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Abstract 

Himalayas the “roof of the world” are the source of water supply for major South Asian 

Rivers and fulfill the demand of almost one sixth of world’s humanity. Hydrological 

modeling poses a big challenge for Himalayan River Basins due to complex topography, 

climatology and lack of quality input data. In this study, hydrological uncertainties arising 

due to remotely sensed inputs, input resolution and model structure has been highlighted for 

a Himalayan Gandak River Basin.  

Firstly, spatial input DEM (Digital Elevation Model) from two sources SRTM (Shuttle 

Radar Topography Mission) and ASTER (Advanced Space borne Thermal Emission and 

Reflection Radiometer) with resolutions 30m, 90m and 30m respectively has been evaluated 

for their delineation accuracy. The result reveals that SRTM 90m has best performance in 

terms of least area delineation error (13239.28 km2) and least stream network delineation 

error.  

The daily satellite precipitation estimates TRMM 3B42 V7 (Tropical Rainfall Monitoring 

Mission) and CMORPH (Climate Prediction Center MORPHing Technique) are evaluated 

for their feasibly over these terrains. Evaluation based on various scores related to visual 

verification method, Yes/no dichotomous, and continuous variable verification method 

reveal that TRMM 3B42 V7 has better scores than CMORPH.  

The effect of DEM resolution on the SWAT (Soil Water Assessment Tool) model outputs 

has been demonstrated using sixteen DEM grid sizes (40m-1000m). The analysis reveals 

that sediment and flow are greatly affected by the DEM resolutions (for DEMs>300m). The 

amount of total nitrogen (TN) and total phosphorous (TP) are found affected via slope and 

volume of flow for DEM grid size ≥150m. The T-test results are significant for SWAT 

outputs for grid size >500m at a yearly time step.  

The SWAT model is accessed for uncertainty during various hydrological processes 

modeling with different setups/structure. The results reflects that the use of elevation band 

modeling routine (with six to eight elevation bands) improves the streamflow statistics and 

water budgets from upstream to downstream gauging sites. Also, the SWAT model 

represents a consistent pattern of spatiotemporal snow cover dynamics when compared with 

MODIS data.   

At the end, the uncertainty in the stream flow simulation for TRMM 3B42 V7 for various 

rainfall intensity has been accessed with the statistics Percentage Bias (PBIAS) and RSR 

(RMSE-observations Standard Deviation Ratio). The results found that TRMM simulated 

streamflow is suitable for moderate (7.5 to 35.4 mm/day) to heavy rainfall intensities (35.5 

to 124.4 mm/day). The finding of the present work can be useful for TRMM based studies 

for water resources management over the similar parts of the world. 

Keywords: Uncertainty, Hydrological modeling, SWAT, Himalayas, Gandak Basin 
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Chapter 1  

1 Introduction 
 

1.1 Overview 

Hydrological processes modeling is a challange for Himalayan River Basins due to lack in 

the understanding of the hydrological regimes, acting as one of the primary source of 

uncertainty in measuring the regional hydrological inputs [1]. Diverse topography and 

climate create a hurdle to reaching an altitude >4000m to conduct meaningful research. 

However, it is evident that an alternative to traditional “alpine” meteorology, topography 

and glaciology are required for Hindu-Kush Himalayan Regions [2,3]. Hydrological 

uncertainty may arise from a variety of sources, such as inputs forcing, calibration accuracy 

and parameter’s uncertainty and sensitivity [4]. Therefore, evaluation of available inputs 

and model structure for possible uncertainties is the need of the day for further hydrological 

processes modeling and climate change studies in the region [5]. Understanding 

hydrological uncertainties in River Basins requires a symbiotic union of simulation results 

versus field observations. To emphasize on monitoring model uncertainties in the 

hydrological simulations, it requires an enhancement of our knowledge on how the 

combined impacts of input forcing, model parameters and model structure influence the 

precipitated water into hydrological processes. This research facilitates satellite based 

remote sensing observations, ground truth data (in-situ observations) and computational 

modeling approaches to improve our understanding on hydrological processes modeling 

over the alpine Himalayas. 

1.2 Goals and objectives 

The overall objective of this research is to improve our understanding of various 

uncertainties for hydrological processes modeling over the alpine Himalayan regions. Here 

validation of input forcing have been carried out with the measured in-situ data and then 

simulated hydrological processes considering uncertainties in the inputs and model 

structure.  Himalayan River Basin ‘Gandak’ - a trans-boundary basin between China, Nepal 

and India is being selected for the present research work. 
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 In addition, hydrological processes modeling for the basin with best possible input forcing 

and model structure have been carried out which will enhance our understanding for water 

management, flood forecasting and climate change studies. 

    To accomplish the above said broad themes, following specific objectives have been set 

for the present research work.  

1. Evaluating the uncertainties in the input forcing  

(a)  DEMs: Error in the river network and basin area delineation, and 

(b) Satellite Rainfall: Error in the amount and frequency of satellite precipitation. 

Hypothesis: Uncertainties in the outputs of a hydrological model are due to quality 

of two major inputs viz. (a) DEMs (b) Rainfall. 

2. Study of uncertainties arising due to change in the spatial input: DEM grid size. 

Hypothesis: The DEM grid size significantly affects the specific hydrological 

outputs and the results can be improved by using appropriate DEM grid size. 

3. Performance evaluation of different modeling structure of SWAT model. 

Hypothesis: Selection of suitable model parameters and modeling routines 

appropriately divides the precipitated water into different hydrological components 

and thus, improves the hydrological water balance.  

4. Assessing the suitability of satellite precipitation (TRMM) to simulate streamflow 

during extreme rain events considering uncertainties in the inputs and model’s 

routine. 

            Hypothesis: Uncertainty in the satellite precipitation product (TRMM) may have 

significant impact in the simulated discharge for various rainfall intensity classes.   

1.3 Thesis organization  

The research done in this project has been divided into seven segments/chapters. The first 

segment (Chapter 2) deals with the literature reviews pertaining to the various types of 

uncertainties, and the chorological advancement made to reduce it. The second segment 

(Chapter 3) describes the physical, topographical, and climatological overview of the study 

area in general.
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The third segment (Chapter 4) is focused on assessing the qualitative and 

quantitative error in the two prime model inputs viz. available DEMs and satellite 

precipitation product TRMM 3B42 and CMORPH. In DEMs accuracy assessment, error in 

stream network and basin area delineation have been analyzed for three different DEMs, 

SRTM30, ASTER30m and SRTM 90m that has been published in Journal of Geological 

society of India, Springer, 89(1), pp-65-70. In order to derive stream and basin area 

delineation, flow direction have been computed using “D8 method” inbuilt in ArcGIS 10.2. 

Thereafter, digitally generated stream network is compared with the stream network 

manually digitized over Google Earth Imagery. The automatically generated basin area is 

compared with basin area map published by Ganga Flood Control Commission (GFCC), 

Gov. of India in year 2000. Secondly, the reliability of satellite precipitations products 

TRMM 3B42 and CMOPRPH have been validated for quantitative and qualitative measures 

using available rain gauge records in the study area. The measures for qualitative and 

quantitative assessments are visual verification, Yes/No dichotomous and Continuous 

variable verification methods. The validation of satellite precipitation for the study area is 

published in Journal of Earth System Science, Springer, 125 (5), pp-919-934. 

In the next segment of the research work (Chapter 5), the suitable DEM grid size for 

various hydrological outputs in the SWAT model have been evaluatd. In this work, sixteen 

different DEM grid sizes ranging from 40-1000m are resampled with the three different 

methods; nearest neighborhood (N), bilinear (B) and cubic convolution (C). Thereafter, all 

the forty eight DEMs scenarios are used as input with the fixed parameters in the SWAT 

model. Then, all the DEM scenarios are evaluated for possible uncertainties into the 

topographical derivatives and SWAT outputs. The optimum grid size values have been 

highlighted for each SWAT output using statistical measures relative differences (RD) and 

test of significance statistics “t-Test”. The work has been published in Journal of 

Hydrological Engineering, ASCE, 22 (9) pp-04017039. 

Chapter 6 of research work is concentrated in the output uncertainty arising due to 

model structure. In the Himalayan region, it is very important to find out suitable modeling 

routine to simulate various hydrological processes. For this, the SWAT model has been 

evaluated for its three modeling routines viz. reference project, snow project and elevation 

band project. Thereafter, the best modeling routines with the suitable parameters have been 

found out for the partitioning of precipitated water into hydrological components. Spatial 

variation of snow dynamics between SWAT and satellite based MODIS snow cover product 
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has also been evaluated in this chapter. This work is under review with the Journal of 

Hydrology, Elsevier. 

The last part of the research (Chapter 7) is basically to evaluate the feasibility of satellite 

precipitation product Tropical Rainfall Monitoring Mission (TRMM) to simulate the stream 

flow for extreme rain events over the study area. For this, the best SWAT model setup and 

parameters evaluated in the chapter 6 have been used during streamflow simulation with 

TRMM 3B42 V7 precipitation product. This work has been accepted in Journal of Earth 

System Sciences, Springer for the publication. 

Chapter 8 cover the conclusions drawn from the each segment of the research work in 

general. Thereafter, the scope for the future work and whole bibliography have been listed 

in the reference section. 
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Chapter 2 

 

2 Literature Review 
 

2.1 Background 

What do we mean by term uncertainty? The word uncertainty needs to be correctly 

mentioned in hydrology assessment [6]. It is hard to find out a unique definition of 

uncertainty in the literature. Zadeh 2005 [7] defined that uncertainty can be considered as 

an attribute of information. This can be a realistic definition for hydrology, where 

uncertainty is usually dealt with the use of probability theory. During any modeling attempt, 

a vigorous reckonable understanding of its each elements is required to reduce the total 

predictive uncertainty. A robust classification of the uncertainties is a major challenge for 

operational hydrological modeling. In general, there are three major sources of uncertainty 

in hydrological modeling:  

(1) Input uncertainty: uncertainties in the input forcing viz. DEM (topographical 

inputs), Meteorology (Rainfall) etc.  

(2) Structural or Model uncertainty: error due to simplified and lumped illustration 

of hydrological processes in the model that may be due to modified modeling 

processes or altered inputs or change in the model’s routine. 

(3) Parametric uncertainty: error due to incapability to identify exact values of 

model parameters resulting from limited length, uncertainties in the calibration 

data, model approximations and imperfect process understanding, etc. 

Therefore, meaningful assessment of data and structural uncertainties in the hydrological 

modeling is a key scientific and engineering challenge [8].  

To address the uncertainty in the hydrological simulations, there are following three 

separate approaches to be followed viz. understanding, quantification and way to reduce the
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 uncertainty. Understanding uncertainty is a part of its quantification and minimization. 

However to quantify uncertainty, many uncertainty analysis algorithms have been 

developed such as the Sequential Uncertainty Fitting algorithm (SUFI-2) methodology 

[9,10]. SUFI-2 algorithm can be implemented to better understand the parameters as well 

as to reduce uncertainty. 

2.2 Input Uncertainty  

Traditionally, researchers assume negligible error in data inputs that leads to bias in the 

parameterization and ultimately compromises with the model predictions. In response to 

this, a growing number of studies has been conducted to find out the error due to model 

inputs for example DEM [11–13], rainfall [14,15], land use[16], soil [17]. The land use and 

soil are relatively static than DEM and rainfall and therefore, DEM and rainfall may 

introduce significant error in the model prediction. In this study, two objectives have been 

focused for evaluation of error in the DEM and rainfall. The literature review for uncertainty 

due to error in DEMs and rainfall are presented here. 

2.2.1 Digital Elevation Models (DEMs) 

DEMs representing earth’s surface digitally provides a base data for generation of 

topographic parameters used by various hydrological models. A significant research work 

has been done to address the uncertainty linked to error in DEMs and propagation of error 

for derived terrain parameters to modeling outputs [5]. A discussion on DEM uncertainty 

which affect the hydrological modeling can be divided into four broad areas viz. (1) error 

in DEM (2) topographic parameters derived from DEMs (3) influence of DEM grid size and 

resampling techniques on modeling outputs and (4) surface modification for hydrologic 

analyses. 

2.2.1.1 Error in DEMs and Accuracy  

DEM error at a given elevation is the relative (±𝑣𝑒) departure from ground truth value. The 

different kinds of errors in DEMs have been compiled in the literature [18,19]. There are 

three basic category of DEM errors viz. systematic error, random error and blunders. 

Systematic error is due to procedural flaws during DEM generation that fallows a fixed 

pattern of bias. The blunders are vertical errors linked during the data collection processes 

and can be removed if known. The systematic error can be reduced or eliminated while 
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random error can’t be eliminated and remains in the data. The error sources in the DEMs 

are (a) data error: due to age of data, lack in the density of spatial samples, (b) processing 

error: computational error like interpolation, classification and generalization error by 

computer (c) measurement errors: positioning error, fault during data entry or observation 

[18,20,21].  

Various studies have been carried out to see the vertical accuracy of various open 

source DEMs. Petersen et al. 2009 [22] formed a field work on densely vegetated papyrus 

areas of southern Sudan and revealed that penetration depth of radar is 0.34m and a 

correction factor of 4.66m is needed between sensed and real surface. Mukherjee et al. 2013 

[23] evaluated two open source DEMs in western part of Shivalik Himalayas using Cartosat 

DEM and Survey of India (SOI) height data and they found that the vertical accuracy has 

RMSE 12.62m and 17.76m for ASTER and SRTM DEMs respectively when compared with 

the Cartosat DEM. Muralikrishnan et al. 2013 [24] validated Indian DEM Cartosat-1 data 

for vertical accuracy and compared with the SRTM, ASTER and ICESat GLAS over flat 

and hilly areas. They concluded that the results of Carto DEM qualify for using 

operationally equivalent and better than open source DEMs like ASTER and SRTM. Djamel 

Athmania and Hammadi Achour, 2014 [25] evaluated the performance of SRTM v 4.1, 

ASTER GDEM2 and GMTED2010 in Tunisia and Algeria. They found that SRTM (3.6m, 

8.3m) shows better vertical accuracy in terms of RMSE than ASTER (5.3m, 9.8m) and 

GMTED (4.5m, 9.6m) DEMs. Patel et al. 2016 [26] compared SRTM, ASTER and Cartosat 

DEMs with DGPS spot heights and concluded that Cartosat-1 DEM of 30m resolution is 

performing better than SRTM and ASTER in terms of lowest RMSE of 3.49m and ME of 

2.49m without using any interpolation techniques, while Bilinear interpolation (BI) methods 

was found the best with less height deviation. 

2.2.1.2 Error in Topographic Parameters Derived From DEMs 

Topographic features are frequently derived from the DEMs that are used in hydrologic 

analyses. Erroneous DEMs may subsequently transfer the error to its derivative topographic 

features. It’s not only error in DEM but GIS packages and algorithms to calculate these 

parameters have their own advantages and limitations.  However, hydrologic community 

has not yet reached to a general consensus on suitable algorithms for certain topographic 

features viz. flow direction [5].   
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Raster grid structure (i.e. DEM) are used to calculate preliminary surface derivatives such 

as the slope, aspect and hill-shade that provide basis for the categorization of land forms. 

Routing of water flow is closely tied with the land forms. The calculation of flow direction 

is dependent on the slope and aspect of the area [27]. Drainage network, ridges and basin 

boundaries can be formed using flow direction and flow accumulation raster. 

There are basically two types of method to calculate flow direction over the land 

surface. These are referred as single [28,29] or multiple path algorithms [30–32]. There have 

been numerous studies addressing error in topographical characteristics due to flow 

direction methods. Paz et al.2006 [33] mentioned the limitation in the COTAT algorithm of 

Reed 2003 [34] for coarser grid DEM along the meandering rivers. He modified this 

algorithm by considering minimum upstream flow path into the cell along with the area 

threshold. This new algorithm was being tested over rivers Tapajos and Grande in South 

America and results revealed that drainage network has been drastically improved, needing 

only a slight manual correction. Rampi et al. 2014 [35] compared single and multiple flow 

direction methods for compound topographic index (CTI) mapping of wetlands and 

revealed that multiple flow direction methods performs better than single flow direction 

methods. 

2.2.1.3 Influence of DEM Grid Size and Resampling Techniques on Modeling Outputs 

The DEM grid size commonly referred as grid cell indicates resolution of the DEM. Smaller 

grid cell indicates higher resolution and vise-versa. However, resampling methods are used 

to increase or decrease the DEM grid size. DEM accuracy decreases when it is being 

resampled to change the grid size [36]. High resolution data better represents the complex 

topography. This has led DEM user towards highest resolution, increasing cast and time for 

data acquisition and processing. Is higher resolution DEM necessarily better? To what 

extent is the grid cell of DEM a factor for propagation of error to derive terrain parameters?  

These question should be answered through proper research. 

Wolock et al. 2000 [37] carried out a study to compare the topographical 

characteristics computed from 100m and 1000m grid size DEMs. They found that slope 

values are smaller for 1000m DEM than 100m DEM, however wetness index and specific 

catchment area are greater for the 1000-m DEMs compared to 100-m DEMs. Yang et al. 

2001[38] investigated  the sensitivity of width functions and area functions taken out from 

different resolution of DEMs over the  fifteen Japanese catchment. They found that the river 
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networks generated from large threshold areas loses the detailed scaling information. Also 

the DEM resolution affects the runoff generation. Thereafter, a series of studies have been 

carried out in different climatic and topographic zones to ascertain the influence of DEM 

grid size in the modeling outputs [39–49]. 

2.2.1.4 Surface Reconditioning for Hydrologic Analyses 

DEMs usually holds depression that lends as areas having no drainage, termed as pits or 

sinks. The depressions in the DEM disrupt the drainage surface and precludes routing of 

flow over the land surface. Therefore, to use DEMs to derive hydrological parameters such 

as flow direction, flow accumulation, upslope contributing area, sinks must be removed, as 

the “necessary evil” according to Burrough and McDonnell (1998) [50] and Rieger (1998) 

[51]. 

There are very few studies directly indicating effect of surface recondition methods 

on hydrology. Zhao et al. 2009 [52] compared two surface reconditioning methods viz. an 

agree procedure and shortest path method with and Xinanjiang model. They concluded that 

agree method provides better fit than shortest path method over hilly region, however, there 

was no significant difference in the modeled discharge between the two approaches. 

2.2.2 Rainfall 

It is important to characterize the uncertainty in the rainfall inputs for successful rainfall-

runoff modeling. However, there is no physical or empirical model that can produce 

accurate runoff prediction if forced to an inaccurate rainfall data [53]. Erroneous rainfall 

inputs directly compromises with the model accuracy, reduces the scientific advancement 

as well as compromise with the consistency of operational applications. This is a major issue 

for hydrological modeling [54]. 

2.2.2.1 Sources of Error in Rainfall Inputs for Hydrological Modeling 

The main source of uncertainty in the rain gauge data for hydrological modeling is due to 

the poor representation of discrete set of rain gauges over the entire basin [15,55,56] and 

the assumptions used to interpolate the rain rate between the gauging stations. The rain 

gauges like tipping bucket are themselves associated with the systematic and random error 

owing to mechanical limits, evaporation losses and wind effects [57–59]. While the satellite 

precipitation products have potential to providing integrated precipitation estimates over the 
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large spatial areas, although there are numerous challenges persist in the interpretation of 

the raw satellite data into quantitative precipitation intensities [15]. The number of satellite 

coverage has been significantly improved over the last few decades and therefore, provides 

the measurements at a very fine spatial and temporal resolution. Although, signal processing 

methods have been improved significantly [60,61], still there are many discrepancy in the 

quantitative precipitation estimates. 

 It has been recognized that the uncertainty in the rainfall estimates has a significant 

effect on the model predictions and efforts to develop scientific understanding through 

intervening model parameters and structure through incorrect assumptions on the quality of 

input rainfall used to predict the model outputs. Kavetski et al. 2006a [54], noted that 

regardless of advances in the data collection and modeling, high spatial and temporal 

variability of precipitation make it probable that the rainfall input uncertainty will remain a 

challenging issue in the near future. Reichert and Miele itner, 2009 [62] revealed that the 

consideration of time dependency in the rainfall bias correction has improved the model 

performance more than the inclusion of any other time dependent parameters. Recently 

some studies are carried out to describe the error propagation in the streamflow [63] as well 

as the byproducts streamflow like flood forecasting [64]. 

2.2.2.2 Quantification of Error in Satellite Precipitation Products  

Last one decades, many studies have been carried out to understand the uncertainty in the 

satellite and forecasted precipitation products out of which legitimate reviews are presented 

in three sections namely validation, improvement (Bias adjustment) and Hydrological 

applications.   

Validation 

Din et al. 2008 [65] compared site specific precipitation between TRMM and rain gauge 

data over Kuwait, and showed that the bilinear interpolated satellite data are highly 

correlated with the rain gauge data, aspersions exist for overestimation caused due to the 

missing of particular rain events by satellite owing to its temporal variability. Elizabeth E. 

Ebert 2008 [66], proposed a fuzzy verification (which uses a spatial window or 

neighborhood surrounding the observed point using average, threshold or PDF depending 

upon the fuzzy method) to validate high-resolution precipitation forecast from the United 

Kingdom. Yu et al. 2009 [67] evaluated the ability of three satellite precipitation products 



Chapter 2 Literature Review 

 

11 

 

viz. TRMM 3B42 V6, CMORPH and GMS5-TBB for precipitation features during tropical 

cyclones over the main land of China. The results show that both the TRMM 3B42 and 

CMORPH underestimates the moderate and heavy rain fall and overestimates the low 

rainfall, while GMS5-TB performs better than 3B42 and CMORPH for heavy rainfall, 

therefore GMS5-TBB data could be useful for operational/research reference during tropical 

cyclones. Nair et al. 2009 [68] validated the TRMM 3B42 V6 data over the western state of 

India and found that the 3B42-V6 precipitation has potential to be used for intra-seasonal 

studies.  Rahman et al. 2009 [69] investigated the variability in the Indian summer monsoon 

using daily data from satellite and gauge observations. They highlighted that the satellite 

data (TRMM and GPCP) are able to accurately depict the intra-seasonal variation but both 

underestimates mean and variability of rain. 

Bias adjustment 

Mitra and Bohra 2009 [70], presented an algorithm to merge TRMM TMPA satellite 

precipitation with Indian Meteorological Department (IMD) rain gauge data. The results 

demonstrate that the mean bias is smaller for merged gauge and satellite product (NMSG) 

than TMPA itself. Condom et al. 2011 [71] proposed additive and multiplicative correction 

model for TRMM 3B43 monthly precipitation estimates for the mountainous areas of the 

Peruvian Andes falling over 3000m. Then they verified the corrected monthly values with 

the gauge data and concluded that the correction models better approximates the TRMM 

rainfall at monthly and annual scale.  

Hydrological applications  

Harris et al. 2007 [72] tried to find out the answer of question “what are the hydrologic 

implications of  uncertainty of satellite rainfall data at the coarse scale”? For this, they 

used TRMM’s precipitation product 3B41RT which is availed in pseudo real time with a 

latency of 6-10 hours and concluded that a rational and regime based bias adjustment 

method is need to be investigated before using satellite precipitation data for the flood 

studies. Collischonn et al. 2008 [73] investigated the usefulness of daily TRMM 

precipitation data over an Amazon tributary- Tapajo´s river basin where convective 

precipitation is dominated. They found that TRMM-based simulated hydrographs are 

analogous with those obtained by the rain gauge data. Therefore, satellite precipitation can 

be a practical tool for identifying aberrant rain gauges at a basin scale. Yong el al. 2010 [74] 

validated standard TRMM precipitation products 3B42RT and 3B42V6  over the Laohahe 
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basin, China. The results shows that 3B42V6 data are able to capture spatial and temporal 

rainfall characteristics while 3B42RT product unrealistically overestimates throughout the 

year except for few months upon which it underestimates. Hydrological application with 

three layered variable invitation capacity model (VIC-3L) shows that model is not able to 

overcome the overestimating nature of 3B42RT product. However, It produces reasonable 

hydrological predictions with 3B42V6 data. They have also shown a significant geo‐

topography‐dependent distribution pattern that is closely associated with latitude and 

elevation bands, signifying margins with TRMM‐era algorithms at the mountainous areas 

in general. Moffitt et al. 2011 [75]carried out a research to see the acceptability of TRMM 

precipitation of flood detection system (FDS) over Ganges, Brahmaputra and Meghna 

Rivers in Bangladesh. They cautioned to verify FDS estimates during the monsoon period, 

although it provides high probability of detection for the flood events. 

2.3 Structural or Model Uncertainty 

Structural uncertainty is an intrinsic feature in the semi-distributed or conceptual models. 

The structural uncertainty coins during the model formulations where consequences of 

simplifying assumptions made to approximate the actual hydrological system with a series 

of mathematical formulations. In simple terms, the structural error of a model depends on 

the it’s formulation (like number of layers and connective stores, options for constrictive 

functions etc.) for particular catchment and on the spatial and temporal scale of analysis. 

The structural uncertainty may vary from storm to storm or even for some specific time 

scale. Since it is not being considered well in past, stipulating a significant prior for 

structural uncertainty, indeed, even framing it mathematically, is indeed problematic. 

