance of the transformer can be obtained. The parasitic capacitance of the secondary winding is
modeled as several capacitors in series that define the interlayer capacitance, Ci (Figure 10).

The electric field between two conductive layers (Figure 11), used to represent the tracks on a
PCB, depends on the distance to the via that allows for the interconnection between top and bottom
layers (x).

E(x) =

(
VO
n

)
· x

s · h
(10)
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Using this expression, together with the dielectric constant of the insulation material, εi, the energy
associated to the electric field between two conductive layers can be calculated as follows:

Energyi =
1
2
· εi ·

∫
v

Ei(x)2 dv (11)

ET = ∑
i

Energyi (12)
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The total energy ET between all windings, calculated from Equation (12), can be associated to an
equivalent capacitor referred to the primary side by using the transformer ratio Γ1:

CP =
2 · ET

VO
2 · Γ1

2 (13)

The leakage inductance can be obtained in a similar way; in this case, the leakage magnetic energy
(FEA tools) in the windings must be calculated and associated to the series inductance LS, assuming
the primary current I is known:

Emag =
µ ·
∫

H2 dv
2

(14)

LS =
µ ·
∫

H2 dv
I2 (15)

All of these equations allow designers to define the geometry of the main transformer that will
provide the desired resonant elements LS and CP. Thus, the only component that needs to be added
externally is the series capacitor, CS.

The process for designing the HV transformer starts with the specification of the turn ratio
rt = VO/(Vi·rC), where rC is the converter gain (Figure 7), which can vary from 2.5 to 6 in an LCC
topology. Assuming a constant input voltage in the multilevel converter, Vi = 750 V, and a maximum
output voltage VO = 150 kV, a turn ratio rt = 80 was selected. The number of turns in the primary (N1) is
a parameter that can be used to control the value of the leakage inductance, LS, because this magnitude
increases with the square of N1. The parasitic capacitance is calculated by adding the contribution of
each PCB; therefore, there are two variables that can be modified to increase CP: “s”, and the length of
the turns (“2·π·r” if circular). The advantage of increasing “s” instead of “r” is the associated decrease
of the winding resistance. The definition of the final transformer geometry requires several FEA
simulations modifying N1, s, and r until the desired parameters are found. The experimental values
obtained from the actual HV transformer were: LS = 38 µH, CP = 122 nF, Lm = 918 mH. To increase
the parasitic capacitance in order to obtain the expected resonant values (220 nF) it was necessary to
add 20 pF in the secondary side of the HV transformer. The output capacitor CF used is the parasitic
capacitance of the cables, which varies from 1.2 nF to 3.6 nF. The low output current and the large
diode conduction periods allow the use of such a low output filter capacitor: using CF = 1.2 nF results
in 2500 V output voltage ripple at 100 KW–150 kV, which is lower than the typical specification of 3%.

3. Results and Discussion

3.1. Operation in Radioscopy Mode

In order to validate the effectiveness of the proposed topology, the resonant tank was built by
using discrete components (LS = 38 µH, CP = 220 nF, CS = 330 nF), so as to get the values defined by
Equations (2)–(4) in order to fulfil the output power and voltage specifications. In this way, the output
voltage (VO) is referred to the primary side. Therefore, the output voltage expected in the actual
topology, which includes a high-voltage transformer with a turn-ratio Γ1 =1:80 (Figure 12), will be
80 times the value obtained in the tests.
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Figure 12. High-voltage transformer.

Nanocrystalline material Vitroperm 500 F has been used to build the auxiliary transformer in
order to avoid saturation. The number of turns in this transformer is N1aux = N2aux = 3 (Γ = 1).

The two full bridges mounted with IGBTs FF300R12KS4 can be seen in Figure 13. A Texas
Instruments DSP (Digital Signal Processor) TMS320F28335 has been used to implement the control of
both bridges, and optical fiber has been used to take the control signal from the drivers to the IGBTs.
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The waveforms in Figures 14 and 15 show a radioscopy operating point for both a traditional and
a multilevel LCC topology (with both bridges working synchronized in the latter case). The performace
of the X-ray tube is represented by a resistive load, R = 88.5 Ω. The input voltage simulates the rectified
AC grid (Vi = 300 V).Energies 2017, 10, 1573  12 of 16 
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[20 A/div] in the multilevel LCC converter with a load RO = 88.5 Ω, PO = 3.6 kW.

All of the resonant elements designed for the application were built as discrete components to
simulate the HV transformer, thus referring to all of the voltages and currents to the primary side.
In the case of the traditional LCC converter, the resonant tank required is: CS = 950 nF, CP = 630 nF,
LS = 10 µH (Table 2), while in the multilevel LCC converter these parameters are replaced by CS = 330 nF,
CP = 220 nF and LS = 38 µH.

Table 2. Design parameters for traditional and multilevel LCC converter.

A. Full Bridge. Traditional Design (Radioscopy and Fluoroscopy)

Cs CP Ls Γ1 fcmin
950 nF 630 nF 10 µH 80 50 kHz

B. Full Bridge. Multilevel Design (Radioscopy)

Cs CP Ls Γ1 fcmin
330 nF 220 nF 38 µH 80 50 kHz

B. Full Bridge. Multilevel Design (Fluoroscopy)

330 nF 220 nF 163 µH 80 50 kHz

The significant difference obtained in the value of the resonant current when comparing
the traditional and the multilevel LCC converter determines the great advantage of using the
proposed stage.