In general, uncertainties in the calibration data (in terms of quality and finite length) 

inevitably translates uncertainties into the estimated model parameters and other secondary 

quantities (in a Bayesian perspective it is called as “posterior parameter uncertainty”). This 

can ensue even for an exact model, but can be predominantly prominent when the model is 

approximate. In Bayesian context, this “derived” parametric uncertainty decays as more 

data is included in the calibration. However, if the likelihood and/or priors are miss-

specified, the posterior will be in error [76–80]. Despite being an asymptotic in behavior, 

parametric uncertainty should not be ignored, otherwise it may add a significant total 

predictive uncertainty. 
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The structural uncertainty broadly can be categorized in two different ways. In the 

first approach, model is treated as deterministic and structural error is represented by using 

an exogenous term that is usually additive in nature. There are several options to do this. In 

first approach (P1) modeler tries to get lumped output and structural errors into a single 

“residual” error term that is basically the difference between observed and simulated 

outputs, probably after a transformation. This approach can be executed in the systems that 

ignore input errors (e.g., the standard least squares calibration), and in the input error 

sensitive methodologies [81]. In second approach (P2), output and structural errors are 

represented by two terms e.g. difference between simulated and true output is termed as 

structural error, while the difference between true and observed outputs is the output error 

[82]. Though it needs a more specific error models and priors like assessment of stream flow 

uncertainty using independent gauge data and therefore specifying a significant prior for 

structural errors always persists problematic. 

More current tactics has left the notion of model being deterministic owing to the 

stochastic nature of errors. The stochastic nature of errors are due to the spatial and temporal 

averaging of diverse and distributed model inputs and inner fluxes, which can’t be avoided 

in the lumped models. There are several options to do this. The first tactic (S1)  has been 

taken for state space approaches like Ensemble Kalman Filter (EnKf), termed as Stochastic 

perturbations of the internal model states [83]. In second method (S2), one or more model 

parameters varies stochastically through time. This tactic is used with the transfer function 

models that has been estimated with instrumental variables [84] or with general conceptual 

models within Bayesian total error analysis (BATEA) [54]. The third approach (S3)  

articulates the conceptual model itself as a combined probability density function [85]. 

In P1 and P2 tactics, model is deterministic and having given fixed inputs, initials 

and parameters, it generates the same output. However, in approaches S1-S3, the model is 

stochastic i.e. produces a random outputs even for fixed initials, inputs and model 

parameters. This is due to random disparity of internal states for S1 or stochastic parameters 

for S2 or due to probabilistic formulation within the model structure for S3. In result, for 

tactics P1 and P2, as posterior model uncertainty decays, the model predictions swiftly terms 

to deterministic and therefore total predictive uncertainty is led by the exogenous error term. 

On the other hand, in the tactics S1-S3, the model predictions are integrally stochastic even 

if the posterior parameters uncertainty are negligible. Also, it is obvious the approaches S1-
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S3 implicitly or explicitly can be used to reveal all sources of uncertainty, rather than just 

showing inadequacies in the model structure. 

The above list is not complete. The hypothesis of epistemic structural uncertainty 

(rather than strictly stochastic) ends the formal probabilistic framework, e.g., GLUE [86] 

and possiblistic methods [87] . Although structural errors are epistemic, it means arises due 

to lack of knowledge of basin dynamics, they may still behave stochastically. Therefore, 

they can be characterized by standard probability theory, in particular the Bayesian methods. 

2.3.1 Uncertainty in SWAT Model 

The SWAT model [88] has been proved an important tool to investigate alternative 

management strategies for hydrologic water quality response at the watershed scale. 

Significant information was provided to assist modellers to do sensitivity analysis, multisite 

calibration/validation and multivariable hydrological modelling using SWAT. White and 

Indrajeet 2005 [89] revealed that calibration and validation is vital factor to reduce the 

uncertainty and to increase the modellers assurance in SWAT model outcomes. 

Alike other distributed models, SWAT is also affected with the equifinality of model 

parameters, because more than one set of parameters may produce the same outputs. 

Therefore, model sensitivity analysis is a crucial test which may decrease the model’s 

uncertainty. In 2005, White and Indrajeet studied the influence of a set of parameters on 

flow, sediment, NO3-N, NO2-N and TP. The sensitivity analysis was carried out using 

relative sensitivity (Sr) and revealed that sensitivity of model parameter is proportional to 

the Sr value for each SWAT outputs. Also each considered output were first calibrated to 

ensure not to propagate the uncertainty to other output variables. In addition to that, 

uncertainty in the hydrological data was assumed to be less since the estimated flow was 

modelled from daily gauge. 

Ömer and Serdar 2013 [90] applied SWAT model on a watershed and simulated the 

model for years 1978-2008, while calibrated the model for period 1998 to 2004. They found 

that few parameters are only valid on monthly basis, primarily those that have a direct effect 

on the watershed hydrology. These monthly parameters increases the uncertainty for daily 

simulations. The uncertainties in the volume of irrigation abstraction, results in poor model 

performance at the catchment outlet. The deficiency in the adequate number of gauge points 

on main channel and tributaries further deteriorated the modelling results. Furthermore, 
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Vishal et al. 2013 [91] highlighted that when considering all the uncertainties in the SWAT 

model, inputs and parameters, model predicts good at daily and monthly time steps for the 

Tungabhadra catchment. 

2.4 Parametric Uncertainty 

Semi-distributed hydrological models are highly parameterized and complex due to 

consideration of physical processes. For example, Y. Grusson et al. 2015 [92] started 

uncertainty analysis by taking 21 land parameters, 8 snow parameters and 2 elevation band 

parameters for simulation of stream flow and snow dynamics using SWAT model over the 

Garonne river basin, France. Therefore, more than one set of calibrated parameters maybe 

attained with equal streamflow simulations [93].  This means either model and/or measured 

data may not be feasible to signify the physical values. In addition to non-uniqueness and 

correlation in the sets of parameters, hydrologic models represents the simplified version of 

actual physical processes. Therefore, parameters of hydrological model itself produces 

uncertainty. Present method of hydrological modelling directs that parametric uncertainty 

is one of the most significant source of uncertainty [94–96]. Evaluation of parametric 

uncertainty is useful [97] to educate us on  inability of a model to accurately depict the real 

world; imparts the knowledge on information reported; categorise the most and least 

important parameters; effort to identify place to put more effort to enhance the model output; 

re-build model; calculate statistical indicators of a model output; realize  model strength and 

limitations. 

The parameters for a hydrological model can be divided in two groups viz. 

conceptual and physical [98]. The conceptual parameters like CN2 in SWAT model are 

defined due to conceptualization of an un-definable physical process and that can be fixed 

by model calibration. Conversely, physical parameters (slope, river length, basin area etc.)  

can be measured or estimated based on the physical characteristics of watershed [99]. Due 

to spatial heterogeneity in the catchments and lack of experimental data, the physical 

parameters are usually fixed by model calibration against the measured hydrological data 

like discharge [100]. However, when number of considered parameters are large due to 

various sub-processes in the model structure, the calibration processes becomes complex 

and results uncertainty issue in the modelling [101]. It has been noticed that parametric 

uncertainty is unavoidable in hydrological modelling. Therefore, an uncertainty assessment 

should be conducted before prediction being used for decision making. A series of studies 
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have been conducted for parametric uncertainty analysis in the area of streamflow 

forecasting [91,102], soil loss assessment [103], integrated watershed modelling [104],  

effect of land use change on water resources analysis [105,106], climate change[107,108], 

nutrient flux analysis[109] and others. Nevertheless, identification of model parameters is a 

very complex and involves non-linearity. Numerous solutions can be obtained for the same 

project by the optimization algorithms [99] and thus, single set of parameters identification 

is not an easy task.  

Several uncertainty analysis algorithms are developed in the past to take care of the 

uncertainty from hydrological models and derive significant uncertainty bounds for the 

modelling. These uncertainty optimization algorithms may be developed using either 

analytical and approximation methods [110], Monte Carlo (MC)[111,112], Bayesian 

sampling based methods [86,113], methods depend on the analysis of model errors [114–

116] or uncertainty analysis methods based on the fuzzy set theory [117]. Majority of these 

methods consider model uncertainty from single source i.e. parametric uncertainty, 

considering correct model structure and input data free of impurities. However, recently few 

techniques have the capability to explicitly consider two or more sources of uncertainties 

[81,118–123]    

To account for the parametric uncertainty, many uncertainty analysis algorithms 

have been developed. These uncertainty algorithms are applied to the hydrological models 

for uncertainty analysis, for example SWAT-CUP [10]  for swat model, in which there are 

four parameterization and uncertainty analysis programmers, namely Sequential 

Uncertainty Fitting version-2 (SUFI-2), Generalized Likelihood Uncertainty Estimation 

(GLUE), Markov chain Monte Carlo (MCMC), Parameter Solution (ParaSol) and Particle 

Swarm Optimization (PSO). Many researchers have used these algorithms for SWAT model 

optimization worldwide; Rostamian et al. 2008 [124] used SUFI-2 algorithm to 

parameterize and calibrate the model for streamflow and sediment analysis in the 

Beheshtabad and Vanak river catchments in the central Iran; van Griensven et al. 2008 [125] 

used ParaSol method to approximate the parameters for Honey Creek watershed in Ohio, 

USA; Shen et al. 2012 [96] applied GLUE method to estimate the parameter uncertainty for 

streamflow and sediment modeling in the Daning River Basin, China; Samadi and Meadows 

2014 [126] used PSO algorithm to explore uncertainty analysis in the SWAT model for the 

Waccamaw watershed, USA.  
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Apart from this, a few studies have compared different uncertainty analysis 

algorithms to establish their specific usefulness. Yang et al. 2008 [127] compared five 

uncertainty analysis algorithms viz. GLUE, ParaSol, MCMC, SUFI-2 and Importance 

Sampling (IS). Apart from this, they compared the results based on the posterior 

distributions, uncertainty in the prediction, conceptual base. The performances of the best 

estimates, computational efficiency and difficulties in the implementation illustrated that 

the Bayesian-based approaches is most suitable and has sound conceptual basis. Vishal 

Singh 2013 [91] compared SUFI-2 and GLUE methods over Tungabhadra catchment, India 

and found excellent agreement between observed and simulated streamflow at monthly 

level however, daily results exhibits good agreement for both the algorithms. Wu and Chen 

(2015) [128] carried out uncertainty analysis for distributed hydrological model over the 

Wenjing watershed, China using SUFI-2, ParaSol and GLUE methods. They found that the 

SUFI-2 algorithm better approximates the simulated results than the other two methods. 

Uniyal et al. 2015 [129] conducted the study for an eastern Indian catchment and reported 

that both SUFI-2 and GLUE are good in uncertainty analysis and expressed a need to 

conduct such types of studies in different catchments under varying agro-climatic conditions 

for assessing their generic capability. 

In this study, the focus is particularly at input, structural or model and parametric 

uncertainties for hydrological modeling over the alpine Himalayas. In this chapter, the 

advancement in the understanding of different kind of uncertainties and possible 

rectification methods have been cited. The chronological reviews regarding specific 

knowledge gap for each objectives are being illustrated in the introduction section of each 

chapter.
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Chapter 3 

 

3 Description of the Study Area  
 

In this chapter a brief description of study area has been provided. The chapter illustrates 

topography, climate, ecosystem, and man-made features present in the study site. 

3.1 Topography 

The primary sub-basins of the Ganges are Yamuna, Betawa, Chambal, Sone, Ram Ganga, 

Karnali, Gandak, Bagmati, and Kosi. The Gandak River Basin (GRB), taken as the study 

area for the present research work, is a trans-boundary river basin which drains water from 

China (Tibet), Nepal and India. It originates at an altitude of 7620m to the north- east of 

Dhaulagiri near the Nepal and China (Tibet) border at geographical location of 29.3oN and 

83.97oE; however it confluences with the Ganga river near Patna, Bihar (India). After 

originating from a high altitude mountain range of the great Himalaya, it enters the plains 

at Triveni in the Champaran district of Bihar (India). The GRB covers a large geographical 

area of 44797 km2 between 25.6o- 29.4 o N and 82.8 o-85.82 o E of which 7620 km2 falls in 

India and the rest in Nepal and Tibet. The location of the study area is shown in Figure (3.1). 

SRTM 90m derived DEM map (Figure 3.2) shows the altitude variation from lowest 33m 

in the plains to as high as 8143m toward the mountainous range of Tibet-Nepal. 

The basin is also affected by human intervention, mainly due to the presence of dams 

at Kaligandaki-25 and Marsandi-28 sub-basins (Figure 3.1). These reservoirs support 

hydropower generation and do not store water during monsoons but marginally affects the 

flow regime during low flow period [130].
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Figure 3.1: Location map of the study area 



Chapter 3 Description of the Study Area 

20 

 

3.2 Ecosystem and Climate 

The GRB contains a variety of ecosystems and biodiversities. It ranges from the alpine arid 

rain shadow areas in the Tibetan Plateau through the steep topography of the high 

mountains, including some of the world’s highest points, Shivalik hills, Dhaulagiri (~8100m 

from MSL), down to the flat plains (33m from MSL) towards its confluence with the River 

Ganga at Patna. The Gandak River flows about 380 km in Nepal and Tibet and 260 km in 

India before reaching its confluence point.  

Also, GRB has been divided into six major sub-catchments namely the Kali Gandak, Seti, 

Marshandi, Budhi Gadak, Trisuli and Rapti. Out of the six, five arise in the highly elevated 

areas of the Himalaya. Part of the basin basically Himalayan range falls in the dry alpine 

climate with the little precipitation. The southern part, which spreads from the mid-hills to 

the flat area, has a humid climate with relatively high precipitation. Based on the 

GlobeLand30 [131] land cover information 2010, GRB contains 33.1% forest, 22.04 

agricultural land, 20.78% grassland, 10.24% ice/snow cover, 9.4 % barren land, and only 

0.16 % urban land (Figure 3.2). According to the FAO soil classification (2003), the basins 

comprises of ten different types of soils dominated by various kinds of Cambisols (48%), 

Lithosols (29%), Fluvisols (9%), Glaciers (8.4%), Dystric Regosols (5%) and rest are rorthic 

Luvisols (Figure 3.2). 

The climate of Gandak River Basin varies from the subtropical zone in the South to 

Tundra in the higher Himalayan regions. Based on the Climate Forecast System Reanalysis 

(CFSR) temperature data (1970-2013), mean daily maximum temperature range within the 

basin is 43.03 to -9.42oC, while mean daily minimum temperature range is 29.37 to -

27.22oC. Temperature variability is dependent on the altitude. For example, daily mean 

maximum temperature in June for the stations 258850 (47m) and 289850 (5190m) (Figure 

3.1) are 43.05oC and 5.5oC, respectively. High rain events exceeding intensity >124.4mm 

in 24- hour, frequently occur in the mid-hills over the Nepal portion of  the GRB [132,133], 

bringing massive detachment of soil particles creating the muddy flows in Bihar, India.  
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Figure 3.2: Land use map, Soil map, Digital Elevation Model (DEM) map, and Slope map of the 

study area 
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Chapter 4 

 

4 Uncertainty in the Inputs 
 

A watershed that has not been modelled effectively is not necessarily a monster. Indeed, if 

there are any monsters, one should first look for them in the realm of hydrological science 

[134]. The phrase “garbage in, garbage out (GIGO)” has been applied worldwide. In the 

developing nations, it is very difficult to rectify “garbage in” issue due to lack of quality 

inputs. Precipitation estimate and DEMs are the two major spatial inputs from remote 

sensors for distributed hydrological modelling. Therefore, in this chapter, the error in the 

by-products of DEM i.e. river network and basin area delineation as well as error in the 

amount and frequencies of satellite precipitation products such as the TRMM 3B42 V7 and 

CMROPH have been analysed. 

4.1 DEMs: Error in Basin Morphology  

4.1.1 Introduction  

The fundamental topographic inputs used in distributed hydrological modeling are length, 

area and slope. Erroneous slope results incorrect estimation of velocities while errors in 

river reach length lead to incorrect dissemination time and false offsetting of flood waves. 

In the large basins, researchers are interested/or forced to reproduce the hydrological process 

with limited data. Advances in remote sensing (RS) and geographical information system 

(GIS) techniques has opened a new field for researchers in hydrological and hydraulic 

modeling using digital elevation models (DEMs) for extracting topographic information. 

Shuttle Radar Topographic Mission (SRTM) derived DEMs have been used in many river 

basins for hydrological process simulation worldwide [135–140]. 

 The SRTM DEM data has been retrieved using radar imageries collected from 

NASA’s shuttle. Two antennas receive the reflected radar pulses at the same time, one 

antenna located in the shuttle’s cargo bay and other at the tip of a 60-m-long mast. This 

arrangement allows single pass radar interferometry and produces a very precise global 

elevation model with a vertical correctness of 6 m and a horizontal pixel spacing of 30m.
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 The data coverage is worldwide (latitudes 60N –60S) for three arc-second resolution, which 

can be retrieved freely from public domain website of the consultative group for 

international agriculture research (CGIAR) (http://srtm.csi.cgiar.org). 

DEMs can be used to get several watershed characteristics required for hydrological 

simulation viz. area, slope, aspect, river length [141], but the assessment of the DEM 

accuracy is essential for the determination of correct watershed characteristics and to ensure 

accuracy in the further analysis. Many studies are carried out to assess the relevance of the 

obtained watershed characteristics using these DEMs. Han and Hammond 2006 [142], 

conducted a study on Brue catchment, Somerset, situated in the southwest of the England. 

The study was mainly oriented towards the effect of the different resolution of DEMs on 

the basin area delineation and concluded that the computer generated catchment area is not 

delineating correctly. It is mainly due to the weakness of computer to pick man-made 

features, in addition to data quality and algorithm problem. The study also revealed the fact 

that up to certain limit poor resolution data correctly delineate the catchment boundary than 

the high-resolution data. 

Alarcon and O’ Hara 2006 [143], carried out the research work to show the reliability 

of interferometric synthetic aperture radar, national elevation data (NED), United States 

Geographical services digital elevation model (USGS-DEM) and SRTM 30m DEM data. 

They found that 30m SRTM DEM delivers optimum delineation for basin area and 

perimeter as compared to NED elevation data. 

Paz et al. 2008 [13] applied an automatic river length mining method in the Uruguay 

River Basin in Southern Brazil for eight river reaches. They concluded that the comparative 

inaccuracies can be higher than 30% in level regions with relatively low DEM resolution, 

but the stream burning operation significantly improves the results. Rahman et al. 2010 [11], 

conducted a study on flat deltas terrains of Bangladesh to evaluate the limitation of SRTM 

90m DEM in river network delineation and the results reveal that error is proportional to 

flatness. 

These above studies carried out using a well-known D8 method introduced by 

O’Callaghan and Mark 1984 [29] concludes that the DEMs have many abrupt changes in 

elevation (termed as “Sinks or Voids”) in neighboring cells which pronounces errors in the 

computation of flow direction. In this study ‘sink’ has been filed before computing flow 

direction. ArcGIS uses a sink fill algorithm developed by Jensen and Domingue 1988 [144]. 

http://srtm.csi.cgiar.org/
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Since the beginning, researchers have been arguing on D8 method and its weakness in flat 

terrains.  In the year 1991, Moore and Grayson [145] noted that D8 method permits flow 

movement over a two-dimensional pixel which is treated as a point, and it is projected down 

the slope of a one-dimensional line. Once again in 1991, Fairfield and Leymarie [146] 

indicated the limitation arising from the discretization of flow using D8 method and said 

that it is due to consideration of flow into only one of eight possible directions, separated 

by 45°. After that, many flow direction computation methods are invented in the past [30–

32,147,148], but each one is rejected due to serious practical concerns except D8 method. 

Thus, it is realized that the researchers tried to advance the D8 method, but due to 

the failure of other methods, it is continuously being used in ESRI GIS as well as in Arc 

Hydro [149]. Therefore, the present study is carried out with this conventional method to 

predict uncertainty in river network alignment, basin area delineation and their relation to 

DEM resolution and morphological characteristics. 

4.1.2 Data Used and Methodology 

4.1.2.1 Data Used 

Details of the dataset used in the study are presented in Table 4.1. The river network 

digitized over Google Earth has been termed as Google Earth River network while, 

catchment boundary digitized from the Ganga flood control commission (GFCC) map, the 

government of India 02/04/2012 is termed as GFCC boundary. Both Google Earth River 

network and GFCC boundary have been used as referenced data in this study.  The general 

location of the study site, Digital Elevation Model (DEM) along with stream network and 

sub-basins are given in the Figure 4.1. 

Table 4.1:  Description of data used in the study 

Name of Data Type Source 

SRTM DEM 90 m Raster CGIAR 

SRTM DEM 30 m Raster USGS 

ASTER DEM 30 m Raster http://demex.cr.usgs.gov/DEMEX/ 

Reference River network Vector Digitized from Google Earth Imagery  

(Referenced river network)  

Reference catchment area Vector Digitized basin area from map prepared 

by the Ganga flood control commission 

(Government of India 02/04/2012) 
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Figure 4.1(a): Location map (b) Digital Elevation Model (DEM) map and sub-basin map of trans-

boundary Gandak River basin 
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4.1.2.2 Methodology 

In this study, two different error types are examined. 

(a) Error in basin area delineation using automatic delineation with DEMs and 

(b) Error in River network alignment using automatic delineation and their relation 

to morphological characteristics of the basin.  

The assessment of (a) is evaluated with three parameters viz. overestimated area, 

underestimated area and total error (sum of overestimate and underestimate).  The GFCC 

boundary area is compared with the automatically digitized boundary area from SRTM 90m, 

SRTM 30m, and ASTER 30m. The overestimated area is that lying outside the GFCC 

boundary, whereas underestimated area is the area which shortfall within the GFCC 

boundary. 

If P is the catchment that is to be assessed (catchment area automatically derived 

with SRTM90m, SRTM 30m, and ASTER 30m) and Q is the referenced catchment (GFCC 

boundary area), then the overestimated and underestimated area can be calculated using 

equation (4.1) and equation (4.2) respectively as: 

 The overestimated area  P  P  Q     (4.1) 

 The underestimated area  Q  P  Q     (4.2) 

Where P ∩ Q is the intersection of catchment area under assessment (P) and referenced 

catchment area (Q). The overestimated and underestimated area can be summed to provide 

the total error which is the absolute error in the automatic catchment area delineation. This 

method allows us to differentiate between two catchment boundaries that encircle equal 

areas having different shapes and positions by estimating overestimate and underestimate 

area. 

In the assessment of error in river network alignment (b), the two statistical 

parameters: mean absolute error (MAE) and standard deviation (SD) are used.  The stream 

network for each sub-catchment and all the three DEMs SRTM 90m, SRTM 30m and 

ASTER 30m are delineated using hydrology tool inbuilt in Spatial Analyst extension of 

ArcGIS 10.2.  The steps are mosaicking of different tiles, masking, sinks fill and finding 

flow direction, estimation of flow accumulation raster, watershed delineation and then 

streamline extraction. The downloaded DEM tiles had been mosaicked to a single tile. 
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Unnecessary area hampers processing time, therefore, mosaicked tile are masked to reduce 

the area up to the approximate basin area. All the DEMs have some sink (cell having no 

data) which may cause an error in the analysis. The sink cell values are filled with the sink 

fill operation by taking the average pixel value of neighboring cells. The adjacent cell 

towards which water moves after falling over the terrain is the flow direction, whereas the 

flow accumulation is the accumulated flow weight of all heading towards each downslope 

cell in the output raster. 

The flow direction cell is calculated by using the traditional D8 method which selects 

single flow direction among eight neighboring cells and is the most popular method for 

deriving contributing areas, although it is not able to simulate the flow dispersion. The D8 

method sums the accumulated area of the neighbor cell with the highest distance weight 

drop. This neighbor is called the cell downstream of the center cell. The D8 method 

identifies a neighboring cell based on the steepest gradient for assigning flow direction for 

that particular cell [144]. More explicitly, it usually assigns to each DEM point, one of eight 

principal directions (N, NE, E, SE, S, SW, W and NW). In these directions, the method 

selects one downstream cell called cell downstream of the Centre cell based on the highest 

distance weight drop i.e. steepest slope. This cell downstream of the Centre cell indicates 

the direction of flow. If there are no downstream neighbor and the point is not on the edge 

of the DEM, it gives a value indicating a sink. The ESRI flow direction grid (D8) is an 

integer raster, where values shown in Figure 4.2 represent the flow direction from the center 

cell.       

 

Figure 4.2: Raster values represent flow direction from the center 

. 
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Flow accumulation is calculated as highest flow accumulated in the cell from neighboring 

cells [150]. The Stream order is defined using Strahler’s classification [151]. The flow 

diagram of the steps involved in the drainage network delineation is shown in Figure 4.3.    

The automatically delineated drainage network from the three types of DEMs is then 

compared with the referenced drainage network. The study also evaluates the effect of 

catchment parameters like slope, bifurcation ratio and drainage density on error parameters. 

Their description are presented in Table 4.2. The distance between automatically delineated 

river network and the Google Earth river network is measured in some equal intervals of 1 

Km using the measure tool of ArcGIS 10.2.1 in all sub-catchments. 

 

 

 

 

 

 

 

Figure 4.3: Flow chart of the methodology adopted for delineation of Stream Network using 

different DEMs 
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Table 4.2: Description of the morphological parameters 

Parameter Description Remark 

Slope (S)  

m

Drop  h

Main strean lengh L
S

t 


  

∆h = Elevation of remote pixel minus 

elevation of outlet pixel. 

The average slope of the main 

channel for each sub-basin, 

where the length of the main 

channel has been considered 

>= 8 order. 

Bifurcation Ratio 

(𝐑𝐛) 
u

b

u 1

N
  R

N 

   

Where, 

Nu = Number of streams of order u. 

Nu+1= Number of stream of higher 

order. 

 

Bifurcation ratio for all order 

stream had been calculated 

and then average of was used 

as Basin’s Bifurcation ratio. 

Drainage density 

(Dd) 

w N

iji 1 j 1

d

L
D

A

 

    

Where, 

 i = 1,w is the number of stream orders. 

∑ Lij
N
j=1  = sum of streams of order i 

A= drainage area of the basin 

N=stream order 

Dd has been calculated for 

each sub-basin. 

 

The measured distance between automatically delineated river network and referenced river 

network is the alignment error. It may be either positive or negative depending upon whether 

the automatically delineated river network is on the right side or left the side of the 

referenced river network when moving from outlet to remote point. The mean absolute error 

(MAE) and standard deviation (SD) are computed for the calculation of the quantitative 

error in network alignment. MAE is preferred because absolute error measures are less 

dominated by a small number of large errors (Rahman et al., 2010), and thus, it is a more 

reliable indicator for the typical error magnitudes. MAE and SD are calculated using 

equation (4.3) and equation (4.4) respectively as: 

 i i i i(x y )MAE   O  y )D(x ∣ ∣   (4.3) 

 
 

n 2

i i i i

i

O(x y ) O(x y )

SD
n






  (4.4) 
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where, 

O(xi, yi) is the location of the Google Earth River network alignment at the rate of ith interval, 

D(xi, yi) the location of automatically delineated river alignment at the rate of ith interval 

and n is the total number of intervals. 

4.1.3 Results and Discussion 

Figure 4.4 clearly shows that the automatically delineated basin boundaries are unable to 

pick the GFCC boundary area perfectly. Although, it is not possible to repeat the basin 

boundary perfectly for different DEMs using automatic delineation. Nevertheless, the error 

should not be high that may hamper further hydrological and hydraulic analysis. Delineation 

error for the higher resolution DEMs SRTM 30m and ASTER 30m is significant than lower 

resolution DEM SRTM 90m. It means higher resolution DEMs fail to calculate the flow 

accumulated areas correctly. The error is pronounced in flat areas for higher resolution DEM 

than the low-resolution DEMs. The Higher resolution DEMs are overestimating the 

boundary area in the flat regions. The lower resolution DEM SRTM 90m delineates the 

boundary closer to the referenced GFCC boundary. In the high altitudes automatically 

delineated basin boundary tries to underestimate for all the three DEMs. Among the all three 

  

 

Figure 4.4: The delineation error between automatically extracted area from DEMs (a) ASTER 30m, 

(b) SRTM 30m and (c) SRTM 90m with the area digitized from Ganga Flood Control Commission 

(GFCC-green color) map 
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DEMs, SRTM 90m derived basin boundary is in good agreement with the referenced GFCC 

basin boundary. 

Results presented in Table 4.3 show the maximum overestimated boundary area for 

ASTER 30m DEM that is 33053.33 km2. Therefore during quantification of discharge, it 

may pretend high volume of the basin flow. The maximum underestimated basin area of 

9272.44 km2 is noticed in SRTM 30m DEM and therefore, it may pretend less amount of 

basin flow. The highest total error in basin area delineation is observed in ASTER 30m i.e. 

39137.20 km2. 

Drainage networks are the essential hydrological input, which is being used in 

various distributed hydrological models like MGB-IPH [an  acronym  from  the  Portuguese 

MGB (Large basin Model) and IPH (Institute  of  Hydraulic  Research)] [138]. Therefore, 

it is vital to highlight the error in digital network delineation due to different resolution 

DEMs.  Rahman et.al. 2010 [11] has described the limitation of SRTM90m on flat areas of 

the Ganges. The method for alignment error analysis described in methodology section has 

been adopted to evaluate the performance of SRTM 90m, SRTM 30m and ASTER 30m in 

the Gandak River basin. The drainage networks for all the DEMs are automatically 

delineated through the commonly used D8 method which has been used in different 

distributed hydrology model such as SWAT, PIHM and MGB-IPH. All the automatically 

delineated river networks are then overlaid with referenced Google Earth River network as 

shown in Figure 4.5. It shows a significant deviation between automatically delineated river 

networks and referenced Google Earth River network. The range of variation is less on steep 

catchment region than the flat one. 

Table 4.3: Results for error in basin area delineation 

Delineation method Total 

Area 

(km2) 

Overestimate 

(km2) 

Underestimate 

(km2) 

Total 

error 

(km2) 

Manually Digitized From GFCC  

(Referenced basin boundary area) 

47146.94 0.00 0.00 0.00 

Automatic From SRTM90 m 44796.78 

 

5445.03 

 

7794.25 

 

13239.28 

 

Automatic from SRTM30 m 55208.36 

 

17334.80 

 

9272.44 

 

26607.24 

 

Automatic from ASTER30 m 74115.46 

 

33053.33 

 

6083.87 

 

39137.20 

 

 



Chapter 4 Uncertainties in the Inputs 

 

32 

 

 

Figure 4.5: Comparison of delineated river network (a) ASTER 30m, (b) SRTM 30m and (c) SRTM 

90m with Google Earth image extracted River network (red color) 

 

The morphological parameters, namely the bifurcation ratio (Rb), drainage density 

(Dd) and channel slope (S) are extracted for each six sub-catchment and the results are 

presented in Table 4.4. The morphological parameters are the only basis for basin shape and 

the river network. Therefore, a comprehensive analysis has been carried out to assess the 

relation between these parameters and the stream network deviation. The slope is calculated 

by the head difference between the remote pixel and the outlet pixel divided by the length 

of river run. Among the all six sub-catchments of the Gandak River basin, Budhi Gandak 

has the steepest channel slope (1:41 mm-1), whereas the GTR is found to be most flat (1:3632 

mm-1). The bifurcation ratio for all sub- basins varies from 3 to 5 whereas the drainage 

density was found between 0.78 to 1.03 km km-2. High drainage density denotes quick 

peaked and highly eroded basin. Since the Seti sub-catchment has maximum drainage 

density, its level may rise quickly with mud during the monsoon. Among these 

morphological parameters, slope shows a definite relationship between the error parameters 

MAE and SD. The relation of the slope with MAE and SD have been presented in Figure 

4.6. 
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Table 4.4:  Morphological parameters of the sub- basins 

*SO Stand for Stream order and #indicates River with dam constructed on it. 

Comparison of SD, MAE and slope for all the sub-catchments and for all the three 

DEMs are presented in Figure 4.6.  It reveals that the SD and MAE for SRTM 90m DEM 

increase with decrease in the steepness of the sub-catchments. This implies that the relative 

stream alignment deviation increases as the slope decreases.  Budhi Gandak has steep slopes 

and therefore, it has the minimum MAE of 53.21m and SD as 53.01m. GTR has a minimal 

slope of 1:3090 but it has a maximum deviation of MAE as 993.94m and SD as 1902.129m. 

In other sub-catchments (Marsandi, Trisuli, Kali, Seti and Rapti) MAE and SD increases 

with increase in flatness of slope. In the case of another two DEMs; SRTM 30m and ASTER 

30m, the effect of slope on the variation of MAE and SD has a random effect. The 

calculation of SD and MAE is not possible for GTR for the two high-resolution DEMs; 

SRTM 30m and ASTER 30m due to linear deviation of stream networks more than 9000m. 

Therefore, the use of these two high-resolution DEMs will not provide the right hydrological 

results on flat terrains like GTR sub-catchment where the head drop is almost negligible 

(1m for each 3 km river run). 

SD and MAE for the same sub-catchments show a lot of differences between all the 

three DEMs. This implies that apart from slope, DEM resolution also affects the automatic 

river network delineation accuracy. The MAE and SD for the ASTER 30m are better than 

the SRTM 30m and SRTM 90m in the steep slope basins (slope > 1:140) but it does not 

give good results for flat basins. MAE and SD intercomparison indicates that the river 

network delineated with higher resolution DEMs has more deviation than lower resolution 

DEM. A linear trend line between error parameters MAE, SD and slope have been fitted to 

see the dependency of the delineation error on the gradient of the sub-catchments.  The 

correlation coefficient (R2) for the linear fit between SD and slope is 0.17, 0.45 and 0.65 for 

Sub-Basin/ 

River Name 

Drainage 

Area 

(Sq.Km) 

Reach 

Length of 

SO*@>=8 

(m) 

Elevation (m) Av. Slope of 

Main River 

Stream SO* 

@>=8 (mm-1) 
 

Drainage 

density, Dd 

(Km Km-2) 

Bifurcati

on ratio 

Rd 
Max. Min. 

Kali Gandak# 11884.517 243000 8143 188 1:69 0.80 2.03 

Seti  3133.565 119200 7921 208 1:141 0.78 2.00 

Marsandi# 5085.698 139400 8049 233 1:46 0.89 2.16 

Budhi Gandak 5000.248 134200 8042 325 1:41 0.83 2.04 

Trisuli 6596.503 196400 7362 322 1:51 0.81 2.36 

Rapti  3299.220 108600 2577 136 1:375 1.03 2.13 

Gandak River # 

(Trunk, India) 

9797.033 352300 1856 33 1:3632 0.87 2.50 
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SRTM 30m, ASTER 30m and SRTM 90m respectively.  The higher R2 value for SRTM 

90m DEM indicates the scope to remove the alignment error using a suitable statistical 

correction algorithm.  ASTER 30m DEM shows weaker linear relationship than SRTM 90m 

as its value is poor and moderate respectively. Therefore, SRTM 30m and ASTER 30m 

DEMs have less possibility to remove the alignment error using statistical correction 

algorithms. On the other hand, R2 for MAE are in quite similar fashion to SD and its values 

are 0.66, 0.16 and 0.43 for SRTM 90m, SRTM 30m and ASTER 30m respectively 

 

 

 

 

Figure 4.6: Behavior of MAE and SD on the change in slope for three different DEMs 
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4.1.4  Summary  

The study is conducted for seven sub-catchments of Gandak River Basin to evaluate the 

performance of different DEMs to delineate river networks and basin boundary area. The 

drainage network and basin area are extracted using the hydrology tool of Spatial Analyst 

extension in ArcGIS 10.2.1. It is summarized that the flat sub-catchments are having more 

delineation error for both the stream network and basin boundary area delineation than the 

steep sub-catchments. Another important point is that automatically delineated boundary 

has a tendency to overestimate the basin area on the flat regions, whereas it underestimates 

on the steep slope areas. The work is a way forward because many times people are biased 

to use high-resolution DEM. The high-resolution DEM is costly than low-resolution DEM 

and it also takes more computation time, leading to poorer results similar to Han and 

Hammond 2006 [141]. 
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4.2 Satellite Precipitation: Error in Amount and 

Frequency 

4.2.1 Introduction 

Hydrological modelling of watersheds requires continuous and long-term meteorological 

data. The time series of input data should be at least at a daily time step for climate change 

and extreme events: flood and drought modelling [152,153]. Precipitation is perhaps the 

most important input data for these studies. Obtaining reliable input data is a challenge, 

particularly in developing countries and trans-boundary basins.  Currently, the data sharing 

is quite limited across national boundaries due to economic and national security barriers 

[154,155]. In this regard, satellite precipitation products can be very useful particularly in 

trans-boundary basins, where the exchange of precipitation data from rain gauge data does 

not happen in near real time. 

The necessity of reliable satellite precipitation records for extreme events (flood and 

drought) and climate change has been investigated in numerous error analysis studies 

worldwide [156–158]. Rain gauge records are the most reliable source of precipitation 

estimate. However, the spatial distributions of rain gauges and the consistency in the record 

have certain limitations. High-resolution satellite precipitation products such as TRMM 

(Tropical Rainfall Measuring Mission) and CMORPH (Climate Prediction Center 

Morphing Technique) provide considerable improvements in the spatial and temporal 

variability of the rainfall dataset. Satellite precipitation products are derived using different 

retrieval algorithms and some products are biased compared to the rain gauge datasets [159]. 

Therefore, satellite precipitation products must be validated with rain gauge data to estimate 

their accuracy. The previous assessment of the satellite products has shown considerable 

agreement against rain gauge precipitation in different parts of the world [160–164].  

The Gandak River Basin has very sparse rain gauge station network and rain gauge 

records have gap in the time series. It may cause difficulty in the simulation of floods in the 

Gandak River basin. The precipitation pattern is highly variable in space and time in this 

basin, and almost 90% rainfall occurs during the South Asian Monsoon (June – September). 

The average annual rainfall varies from 2030 mm in the northern mountainous area to 1100 

mm in the southern plains region of the basin (GFCC, 2004)[132]. 
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In the recent past, several studies have been carried out to validate precipitation data 

from TRMM and other satellite products in the Indian sub-continent. Detailed literature 

review for validation of satellite rainfall over Indian sub-continent has been presented in 

Table 4.5. The table shows continuous effort made by researchers to validate the various 

satellite rainfall products over different zones of the Indian sub-continent such as Nair et al. 

2009 [68] TRMM 3B42 V6 over western states of India, Bharti and Singh 2015 [165] used 

TRMM 3B42 V7 over Northern Himalaya, Rahman et al. 2012 [161] used TRMM 3B42 

V6 and ERA40 in east over Bangladesh, Kneis et al. 2014 [158] used TRMM 3B42 and 

TRMM 3B42RT in Central India over the Mahanadi river basin, Muller and Thompson 

2013 [166] used TRMM 3B42 V6 over Nepal, Wu Lu and Zhai Panmao 2012 [162] used 

TRMM 3B42 V7 and CMORPH over Tibetan Plateau and China, to name a few. The Table 

4.5 explicitly highlights the gap in the validation of TRMM 3B42 V7 and CMORPH satellite 

product over the Southern Himalayas.  

This work is an attempt to validate one gauge adjusted satellite precipitation product 

TRMM 3B42 V7 and one exclusive satellite-based precipitation product CMORPH to see 

their usefulness for extreme events analysis over Southern Himalayan Gandak River basin. 

The TRMM 3B42V7 gauge adjusted satellite precipitation has been preferred over other 

such as PERSIAN or GsMaP because TRMM 3B42V7 algorithm takes special care for 

mountainous regions using SRTM 30m DEM as an auxiliary data [167]. The PERSIAN and 

GsMaP retrieval algorithm use meteorological data from ground observations while 

CMORPH is exclusively satellite-based precipitation product [168–170]. 

The Gandak River Basin is a trans-boundary basin – the basin area falls in India, 

China and Nepal (Figure 4.7). The basin consists of some of the highest and most complex 

terrains having elevations that range from 33 m in the southern plains to the maximum 8143 

m in the northern part towards Himalayan Mountains. Rainfall data were collected from 30 

rain gauge stations maintained by the Department of Hydrology and Meteorology, Nepal 

and Indian Meteorological Department (IMD). All 30 rain gauge stations data have analyzed 

for their consistency using double mass curve method and only six rain gauge stations have 

been found reliable following this evaluation. The example consistency check (double mass 

curve graph for Marsharakh) is presented in Figure 4.8. Widely used satellite precipitation 

products TRMM 3B42 V7 and CMORPH are quantitatively evaluated with rain gauge 

precipitation at these six rain gauge stations.   
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Table 4.5:  Review for validation of satellite precipitation over the Indian sub-continent 

Authors Data Region/Country Key findings 

Bharti and 

Singh, 

2015[165] 

TRMM 3B42V7 Northern 

Himalaya, India 

*Product does well up to 2000m altitude. 

*Critical altitude was found at 3100m. 

*The product has a high magnitude bias at 99.99 

percentile That means the product is not good for high 

rain events 

Prakash et 

al. 

2015[164] 

TRMM 3B42V7 

and CPC_RFE 

2.0 

Whole India *TRMM product overestimates over the eastern India 

while underestimates along the west coast. 

*RFE 2.0 Underestimates over the entire country 

except eastern India. 

Guo et al. 

2014[171] 

CMORPH Tibet, China *CMROPH is failing to capture morning peak. 

*Diurnal cycle in rainfall frequency is basically due to 

the topography. 

Kneis et al. 

2014[158] 

TRMM 3B42 

and TRMM 

3B42RT 

Mahanadi basin, 

India 

*Discrepancies between rain gauge precipitation and 

TRMM precipitation for higher intensities. 

*Significant negative bias in TRMM 3B42RT data. 

Xue et al. 

2013[172] 

TRMM 3B42 V7 

and TRMM 

3B42 V6 

Wangchu Basin, 

Bhutan 

*3B42 V7 product has improved upon 3B42 V6’s 

underestimation for the entire basin. 

*A significant improvement in the discharge simulation 

using 3B43 V7 compared to TRMM3B42 V6. 

Muller and 

Thompson 

2013[166] 

TRMM3B42 V6  Nepal *Reported error in the TRMM 3B42 V6 product and 

proposed a frequency-domain based bias correction. 

Krakauer et 

al. 

2013[173] 

TRMM 3B43, 

GSMaP, 

CMORPH, and 

PERSIANN 

Nepal *Monthly evaluation of these satellite products 

indicates that TRMM B43 precipitation is promising on 

others for water resources planning.  

 

Wu Lu and 

Zhai 

Panmao 

2012 [162] 

TRMM 3B42 V7 

and CMORPH 

Tibetan plateau, 

China 

*The ability to accurately detect rainfall for both the 

products depends on topography. 

* TRMM and CMORPH underestimates and 

overestimates the frequency of lighter rain events, 

respectively. 

Duo et al. 

2011[174] 

CPC_RFE 2.0 Tibet, China *product performs well with mean CC 0.74, POD 73% 

and FAR between 1 to 12% except few aspersion 

towards Himalayan range. 

*They concluded that the product can be used for flood 

related studies. 

Shrestha et 

al. 

2011[175] 

CPC_RFE 2.0 Narayani, 

Himalaya, Nepal 

*The product underestimates rain events. 

*The simulated discharge with CPC_RFE2.0 rainfall 

underestimated runoff peak by 50%, while, after 

application of three ratios based bias adjustment, it 

shows considerable improvement. 

Rahman et 

al. 

2012[161] 

ERA40, TRMM 

3B42 V7 

Bangladesh *Three verification methods proposed by Murphy 

(1993) indicates that both the products perform well 

and can be used for design flood estimation studies. 

Islam et al. 

2010 [176] 

TRMM 3B42 V6 Nepal *TRMM trends are similar to rain gauge data. 

*TRMM underestimates the amount with few exception 

of overestimation. 

Nair et al. 

2009 [68] 

TRMM 3B42 V6 Maharashtra, 

India 

* TRMM 3B42 V.6 product found able detect dry and 

wet monsoon. 

* Moreover, the timing of Ground-based rain events 

coincides with the satellite rain events. 
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Figure 4.7: Location map of the study area and rain gauge points 
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Figure 4.8: Double mass curve of Marsharakh gauge site 

The results provide insights into the capability of the satellite precipitation products to detect 

the frequencies and the amount of precipitation in the complex topography of Gandak river 

basin. This study may provide the foundation for bias correction in the satellite products 

over the Southern Himalayan basins. 

4.2.2 Data and Methods  

4.2.2.1 Satellite Data 

TRMM 3B42 V7 and CMORPH precipitation products have been analyzed. The TRMM 

3B42 data are available from 1998 to present while CMORPH from 2002 to present. The 

web address (http://gdata1.sci.gsfc.nasa.gov/daacbin/G3/gui.cgi?instance_id=TRMM_3-

Hourly) can be used to download the TRMM data while CMOROPH precipitation data can 

be downloaded from ftp site (ftp://ftp.cpc.ncep.noaa.gov/precip/global CMORPH/3-hourly 

025 deg.). 

The TRMM B42 V6 processing algorithm is described in Huffman et al. 2007  [177] 

while changes made in the processing algorithm of TRMM 3B42 V7 are described in 

Huffman et al. 2010 [178] and are summarized here. TRMM 3B42 V7 has a new processing 

algorithm, Goddard profiling algorithm (GPROF) 2010 for the passive microwave (PMW) 

based estimation. It uses existing TRMM storm profile records, PMW based brightness 

http://gdata1.sci.gsfc.nasa.gov/daacbin/G3/gui.cgi?instance_id=TRMM_3-Hourly
http://gdata1.sci.gsfc.nasa.gov/daacbin/G3/gui.cgi?instance_id=TRMM_3-Hourly
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temperature, and precipitation rates and it replaces a reference database created using a 

cloud model in version 6. Additionally, version 7 also incorporates satellite data from 

Microwave Humidity Sounder (HMS), Special Sensor Microwave Imager (SSMI) and it 

also has the capability to ingest new satellite data in the future. A new infrared brightness 

temperature data is introduced for the period of Climate Prediction Centre (CPC), 4km 

global IR data (i.e., Januray 1998 to February 2000). Furthermore, a single reprocessed 

Advanced Microwave Sounding Unit-B (AMSU-B) satellite dataset replaces the previous 

version for which two dissimilar calibration periods are used, and this removes some of the 

internal discrepancy existing in TRMM Multi-satellite Precipitation Analysis (TMPA) 

Version 6. The algorithm also implements a monthly scale gauge bias correction, which 

uses a reanalysis data (version 6.0) from the Global Precipitation Climatology Centre 

(GPCC) that includes anomalies instead of amounts and a denser rain gauge network. 

TRMM precipitation radar (TPR) estimate is corrected globally and regionally over 

the mountainous regions that are described in a technical document (TRMM Precipitation 

Radar Team 2011) [167] and key findings are summarized here.  In Version 6, the algorithm 

is found to be inaccurate over the mountainous regions and is affected by a high level of 

surface cluster for rain echo. It has also been seen to miss-locate surface echoes because of 

erroneous elevation data and cover-up by strong signals from intense rainfall. TRMM 3B42 

V7 algorithm accounts for elevation data for mountains like the Himalayas and Andes from 

Shuttle Radar Topography Mission (SRTM 30m). Furthermore, TRMM 3B42 V7 algorithm 

uses a repeat search algorithm for the surface echo that advances its detection and thus, it 

determines cluster free rain regions in the entire storm profile. 

CMORPH algorithm produces a very high temporal and spatial resolution 

precipitation data with near total global coverage. This technique uses rainfall estimates 

exclusively derived from low orbit satellite microwave observations [170] and whose 

features are transported using spatial propagation information that is obtained entirely from 

geostationary satellite infrared (IR) sensors. At present CMORPH incorporates precipitation 

estimates derived from passive microwave sensors onboard 14 and 15 (SSMI), 16, 17 and 

18 (AMSU-B), NOAA-15, DMSP 13, AMSR-E and TMI aboard NASA Aqua and TRMM 

spacecraft. The technique is extremely flexible to incorporate precipitation estimates from 

any microwave satellite sensors.  
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Infrared (IR) sensors data are used as a medium to propagate the microwave-derived 

precipitation features when microwave data are not available at a particular spatial location. 

Propagation vector matrices are produced by computing spatial lag correlations between 

successive images from geostationary satellite IR and this is used to propagate the 

microwave-derived precipitation estimates. This process governs the movement of the 

precipitation features only. At a particular location, the shape, and intensity of the 

precipitation features in the following half-hour periods between microwave scans are 

acquired by executing a time-weighting interpolation between microwave-derived features 

that have been propagated forward in time from the preceding microwave observation and 

those have been propagated backward in time from the succeeding microwave scan. This is 

referred to this second step as "morphing" of the features. The essential details of the dataset 

used in this work are presented in Table 4.6. 

Table 4.6: Detail description of the precipitation datasets used in this study 

Dataset Temporal 

Resolution 

Spatial 

Resolution 

Description of the data  Comment  

 

 

 

Rain 

Gauge 

data 

IMD Daily Irregular Ground-based 15 station rain gauge 

data provided by Indian Meteorological 

Department (IMD) Gov. of India. Strict 

data acquisition quality. Data is 

available from 2000-2012. 

Data gaps 

and 

Inconsistent  

DHM Daily Irregular Ground-based 15 station rain gauge 

data provided by Department of 

Hydrology and Meteorology (DHM) 

Gov. of Nepal. Strict data acquisition 

quality. Data is available from 2000-

2012. 

Data gaps 

and 

Inconsistent 

TRMM 3B42 3 h Gridded 

(0.25×0.25) 

TRMM 3B42 V7 were derived by 

algorithm 3B42 (Huffman et al. 2007) 

and provided by the NASA Goddard 

Space Flight Center. The data coverage 

is 500S-500N and 1800W-1800E. 

Continuous 

and 

Consistent   

CMROPH 3 h Gridded 

(0.25×0.25) 

The data has produced using NOAA’s 

CMROPH, which uses rainfall 

estimates exclusively derived from 

low orbit satellite microwave 

observations (Joyce et al. 2004). The 

data coverage is 600S-600N and 

1800W-1800E 

Continuous 

and 

Consistent   

 

In this study, Giovani interactive visualization and analysis tool are used that 

generates daily precipitation from 3 hourly TRMM 3B42 product. The 3-hourly 

accumulated satellite precipitation estimates of TRMM 3B42 and CMORPH are summed 

from 6.00 UTC on the previous day to 3.00 UTC of current day to get gauge equivalent 

daily satellite precipitation corresponding to local time 8:30 AM. An example to derive daily 
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accumulated satellite precipitation data at a local time from 3 hours accumulated satellite 

precipitation data are given in Table 4.7. 

Table 4.7: Example to create daily accumulated satellite data (in mm) at local time 8:30 AM for 

07/06/2005 at Marsharakh 

Time(UTC) 6  9 12 15 18 21 0 3  Total  

Local time 8:30AM-

11:30AM 

11:30AM-

2:30PM 

2:30PM- 

5:30PM 

5:30PM- 

8:30PM 

8:30PM- 

11:30PM 

11:30PM- 

2:30AM 

2:30AM-

5:30AM 

5:30AM-

8:30AM 

 

CMORPH 0 0 4.87 2.43 0.14 0 0 0 7.44  

TRMM 0 0 9.40 5.06 6.90 0.45 0 0 21.81 

Rain gauge - - - - - - - - 23.2 

 

Gridded TRMM 3B42 and CMORPH daily precipitation are resampled using 

bilinear weighted interpolation to get the data at specific point locations [65,179]. The 

algorithm averages four adjacent grids to a point of interest [180]. An illustration for 

weighted bilinear interpolation is shown in Figure 4.9. In a 2×2 grid, to calculate the 

interpolated value at position (X, Y), the closer grid will have greater weight. The method 

not only considers the distance from the pixel, but it also considers a spatially weighted 

approach dependent on the spatial location [181]. The expression for weighted bilinear 

interpolation is given as  [182]. 

 x 1 x 2X S X (1 S )X      (4.5) 

 
1

x

2 1

X X
S

X X





  (4.6) 

 y 1 y 2Y S Y (1 S )Y     (4.7) 

 
1

y

2 1

Y Y
S

Y Y





  (4.8) 

Where 0≤S≤1, X1≤X≤X2. 