Both Figures 14 and 15, show a similar operation point with VO ≈ 500 V, but the resonant
current in the multilevel converter is reduced by a factor of 3.5 as compared to the traditional
design. The multilevel converter can be controlled by changing the auxiliary duty cycle τ2 to
keep the amplitude of the first harmonic at the resonant tank VAB1 constant, in order to deal with
AC grid variations. The duty-cycle τ1 will also help to control the output power. On the other
hand, the multilevel voltage VAB has a lower harmonic content when compared with the traditional
full-bridge topology, thus reducing EMC (electromagnetic compatibility) problems. Soft switching ZCS
(zero-current switching) appears during the turn-on of Q1 and Q2 by controlling the signals supplied
to the driver: when the zero current crossing is detected, these switches are activated. The turn-on
of Q3 and Q4 takes place with ZVS (zero-voltage switching) because the diodes in parallel start the
current conduction before their activation. This ZVS situation also appears in the auxiliary bridge in
the radioscopy mode.
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3.2. Operation in Fluoroscopy Mode

One of the main advantages of the multilevel converter proposed is that it succeeds in joining,
in the same topology, two different types of operation (fluoroscopy and radioscopy) that have been
typically solved with two converters independently designed for each case. The resonant elements
in the traditional LCC converter are kept the same, but in the multilevel converter the slave bridge
is disconnected to include the magnetizing inductance of the auxiliary transformer in the resonant
tank. Therefore, the new resonant inductance is LS = 163 µH (CS = 330 nF, CP = 220 nF). The most
representative waveforms, referred to as the primary side, are provided for each type of converter.

The multilevel converter one more time exhibits a low amplitude resonant current, while reducing
the switching frequency to 41 kHz (Figure 16), whereas it can be seen that the efficiency of the
traditional full bridge LCC topology drops when operating in the fluoroscopy mode. It must be noted
that in the traditional LCC topology there is no additional Lm, and a series inductance LS = 10 µH is
used instead. The capacitors Cs and CP are selected to transfer the maximum power (100 kW) with the
minimum input voltage.

Since the traditional LCC converter is designed for high power operation, its frequency should
be increased (>60 kHz) when the power demanded is very low (fluoroscopy) in order to control the
output power. Under these conditions, the converter has to manage high reactive power at a higher
frequency, as can be noticed from the high resonant current and the low duty-cycle (Figure 17).
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Therefore, in the multilevel converter the amplitude of the resonant current has been highly
reduced, thus power losses are improved thanks to both effects: low switching frequency and low
resonant current amplitude. The efficiency in fluoroscopy mode for the traditional (Trad) and multilevel
(Mult) converter has been measured at different loads (RO = 586, 1175, 1880 Ω), Figure 18. The output
voltage is referred to as the primary side (Γ1 = 1:80). The input voltage was fixed to 300 V. With this
operation mode the output power is typically lower than 1.2 kW. The traditional LCC converter is
penalized by the low output power demanded, since it must be designed for the maximum output
power specified. The efficiency in radioscopy mode was also analyzed (Figure 19). During the
experimentation, the maximum power delivered was 6 kW, which means 10 kW at the input of
the traditional LCC converter. Again, the important resonant current reduction allows for a higher
efficiency to be obtained in the multilevel converter.Energies 2017, 10, 1573  14 of 16 
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4. Conclusions

The design of power supplies for high-voltage applications is conditioned by the wide range of
input power and voltage required. This situation is especially complex in X-ray generations, where
specifications define power ranges from hundreds of watts to hundreds of kW, but it also appears in
other applications such as electron beam welding or electrostatic precipitators.

Traditional LCC Full Bridge converters are typically designed for high-power operation
(radioscopy), while low-power situations (fluoroscopy) are solved by increasing the switching
frequency and the reactive power. The resonant current cannot be reduced because it is defined
by the output voltage and the value of the resonant capacitor, CP. On the other hand, the increase of the
switching frequency and output power cannot always be achieved, due to semiconductors limitations.

In this work, a multilevel LCC resonant converter is proposed that includes two full-bridge
topologies operating in parallel with different duty cycles. This allows the voltage at the input of the
resonant tank to be kept constant, VAB = 750 V, which avoids the need to design the resonant elements
for the minimum input voltage specified, Vi = 400 V.

Additionally, it is possible to significantly reduce the output power (fluoroscopy mode) by
disconnecting the slave bridge. This result in the magnetizing inductance of the auxiliary transformer
being added to the resonant circuit, and thus, switching frequency, resonant currents, and the reactive
power being substantially reduced.

The final conclusion is that a multilevel topology has been proposed to replace traditional LCC
resonant converters in X-ray power supplies. The topology proposed succeeds in reducing the resonant
current for any of the operating modes used in these applications. This reduction results in an increased
efficiency being obtained with simple modifications: including an additional bridge (whose IGBTs only
need to conduct currents half the value of those in the main bridge) and a low-voltage 1:1 transformer
that must handle the whole current of the converter.
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