From above, the weight for any arbitrary point (X, Y) in a two dimensional space can be 

calculated as described by Arnold et al., 2002 [182]  

 
x y 1 1

x y 2 1 x y 1 2 x y 2 2

I(X,Y) (1 S )(1 S )I(X Y )

S (1 S )I(X Y ) (1 S )S I(X Y ) S S I(X Y )

   

   
  (4.9) 

 

where I is the actual pixel value. 
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4.2.2.2 Gauge Data 

Ground-based rain gauge data are available on a daily basis (accumulated over 24 hour 

period) and, collected/reported at 8.30 AM local time. Thirty gauge station data have been 

collected from two countries Nepal and India. In which, 15 rain gauge stations are 

maintained by the Department of Hydrology and Meteorology (DHM), Government of 

Nepal and other 15 rain gauge stations by the Indian Meteorological Department (IMD), 

Government of India in the Indian portion of the Gandak River basin. 

Rain gauge data collected from IMD and DHM are having numerous gaps. There 

are many methods to estimate missing precipitation data viz. simple average, normal ratio, 

linear or multi-regression, inverse distance weighting methods, the coefficient of correlation 

weighting method (CCWM) to name a few. Ramesh et al. 2005 concluded that CCWM is 

superior to other methods, and it can provide a better deterministic estimation of missing 

data in any climate region. CCWM (Equation 4.10 and 4.11) are used to estimate the missing 

data in the time series. 

Figure 4.9: A graphical representation of weight estimation on 2×2 

grid for bilinear interpolation 
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r 

 
  (4.11) 

where, Pm is the missing precipitation at station m, Pi  the precipitation at the ith station, rmi 

the correlation coefficient between station m and i and K the exponent that can be optimized 

for the particular case.  

A thorough study has been conducted to check the consistency and continuity of the 

dataset from each station. The consistency check was done with double mass curve method 

while the length of missing data at each site was considered for the continuity test. An 

example to verify the consistency of time series for a station namely Marsharakh is given 

in Figure 4.8. After a detailed study, I found only six rain gauge stations are consistent in 

the study area. These rain gauges are shown in Figure 4.7 and are: 1.Marsharakh (India), 

2.Chatiya (India), 3.Bagaha (India), 4.Kuncha (Nepal), 5.Thamachit (Nepal) and 6.Baghara 

(Nepal). 

4.2.2.3 Validation Methods 

In this study, TRMM 3B42 and CMORPH precipitation data for monsoon season, J-June, 

J-July, A-August and S-September (JJAS) from 2005-2010 are evaluated with daily rain 

gauge data.  

Murphy (1993) [183] described three types of “goodness” to verify satellite 

precipitation estimates viz. consistency, quality and value. Wilks (2006, 2011))[184,185] 

defined a partial list of scalar attributes of forecast qualities: accuracy, bias, reliability, 

resolution, discrimination and sharpness. Stanski et al. 1989 [186] divided verification of 

forecast into visual, dichotomous (categorical variable verification), and continuous 

variable verification categories. I used forecast/satellite verification categories proposed by 

Stanski et al. 1989 [186] to verify TRMM and CMORPH satellite precipitation estimate in 

this study. 

 

 



Chapter 4 Uncertainties in the Inputs 

 

46 

 

Visual Verification 

In visual verification, I examine the difference between the satellite estimates and observed 

rain gauge values. Visual verification is an instantaneous judgement to distinguish the error 

between the satellite estimates and rain gauge precipitation. Peoples have often used 

exploratory graph techniques such as time series plot, histogram, and Cumulative 

Distribution Function (CDF) referring to the use of visual verification. 

Yes/ no-Dichotomous 

The yes/no dichotomous verification (categorical variable verification) is based on the 

statistic to quantify the scalar attribute of the forecast [185]. In this method, ‘yes’ describes 

that an event will happen and ‘no’, the event will not happen. A threshold may be set to 

distinguish ‘yes’ and ‘no’ event in the rainfall (1, 2, 5, 10, 20, 50 mm d-1) as per the time 

scale of the dataset WMO/TD-No.1485 (2008). Wu Lu et al. 2012 [162] described a 

threshold 0.1mm day-1 i.e. equivalent to the minimum rain gauge observation. This is a low 

threshold and will be able to distinguish the ‘yes’ and ‘no’ event of light rain. In this study, 

a threshold of 0.1mm day-1 have also been applied to distinguish the rain events. Brown et 

al. 1997 [187] provided a contingency table for the query of ‘yes’ and ‘no’ estimation and 

it is presented in Table 4.8. 

Table 4.8: Contingency table for yes/ no dichotomous between daily Gauge and satellite 

precipitation 

Gauge estimate (G) 

  Yes No Total 

 

 

Satellite 

estimate(S) 

Yes a 

Hit 

b 

False Alarm 

a+b 

Satellite observed 

Yes 

No c 

Miss 

d 

Correct negative 

c+d 

Satellite observed  

No 

Total  a+c 

Gauge observed 

Yes 

b+d 

Gauge observed 

No 

N 

Total 

 

From the contingency table, four combinations of chance can be possible between 

rain gauge and satellite observations. These are listed below. 

(i)   Hit: both gauge and satellite event occur  

(ii)   Miss:  Gauge event occurs, but satellite event does not occur 

(iii)  False Alarm: Gauge event does not occur, but satellite event occurs 
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(iv)   Null or Correct Negative: both events do not occur  

Based on these dichotomous a variety of statistics are developed by Wilks (2006) [185] and 

WMO/TD-No.1485[188] for validation of satellite observations. The statistical parameters 

used in this study are described below (meaning of notations a, b, c and d are given in Table 

4.8). 

Bias Score:  

 
Satellite observed events

Gauge observe

a b
B

a c d events


 


  (4.12) 

The Bias score depends on marginal only, it does not measure correspondence. B =1, 

indicate unbiased estimation whereas B<1 and B>1 indicates under estimation and over 

estimation respectively. 

Probability of detection (Hit rate): 

 rain

Hits  

 Gauge observe

a
POD

a d ev nc e ts
 


  (4.13) 

 no rain

Correct negative

Non Gauge observed

d

 
POD

eve sb d nt  
 


  (4.14) 

It measures the fraction of all gauge events correctly observed by the satellite events. The 

best POD score is 1, but the occurrence of the best POD score does not mean that satellite 

precipitation is equivalent to gauge precipitation. 

False alarm Ratio: 

 
rain

False alarms 

Satellite observe

b
FAR

a b d events
 


  (4.15) 

 
no rain

Non Satellite obs

c Miss
FA

erved e
R

v ntsc d e
 


  (4.16) 

False alarm ratio is the fraction between false alarms to the total number of satellite observed 

events. The value varies from 0≤FAR≤1. The best score is zero, but the best score of FAR 

does not mean perfect satellite observation. 

Probability of false alarm detection (false alarm rate): 



Chapter 4 Uncertainties in the Inputs 

 

48 

 

 
False alarms 

Non Gauge observ

b
POFD

b ed evd ents
 


  (4.17) 

This is the ratio between the False alarms to the Non gauge observed events. The value 

varies from 0≤POFD≤ 1 and the best score is POFD equals to zero. 

Accuracy (fraction correct): 

 
Correct satellite events 

All satellit

a

e events

d
ACC

N


    (4.18) 

This is the fraction of all satellite events that are correct. The ACC value ranges from 0 ≤ 

ACC ≤ 1 and the best score is 1. The best score of ACC means a perfect match of gauge 

precipitation by satellite precipitation. 

Threat score (Critical Success Index): 

 
All satellite or Ga

Hits
TS C

uge t
SI

even s
    (4.19) 

TS or CSI is the fraction between hits to all satellite or Gauge events. The value varies from 

0≤TS≤1 and the best score is 1. The best score indicates perfect detection. 

 

Skill score: 

 ref

perf ref

A A
SS

A A





  (4.20) 

where, A is accuracy score, e.g., ACC or TS, Aperf accuracy of perfect forecast i.e. 1. Aref 

accuracy of reference forecast and that can be calculated as  

 
       

ref

a b a c d c d b
A * *

N N N N

          
        
       

  (4.21) 

SS=1 indicates perfect detection of Gauge precipitation by satellite precipitation. SS>0 

indicates skillful, better than reference, whereas SS<0 indicates less skillful lower than 

reference detection. 
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Continuous variable verification 

The verification of continuous variables measures how the value of satellite estimates differs 

with the value of gauge observations. This can be done by various summary scores described 

below 

Bias (mean error, systematic error): 

There can be two types of bias viz. 1) Mean error (additive bias), which describes the error 

between the mean of satellite ( ) and mean of rain gauge estimate ( ). The mean error 

may be (-Ve ) or (+Ve) based on the underestimation and overestimation of records. And 2) 

Systematic error (multiplicative bias) is the ratio between  and . The best score of 

systematic error is one. The equation is given as: 

  add mult

S
B S G ,B

G
     (4.22) 

Mean absolute error: 

Mean absolute error measures the absolute deviation of satellite precipitation from gauge 

precipitation. The formula is given as:  

 i i

i

1
MAE S G

N
    (4.23) 

Mean squared error (MSE), root MSE (RMSE): 

  
2

i i

i

1
MSE S G ,RMSE MSE

N
     (4.24) 

This statistical parameter is sensitive to outlier and favors satellite estimates to avoid large 

deviation from the mean. 

Correlation coefficient:  

This statistics measures the random error (scatter around the best fit) and can be formulated 

as below 

 
 i i

S G

Cov S ,G
CC 

 
  (4.25) 

S G

S G
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where  is the co- variation between Gauge and satellite data and are the 

variance of satellite and gauge data respectively. The range varies from –1 ≤ CC≤1 and the 

best score is 1.  

4.2.3 Result and Discussions  

Three satellite data verification methods described by Stanski et al. 1989 [186] viz. visual 

verification, dichotomous verification, and continuous variable verification have been 

discussed in section 4.2.2.3. These methods are applied to analyze the satellite products at 

six rain gauge locations from 2005-2010 for monsoon months (JJAS). The results are 

discussed in this section. 

4.2.3.1 Visual Verification 

Figure 4.10 shows the scatter plot comparison between six-year daily average satellite and 

rain gauge rainfall at the six stations. The stations are given here in ascending order of 

elevation from mean sea level (a) Marsharakh 62m, (b) Chatiya 70m, (c) Bagaha 93m, (d) 

Kuncha 725m, (e) Thamachit 1942m, and (f) Baghara 2659m. TRMM daily average 

precipitation overestimates the amount (Duncan and Biggs 2012, Bharti and Singh 2015) 

for low rain events (intensities ≤ 7 mm d-1) at all stations. Furthermore, for medium rain 

events (7 mm d-1 ≥ event intensity ≤15 mm d-1), either it is close to the rain gauge data or 

overestimates the amount at the first four stations (elevation ≤ 2000m) but for rest two 

stations (elevation ≥2000m) it underestimates amount apparently. TRMM underestimates 

the amount for high rainfall events (intensities ≥ 15 mm d-1) at all stations. On the other 

hand, CMORPH is reliable only for very low rain events (intensities ≤ 5 mm d-1) and in the 

plain areas (elevation ≤ 1000m). CMORPH underestimates amount whose intensities are ≥ 

5 mm d-1 at all rain gauge stations. 

Figure 4.11 is the bar diagram representation of monthly satellite and rain gauge 

precipitation. It shows that the monthly precipitation value of CMORPH is much lower than 

the gauge rainfall for all stations. On the other hand, TRMM rainfall is comparable to the 

gauge rainfall for first four rain gauge stations (elevation ≤ 2000m) whereas, for rest two, it 

underestimates.  

 

 

 ,i iCov S G ,S G 
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Figure 4.10: Scatter plot of the TRMM and CMOROH with daily Gauge data at various rain gauge 

sites 
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The precipitation intensities can be categorized either by fixed quantity of 

precipitation which occurs in a 24hour period or by the percentile of daily precipitation 

amounts. Here, in   Figure 4.12, grouped satellite precipitation along with the gauge 

precipitation in various intensity classes to construct a histogram of relative frequency. This 

figure shows that almost 75% rain events are in class 0-10 mm day-1 that means only 25% 

rain events have rain intensity ≥ 10 mm d-1. In the frequency class 0-10 mm day-1, TRMM 

reproduces the rain events better with little underestimation whereas, CMORPH 

overestimates the relative frequency in this class that means CMORPH may have high false 

alarms for low-intensity rain events. Furthermore, in the class intervals ≥ 10 mm d-1 TRMM 

overestimates the relative frequency for first three plain stations (elevation ≤ 1000m) and 

for the rest three (elevation ≥ 1000m) it underestimates the rainfall relative frequency. It 

means TRMM may produce a false alarm of the high-intensity rain events in the plain areas 

whereas it may miss at high altitudes. On the other hand, CMORPH is completely failing to 

capture the relative frequency in the class intervals having intensity ≥ 10 mm d-1 for all 

stations. 

Figure 4.13 shows the Cumulative Distribution Function (CDF) plot between the 

satellite and rain gauge data. CDF shape of TRMM estimates nearly matches to rain gauge 

CDF for first three stations (elevation ≤ 1000m) but it estimates lower for the rest three 

stations (elevation ≥ 1000m). This implies that TRMM underestimates the probability of 

occurrence of rain events for high altitudes i.e. TRMM may miss high-intensity rainfall 

events. On the other hand, CDF plot of CMORPH is above to CDF plot of rain gauge data. 

It means CMORPH has a greater probability of producing a false alarm for all rainfall events 

at all stations. 
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Figure 4.11: Monthly time series plot of TRMM, CMORPH and Gauge data for monsoon months 

(JJAS, 2005-2010) 
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Figure 4.12: Histogram of relative frequency of daily TRMM, CMORPH and Gauge data (for JJAS, 

2005-2010) at different rain gauge stations  
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Figure 4.13: Cumulative distribution functions (CDFs) between daily TRMM, CMORPH and Gauge 

data at different rain gauge stations 
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4.2.3.2 Yes/ no-Dichotomous  

Yes/No-dichotomous statistics described in Section 4.2.2.3, determines how well the 

satellite estimates can detect rain events and their frequencies. The results presented in Table 

4.9, exhibit that the reliability of satellite-based precipitation is strongly dependent on 

topography.  

Table 4.9: Yes/no dichotomous validation statistics of daily satellite precipitation products relative 

to gauge data 

 

Bias score is ≥1 at all stations for both the satellite estimates, except at Baghara rain 

gauge where it is 0.93 and 0.99 for CMORPH and TRMM respectively. This implies that 

both satellites measures overestimate the number of rain events. PODrain is more than 0.80 

always; it indicates that both the satellite product can probably detect the rainy events more 

than 80% cases at all stations. The PODno rain is considerable (almost 60%) for both satellites 

in the plain stations (elevation ≤ 1000m) but it falls to 16% for stations in the zone of 

elevation≥1000m from the M.S.L. It means both satellite products are poor in detection of 

no rain events at the higher altitudes that may result in false alarms in these areas. FARrain 

for both satellites ranges between 0.11-0.50. TRMM and CMORPH both show higher false 

alarm ratio towards the plain areas. On the other hand, FARno rain results are opposite to 

FARrain. FARno rain is maximum 0.66 for CMORPH at most elevated place Baghara, whereas 

minimum 0.10 at low elevated place Marsharakh. TRMM has relative better FARno rain 0.55 

that means TRMM better reveals the no rain events towards high elevated areas. 

The POFD analysis shows that TRMM estimates are better than CMORPH in plains 

but poorly performs in elevated stations. The minimum PODF is 0.37 for TRMM at Chatiya 

STN Data yes/no dichotomous 

Bias PODrain PODno 

rain 

FARrain FARno 

rain 

POFD Acc. TS SS 

Marsharakh TRMM 1.66 0.80 0.62 0.5 0.11 0.38 0.69 0.45 0.38 

CMORPH 1.72 0.85 0.61 0.5 0.1 0.39 0.68 0.46 0.38 

Chatiya TRMM 1.34 0.84 0.63 0.37 0.16 0.37 0.73 0.56 0.46 

CMORPH 1.34 0.83 0.61 0.38 0.18 0.39 0.7 0.55 0.42 

Bagaha TRMM 1.59 0.9 0.59 0.43 0.09 0.41 0.71 0.53 0.44 

CMORPH 1.62 0.9 0.57 0.44 0.1 0.43 0.69 0.52 0.45 

Kuncha TRMM 1.8 0.95 0.23 0.47 0.17 0.77 0.60 0.51 0.20 

CMORPH 1.75 0.93 0.26 0.47 0.2 0.74 0.58 0.51 0.18 

Thamachit TRMM 1.5 0.95 0.16 0.37 0.32 0.84 0.64 0.61 0.2 

CMROPH 1.55 0.94 0.07 0.39 0.54 0.93 0.6 0.59 0.02 

Baghara TRMM 0.99 0.88 0.47 0.11 0.55 0.53 0.81 0.79 0.35 

CMROPH 0.93 0.82 0.45 0.12 0.66 0.55 0.76 0.74 0.24 
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while maximum 0.93 for CMORPH at Thamachit. The Accuracy of TRMM ranges from 

0.81 to 0.60 whereas for CMORPH it is 0.76 to 0.59 (a perfect accuracy score is 1). Thus, 

both satellite estimates have a minimum 0.19 in accuracy. The lower value of TS score 

towards plains shows more asymmetry between rain events and non-rain events.  The SS 

score is more than 0 for both satellites at all stations which indicates skilful detection by 

both the satellite products. The SS score range for TRMM estimates is 0.47 to 0.2 while for 

CMORPH it is 0.45 to 0.02 which means that CMORPH does not perform well. 

4.2.3.3 Continuous Variable Verification 

The continuous variable verification statistics is basically to quantify the differences in the 

amount of satellite and rain gauge precipitation. These statistics are the mean absolute error 

(MAE); root mean square error (RMSE), correlation coefficient (CC), bias additive (Mean 

error) and bias multiplicative (Systematic error). Results of the continuous variable 

verification are presented in Table 4.10 

Table 4.10:  Continuous variable verification method statistics of daily satellite precipitation 

products relative to Gauge data 

STN Data Continuous  Variable Verification method 

 MAE (mm) RMSE (mm) CC Mean error Systematic 

error 

Marsharakh TRMM 8.16 17.79 0.72 0.82 1.1 

CMROPH 7.45 19.87 0.41 -5.99 0.25 

Chatiya TRMM 7.63 15.97 0.71 1.75 1.23 

CMROPH 6.66 16.06 0.58 -5.49 0.27 

Bagaha TRMM 10.84 22.59 0.75 2.63 1.28 

CMROPH 8.56 22.21 0.56 -6.48 0.3 

Kuncha TRMM 15.07 25.35 0.55 -3.14 0.79 

CMROPH 14.74 27.53 0.29 -12.2 0.19 

Thamachit TRMM 8.67 13.98 0.25 -6.87 3.38 

CMROPH 3.18 16.17 0.1 -0.84 0.71 

Baghara TRMM 16.21 24.35 0.5 -9.43 0.53 

CMROPH 18.43 27.11 0.33 -18.08 0.1 

. 

MAE value ranges from 7.63-16.21 for TRMM whereas it vary from 6.66-18.43 for 

CMORPH. TRMM and CMORPH both has minimum MAE 6.63 and 6.66 respectively, at 

Chatiya, in the plain area. On the other hand, TRMM and CMORPH both shows maximum 

MAE of 16.21 and 18.43 respectively at Baghara in the elevated area. RMSE values indicate 

quite a similar perception as MAE. It ranges from 13.98-27.11 for TRMM and 16.06-27.53 

for CMORPH.  The CC values are in the range of 0.25-0.75 and 0.10-0.58 for TRMM and 

CMORPH respectively. TRMM indicates +ve mean error of 0.82, 1.75, 2.63, at first three 

plain stations (Elevation ≤ 1000m), whereas –ve of -3.14, -6.87, -9.43 for rest three elevated 
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stations (elevation ≥1000m). On the other hand, CMORPH indicates –ve for mean error at 

all the rain gauge stations. The +ve of mean error indicates an overestimation of rainfall 

amount by satellite estimates whereas –ve an underestimation. The systematic error 

indicates >1 and <1 values for TRMM, at first three plain stations and another three elevated 

stations respectively whereas <1 for CMORPH for all stations. The systematic error value 

>1 and <1 indicates overestimation and underestimation of rain amount respectively. Thus, 

the results of mean error and systematic error indicate that TRMM overestimates the rain 

amount in the plain areas whereas underestimates towards mountains. On the other hand, 

both systematic error and mean error indicates that CMORPH clearly underestimates the 

rain amount either in plain or in mountain. The statistics of continuous variable verification, 

RMSE, MAE, CC and two types of error mean and systematic indicate that CMORPH is 

associated with more quantitative error compared to TRMM. 

Figure 4.14 shows that the CC between satellite and gauge data is sensitive to the elevation. 

Correlation coefficient follows the decreasing trend with an increase in elevation. The 

gradient of a decreasing trend for both the satellite TRMM and CMORPH is same as 0.0001 

but it differs in intercept as 0.67 and 0.45 for TRMM and CMORPH respectively. To 

examine the significance of decreasing trend of correlation coefficient with elevation, a 

hypothesis testing method t-test is performed. The t-test statistics of TRMM shows that 

tcalculated (-ve, 5.439) > tcritical (1.792) at 95 % level of significance. On the other hand, 

CMORPH has tcalculated (-ve, 4.1545)> tcritical (1.792) at 95% level of significance. This 

implies that the correlation coefficient is negatively significant with elevation at 95% level 

of significance for both CMORPH and TRMM. R2 value for TRMM is 0.61 and 0.49 for 

CMORPH. The higher value of R2 for TRMM indicates better linear fit and thus it can be 

more easily bias adjusted than CMORPH. Figure 4.15 compares the spatial variation of the 

correlation coefficient of TRMM and CMORPH with elevation. It clearly shows the more 

error in the mountains as indicated by lower CC. When two CC map have been compare 

one by one, it shows that TRMM and CMORPH have maximum CC of 0.75 and 0.58 and 

minimum 0.25 and 0.10 respectively. Thus, spatial correlation coefficient map show better 

prediction of rain amount by TRMM than CMORPH over the entire basin. 
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Figure 4.14: Elevation versus correlation coefficient (CC) diagram between (a) daily gauge versus 

TRMM (b) daily Gauge versus CMORPH for all the rain gauge stations 
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Figure 4.15: Graduated bubble map of correlation coefficient (CC) between daily Gauge data and 

(a) TRMM (b) CMORPH over the DEM of study area for all six rain gauge stations 
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4.2.4  Summary 

Management of extreme events (flood and drought) are critical to reduce the vulnerability. 

Accurate rainfall is the key to predict the streamflow for extreme events using hydrological 

models.  Availability of station based gauge rainfall data is limited due to the trans-boundary 

problem, complexity in climate and topography within the study area. Two satellite 

precipitation products viz. TRMM 3B42 V7 and CMORPH are validated with the available 

six rain gauge station data. The validation period is from 2005-2010 for Monsoon period 

(JJAS). Based on the statistical discussion, following points has been summarized-  

 The reliability of daily satellite precipitation products is dependent on the 

topography of the basin. Both the products were able to differentiate days 

with precipitation and days without precipitation but gauge adjusted TRMM 

3B42 V7 product is found more accurate than exclusively satellite-based 

precipitation product CMORPH. 

 TRMM daily average precipitation overestimates the rain amount for low 

rain intensities over the entire area, whereas it underestimates the rain 

amount for high rain intensities over the high altitude mountainous areas. 

CMORPH does well for low-intensity rain events but it underestimates the 

rain amount for high rain intensities over the entire area. 

 TRMM captures the frequency of rain events for low-intensity while 

CMORPH overestimates the frequency of low intense rain events. On the 

other hand, TRMM overestimates the frequency of high intensity rain events 

over the plain area and underestimates over mountains. 

  Satellite estimates generally overestimate the rain events. TRMM and 

CMORPH are found to be reliable to detect “rainy events” with more than 

80% accuracy for plain area while it does detect “no rain days” in the 

mountainous areas. 

  The correlation coefficient between rain gauge and satellite precipitation 

decreases with increase in altitude and it is found that it is negatively 

significant for t-test hypothesis testing method at 95% level of significance. 
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 The error between satellite and rain gauge precipitation strongly depends on 

the change in elevation, so it is recommended to incorporate it as a parameter 

in bias adjustment. 

It has been summarized that the satellite precipitation products should be used after the bias 

adjustment over the high altitudes. The gauge adjusted TRMM 3B42V7 product can be used 

for extreme event analysis such as flood frequency analysis and drought monitoring in 

mountainous Himalayan basins with caution.  
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Chapter 5 

 

5 Uncertainty due to Change in Spatial 

Inputs 
 

Digital Elevation Model (DEM) is a key spatial input in distributed hydrological modeling. 

At times, the grid size of DEM needs to be altered for hydrological simulation in large basins 

and this may induce uncertainty in the model outputs. In this study an attempt has been 

made to analyze the impact of different DEM resolution (grid size) and resampling methods 

on the SWAT outputs.  

5.1 Introduction 

The greater Himalayan region known as the “roof of the world” is significantly impacted 

by human-induced anthropogenesis [189,190]. It is the most critical issue in this region, 

threatening human health [191,192], food supply and natural ecosystem [193–196]. 

Therefore, Himalayas should be protected from climate change and human activities [197]. 

Simulation of Hydrology and Nonpoint Sources Pollutants (H/NPSP) is an occurrence with 

various possibilities in this direction and therefore, it has become a prime field of research 

worldwide. Physically based models are very useful to estimate H/NPSP [40,46,49] in a 

watershed and have been effectively used in environmental risk management [44,47,198]. 

To better manage the risk, the uncertainties causing errors in the model results 

should be understood [199,200]. In the recent past, considerable progress has been made to 

measure and model uncertainty [200,201]. The efficiency of physically based models 

significantly depends on the input data to predict H/NPSP [39,41,44,202]. Therefore, it 

should be selected with caution [203]. Although higher resolution spatial input data 

improves the simulated outputs, results should be interpreted with caution to ascertain 

optimum input resolution. [204]. Researchers have also pointed out that the higher 

resolution spatial input data may not be able to improve the performance of hydrological 

modeling spatially in larger catchments [205,206].  
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For the large basins, researchers are interested in quickening the hydrological 

simulations and at times, hydrological models use specific grid size input data. In such 

conditions, researchers need to alter the grid size of spatial inputs using resampling 

methods. Digital Elevation Model (DEM) is one such key spatial input for the hydrological 

models. Hydrological models like Soil and Water Assessment Tool (SWAT) use DEM as 

the basic input to derive various topographic and watershed characteristics viz. watershed 

and sub-watershed boundary, slope, channel network, flow direction, flow accumulation 

and many others [38,46,48]. The flow geometry charateristics are dependent on DEM 

resolution. For example, the coarser-resolution DEM may result in the decrease in the slope, 

which directly impacts the delineation of the stream network, the sub-basin and ultimately 

the number of the Hydrological Response Units (HRUs) [206,207]. 

Himalayan River basins are covered with snow throughout the year. Therefore, 

Himalayan Rivers receive an ample amount of snowmelt in the flow volume. The elevation 

effect has been seen in the physical characteristics of the snow, like snow distribution [208], 

snow depth [209], and snow cover dynamics [210] in this area. The temperature and the 

pressure change with the altitude, which affect the freezing and melting of snow. However 

it also influences the formation of the stable isotope for the precipitated water over the 

mountains [211]. There are basically two types of the snowmelt model: 1) Energy balance 

based snowmelt model like Utah Energy Balance (UEB) [212] and 2) Conceptual 

Temperature index or degree-day method based models like SWAT [213]. Snowmelt 

models use DEM elevation data in the computation of snowmelt and snowpack formation 

processes. Therefore, appropriate DEM resolution is very crucial for the snowmelt models 

[212].  

Missing in-situ snow cover information for the Himalayas hamper energy balance 

based runoff studies [214]. Temperature index or degree-day models have outperformed 

energy balance models on a catchment scale [215,216]. However, limitations have been 

highlighted for decreasing accuracy with increase in the temporal resolution and 

incompetence to model spatial variability due to topographic effects [215]. In some extent, 

Temperature index model with elevation bands [217,218] has overcome the later said 

limitation. Moreover, the topographic variables have an apparent effect on climatic controls 

in the Himalayas [219,220]. Simple temperature index snow-melt model uses degree-day 

factor for ice and snow, gradient of air temperature and precipitation. These are varying 
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significantly with elevation for the complex Himalayan terrain [221–227]. Therefore, a 

suitable DEM grid size needs to be investigated for hydrological simulations in this region. 

Table 5.1:  The chronological review report of the uncertainties in SWAT model outputs with DEM 

source, grid size and resampling methods 

n Publication Country  Area  

km2 

Altitude 

range (m) 

Source and  

input scenarios 

Key findings 

1. [39] USA 

(IA) 

21.8 264-312 12 DEMs scenarios 

from 20 to 500m based 

on the topographic 

survey by USDA. 

-The upper limit of DEM size 

to simulate watershed loads 

is 50m. 

-Coarse grid size DEM does 

not affects runoff simulation 

but significantly affects 

nutrients and sediment at 

annual time step. 

2. [40] USA 

(AR) 

18.9 <30 7 DEMs scenarios from 

30 to 1000m based on 

1:2400 scale map of 

USGS. 

-The DEM grid size ranges 

100-200m achieve <10% 

error in the SWAT outputs at 

annual time step. 

-Coarse grid size DEMs have 

decreased flow and NO3, but 

it is not always valid for P 

3. [41] USA 

(FL) 

855 4-51 9 DEMs scenarios 

based on source (30m, 

90m, 300m) and their 

resampled DEM. 

-Flow is sensitive to both 

DEM resolution and 

resampling and therefore it 

can’t be ignored for the 

distributed watershed models.  

4. [198] China 4426 200-2605 4 DEMs scenarios from 

30 to 200m based on 

bilinear resampled 

ASTER GDEM. 

-The study revealed that a 

level of threshold for GIS 

data exists and that should be 

determined to get optimum 

model results. 

5. [44] China 81.7 713.4±235.

5 

11 DEMs scenarios 

from 5 to 140m based 

on bilinear interpolated 

SRTM and ASTER 

DEM. 

-SWAT prediction for 

nitrogen and phosphorous 

decreases significantly with 

coarser resampled resolution.   

-SRTM performs better than 

ASTER for annual SWAT 

simulations. 

6. [46] China 2995 110-3088 17 DEMs scenarios 

from 30 to 1000m 

resampled from 30m 

ASTER DEM using 

nearest neighbor 

interpolation.  

-The optimal DEM resolution 

for flow is 30-200m, for 

sediment 30-100m, for TN 

30-150m, for TP 30-100m, 

NH4 –N 30-70m and for 

dissolved oxygen and NO3-N 

30-300m.  

7. [49] Malaysi

a 

1652 6-989 22 DEMs scenario 

created from 20 to 

1500m using ASTER, 

SRTM, EarthENV and 

GMTED DEMs and 

four resampling 

methods 

-Relative error (RE) is less 

than 7% from 20 to 50m and 

from 100 to 800m.  

-RE is lowest for ASTER 

flowed by SRTM, 

EarthENV, and GMTED. 
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In the recent past, a continuous effort has been made by many researchers to 

demonstrate the influence of DEM grid size, source, and resampling methods on the model 

outputs in a variety of topographic and climatic regions [46,49,198]. A chronological review 

report related to uncertainties in the SWAT model outputs due to DEM source, grid size and 

resampling methods is given in the Table 5.1.  The chronological review report (Table 5.1) 

shows that in all previous studies to ascertain the uncertainties, SWAT model outputs are 

carried out for small and low relief watersheds. To the best of our knowledge, no study has 

been conducted in the large mountainous glacier river basins like Himalayan River basins 

[228]. Neither has there been research conducted with the high-resolution temporal outputs 

[46]. So, it is legitimate to carry out the DEMs based uncertainty analysis of H/ NPSP with 

special emphasis on river basins having snowmelt contribution in the flow. 

5.2 Data and Methodology 

5.2.1 Data Used 

The input spatial data used for this study are DEM (SRTM 90m v4.1), soil map (FAO) and 

land use map (GlobeLand30). The meteorological data are collected from Climate Forecast 

System Reanalysis (CFSR) [229] and precipitation from APHRODITE (Asian Precipitation 

High-Resolution Observational Data Integrated Towards Evaluation) [230]. The land use 

data (for the year 2010) has been collected from China’s global land cover mapping 

(GlobeLand30). CFSR meteorological data include minimum and maximum temperature, 

relative humidity, wind speed and sunshine hours. Thirteen years of observed discharge data 

(2000-2012) at the Triveni site have been obtained from the Central Water Commission 

(CWC) government of India. The other details regarding the input data are presented in 

Table 5.2. The general location of selected stream gauge point and Digital Elevation Map 

(DEM) for the study site is given in the Figure 5.1 

The SRTM 90m [231] is a joint project between the United States National 

Aeronautics and Space Administration (NASA), National Imagery and Mapping Agency 

(NIMA), and the German and Italian space agency. The SRTM mission (February 2000) 

covers almost 80% of the globe between 60N to 56S. To study the impact of DEM grid size 

and the resampling methods, the forty-eight scenarios [sixteen DEMs of grid size (between 

40m to 1000m) each with the resample method; nearest neighbor (N), bilinear (B) and cubic 

convolution (C)]  have been resampled from original SRTM 90m v4.1. ArcGIS desktop10.2 
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(ESRIInc., Redlands, CA) has been employed to do all the resampling. The symbolized 

names of all the forty-eight scenarios are listed in Table 5.3. 

Table 5.2: Sources of input data and temporal availability in study area 

Data Source Spatial/Temporal 

resolution 

Soil http://swat.tamu.edu/docs/swat/india-

dataset/2012/soil_HWSD_FAO.7z 

7225 m 

Land use http://www.globallandcover.com/GLC30Download/index.aspx 30 m (2010) 

Climatology http://rda.ucar.edu/pub/cfsr.html. Daily data for temperature, wind 

speed, relative humidity, and solar radiation from Climate forecast 

system re-analysis (CFSR) 

~0.2o(1979-2014) 

Rainfall Daily rainfall data from APHRODITE 

(http://www.chikyu.ac.jp/precip/) 

0.25o(1957-2007) 

Discharge Daily discharge from Central Water Commission, Gov. of India (2000-2012) 

DEM SRTM DEM V4.1 

(http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) 

90 m (Latest, 19th 

April 2008) 

 

 

Table 5.3:  Symbolized representative names of different DEM scenarios (N stands for nearest 

neighborhood, B for bilinear and C for cubic convolution) 

 

 

 

DEM 

(m) 

40 50 60 70 80 90 100 150 200 300 400 500 600 700 800 1000 

N 40N 50N 60N 70N 80N 90N 100N 150N 200N 300N 400N 500N 600N 700N 800N 1000N 

B 40B 50B 60B 70B 80B 90B 100B 150B 200B 300B 400B 500B 600B 700B 800B 1000B 

C 40C 50C 60C 70C 80C 90C 100C 150C 200C 300C 400C 500C 600C 700C 800C 1000C 

http://rda.ucar.edu/pub/cfsr.html
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Figure 5.1: Location of study site along with stream gauge (outlet point) and DEM map 
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5.2.2 SWAT Model and Uncertainty Analysis 

SWAT model [213] is a semi-distributed hydrological model which is developed by the 

United States Department of Agriculture, Agricultural Research Service (USDA ARS). It 

can predict the flow, sediment and nutrients load reasonably for large ungauged basins 

[88,232]. SWAT simulates runoff based on the United States Department of Agriculture, 

Soil Conservation Services- Curve Number Method, 1972 (USDA, SCS-CN) while it 

manages snowmelt simulation with the Temperature Index Snowmelt Model (TISM) using 

ten elevation bands [88,215]. To estimate sediment load, SWAT uses Modified Universal 

Soil Loss Equation (MUSLE) [233] while it estimates the nutrients load by tracing the 

improvements and transformations. Soluble nitrogen and phosphorus loads have been 

assessed with the water volume and average concentrations of these in the soil layers [44].  

The mathematical formulations to calculate carriage of phosphorous and nitrogen loads 

have been established by McElroy et al. 1976 [234] and modified by Williams and Hann 

1978 [235]. 

SWAT2012 (http://swat.tamu.edu/) has been used in this study. It divides the 

watershed into sub-basins and then into Hydrological Response Units (HRUs) based on land 

use, soil and slope group. Each sub-basin holds the flow paths, channels, slope, and the 

boundary that are required for routing of the flow, sediments and nutrients load. The 

computation of all these rely on the input DEM, whose grid size majorly influences the flow 

and nutrients load modeling through the topographic attributes [40].  Thus, during the 

evaluation of uncertainty in the SWAT model outputs owing to DEM grid size and 

resampling methods, it is required to examine the uncertainties in the watershed topographic 

inputs. Therefore, the topographic characteristics from basin: number of HRUs and sub-

basins, area, mean basin slope, mean basin altitude, and perimeter; from sub-basin: field 

slope and longest path; from reach: mean slope, mean reach depth and width have been 

examined. Because of more than one sub-basins and reach in the study area, all the 

considered topographic characteristics have been averaged to simplify the assessment.  

It is worth mentioning that the model outputs (flow, sediment, and nutrients load) 

are affected due to changes in DEM resolution and resampling methods due to the 

representation of the topographic characteristics and model parameters. SWAT model 

resamples the grid size of the spatial inputs viz. soil and land use as per the input DEM grid 

size. This implies that the interception, infiltration, and ultimately runoff generation process 

http://swat.tamu.edu/


Chapter 5 Uncertainty Due to Change in Spatial Input 
 

70 

 

may be altered due to the changed soil and land cover parameters. Furthermore, elevation 

band based TISM uses precipitation and temperature lapse rate parameters which depend 

on DEM [215,232]. Thus, the change in the temperature and precipitation lapse rate owing 

to altered DEM resolution and resampling method may affect the snowpack formation and 

snowmelt processes. Therefore, measured uncertainty is the overall uncertainty in the whole 

complicated model. 

Initially, SWAT model was run on a daily basis with all input data mentioned in 

Table 5.2. Then, it was calibrated with the observed flow (for eight years 2000-2008, 

considering both runoff and snowmelt). SUFI-2 optimization algorithm inbuilt in SWAT-

Cup has been used to automatically calibrate the SWAT model considering Nash–Sutcliffe 

efficiency (NSE) as the objective function. During calibration, parameters have been 

replaced using “V” method (existing parameter value to be replaced by true value) and “R” 

method (exiting parameter value to be replaced with relative multiple value) for the different 

simulations. The model performance is considered satisfactory if NSE ≥0.5, R2 ≥ 0.5 and 

PBIAS =± 25%. The following equations are used to calculate R2, NSE and PBIAS- 

 

2

n

2 i 0

0.5
n n2 2

i 1 i 0

(O O)(P P)
R

(O O) (P P)



 

 
  

  
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

 
  (5.1) 

 

n 2

i 1
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(O P)
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


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 






  (5.2) 

 
O P

PBIAS 100
O


 



  (5.3) 

In the Himalayan region, snow accumulation takes place in the areas having 

elevation greater than 3000 m [236,237]. Thus, TISM with five elevation bands has only 

been used for the sub-basins having altitude greater than 3000m. These sub-basins are sub-

basin 1, sub-basin 3, sub-basin 4, sub-basin 6 and sub-basin 7 (Figure 3.1). The calibrated 

parameters are found to be above the satisfactory limit when evaluated in terms of objective 

function NSE. The statistical indicators NSE= 0.956, R2 0.925 and PBIAS =19.2% show 

excellent agreement of calibrated flow with the observed flow (Figure 5.2). The calibrated 

parameters for flow are given in Table 5.4. 
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Figure 5.2: Comparison of simulated and observed daily discharge (a) time series plot (b) scatter 

plot for the Triveni Ghat site of the GRB 
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Table 5.4: SWAT parameters description, range, method adopted to fit and fitted value 

Sl. 

No

. 

Parameter. File Description Method Range Fitted 

value Min Max 

1 CN2.mgt Initial SCS II value R -0.2 0.07 -0.078 

2 ALPHABF.gw Base flow alpha factor (days) V 0.45 1.35 1.17 

3 GW_DELAY.gw Ground water delay (days) V 30 252 80.06 

4 GWQMN.gw Threshold water level in shallow 

aquifer for base flow (mm H2O) 

V 1006 3668 1851 

5 CANMX.hru Maximum Canopy storage V 31 95 70.97 

6 CHN2.rte Manning’s “n” value for the main 

channel 

V 0.14 0.4 0.232 

7 CH_K2.rte Effective hydraulic conductivity of 

channel (mm/hr) 

V 148 446 170.5 

8 EPCO.bsn Plant uptake compensation factor V 0.18 0.73 0.21 

9 ESCO.bsn Soil evaporation compensation 

factor 

V 0.37 1 0.73 

10 GW_REVAP.gw Revap coefficient V 0.01 0.26 0.16 

11 REVAPMN.gw Threshold water level in shallow 

aquifer for revap (mm H2O) 

V 242 500 335.26 

12 SLSUBBSN.hru Slope length (m) R -0.5 0.17 -0.29 

13 SOL_ALB.sol Moist soil albedo R -0.6 0.13 0.057 

14 SOL_AWC.sol Available water capacity R -0.32 0.23 -0.24 

15 SOL_K.sol Saturated hydraulic conductivity of 

first layer(mm/hr) 

R -0.12 0.5 0.46 

16 SOL_Z.sol Depth from soil surface to bottom of 

layer (mm) 

R 0.025 0.5 0.15 

17 SURLAG.bsn Surface runoff lag coefficient V 0.05 12 9.48 

18 HRU_SLP.hru Average slope steepness (%) V 0.03 0.68 0.20 

19 BIOMIX.mgt Biological mixing efficiency V 0.44 1 0.81 

20 SFTMP.bsn Mean air temperature at which 

precipitation is equally likely to be 

rain as snow/freezing rain (oC) 

V -2.6 2.45 -0.078 

21 SMTMP.bsn Threshold temperature for snow 

melt (oC) 

V -2.8 20 19.35 

22 SMFMX.bsn Snow melt factor on June 21 (mm 

H2O/ day-oC) 

V 7.8 20 9.62 

23 SMFMN.bsn Snow melt factor on December 21 

(mm H2O/oC-day) 

V 4 15 6.54 

24 TIMP.bsn Snow temperature lag factor V 0 0.58 0.40 

25 SNO50COV.bsn Snow water equivalent to 50% of 

snow cover 

V 0 0.56 0.15 

26 SNOCOVMX.bsn Minimum snow water content 

corresponding to 100% snow cover 

V 141 425 278 

27 PLAPS.sub Precipitation laps rate (mm/Km) V -478 564 150.85 

28 TLAPS.sub Temperature lapse rate (oC/Km) V -10 2 -5.57 

V and R are replace and relative change methods for parameter value during simulation.  
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Then, the SWAT model is used for all the scenarios (Table 5.3) on a daily basis 

using the calibrated parameter of flow (Table 5.4) and keeping other parameters and 

conditions constant. These conditions are (1) the same such as meteorological data, land 

use, soil, reservoirs and ponds and land management practices; (2) default minimum upslope 

drainage area for stream network extraction; (3) the same HRUs definition threshold viz. 

land cover (10%), soil (15%) and slope (15%); (4) five elevation bands for each sub-basins 

having elevation greater than 3000m. The SWAT outputs flow, sediment, total nitrogen 

(TN), total phosphorous (TP) are the model output of interest [44] to analyze the uncertainty 

in this study.   

It is important to address here that transferring calibrated parameters to the different 

scenarios (Table 5.3) may better address the uncertainties arising due to DEM grid size and 

resampling methods. In previous studies [44,46] researchers kept all the default SWAT 

parameters but in an area like ours, it becomes idle where the snow phase of modeling 

strongly depends on the altitude. Secondly, SWAT calculates TN and TP with the water 

volume and average concentrations of these in the soil layers [44,233]. Thus, error in the 

flow volume due to the default snow module parameters may also affect the TN and TP for 

the different scenarios. 

The SWAT model outputs uncertainty have been calculated using statistical 

indicators relative difference (RD) [39,44,46] as: 

 
x _ R 90B

90B

P P
RD

P


   (5.4) 

where Px_R is the monthly predicted SWAT outputs at DEM grid size (x) and resampling 

technique (R) and P90B is the monthly SWAT outputs at 90m bilinear resampled DEM. 

Monthly P90B SWAT outputs have been assumed to be the best and therefore they have been 

considered as the base data for the comparison. The results and discussion section of this 

manuscript uses RD as an uncertainty measure (RD of +ve i.e. the overestimation and RD 

of –ve i.e. the underestimation).  
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5.3 Results  

5.3.1 Topographical Characteristics of Basin, Sub-basin and Reach   

Topographic characteristics of the basin, sub-basin, and reach based on the different 

scenarios have been studied to understand the effect on SWAT outputs besides the altitude 

itself (Figure 5. 3 and Figure 5.4). The RD of the mean basin altitude [Figure 5.3(a)] is not 

sensitive to the scenarios for <500m for grid size while beyond 500m of grid size, RD is 

positive with the maximum for 1000C. The RD of the mean basin slope [Figure 5.3(b)] is 

positive for the scenarios <60m of grid size and between 60-100m of grid size it is almost 

zero. Thereafter, for the scenarios >100m of grid size, it is consistently decreasing with 

negative as the grid size increases. The maximum negative value of RD for the mean basin 

slope is found for 1000C, perhaps due to the topographic loss caused by the averaging of 

sixteen adjacent pixels. The B scenarios show relative less RD for the mean slope at the 

<100m of grid size than N and C. The RD for the mean basin area [Figure 5.3(c)] is almost 

zero till 500m of grid size for all scenarios but beyond 500m of grid size, it is negative for 

B and positive for C.  
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Figure 5.3: Basin level topographic characteristics derived from varying DEM resolution and 

resampling methods 
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The RD for the mean basin slope deviates between 12% to -50% for N, 5% to -51% 

for B, and 8% to -58% for C due to the subsequent change in the DEM grid size range from 

40 to 1000m. It means, the basin slope is sensitive to change in the DEM grid size. This is 

similar to Lin et al.[44] where the slope is found decreasing with increase in the coarser grid 

size of DEMs. The B scenarios indicate small range of RD than N and C that implies B is 

better than the other two. The change in the sign of RD (from positive to negative) for the 

mean basin slope indicates an increase in the steepness or flattening for the surfaces. Similar 

to the basin slope, the basin perimeter [Figure 5.3(d)] is also changing with DEM grid size. 

This implies that basin shape features may change owing to the DEM scenarios.  

The watershed delineation shows that the number of sub-basins does not change for 

40-300m of grid size scenarios [Figure 5.4 (a)]. After 300m of grid size, the number of sub-

basins gets decreased for N, while for B and C the pattern is random. On the other hand, the 

number of HRU increase significantly beyond 100m of grid size. That is due to a decrease 

in the shape features of the watershed and which portray the shape features to reach easily 

to the threshold limit for driving an HRU. 

The RD for the field slope length [Figure 5.4(b)] is almost zero up to 100m of grid 

size owing to relatively small RD for the counterpart slope up to this limit. Beyond 100m 

of grid size, the RD for the field slope length increases and reaches more than 50% for 

1000C. The reach slope and the longest path [Figure 5.4(c) and (d)] vary substantially, but 

no noticeable trend has been found for them. The reach widths [Figure 5.4(e)] and reach 

depths [Figure 5.4(f)] are the function of the rainfall-accumulated areas, and thus, they 

should not be sensitive to DEM grid size and resampling methods. But they differ for the 

DEMs <300m of grid size. This may be due to the massive elevation loss in DEMs caused 

by resampling to a coarser grid size. 

5.3.2 Impact of DEM Uncertainties on H/NPSP Estimates 

For flow [Figure 5.5(a)], the RD is ±10% and most of the time near to zero for scenarios 

falling within ≤300 m of grid size; however 60N and 90N are the two aspersions where it 

is found >10%. The RD for flow is positive for the DEMs grid size >300 to <700m and 

negative for >700m of DEMs grid size. The maximum RD for the flow has been found to 

be 34.7% at 600B. The comparison for RD of flow for N, B and C, B scenarios show small 

RD for the DEMs below 300m of grid size. Figure 5.5(a) also explores the variation of RD 
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within a season. In the summer/monsoon period (April to July), the RD is almost bell shape 

and peak increases with coarser DEMs grid size. The summer/monsoon season also shows 

relatively mild peaks for RD at ≤300m of grid size. 
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Figure 5.4: Sub-basin level topographic and reach characterizes derived from varying DEM 

resolution and resampling techniques  
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The RD for sediment [Figure 5.5(b)] has been found between -5 to 5% for most of 

the scenarios falling within ≤150m of grid size. After 150m of grid size, N scenarios have 

been found to be positive. However, B and C exhibit positive trends for the DEMs >150m 

and ≤700 m of grid size and beyond that, both have negative trends. The seasonality effect 

has been found similar to the flow for the sediment loads during the monsoon period. For 

sediment loads, B scenarios show small RD rather than N and C for the DEMs ≤150m of 

grid size. 

The Figures of RD for TN and TP are similar to each other, except the differences 

in the magnitude [Figure 5.5(c) and 5.5(d)]. The RD for both is between -5 to 10%, up to 

150 m of grid size, except for 60N and 90N. For both, the variation in the peaks of RD has 

been found similar to the flow [Figure 5.5(a)]. The maximum RD variation for TP and TN 

is for 1000N, which is almost 200% and 300% respectively.  Among N, B and C scenarios, 

B exhibits small RD for TN and TP for all DEMs grid size. 

It is vital to see the significance in the change between base outputs (90B) and the 

various scenarios at different temporal scale viz. yearly/monthly. The T-test statistics have 

been used to evaluate the change if any exists between them. Figure 5.6(a) shows that flow, 

TN and TP are not changing significantly at a yearly time step for the DEMs ≥500m of grid 

size except aspersion at 60N and 90N. Sediment is found more susceptible than flow, TN 

and TP at yearly time step that has been shown by significant t-test results for grid size 

≥200m. No any significant change in the flow, TN and TP have been observed due to the 

DEMs grid size for all resampling methods on a monthly scale [Figure 5.6(b)], while, t- test 

statistics have been found significant for sediment load for DEMs >600m in this temporal 

resolution. Also, Figure 5.6 exhibit that SWAT outputs manifest similar pattern significance 

plot varying with magnitude. Among N, B, and C scenario SWAT outputs, C shows 

inconsistent t-test results for different DEM grid size while B is found most consistent. The 

results also demonstrate that the uncertainties increases with increase in temporal resolution 

and decreases with increase in spatial resolution.     
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Figure 5.5: The temporal sensitivity of average monthly SWAT outputs (period 1983-2007) at the 

different months varying with different DEM resolution and resampling techniques 
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Figure 5.6:  Results of significance test (a) yearly (b) monthly time steps. SWAT outputs are not 

significant with in T-Critical band (T-Critical bands are ±1.7 and ±1.67 at the monthly and yearly 

time steps respectively) 
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5.4 Discussion   

It is always desirable to compute the various hydrological elements in a large basin in a very 

short time. Also, at times hydrological models use particular grid sizes for the input. The 

resampling methods have been used to fulfill the above-said needs for the last few decades. 

The modeler should be aware of the effect of resampled inputs grid size on the model outputs 

because resampled grid size is not a real. The resampled grid size for a spatial data is the 

nominal representation based on resampling methods. Here, various uncertainties in the 

SWAT model outputs due to the resampled DEMs grid size have been discussed.  

5.4.1 Flow  

The river flow is the combined effect of runoff from the land and melted water from snow 

and glaciers. Runoff and snowmelt can be simulated simultaneously in the SWAT model. 

SWAT2012 uses SCS-CN method to calculate the surface runoff (Qsurf, mm).  

 
2

surf day a day aQ (R I ) / (R I S)      (5.5) 

where Rday is the rainfall for the day (mm), Ia the initial abstraction losses (mm) and S the 

soil retention parameter (mm) that is a function of the curve number (CN) value for the day.  

In the snow module of SWAT2012, snowpack and snowmelt depend on the mean 

daily air temperature (TB) and the mean precipitation (PB) of a particular elevation band 

[88,215,238]. It has been described as elevation bands based TISM which is given as:  

 B BT T (Z Z) dT / dZ      (5.6) 

 B BP P (Z Z) dP / dZ      (5.7) 

where  is the mean temperature for a particular elevation band (OC), T the measured 

temperature (OC) at the weather station,  band’s midpoint elevation (m), Z the elevation 

of weather station (m),  the band’s mean precipitation (mm),  the precipitation 

measured at the weather station (mm),  the temperature lapse rate (mm/km) and 

 the precipitation lapse rate (OC/km). 

SWAT2012 does not adjust CN for slope (Equation 5.5) and this is the reason that 

runoff does not change with the change in the mean basin slope for DEMs <600m of grid 

BT

BZ

BP P

/dT dZ

/dP dZ
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size, except a tiny deviation during snowmelt season. The consistent trend in the runoff and 

perimeter variation for different resampled DEMs grid sizes have been observed. Secondly, 

the flow and mean altitude exhibits a comparable variation for the DEMs grid size >600m 

and beyond 600m of DEMs grid size, the flow variation is random. This is only due to 

change in the temperature and precipitation lapse rate (Equation 5.6 and 5.7). The 

temperature and precipitation lapse rate depend on the elevation. Therefore, the mean 

elevation of an elevation band may alter due to change in the terrain elevation owing to 

resampling of DEMs grid size. That ultimately affects the snowpack and snowmelt and 

finally resultant flow. Figure 5.3, show a significant change in elevation for resolutions 

>700m for B and C, that explains the significant change in the flow for the counterpart 

scenarios (Figure 5.5). The overestimation nature of the flow (positive RD) for DEMs >300 

to <700 m of grid size is mainly attributed due to changes the in water accumulation areas 

[44]. 

5.4.2 Sediment 

SWAT2012 uses MUSLE [233] to predict the erosion (sedsurf) caused by rainfall and runoff 

which is given as: 

 
0.56

surf surf peak hrused (Q q area ) K L S C P CFRG         (5.8) 

where qpeak is the peak runoff rate (m3/s), areahru the area of the HRU (ha), K the soil 

erodibility factor, C the cover and management factor, P the support practice factor, L the 

slope length factor, S  the slope factor, and CFRG the coarse fragment factor. In this study, 

the sediments did not change as much as the mean reach slopes and field slope lengths 

because the SWAT sediment output is the combined effect of erosion on the field and their 

transport by the channel network. The sediment transport process in the channel network is 

the function of degradation and sedimentation. Thus sometimes, it may show less sediment 

in the downstream reach due to the deposition of sediment in the upstream reach. 

From Equation 5.8, Sedsurf is directly proportional to the L and S. This implies that 

if L and S increase then Sedsurf should increase and vice-versa. The field slope length [Figure 

5.4(b)], shows almost ± 10 RD for DEMs <150m grid size and after that the RD exhibits 

overestimating nature except for few coarser grid size. This may be one reason for the 

overestimation of Sedsurf for coarser DEMs. From Figure 5.4(d), the slope factor S shows 
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consistent increments with coarser DEMs that may also be affecting Sedsurf in the 

overestimating nature. Sedsurf is also directly proportional to the Qsurf (RD of flow, Figure 

5.5) and that explains the similar peaks and patterns for the sediment and the flow. 

5.4.3 TN and TP 

SWAT model simulates the soluble N and P in the flow as a product of the volume of water 

and the average concentration of N and P in the soil layers; however they are not directly 

sensitive to the DEM grid size. T and P may increase due to the detachment of more 

sediment in the field. The RD of TN and TP (Figure 5.5), increases and decreases in a similar 

pattern like RD of flow (i.e. volume of water). In this study, the variation for TN and TP 

have been found similar to the reach slope [Figure 5.4(d)]. This indicates that TN and TP 

are being affected by DEM grid size via reach slope. For a few scenarios, estimated nutrients 

load have not been found in the conventional pattern like volume of flow and reach slope 

for which no any reasonable justification has been found.   

5.5 Summary  

Spatially variable digital elevation is the principal source of uncertainty in hydrological 

modeling. In hydrological modeling, coarser grid size of inputs are needed to speed up the 

simulation. Also, sometimes a specific grid size of model inputs are desired for the particular 

hydrological models. In such cases, we need to resample the grid size of model inputs. In 

this study, the SWAT model uncertainties have been studied due to DEM grid size and 

resampling methods on H/NPSP modeling. Based on the discussion, following points have 

been summarized - 

 The watershed and reach characteristics do not vary significantly for scenarios <150 

m of grid size; however for coarser scenarios (DEMs grid size >150 m), they vary 

significantly. Similarly, the number of sub-basins and HRUs change very little for 

DEMs <300m of grid size but after 300m of grid size, they vary substantially.       

 At a yearly time step, t-test statistics have been found to be considerable for the 

coarser scenarios (DEMs >500m of grid size). That means they are differing 

significantly from each other at a yearly time step. Whereas, t-test statistics shows 

no significant change in the outputs for all scenarios at a monthly time step, except 

for sediment at the DEMs >600m of grid size. 
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 If the flow is desired output and the permissible RD limit is ±10%, then we may 

choose DEMs grid size ≤ 300m. On the other hand, if sediment and nutrients (TN 

and TP) are the focused outputs and the permissible RD limit is -5 to 10% then 

DEMs ≤150m of grid size can be picked.  

 Among Nearest neighborhood (N), Bilinear (B) and Cubic convolution (C) 

resampling methods, Bilinear (B) resampled DEMs have been found with small RD 

in the SWAT outputs. 

 The change in the terrain elevation due to resampled DEMs also affects the snow-

melt parameters in the SWAT model and finally the SWAT outputs.  

 Uncertainties in the model outputs increase with increase in temporal resolution and 

decreases with increases in spatial resolution.    

The watershed characteristics are crucial for physically-based hydrological models. These 

characteristics change with varying DEM grid size and resampling methods, which is why 

they cause significant changes in the model outputs. To reduce the uncertainties, the 

optimum DEMs grid size, and resampling method should be understood for the specific 

watershed and focused SWAT output. The modeled results for the fine grid size of DEM 

scenarios exhibit no significant differences in the SWAT outputs. The finer grid size DEM 

resampled with Bilinear resampling method could avoid the uncertainties in the model 

results.
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 Chapter 6 

 

6 Uncertainty due to Different SWAT 

Setups 
 

Models are the simplified representation of real system. In distributed modeling, modelers 

try to reach towards realism. For that, distributed models are governed by various equations 

for each processes involved in the system that can be solved using various inputs and model 

parameters. Sometimes, modeler breaks the traditional way of setting the distributed model 

to manage with limited data and parameters, thus introduces uncertainties in the modelled 

results. In this chapter, uncertainties in the results arising due to SWAT structures owing to 

different model setups and input parameters have been discussed. 

6.1 Introduction 

Himalayan River basins are covered with ice and snow throughout the year. Upstream ice 

and snow reserves of these basins are vital in sustaining seasonal water availability for most 

of the Southeast Asian Rivers.  Seasonal snowmelt water carried by these rivers are the 

primary source of supply for over 1 billion peoples living in the region specifically during 

spring at the onset of the growing season [239,240]. Glacier and snowmelt are critical 

hydrologic processes in these areas [241,242]. Therefore, hydrological modeling 

approaches need to incorporate snowmelt to simulate stream flow and snow cover dynamics 

[92,218].  

There are basically two types of the snowmelt models: 1) Conceptual Temperature 

index or degree-day based models such as SWAT and Snowmelt Runoff Model (SRM) 

[213,243] and 2) Energy balance based snowmelt models such as Utah Energy Balance 

(UEB) model [212]. Missing in-situ snow cover information for the Himalayan region 

hampers the latter modeling studies [214]. Temperature index or degree-day models have 

outperformed energy balance models on a catchment scale [215,216]. However, there are 

limitations and decreasing accuracy with an increase in the temporal resolution and spatial 

variability due to topographic effects [215]. In some extent, Temperature index model with
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elevation bands [216,217] has overcome some of these limitations. Omani et al. [244] has 

shown that SWAT distributed algorithm can be used to simulate mass balance (MB) and 

Equilibrium Line Altitude (ELA) of glaciers. Moreover, the topographic variables have an 

effect on climatic controls in the Himalayas [219,220]. Simple temperature index snowmelt 

models use degree-day factor for ice and snow, the gradient of air temperature and 

precipitation. These vary significantly with elevation for the complex Himalayan terrain 

[221–227]. Therefore, a suitable snowmelt routine needs to be developed and used for 

operational hydrological simulations in this region. 

Several studies have shown the impact of snow when evaluating streamflow and 

climate change impact over Himalayan River Basins [241,244–248]. Couple of studies 

[212,244] have been reported using energy balance snowmelt modeling approach while 

others are with simple degree-day formulation based temperature index model 

[108,245,249]. In the operational framework of snowmelt routine within a hydrological 

model one can adopt among two approaches. In the first approach, snowmelt routine 

considers snowpack reservoir only to improve the streamflow simulation without 

authentication of snowpack simulation for water content, spatial and temporal evolution 

[218,245]. The second approach simulates snowpack in terms of “snow water storage” 

during hydrological modeling [92,250]. The later modeling approach is constrained by the 

unavailability of in-situ snow data.  In this context, satellite driven remote sensing products 

are providing an independent source of critical observations to validate modeled results [3]. 

For example, Moderate Resolution Imaging Spectro-radiometer (MODIS) is very popular 

remote-sensed snow data source that has been used for hydrological and climate change 

studies in this region [214,236,241,246,251].  

There are numerous studies related to the stream flow modeling in conjunction with 

simulation of spatiotemporal snow cover in the Himalayan region, and a review of critical 

studies are presented here. Satellite remote sensing has proved to be a good observational 

tool for estimation of soil moisture [252], water balance in ungagged basins [253], 

groundwater as well as the hydrological cycle [254]. Various remote sensing products have 

been reported for estimation of snow cover area [255] and out of them, several products are 

being used for hydrological studies in past. Immerzeel et al. (2009) [241] used MODIS snow 

product MOD10C2 to examine the spatiotemporal snow cover and runoff simulation. They 

used temperature index based Snowmelt Runoff Model (SRM) to simulate runoff for a 
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single gauge station which shows a good agreement in terms of PBIAS (2%) and Pearson 

correlation coefficient of 0.88 between observed and simulated streamflow. They also 

demonstrated that the MODIS data is able to detect spatiotemporal pattern in the Himalayan 

region. Shrestha et al. (2012) [246] applied a three layered energy balance snowmelt model 

named WEB-DHM-S (Water and Energy Budget–based Distributed Hydrological Model) 

at daily time step and 1km of spatial resolution over the Dudhkoshi Himalayan River Basin. 

They found that the WEB-DHM-S generated snow cover agreed well with MODIS product 

MOD10A2 with an average accuracy of 90% for comparison of snow free and no-snow 

grids. Siderius et al. (2013) [251] applied four hydrological models namely VIC, JUES, 

LPJmL and SWAT over the Ganges River Basin. These models were coupled with regional 

climate models to estimate snowmelt contribution to the streamflow for present and future 

scenarios. Brown et al. (2014) [244] developed an integrated runoff and snowmelt model 

called HIMALA BASIN to compute the contribution of snow and glacier melt into the 

streamflow for Hindu-Kush Himalayan River Basins. They provided a case study for 

Langtang Khola watershed, which shows a reasonable good agreement of measured (5.02m) 

and simulated (5.31m) basin average streamflow-depth over the eight years (2003-2010) of 

the time span period. Devkota and Gyawali (2015) [249] used two regional climate models 

over the Koshi River basin to carry out future runoff simulations using SWAT for the 

Chatara outlet of the basin. They revealed the impact of future scenarios on hydrological 

regimes which changes the flood frequency for a given return period. The flood frequency 

for a given return period was found to be dependent on the climate run that is considered.  

Critically, in the past, whether streamflow modeling studies have been done with 

energy balance or degree-day snowmelt models, all examples were confined to small 

watersheds with a single gauge at downstream of major snow accumulated areas.  Moreover, 

it is important to consider elevation band effect on snowmelt analysis for snow-affected 

sub-basins in order to improve the water management in the large mountainous Himalayan 

River Basins. 

In this study, an attempt has been made to determine (1) Suitable model setup within 

the SWAT model and (2) Optimal number elevation bands for TISM inbuilt in the SWAT 

for large Himalayan River Basin. Also, an attempted has made to simulate spatial and 

temporal distribution of snow and its water equivalent at different snow affected sub-basins. 

A standard calibration procedure based on observed streamflow has been fallowed. 
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Furthermore, no direct calibration for snowpack and snow water equivalent is being done, 

but the simulated snow water equivalent is validated using snow cover factor (SCF) derived 

from the MODIS weekly snow cover product MOD10A2. 

6.2 Data and Methods 

6.2.1 Data 

6.2.1.1 Hydrological and Meteorological Data  

The descriptions of the various spatial and temporal datasets are given in Table 6.1. In this 

study, daily climatology inputs temperature (minimum and maximum), wind velocity, 

humidity, and sunshine hours were taken from Climate Forecast System Reanalysis (CFSR) 

[229] and precipitation from APHRODITE (Asian Precipitation High-Resolution 

Observational Data Integrated Towards Evaluation) [256] precipitation data. Forty one 

APHRODITE grid points fall within the basin that have been used as precipitation input for 

the model. A map locating stream gauge points and other features in the study site is given 

in Figure 6.1. 

The CFSR is the latest hourly global weather forecasts produced by National Centers for 

Environmental Prediction (NCEP). Forecast models are initialized at every 6h from 

0000UTC using information from satellite-derived products and global weather station 

network. The CFSR model outputs are available at a spatial resolution of ~38 Km and hourly 

temporal resolution. Recently, many studies have examined the feasibility of CFSR dataset 

for climatic studies over Indian continent [257–260]. The CFSR data has been downloaded 

from http://globalweather.tamu.edu/ in the SWAT format. 

http://globalweather.tamu.edu/
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Figure 6.1: Locations of different stream gauge point (outlets), stream networks, mean 

temperature stations, dams, the reaches, sub-basins in the study site 
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Table 6.1: Table 6.1: Sources of input data and temporal availability in study area 

Data Source Spatial/Temporal 

resolution 

Soil http://swat.tamu.edu/docs/swat/india-dataset/2012/soil_HWSD_FAO.7z 7225 m 

Land use http://www.globallandcover.com/GLC30Download/index.aspx 30 m (2010) 

Climatology http://rda.ucar.edu/pub/cfsr.html. Daily data for temperature, wind 

speed, relative humidity, and solar radiation from Climate forecast 

system re-analysis (CFSR) 

~38km (1979-2014) 

Rainfall Daily rainfall data from APHRODITE (http://www.chikyu.ac.jp/precip/) 0.25o(1957-2007) 

Discharge Daily discharge data from Central Water Commission (CWC) gov. India 

and Department of Hydrology and Meteorology (DHM), Nepal  

(2000-2007) 

DEM SRTM DEM V4.1 

(http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) 

90m (Latest, 19th 

April 2008) 

MOD10A2 

V6 

http://nsidc.org/data-set/MOD10A2/versions/6 500 m, 8-day (Feb 

2002- present) 

 

The APHRODITE daily precipitation product is a state-of-art high-resolution (0.25o) 

dataset. This was accomplished by the Meteorology Research Institute of Japan 

Meteorological Agency (MRI/JMA) and the Research Institute for Humanity and Nature 

(RIHN) since 2006 [256,257]. It has been produced mainly with the in-situ rain gauge 

observation network data collected from the participating countries/organizations. The main 

objective behind developing APHRODITE dataset was to provide accurate quantitative 

estimate of precipitation for scientific studies related to climate change and natural resources 

management. The APHRODITE precipitation product can be downloaded from the site 

http://www.chikyu.ac.jp/precip/english/products.html that is available for the time span of 

1951-2007.  Few studies have validated the suitability of APHRODITE precipitation 

products over Himalayan region. Recently, Andermann et al. [261] evaluated five set of 

precipitation products available for Himalayan fronts and showed that distance weight 

interpolated APHRODITE gives the best precipitation estimates when compared with rain 

gauge precipitation data. 

Daily streamflow data at five gauging stations (collected from DHM and CWC, 

Table 6.1) along the river reach were used to calibrate the SWAT model. Out of five, four 

gauging stations Narayanighat-36 (1963-2010), Kumalgoan-25 (1996-2010), Betrawati-23 

(1977-2010), Arughat-13 (1964-2010) falls in Nepal and Triveni-39 (2000-2012) in Indian 

Territory. The selection of the streamflow gauging stations was planned in such a way that 

it could present the topographic diversity within the basin. Two gauging stations (36 and 

39) fall in the plain areas while others in the mountains area (Figure 6.1). The ultimate intent 

was to calibrate along the river continuum considering the heterogeneity in the topography 

with in the sub-catchments.  

http://rda.ucar.edu/pub/cfsr.html
http://www.chikyu.ac.jp/precip/english/products.html
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6.2.1.2 Soil, Land use and MODIS Snow Cover Dataset    

The spatial data inputs used for this study are DEM (SRTM 90m v4.1), soil map (FAO) and 

land use map (GlobeLand30). The SRTM 90m [231] is a joint project between the United 

States National Aeronautics and Space Administration (NASA), National Imagery and 

Mapping Agency (NIMA), and the German and Italian space agency. The SRTM mission 

(started in February 2000) covers almost 80% of the globe between 60N to 56S. The FAO 

world soil map is a 30 arc-second raster dataset and has more than 15000 soil mapping units 

that incorporate different national as well as regional updates of soil information. It 

combines the soil information at 1: 5000000 scale (FAO/UNESCO, 1995). GlobeLand30 

global land use map [131] is produced using pixel-object-knowledge (POK) based 

operational approach developed by National Administration of Surveying, Mapping and 

Geoinformation (NASG), China. GlobeLand30 land use data uses imageries from Landsat 

TM/ETM+ and Chinese Environmental and Disaster satellite (HJ-1). POK based approach 

produces maps in ten land cover classes with a spatial resolution of 30m.  The GlobalLand30 

land cover data can be accessed from http://www.globallandcover.com. 

Moderate Resolution Imaging Spectro-radiometer (MODIS) Terra and Aqua 

platforms produces many snow cover products, varying in temporal and spatial 

transformation. The MODIS global 8- day Terra snow cover product MOD10A2 is used in 

this study.  MOD10A2 is a composite snow cover product with 500m spatial resolution, 

derived from the daily MODIS snow product MOD10A1. A pixel of MOD10A2 is classified 

as no snow pixel, only if that pixel has no snow in MOD10A1 product in the past eight days. 

Similarly, any pixel of MOD10A2 is classified as cloud, if that pixel is having cloud in the 

MOD10A1 product in the past eight days. Therefore MOD10A2 provides maximum 

coverage of snow, considering a filter for cloud and no snow pixels in the daily product 

MOD10A1. Several studies have been carried out to validate the MODIS snow cover 

products in the Himalayas and the Tibetan plateau [262–264] using high-resolution satellite 

imagery and ground observations. They illustrated a good agreement between field observed 

and MODIS snow cover area. Also, MODIS snow cover products have been widely used in 

various interdisciplinary research - for instance, input forcing for snowmelt runoff model 

[241,265] and to validate the modeling results [266,267]   

For this study site, three hundred fifty MOD10A2 V6 (H25V06) images are 

downloaded from the site https://nsidc.org/data/MOD10A2#.n for the period 2000-2007. 

http://www.globallandcover.com/
https://nsidc.org/data/MOD10A2#.n
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Thereafter, images were re-projected in the WGS-1984/45N coordinate system at 500m 

resolution using nearest neighborhood resampling method in the MODIS Re-projection 

Tool [268]. An effective gap filling algorithm for cloud pixels in MODIS snow cover data 

was used [92,269]. The resulting gap free images were used to extract the snow cover factor 

(SCF) for first five snow dominated sub-basins to compute the change in the snow cover 

area at the eight-day time step. However, comparison for maximum and minimum snow 

cover area between MOD10A2 and SWAT model result at sub-basin-1 (section 6.3.2 and 

para 2) were carried out without any gap filling.     

6.2.2 SWAT Model Description and Setup 

SWAT model is able to simulate the impact on hydrology, sediment and nutrients load 

reasonably, due to physical changes brought in the large ungauged river basins [88,232]. It 

is a semi-distributed hydrological model that works on the concept of discretization of the 

watershed area into small homogeneous units called Hydrological response units (HRU). It 

first delineates the whole basin into different sub-basins based the defined threshold 

accumulation area and then it creates HRUs within each sub-basin based on the unique soil 

type, land use, and slope. It then computes water balance in each HRU based on the four 

reservoirs; snow, soil, shallow aquifer, and deep aquifer. Basic hydrological components 

within SWAT model are streamflow, evapotranspiration (ET), percolation and lateral flow. 

The water balance computed in each HRUs are then aggregated and routed towards river 

reach and basin outlets. The SWAT model is chosen in for this study because it can compute 

various hydrological fluxes including snowmelt [215,216,270–272]. The SWAT model 

integrated into the ArcSWAT 2012 (an ArcGIS based graphical user interface of SWAT 

model) has been used in this study because ArcSWAT  easily/quickly processes various 

topographic and spatial inputs needed to run SWAT model. The detailed description for 

various SWAT setup  can be found in the  Rahman et al. 2013[218] and Neitsch et al., 

2011[232]. 

The computation for various phases in the SWAT model is based on the modeling setups- 

1. Reference project (RP): calibrated for sensitive parameters other than snow and 

elevation band parameters. 

2. Snowmelt project (RP+SP0): uses calibrated reference project at step (1) and 

calibrates only snow parameters. 
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3. Elevation band project (RP+SPE): uses calibrated reference project at step (1) and 

calibrates for snow and elevation band parameters.  

In this paper, the effectiveness of above said SWAT model setups are tested to compute 

streamflow with snowmelt over the Himalayan River Basin. In SWAT model, ten elevation 

bands (E) can be set to better handle the snow cover and snowmelt in the mountains. Here, 

five sets of elevation bands (E= 2,4,6,8, and 10) have been considered to examine a suitable 

number of elevation bands for the study area. Last model setup (3) has only been applied in 

the snow-dominated sub-basins for which elevation cutoff point is >4000m and covers 

around 26.44% of basin (Table 6.2). 

Table 6.2: Topographical characteristics of sub-basins. Shaded gray colored sub-basins are having 

snow dominance 

Sub-basin Elevation (m)  Sub-basin Elevation (m) 

Min Max Mean St. dev. Min Max Mean St. dev. 

1 2593 7096 5193.2 696.3 21 463 1646 978.3 241.2 
2 2593 7892 4833.6 855.6 22 306 7515 1616.8 1309.2 

3 1603 8042 4805.8 794.2 23 581 5760 2407.7 996.3 

4 1611 7319 4490.1 922 24 461 2326 1156.2 267.3 
5 831 8143 4390.4 1189.8 25 341 1793 874.4 289.8 

6 829 8115 3352.2 1502.9 26 278 8055 2737.2 1684.1 

7 1807 7362 4686.9 748.4 27 274 5830 1460.8 1076.9 
8 1820 7275 4797.4 858.3 28 233 2117 826.5 397.2 

9 670 3061 1589.3 464.2 29 208 2104 718.7 273.3 

10 674 8032 3106.7 1665.2 30 216 1907 1003.5 385.7 
11 1437 7351 3794.7 1219.1 31 322 1711 811.3 238.4 

12 1443 7184 4734.4 947.5 32 238 1918 880 347.6 

13 499 7806 3076.8 1330.2 33 326 5073 1280.7 664 
14 493 2744 1305.5 398.8 34 188 1857 766.2 321.9 

15 473 4016 1869.2 652.8 35 186 1280 499.2 265.7 

16 472 2110 998.8 382.2 36 181 558 278.2 63.7 
17 304 7924 1926.1 1531.4 37 136 811 238.6 133.6 

18 405 2833 951.5 387.9 38 136 2577 524.2 411.9 

19 404 7052 2413.3 1251.7 39 113 1857 457.6 349.4 
20 508 2465 1178.1 317.2 40 400 2561 961.4 479.4 

 

6.2.3 Calibration and Sensitivity Analysis 

Model sensitivity and calibration are carried out using SUFI-2 algorithm inbuilt in the 

SWAT-CUP tool [9,273]. SWAT-CUP is an external parameter optimizing tool that lets the 

SWAT user to calibrate the model automatically with ease and efficiency. SWAT-CUP has 

been used extensively by the SWAT users worldwide [274]. In SWAT-CUP, there are 

several algorithms to optimize the model parameters, but the SUFI-2 method has been 

chosen because it is known to attain better calibration results than others for a given number 

of iterations [127]. Also, a large number of parameters can be calibrated with the SWAT-

CUP making SWAT a very versatile and adoptive model [92].  In this study, SWAT 

parameters have been selected based on the past studies at this region and similar parts of 
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the globe [92,108,275,276].  In all, 37 parameters are selected: 27 for hydrological 

parameters related to the reference project, 7 for snow parameters and 3 for elevation band 

parameters. The list of selected SWAT parameters along with their range values are listed 

in Table 6.3. 

Table 6.3: Description of parameters and their range considered for the first sensitivity analysis. 

Parameters Description Range value 

Min Max 

Reference Project (RP) 

ALPHA_BF.gw Base flow alpha factor (days) 0 1 

BIOMIX.mgt Biological mixing efficiency 0 1 

CANMX.hru Maximum canopy storage 0 100 

CH_K2.rte Hydraulic conductivity in main channel -0.01 500 

CH_N2.rte Manning's "n" value for the main channel. -0.01 0.3 

CN2.mgt SCS runoff curve number -0.2 0.2 

DEEPST.gw Initial water depth (mm) in the deep aquifer 0 50000 

EPCO.hru Plant uptake compensation factor 0 1 

ESCO.hru Soil evaporation compensation factor 0 1 

EVLAI.bsn Leaf area index for no evaporation 0 10 

EVRCH.bsn Reach evaporation adjustment 0.5 1 

GW_DELAY.gw Groundwater delay (days) 0 500 

GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.2 

GW_SPYLD.gw Specific yield of the shallow aquifer (m3/m3) 0 0.4 

GWHT.gw Initial groundwater height (m) 0 25 

GWQMN.gw Threshold water depth for return flow in the shallow 
aquifer(mm) 

0 5000 

HRU_SLP.hru Average slope steepness 0 1 

OV_N.hru Manning's "n" value for overland flow 0.01 30 

RCHRG_DP.gw Deep aquifer percolation fraction 0 1 

REVAPMN.gw Threshold water depth (mm) in the shallow aquifer  to occur 
'revap' 

0 500 

SHALLST.gw Initial water depth (mm) in the shallow aquifer 0 50000 

SLSUBBSN.hru Average slope length 10 150 

SOL_ALB(..).sol Moist soil albedo -0.5 0.5 

SOL_AWC(..).sol Water holding capacity of soil layers -0.5 0.5 

SOL_K(..).sol Saturated hydraulic conductivity -0.5 0.5 

SOL_Z(..).sol Depth from soil surface to bottom of layer -0.5 0.5 

SURLAG.bsn Surface runoff lag time 0.05 24 

Snow phase parameters (SP) 

SFTMP.bsn Snowfall temperature (oC) -10 10 

SMTMP.bns Snowmelt base temperature (oC) -10 10 

SMFMX.bsn Maximum melt rate for snow during year 0 20 

SMFMN.bsn Minimum melt rate for snow during year 0 20 

TIMP.bsn Snowpack temperature lag factor 0 1 

SNOW50COV.bsn Snow water equivalent (mm) during the 50% snow cover 0 0.9 

SNOWCOVMX.bsn Snow water equivalent (mm) during100% snow cover 0 500 

Elevation band parameters (SPE) 

SNOEB.sub Initial water content in the elevation bands 100m (Constant for snow 

dominated sub-basins) 

PLAS.sub Precipitation lapse rate -100 1000 

TLAPS.sub Temperature lapse rate -10 10 
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The one-at-a-time sensitivity analysis method [273] has been applied in this study. 

This method analyses the sensitivity of the SWAT model by changing a single parameter 

and keeping others constant. The sampling of the sensitivity process depends on the latin 

hypercube method [277]. To ensure the full range of variation within the sampled 

parameters, SUFI-2 divides user-defined input range into several subranges of equivalent 

probability. In this study, fifty runs [92] were executed for eight years (2000-2007) with 

initial four years (1996-1999) of warmup period to analyze the sensitive parameters. The 

implemented sensitive parameters for this study are listed in Table 6.4.   

Table 6.4: List of parameters that display sensitivity to the hydrological system 

Reference project Snow project 

X_Parameter t-stat P-vale Parameter  t-stat P-vale 

1_CN2 0.040 0.972 2_SMFMN 0.027 0.981 

3_HRU_SLP 0.026 0.981 11_TIMP 0.004 0.994 

5_EPCO 0.019 0.986 12_SMTMP 0.003 0.997 

6_GW_REVAP 0.018 0.987 13_SNOWCOVMX 0.0025 0.998 

7_SOL_ALB 0.010 0.993 16_SNOW50COV -0.00004 0.999 

9_SOL_AWC 0.005 0.996 18_SFTMP -0.007 0.995 

10_ALPHA_BF 0.004 0.997 22_SMFMX -0.026 0.981 

14_CANMX 0.0009 0.999    

15_ESCO 0.0008 0.999 Elevation band project 

17_REVAPMN -0.002 0.998 Parameters  t-stat P-vale 

19_CH_K2 -0.012 0.992 4_TLAPS                     0.0262             0.981 

8_PLAPS                     0.0086             0.994 20_SLSUBBSN -0.015 0.989 

21_CH_N2 -0.022 0.984 

*X_Paramere - where X denotes the rank of sensitivity.  

*For most sensitive parameter t-stat value should be high and P-value should be low 

 

SWAT-CUP allows users to select the sub-basin of their choice for calibration. 

Therefore, after sensitivity analysis, SWAT-CUP has been allowed to run for 500 run times 

with the sensitive parameters as recommended by Yang 2008 [127]. The process has been 

replicated for three iterations for each SWAT model setups and for five stream gauge 

stations. Reference project calibrations were performed separately for each gauging stations, 

propagating from upstream to downstream gauge stations. The calibrated parameters for 

upstream sub-basins were fixed during the further calibration of the downstream sub-basins. 

Thus, the heterogeneity among the sub-basins within the watershed has been maintained. In 

the snow project, calibrated parameters from reference project were transferred and only 

snow parameters were allowed calibrated using SUFI-2 algorithm. Similar to the snow 

project, elevation band project was allowed to use calibrated parameters of reference project 

and calibrated only for snow and elevation band parameters. All stream gauge stations have 

been used simultaneously during snow and elevation band project calibration.  Elevation 
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band project was calibrated with the five set of elevation bands (E =2, 4, 6, 8 and 10) to 

examine the optimal number of elevation band for the considered study area. 

In each project, calibrations were performed on a daily basis using the input data 

mentioned in Table 6.1. All projects were calibrated against observed streamflow 

(considering both runoff and snowmelt) for eight years (2000-2007) of time period. During 

parameters optimization with SUFI-2 algorithm, Nash–Sutcliffe Efficiency (NSE) was set 

as the objective function. The model performance was considered satisfactory if NSE ≥0.5. 

After calibrations, model performance was also assessed with the Percentage Bias (PBIAS) 

and Coefficient of Determination (R2) between observed (O) and simulated (P) flow data. 

                                                     (6.1) 

    (6.2) 

                                                                  (6.3) 

6.2.4 Validation of Simulated Snow 

Eight daily MODIS snow cover data MOD10A2 was used for snow validation. Here it is 

important to mention that no direct calibration of snow water equivalent (SWE) in the sub-

basins have been performed. Because, to validate simulated snow on spatial scale, a very 

dense in-situ snow sampling is required, which is impossible for complex terrains like 

Himalayas [278,279]. However, remote sensed snow cover products like MODIS datasets 

are proving a very good spatial and temporal coverage of snow cover area [214,278]. 

Therefore, after the model calibration for streamflow, MODIS snow cover data was used to 

externally validate the simulated snow water equivalent. 

The temporal comparison was performed between simulated SWE (mm) and 

MODIS snow cover factor (SCF %) on each snow-dominated sub-basins. This time series 

comparison   could be informative about the status of sublimation and deposition process of 

snow in the study area. In the simulated results, increasing rate of SWE in the elevation 
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bands denotes deposition phase while decreasing rate denotes sublimation phase of snow in 

the sub-basins. Therefore, simulated deposition and sublimation phases should be examined 

with the increasing and decreasing rate of SCF respectively in the course of validation. Also, 

the spatial analysis compares snow presence and absence for a particular day: during 

minimum extent of the snow period i.e. end of snow sublimation season and maximum snow 

cover period i.e. end of snow depositing season. The ending month for deposition and 

sublimation phases of snow in a year are March and August [279] for Hindu-Kush 

Himalayan Region. The sensitivity of MODIS product to detect snow was estimated to be 

about 15 mm of SWE [280]. Therefore, 15 mm of SWE threshold has been taken to denote 

snow and no snow. 

6.3 Results 

6.3.1 Model Performances 

The important parameters identified through sensitivity analysis (from the initial list given 

in Appendix I) have been presented in Table 6.4. Out of the thirty-seven initially selected 

parameters, twenty-two were found most sensitive based on the t-stat and P-value for daily 

simulation. There were thirteen parameters from reference project while the majority of the 

elevation band and snow project parameters were kept retained in this list for the same 

reasons. 

The calibrated parameters values for each sub-basin, progressing from upstream to 

downstream gauge stations are given in Table 6.5.  

The calibration results for different sub-basins and for each model setups are presented 

in Table 6.6. The statistical performances of the reference project (RP) are comparatively 

worse than snow project and elevation band projects.  For RP, basin mean NSE is 0.57 while 

PBIAS and R2 are 44.72% and 0.80 respectively. Snow project (RP+SP0) slightly improves 

the mean basin performance statistics (with NSE = 0.74, PBIAS = 39% and R2 = 0.87) than 

reference project. Elevation band project (RP+SPE) outperforms to both reference project 

(RP) and snow project (RP+SP0) when compared with performance statistics for this region. 

The performance statistics for all elevation band projects (RP+SPE) are very close to each 

other, but RP+SP2 and RP+SP4 show better basin average PBIAS, 7.48 and 11.9 

respectively than others. Also, the NSE for elevation band projects is consistent (>0.82) for 

each time, indicating homogeneity in the mountains snow dynamics. The NSE, R2 and 
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PBIAS are getting improved when moving from upstream to downstream gauge sites, 

thereby creating consistency in the performance at the basin scale. The NSE for sub-basins 

Arughat-13 and Betravati-23 (figure 6.1) is ≤ 0.5 for reference project which improves to 

>0.7 for downstream sub-basins Narayanighat-36 and Triveni-39. The maximum statistical 

improvement is found for upstream sub-basins (13, 23, and 25) upon considering the 

elevation band approach. The performance in terms of PBIAS is more consistent in the sub-

basins for elevation band projects except at the Betravati-23, where it is found to be 40.9%. 

It is worth to mention that the elevation band projects not only improves the performance 

in the snow dominated sub-catchments (13, 23, and 25) but it also improves to down stream 

outlets (sub-basin Triveni-39), located around 400 km into the plains where it improves the 

NSE from 0.6 to 0.8 while PBIAS changes from 41.3% to 4.4%. 

Table 6.5: Calibration range and calibrated parameter values for each model setup 

Parameters Range Fitted Values 

Reference Project Sub_13 Sub_23 Sub_25 Sub_36 Sub_39 

r_CN2 -0.2/0.2 0.18 0.14 0.18 0.18 0.20 

a_ALPHA_BF 0/1 0.15 0.19 0.54 0.59 0.80 

a_GW_DELAY -30/60 -14.50 -27.01 -28.58 1.37 -7.49 

a_GWQMN -1000/1000 -273.83 -571.91 -660.41 -561.55 -566.06 

v_CANMX 0/30 12.78 27.88 27.02 0.67 0.46 

v_CH_N2 0.01/0.3 0.12 0.05 0.04 0.07 0.16 

v_CH_K2 0.01/500 346.99 266.50 262.36 214.91 271.93 

v_ESCO 0.75/0.95 0.93 0.95 0.87 0.89 0.90 

a_GW_REVAP 0.02/0.2 0.10 0.06 0.13 0.08 0.11 

a_REVAPMN -750/750 -733.05 88.29 256.42 132.43 -146.36 

r_SLSUBBSN -0.2/0.2 0.09 -0.04 0.03 -0.12 -0.02 

r_SOL_AWC -0.1/0.1 -0.11 -0.04 0.05 0.03 -0.02 

r_HRU_SLP -0.2/0.2 -0.08 0.06 0.01 -0.01 -0.06 

Snow Project Range                Parameters calibrated for all gauge point 

simultaneously 

v_SFTMP -5/3   1.74   

v_SMTMP -1/5   4.17   

v_SMFMX 2/5   2.98   

v_SMFMN 0/3   0.06   

v_TIMP 0/1   0.03   

v_SNOCOVMX 20/75   30.11   

v_SNO50COV 0.3/0.9   0.73   

Elevation band Project            Range Elv_2 Elv_4 Elv_6 Elv_8 Elv_10 

v_SFTMP -5/3 -3.86 -1.55 -3.17 -2.51 -1.93 

v_SMTMP -1/5 0.84 3.59 4.90 3.43 3.12 

v_SMFMX 2/5 2.85 1.95 1.82 2.44 2.14 

v_SMFMN 0/3 1.05 2.01 0.89 1.44 2.74 

v_TIMP 0/1 0.01 0.33 0.29 0.01 0.01 

v_SNOCOVMX 20/75 61.33 72.54 48.75 70.95 70.68 

v_SNO50COV 0.3/0.9 0.45 0.61 0.47 0.50 0.66 

r_TLAPS (default 

value=-6) 

-2/2 -1.36 -0.72 -0.74 -1.06 -1.06 

r_PLAPS(default 

value=200 

-2/2 0.22 -0.09 0.49 0.35 -0.44 
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In Table 6.5, vParameters  will be replaced with new one and rparameters (please see 

Abbaspour et al. 2007 for deatil) that will changing relatively from given value (here from 

the default value) at each number of simulation. 

Table 6.6: Calibration performance for different model structures and for all gauging sites at a daily 

time step 

Gauge sites 

Stat-

Index HP HP+SP0 HP+SP2 HP+SP4 HP+SP6 HP+SP8 HP+SP10 

13 

PBIAS 46.8 36.7 7.1 8.1 11.3 -3.4 1.2 

NSE 0.43 0.74 0.83 0.85 0.88 0.85 0.87 

R2 0.69 0.88 0.83 0.89 0.9 0.89 0.89 

23 

PBIAS 57.2 47 27.7 20.3 39.9 40.9 39 

NSE 0.32 0.65 0.75 0.84 0.69 0.7 0.71 

R2 0.72 0.85 0.81 0.87 0.86 0.87 0.87 

25 

PBIAS 39.7 36.9 6.8 19.3 16.5 13.6 19.4 

NSE 0.74 0.79 0.82 0.84 0.84 0.86 0.85 

R2 0.87 0.88 0.83 0.87 0.86 0.87 0.88 

36 

PBIAS 38.6 35.8 -8.6 0.4 -3.4 -0.2 12 

NSE 0.73 0.81 0.88 0.9 0.89 0.91 0.92 

R2 0.9 0.94 0.89 0.91 0.9 0.91 0.93 

39 

PBIAS 41.3 39.5 4.4 11.4 8.5 10.8 20.3 

NSE 0.64 0.7 0.81 0.81 0.82 0.83 0.82 

R2 0.84 0.88 0.84 0.86 0.85 0.87 0.88 

Basin 

Mean 

PBIAS 44.72 39.18 7.48 11.9 14.56 12.34 18.38 

NSE 0.572 0.738 0.818 0.848 0.824 0.83 0.834 

R2 0.804 0.886 0.84 0.88 0.874 0.882 0.89 

 

6.3.2 Snow Simulation 

Elevation band project has improved the streamflow simulation in this study area. Here, an 

attempt has been made to further evaluate the temporal and spatial variation in the SWAT 

simulated SWE externally. The spatial variation is being evaluated by comparing MODIS 

snow cover on 20th March and 20th August (2004), which is roughly the end season for snow 

deposition and sublimation phase respectively. For example point of view, the extent of 

snow cover equivalent to SWAT simulated SWE in the elevation bands for snow-dominated 

sub-basin-1 have been shown in the Figure 6.2.  The SWAT simulated snow cover pattern 

is fairly consistent with the MODIS snow cover area. However, SWE based snow cover is 

underestimating for sublimation phase Figure 6.2(a) and overestimating during the 

deposition phase. Also, SWE based snow cover shows slight inconsistency in the uppermost 

part of the sub-basin. Therefore, additionally independent calibration for snow water 

equivalent (SWE) could improve the model results for this region.  
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Figure 6.2: Snow comparison during (a) sublimation phase, 20th August 2004 and (b) deposition 

20th March 2004 
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The temporal analysis has been accomplished with a stack area time-series plots 

(Figure 6.3) between MODIS snow cover factor (SCF)-percentage of basin area covered 

with snow and SWAT simulated SWE. For example point of view, the stack area plots have 

been schemed only for first five snow dominated sub-basins (Figure 6.3). For most of the 

time, SWAT simulated SWE reflects the rise and fall pattern alike MODIS SCF. The stack 

area graphs also show that SWE can depict the deposition phase (with the rising dark area 

peaks) and sublimation phase (with the falling dark area peaks). SWAT simulated SWE is 

almost zero during sublimation phase for sub-basin-2 and sub-basin-4, while at the same 

time MODIS shows a significant SCF. Therefore, SWAT has limitation to capture the 

sublimation phase SWE in the snow dominated sub-basins. 

6.4 Discussion 

6.4.1  Sensitivity Analysis and Calibration  

Twenty two parameters are considered to be important by sensitivity analysis (Table 6.4). 

The parameters are found more or less same as other snow related studies, especially 

Pradhanang et al. 2011 [250] and Meng et al. 2015 [276] who simulated snowpack 

development and streamflow simulation in the snow-dominated watersheds. In the reference 

project (RP) parameters have been calibrated separately for each stream gauge site, moving 

from upper to lower reach along with transferring the calibrated parameters to the related 

sub-basins associated with that stream gauge site. This procedure maintains the 

heterogeneity between the sub-basins and makes possible to use relative parameters like 

CN2, SOL_ALB and SOL_AWC in the most distributed way within the sub-basins.  

In the reference project, CN2, CH_N2, SOL_AWC, and CANMX are the prime 

parameters responsible for the water balance and runoff generation in a particular instance 

at daily time step. The CN2 is inversely proportional to the soil moisture retention (S), that 

means high CN value will have low permeability and vice versa. From the Table 6.5, the 

CN value for all calibrated sub-basins is positive CN value changes relatively from the 

default HRU value [273]. This implies that CN value will be greater than the default HRU 

values. The CN value is greater for stream gauge station Triveni-39 than others, which 

drains the mid-hills and has the majority of the basin area. It shows that the mid-mountains 

are less permeable and will generate more runoff compared to headwater areas.  
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Figure 6.3: Stacked area plot for first five snow-affected sub-basins between the snow-cover factor 

(SCF %) and snow water equivalent [SWE (mm)] at weekly time interval 

 

 

 

 

0

100

200

300

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7S
W

E
 (

m
m

)/
S

C
F

% Subbasin 1  SWE(mm) SCF%

0

100

200

300

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7S
W

E
 (

m
m

)/
S

C
F

% Subbasin 2 SWE(mm) SCF%

0

100

200

300

400

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7S
W

E
 (

m
m

)/
S

C
F

% Subbasin 3 SWE (mm) SCF %

0

100

200

300

400

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7S
W

E
 (

m
m

)/
S

C
F

%

Subbasin 4
SWE (mm) SCF%

0

100

200

300

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7S
W

E
 (

m
m

)/
S

C
F

% Subbasin 5
SWE (mm) SCF %



Chapter 6 Uncertainty due to Different SWAT Setups 

102 

 

The Manning’s ‘n’ value for the channel (CH_N2) is responsible for flow routing in the 

stream channels. The mean CH_N2 value of hilly stream gauge station Arugat-13, 

Betravati-23 and Kumalgaon-25 is more than in the stream gauge stations (Narayanighat-

36 and Triveni-39) falling in the plain area. This is due to the floodways channels covered 

with timber and brush vegetation in the hilly part of the basin. Available water capacity for 

soil layers (SOL_AWC) is negative for the stream gauge sites Arughat-13 and betravati-23 

while positive for mid mountain sites Kumalgaon-25 and Narayanighat-36. It indicates that 

mid mountain areas are have more water retention capacity than headwater locations. This 

may be due to alluvial soil presence in the mid hills which retains more water than glacial 

soil present in the upper part of basin. The value for the maximum canopy storage 

(CANMX) is greater for mountain sub-basins than plains. That implies, mountains are prone 

to canopy storage than and plains due to presence of broadleaf forest. 

SWAT snow project setup uses temperature-index based snow modeling method 

along with the elevations bands approach. Elevation band setup of SWAT re-distributes the 

calculation on different sets of mean elevation bands for each sub-basins. There are eight 

parameters related to snow project and remaining three for elevation band project. The 

parameters found sensitive to snow and elevation band project are given in Table 6.4. In the 

Himalayas, mountains >4000m of elevation are always covered with snow. Thus,  initial 

snow water content is always greater than zero [108,236] for sub-basins falling on these 

areas. Therefore, SNOEB have been set to 100m for all sub-basins having elevation ≥ 

4000m. After accomplishment of snow (RP+SP0) and elevation band projects (RP+SPE), a 

significant improvement in results of RP+SPE project (for elevation bands 2-4 shaded 

results in Table 6.6 shows best results) has been found than RP+SP0 project. Between these 

two projects, SMFMN value has been increased from 0.06 to 1.05 while SMFMX is almost 

constant (~2.8). Also, the TIMP has seen a dip from 0.03 to 0.01 while SMTMP and SFTMP 

have been decreased from 4.17oC to 0.84oC and 1.74oC to -3.86oC. 

The statistical performances of different SWAT setups reveal the drawbacks of 

calibrating SWAT model only with the reference or snow project parameters when the part 

of the basin area is covered with snow falling in mountainous areas. Therefore, the impact 

of snow model setups with a different number of elevation bands (E) has also been tried to 

address. The streamflow simulation results show that elevation band approach with two to 

four elevation bands does well in this region. Improvement in the simulated streamflow 

results (Table 6.6) after the introduction of elevation band parameters TLAPS and PLAPS 
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shows that the temperature and precipitation gradients are significant in this region. Thus, 

only snow parameters are not very useful at a basin scale.  The TLAPS for RP+SP2 elevation 

band project (Table 6.6) is relative -1.36 (that mean TLAPS is decreased by 136 percent 

from default value 6, calculates to -2.16oC/km) while PLAPS is relative 0.22 (that means 

PLAPS is increased by 22 percent from default value 200, calculates to 244 mm/km). 

6.4.2 Validation of SWAT Simulated Snow 

The addition of elevation band approach in the SWAT snow simulation setup has improved 

the streamflow results for each stream gauge sites. Therefore, it is assumed that it has also 

improved the hydrological components especially snowpack dynamics. Although, no 

directly calibration for the snowpack SWE has been carried out due to lack of in-situ 

snowpack data for the basin.   But simulated snowpack SWE records have been externally 

compared with the MODIS 8-dalily snow cover product MOD10A2.  

Figure 6.2 shows a consistent pattern between SWAT and MODIS snow cover. 

During sublimation phase, SWAT underestimates the snow cover area compared to 

MODIS, and overestimates during deposition phase. It may be due to lack of direct 

calibration for snowpack and assigning the unrealistic value of snow parameters like 

SMTMP, SMFMX and SMFMN. Therefore, this will lead to high and low snowmelt 

contribution in streamflow for sublimation and deposition phase respectively. 

The time series analysis between SWE and SCF (Figure 6.3) reflects that sub-basins 

1, 3, 4 and 5 are accurately depict the pattern throughout the year with few errors. But, sub-

basin 2 shows an off track pattern between SWE and SCF during snowmelt season 

(sublimation phase) for all years. It may be due to the subsequent impact of human 

interventions such as presence of a reservoir (Figure 6.1) for hydropower generation in the 

study site. Also, it may be attributable to no direct calibration for snow pack parameters. A 

significant difference in the magnitude of the SCF and SWE has been found throughout the 

time series of all sub-basins. This may be due to the varying snow depth for same SCF. 

Because SWE alters due to increasing or decreasing snow depth in the elevation bands, but 

SCF will remain unchanged, if there is snow depth equivalent to >15 mm SWE in the 

MODIS product. However even with all these limitations the model performs well in 

depicting the snow accumulation and snowmelt process throughout the year. 
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6.4.3 Impact on the Hydrological Cycle  

In this section, the changes in the SWAT water partitioning due to modifications in the snow 

dynamics caused by different SWAT setups has been discussed.  

Introduction of elevation band based snow-model setups and their associated 

parameters such as temperature and precipitation lapse rate, alter the gauged volume of 

precipitation received by the snow dominated sub-basins.  Figure 6.4 reflects the percentage 

of variation in the mean annual precipitation (%Var.) between different SWAT model 

setups. Changes are significant for all snow dominated sub-basins except for sub-basins 1, 

8, 12 and 23 where %Var is less than 15% between reference and snow (R/S) and elevation 

band project (E). It has been noted that all snow-dominated sub-basins are under estimating 

annual precipitation without the use of elevation bands except in sub-basin 12. This may be 

due to unique grids of APHRODITE precipitation product for the entire sub-basins, which 

fall in the valleys rather than the mountain peaks. For instance, elevation in the sub-basin 5 

varies from 831m to 8143m and if unique APHRODITE grid will fall on ridge (8143m), 

precipitation will be larger for elevation band project than reference and snow projects. 

Similarly, for underestimation, the APHRODTE precipitation grids will be falling close to 

the minimum elevation area (valley, 831m) in the sub-basin. Also, precipitation lapse rate 

are calibrated for all snow dominated sub-basins simultaneously and therefore it may not be 

feasible individually.  The trend in the percentage variation (%Var) between yearly R/S and 

E precipitation positively increases with the amount of rainfall (Figure 6.4). This means 

precipitation lapse rate has more impact on sub-basins receiving significant amount rainfall, 

which is obvious. 

The presence of snow cover in the sub-basins affects the water balance components. 

The water balance components differ from one project to another, especially precipitation, 

Evapotranspiration (ET), surface runoff (SQR) and infiltration (INFL) (INFL may be 

infiltration or accumulated snow depending upon the threshold SFTMP). Figure 6.5 

illustrates the variation in the annual water partitioning for each sub-basins. In Figure 6.5, 

reference and snow project reflects imbalance partitioning of precipitated water in terms of 

high ET and SQR and pretty low INFL. Conversely, elevation band project improves the 

results by assigning a significant percentage of precipitated water to infiltration (INFL).  
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Figure 6.4: Plot between mean annual precipitation (P) for reference project (R), snow 

project (S) and elevation band project (E). Also, in secondary axis percentage of variation 

(Var%) between R/S and E for snow dominated sub-basins 
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Figure 6.5: Partitioning of mean annual precipitation (P) into hydrological components 
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Figure 6.6 shows percent variation of ET, SQR and INFL between reference project 

and elevation band project. The average variation for ET is more than -40 percent and -22 

percent for INFL. Negative (-ve) percentage variation for ET and INFL shows  decrease in 

the ET and INFIL values when shifting the model setup from reference to elevation band 

project. Conversely, the SQR shows average variation more than 90 percent that means 

elevation band project imparts the differences between observed and simulated streamflow 

by adding snowmelt water into the runoff. Changes in the annual value of water balance 

component mainly attributed due to snow dynamics and present disparities based on the 

seasonality.  It is worth to note that all snow-dominated sub-basins fall in the peaks of 

Himalayas where SFTMP remains below threshold limit (<0oC) for most of the year. 

Therefore, major part of precipitation water in the snow-dominated basins will convert into 

the snow during this time. 

 

 

Figure 6.6: The percentage variation of ET, SQR and INFL. between reference and elevation band 

projects 
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Figure 6.7: Weight average monthly mean values of water balance parameters for snow dominated 

sub-watersheds over 2000-2007 
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Figure 6.7 illustrates the weighted average hydrological components for snow-

dominated sub-basins at a monthly time step and for different SWAT model setups. It 

clearly reflects a strong seasonal as well as model setup effect on the hydrological 

components. The reference and snow model setups exhibit negative infiltration for summer 

and post monsoon months (October to December). Also, both reference and snow projects 

reveal almost equal magnitude for SQR and ET. Introduction of snow model setup with 

elevation bands reduces the magnitude of ET and changes the infiltration to positive for all 

months. In the elevation band project, ET decreases mainly due to drop in air temperature 

resulted by use of TLAPS. The elevation project results are comparable with the yearly 

hydrological component results published by [281]. Also, The average annual ET for the 

snow sub-basin is 456mm which is very close to 500mm reported by Lambert and Chitrakar 

1989 [282]. 

As discussed, modification in the model setups changes the water balance 

partitioning from upstream to downstream. Section 6.3.1 shows that model performance 

improves by using the snow model setup with elevation bands.  For instance, the daily 

average hydrograph (2000-2008) for different model setups and for each gauging stations a 

have been presented in the Figure 6.8. The simulated hydrograph for RP+SP4 give better fit 

to the observed streamflow than RP and RP+SP0. The RP and RP+SP0 model setups always 

underestimate the observed streamflow. The RP+SP4 model setup shows better 

hydrographs for high flow during monsoons- except for Betravati (23) and Kumalgaon (25) 

where stream flows are underestimated for all model setups. Although, the low stream flows 

(during off season) are not improved by using RP+SP4 model setup and therefore needed a 

specific attention in further studies. The temperature and precipitation lapse rates varies 

spatially and seasonally in the alpine Himalayan region [224,283–285]. Therefore, use of 

monotonic temperature and precipitation lapse rate, as in SWAT, may introduce to 

erroneous modeling results [92].  
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Figure 6.8: Daily average time series (2000-2008) for 5 gauging stations 
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6.5 Summary  

Assessment of available water resources in the heads of alpine Himalayan region is crucial 

for planning and management in the South-East Asia. Diverse topography and climatology 

of along with variability of surface runoff, snow accumulation and snowmelt from high 

mountains simultaneously offer a challenging task to model hydrological processes in this 

region. In this study, different modeling routines available in the SWAT model have been 

tested to simulate streamflow and snow cover dynamics over the alpine Himalayan River 

Basin Gandak.  Based on the study, the following interpretation have been drawn- 

 The evaluation of the three SWAT modeling routines viz. reference project (RP), 

snow project (RP+SP0) and elevation band project (RP+SPE) highlight that 

inclusion of snow project parameters alone fail to improve the modeling results of 

the reference project. However, addition of lapse rates parameters (TLAPS and 

PLAPS associated with the elevation band project) in the snow project greatly 

improves the modeling results of snow-dominated sub-basins. The effect of 

elevation band project for the upper Himalayan sub-basins (snow dominated) has a 

positive impact on the modeling results at downstream sites. 

 The lapse rates in the Himalayas changes with the altitude. In the SWAT model with 

the elevation band project, one need to choose the suitable number of elevation 

bands (E) that alters the lapse rate based on the mean altitude of the area. For this 

region, two to four elevation bands are found best for hydrological modeling. 

Increase beyond eight elevation bands modeling does not result in better simulations 

but may serve better for spatial snow cover mapping. 

 The elevation band project affects the water portioning especially in the snow-

dominated sub-basins. The results show that annual precipitation has increased due 

to the monotonic spatiotemporal lapse rates for all snow-dominated sub-basins. 

Also, elevation band project increases runoff and modifies water balance for each 

affected sub-basin. However, evapotranspiration decreases for elevation band 

project than reference and snow project under the effect of snow cover. The 

elevation band project shows more accurate partitioning of precipitated water into 

the hydrological comments and these are consistent with the findings of Andermann 

et al. (2012). 
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 SWAT simulated snow (SWE) has been compared with the MODIS snow cover data 

to assess its accuracy. The spatial comparison between MODIS and SWAT snow 

cover (based on the SWE in the elevation bands) confirm the good agreement in the 

spatial pattern for snow sublimation and deposition phases.  The time series 

comparison between SWE and SCF reveal that SWAT is able to depict the variation 

in the snow dynamics for the region. Although, the reservoirs in the upper part of 

the basin exist for hydropower generation through streamflow, they have a limited 

impact during dry season, but they affects the snow simulations for few sub-basins. 

Therefore reservoir operation data should be taken into account for hydrological 

modeling. 

This study highlighted the effect of different modeling routines to simulate snow dynamics 

and streamflow over the alpine Himalayan region. The use of elevation band approach is 

very meaningful for streamflow as well as snow cover representation. Therefore, it is 

recommended to implement SWAT model with snow modeling routine along with 

appropriate number of elevation bands in this region.  
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Chapter 7 

 

7 Streamflow Simulation Using TRMM 

3B42V7 Precipitation Product   
 

In this chapter, the accuracy of gauge adjusted satellite precipitation estimate (TRMM 

3B42V7) is evaluated to simulate the streamflow using five stream gauge stations for the 

entire river reach. Thereafter, the statistical performance between simulated and observed 

streamflow has been worked out for various rainfall intensity classes to see the relevance of 

TRMM 3B42V7 product for different kind of water management practices over the area. 

7.1 Introduction  

People and species living in mountains and downstream areas are frequently confronted to 

extreme hydrological events (floods and drought) [286,287]. In the case of Himalayan areas, 

people deal with these hostile events by accepting the losses and modifying their livelihood 

activities. Himalayan glaciers store the water in the form of snow and release it slowly 

during the dry season. Glacier melt water contributed to the river flow is vital to provide 

supplemental irrigation and drinking water during the non-monsoon period. Therefore, these 

two extreme discharge events pertain vulnerable situations. For example, if high- flow 

events (flood) are sudden, it can put living beings at risk. Conversely, low-flow events 

(drought) conquer slowly and affects a vast area. In results, the economic losses are huge 

for drought than flood situations [288,289]. Therefore, hydrological simulation of these 

extreme events is crucial to dilute their hazardous magnitude by suitable structural and non-

structural measures [290].    

Precipitation is the essential forcing for hydrological models. Reliable quality of rain and 

snow data is inevitable for model calibration, forecast, and simulations. In many parts of the 

globe, especially in the developing countries as well as for trans-boundary basins, obtaining 

rain gauge data is very challenging due to technical or administrative reasons [154,155]. 

The data exchange is even more difficult when needed in real-time for flood related studies 

[291]. Also, in the Himalayan region, precipitation estimates are subjected to significant 
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uncertainty due to inadequate rain gauge network to capture variability in these terrains 

[293]. Also, there is an addition in error by fault in the measuring device, human operation, 

and data transmission. Therefore, traditional rainfall records are susceptible to error and 

incomplete throughout time series for these regions. 

In a view such difficulties remotely sensed data had proved its usefulness. Remote 

sensed precipitation products are more attractive input for large-scale water resource 

modeling [158,292].  For geographical coverage between latitude: 50°S - 50°N and 

longitude: 180°W - 180°E, such data is available by TRMM mission at no cost. TRMM 

mission has started in 1998 by the US and Japanese space agencies. There are several 

products of TRMM mission, but TRMM 3B42 (3-hourly, 0.25° gridded and gauge 

calibrated rainfall product) is mostly suitable for hydrological studies due to its high spatial 

and temporal resolution. 

Numerous case studies have been conducted to compare the TRMM 3B42 V6 and 

V7 products with rain gauge data [293,294].  Recently several similar case studies have 

been conducted on Indian continent including Himalayas [161,162,165,166,171,172,294]. 

TRMM precipitation product has also been successfully used as an input for many 

hydrological models [138,158]. In the Himalayan region, suitability of TRMM precipitation 

product is yet to be evaluated for extreme hydrological events for most of its river basins.  

In this study, our focus is to analyze the latest TRMM 3B42V7 precipitation product 

for hydrologically sound Himalayan region. The special emphasis is in the Gandak River 

Basin- falling above Triveni-39 gauge site (Figure 7.1) which causes flood and drought in 

the Bihar, India and Tarai portion of Nepal. To the best of our knowledge, no study has been 

conducted to see the quality of TRMM 3B42V7 product for simulation hydrological 

extremes (flood and drought) for this particular area. The satellite-based TRMM 

precipitation products TRMM 3B42V7 and CMROPH have already been compared in 

chapter 4. The study revealed that TRMM 3B42V7 has better statistical score than 

CMROPH. But, one still need to see the performance of TRMM 3B42V7 product for 

hydrological simulations. 
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7.2 Data and Methodology 

7.2.1 Data  

River Discharge Data 

In the present study, river discharge data for five stream gauge (Figure 7.1) sites was 

collected from two countries, India and Nepal. Daily discharge data for a single gauge site 

at Triveni-39 (2000-2012) was collected from Central Water Commission, Government of 

India. However, stream gauge data for reaming four stream gauge sites [Arughat-13 (1964-

2010), Betrawati-23 (1977-2010), Kumalgoan-25 (1996-2010), Narayanighat-36 (1963-

2010)] were collected from Department of Hydrology and Meteorology, Government of 

Nepal. The geographical position of stream gauge sites and their contributing area is given 

Table 7.1. 

Table 7.1: Analyzed stream gauges in the Gandak river basin 

No. Gauge name Position (degrees) River Catchment 

 (Km2) Latitude Longitude 

13 Arughat 28.05 84.82 Burhi 3812.4 

23 Betravati 27.96 85.17 Trisuli 3428.3 

25 Kumalgaon 27.88 83.80 Kaligandaki 10639.3 

36 Narayanighat 27.70 84.43 Narayani 31716.3 

39 Triveni 27.45 84.97 Gandak 36373.8 

 

Meteorological Data   

In the present study, the gridded (0.25o×0.25o, Figure 7.1) daily gauge adjusted TRMM 

precipitation product 3B42 V7 data for Himalayan River Basin Gandak has been 

downloaded from NASA’s online visualization system TOVAS. It allows the user to subset 

the data spatially and temporally and provides outputs in ASCII, NetCDF, and HDF file 

format. Ten years of TRMM 3B42 V7 data (from 2000-2010) have been downloaded in the 

NetCDF file format. Also, 3-hourly 3B42 data has been accumulated from 03UTC of the 

previous day to 06UTC of next day to get daily data at the basin’s local time 8:30 AM 

(example is provided in chapter 4, table 4.7). The daily climatology (Wind Speed, 

Temperature, Relative humidity, and Solar radiation) data were taken from Climate Forecast 

System Reanalysis (CFSR) available at Global weather data for SWAT 

(http://globalweather. Tamu.edu/) since 1979-Present [257,295,296]. 
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Physical Data  

Digital Elevation Model (DEM) is the key input in SWAT. Slope, basin and sub-basin area, 

field slope length, river reach length and other topographical parameters are being calculated 

by SWAT model using DEM. Similarly, the calculation of channels parameters viz. channel 

width, channel length, channel depth and channel slope also lie on input DEM. In chapter 

5, the effect of DEM grid size data on various topographical parameters have been 

presented. In this study, SRTM 90m V4.1 DEM (downloaded from the site 

http://srtm.csi.cgiar.org) have been used to set up our SWAT model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Location map of study area with TRMM grid points 
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The accuracy assessment for different global DEMs available for study area has been 

accomplished in Chapter 4. The curve number (CN) is an index to divide precipitated water 

into runoff and infiltration after subtracting initial losses, which depends on the slope, Land 

use and soil data. For this study, land use map have been taken from GlobeLand30 [131]. 

The GlobalLand30 land cover data can be accessed from http://www.globallandcover.com. 

However, 30 arc-second rasterized FAO soil map (downloaded from 

http://swat.tamu.edu/docs/swat/india-dataset/2012/soil_HWSD_FAO.7z) are used for soil 

characteristics information. 

7.2.2 Description of SWAT model 

SWAT is a physically based, semi-distributed, continuous hydrological model 

[213,232,274]. It simulates different hydrological components by solving process-based 

equations. Within the watershed, SWAT maintains the heterogeneity by dividing the whole 

basin into different sub-watershed and then into various Hydrological Response Units 

(HRUs) based on the similar threshold for land use, soil, and slope. SWAT counts runoff at 

each HRUs and then routes it towards outlet by using either variable storage or Muskingum 

method [297]. The basic equations governing hydrological processes by SWAT model are 

described below. 

The SWAT model uses the water balance approach (equation 7.1) to simulate 

various hydrological components [213]. The equation is expressed as:  

                       

t

t 0 day surf a seep gw

i 1

SW SW (R Q E W Q )


                                         (7.1) 

Where, SWt is change in soil moisture, SW0 is the initial soil moisture, Rday is the rainfall 

on current day, Qsuf is the surface runoff, Ea is the evaporation losses, Wseep is the lateral 

seepage, Qgw is the ground water recharge. 

For snow-dominated basins,  river flow is the combined effect of runoff from the 

land and snowmelt from snow and glaciers. Runoff and snowmelt can be simulated 

simultaneously in the SWAT model. SWAT2012 uses SCS-CN method to calculate the 

surface runoff (Qsurf, mm) [298] as follows.   

                               
2( ) / ( )   surf day a day aQ R I R I S          (7.2) 

http://www.globallandcover.com/
http://swat.tamu.edu/docs/swat/india-dataset/2012/soil_HWSD_FAO.7z
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where Rday is the rainfall for the day (mm), Ia is the initial abstraction losses (mm), and S is 

the soil retention parameter (mm) that is a function of the CN value for the day.  

However, the snow module of SWAT has components to compute snowpack, 

snowmelt and snow cover that mainly depends on the mean daily air temperature (TB) and 

the mean precipitation (PB) of a particular elevation band [88,215,238]. It has been described 

as elevation bands based Temperature Index Model (TMI). The equations are given as- 

( ) /B BT T Z Z dT dZ          (7.3) 

( ) /B BP P Z Z dP dZ          (7.4) 

where TB is the mean temperature for a particular elevation band (OC), T is the measured 

temperature (OC) at the weather station, ZB the band’s midpoint elevation (m), Z  the 

elevation of weather station (m), PB the band’s mean precipitation (mm), P  the precipitation 

measured at the weather station (mm). 

7.2.3 Description of Optimization Algorithm SUFI-2 

In SUFI-2 optimization algorithm, the deviation between observed and simulated variables 

are defined as the model uncertainty. It simultaneously works to analyze the uncertainties 

as well as calibration of the model to ensure appropriate model parameterization. SUFI-2 

illustrates parametric uncertainty as a homogeneous distribution; however model output 

uncertainty is measured by the 95% prediction uncertainty (95PPU) plot. The p factor which 

represents the percentage of observed data enveloped by our modeling result, the 95PPU, 

shows the quantity of uncertainty being captured. While the r-factor indicates the thickness 

of 95PPU envelope plot. There is no fixed threshold for p-factor and r-factor, but p-factor 

should be close to 1(varies 0 to 1) and r-factor zero/ or as less possible (varies ∞ to 0) for 

better simulations. 

7.2.4 Description of Rain Events 

IMD has classified daily rain fall intensity into ten classes, ranging from no traces to 

extremely exceptionally heavy rainfall. In the present study, these ten rainfall intensity 

classes have been modified to four broad categories viz. light (<7.5mm/day), moderate (7.5 

to 35.4mm/day), heavy (35.5 to 124.4mm/day) and extremely heavy (>124.4mm/day) by 

combining reliable classes.  It is done because very low and extremely heavy rainfall events 
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are very rare and therefore, it will not provide the sufficient observations for statistical 

analysis.   

7.2.5 Statistics Used for Variable Evaluation  

To evaluate the performance of simulated results at the four stream gauge sites, a set of 

commonly used statistics viz. (1) Nash-Sutcliffe Efficiency (NSE), (2) Coefficient of 

determination (R2) and (3) Percentage Bias (PBIAS) are used. Also, model’s simulated 

variables can be better analyzed by computing p-factor and r-factor which is given by SUFI-

2 in the summary_stat.txt. 

During simulation with the SUFI-2, NSE has been set as objective function with 

value ≥0.5. The hydrograph of the simulated stream flow can be best reflected by the 

objective function (Sevat et al., 1991). The value of NSE varies from -∞ to 1, where NSE=1 

means perfect match between observed and simulated values. Negative values suggest that 

the mean observed value is a superior predictor as compared to the simulated values. 

Basically, NSE is the degree of fit between observed and simulated values when we plot 

them into 1:1 scale. The equation for NSE is given below: 
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Coefficient determination (R2) shows the proportion of collective variance between 

observed and simulated values. The R2 value varies between 0 to 1 where, higher the value 

of shows lower error variance and vise-versa. Equation for R2 is given is below: 
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                                                 (7.6)  

Percent bias (PBIAS) is the measure of average tendency of the simulated data,  that could 

smaller or larger than the counterpart observed data [299]. The perfect value for PBIAS is 

0, however positive and negative values of PBIAS denote underestimation and 

overestimation bias respectively.  

                                             1
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RMSE-observations standard deviation ratio (RSR) is the standardize representation of the 

Root Mean Square Error (RMSE). It is the ratio between RMSE and standard deviation of 

observed variables. Basically, it combines both an error index and the additional information 

recommended by Moradkhani et al. 2005 [300]. The RSR can be calculated as: 
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                                        (7.8) 

RSR combines the advantage of error index statistics as wel as a scaling/or normalization 

factor so that the subsequent statistic and stated values can relate to various constituents. 

It’s value ranges from 0 to a large value. The RSR value of 0 indicates zero RMSE or 

residual variation and therefore perfect model simualtion. Lower the RSR value  means 

lower is the RMSE/residual, and therefore better is the model simulation performance[301]. 

 In the equations (7.5), (7.6), (7.7) and (7.8), O is the observed variables, P is the simualtes 

variables, O is the mean of observed variables, P is the mean of simulated varaibales and 

i-n is the length of observations. 

7.3 Results and Discussion  

7.3.1 Sensitivity and Model Performance  

The sensitive parameters, as in the Chapter 6 (sensitivity analysis with gauge based 

precipitation product APHRODITE), were used in this study. These parameters are listed in 

the Table 7.2, which shows the overall hydrological properties of the basin in general.  The 

sensitivity analysis found thirteen effective parameters from land phase in which four 

parameters are related to HRU (.hru file), five from ground water (.gw file), two from main 

channel (.rte file) and one each for soil (.sol file) and management practices (.mgt file). The 

rest of the sensitive parameters belong to snow and elevation band phase, found in basin 

(.bsn) and sub-basin (.sub) files.  
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Table 7.2: Sensitive parameters for the model and their rank 

Land Phase Parameters  Snow project 

1_CN2 2_SMFMN 

3_HRU_SLP 11_TIMP 

5_EPCO 12_SMTMP 

6_GW_REVAP 13_SNOWCOVMX 

7_SOL_ALB 16_SNOW50COV 

9_SOL_AWC 18_SFTMP 

10_ALPHA_BF 22_SMFMX 

14_CANMX Elevation band project 

15_ESCO 4_TLAPS 

17_REVAPMN 8_PLAPS 

19_CH_K2 Here in X_paramters, X (1, 2, 3…) 

denotes the rank of the parameter in 

terms of the sensitivity. 
20_SLSUBBSN 

21_CH_N2 

 

In this study, sensitive parameters (Table 7.2) have been  tuned with the four 

elevations bands (2 to 4 elevation bands are found most suited for the area as outlined in the 

chapter 6) to simulate the stream flow at four gauging sites for a time span of ten years 

(2000-2010). The model was first initiated with two years of warmup period and then it 

iterated thrice for 1000 runs with the SUFI-2 optimization algorithm. The Nash- Sutcliffe 

Efficiency (NSE) have been used as the objective function (NSE≥0.5). The input details to 

simulate the SWAT model are given in Table 7.3. 

Table 7.3: Input details for SWAT simulation 

1. Number of years for simulation  10 

2. Warmup period 2 

3. Number of Sub-basins in the project 41 

4. Number of HRUs in the project 420 

5.  Number of Elevation bands  4 

6. Rainfall TRMM 3B42 V7 (gridded)   0.250 

7. Observed Streamflow data Daily 

8. Land use Land cover 1 km 

9. Soil Type 10 km 

10. Digital Elevation Model (DEM) 90m 

11. Number of stream gauge stations  5 

 

The model simulations are performed by modifying the twenty two parameters 

(Table 7.2) using SWAT-CUP. The streamflow have been simulated with these parameters 

to examine the streamflow during the extreme rain events (described in the section 7.2.4). 

The streamflow simulation has been done at various reach levels, moving from upstream 

gauge to downstream gauge. One thousand SWAT simulation has been performed with the 
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initial SWAT parameters range with objective function NSE≥0.5. Thereafter, the model 

have iterated the simulations twice by importing SWAT parameter’s range each time from 

previous iteration. The SWAT parameters judged influential during sensitivity analysis are 

comparable with the studies conducted by Pradhanang et al. 2011 [250] and Meng et al. 

2015 [276] for snow dominated basins. The fitted parameter’s range and method adopted to 

change that parameter during simulation are given the Table 7.4. 

The statistical results presented in Table 7.5 shows very good agreement between 

simulation streamflow and stream gauge data at each stations. The NSE value is greater than 

0.65 for all station which shows that SWAT-CUP has optimized well to set objective 

function. Among all sub-basins Betravati-23 shows better simulation with the given 

parameters in terms of NSE (0.79), however downstream stream gauge station Triveni-39 

shows better PBAIS (2.9%) than others. Similarly, Betravati-23 shows better R2 than others. 

The p-factor (0.95) is better for Arughat-13 but r-factor (1.28) is largest among all, which 

is should be close to zero. Similarly r-factor is smallest (0.8) for Betravati-23, p-factor (0.66) 

is not good to make it best. Overall, statistics are getting improved on moving from upstream 

to downstream gauge stations. 

 The daily average (2000-2010) TRMM simulated vs. observed stream gauge 

hydrograph for each stream gauge stations have been presented in the Figure 7.2. From the 

hydrograph, Arughat-13 stream gauge station show little bit of underestimation throughout 

except few aspersions during hot summer-monsoon. However simulated hydrograph 

fallows the pattern of observed hydrograph decently at this gauge site. For the Betravati-23 

site, the hydrograph patterns are similar to Arughat-13, but both the hydrographs are more 

close and smooth to each other which is quite irregular for Arughat-13. During monsoon 

(High rain events), TRMM simulated streamflow are significantly underestimating for 

Kumargaon-25, however both hydrograph matches well during non-monsoon season. 

Similarly, Narayanighat-36 and Triveni-39 also, reflect peaks for stream gauge hydrograph 

which are not matching with the TRMM simulated hydrograph. Therefore, it can be 

interpreted that TRMM simulated hydrograph are not able to depict extreme rain event’s 

streamflow, but performs quite decent for moderate and high rain events.  
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Table 7.4: The calibrated parameters, range (Min, Max) and their fitted values. The V, A, R 

represents the replace, additive and relative methods to change the parameters value during 

simulations [275] 

Parameter Description Default Fitted 

value 

Min Max 

Hydrological 

Parameters 

     

R_HRU_SLP.hru Average slope steepness HRU 0.088  -0.04 0.2 

R_SLSUBBSN.hru Average slope length HRU -0.172 -0.2 -0.05 

V_ESCO.hru Soil evaporation compensation factor HRU 0.877 0.85 0.95 

V_CANMX.hru Maximum canopy storage HRU 16.557 5 20 

R_CN2.mgt SCS curve number HRU -0.0849 -0.18 0 

A_ALPHA_BF.gw Base flow alpha factor (Days) 0.048 0.273 0.02 0.4 

A_GW_DELAY.gw Groundwater delay 31 32.62 5 45 

A_GWQMN.gw Threshold in the shallow aquifer for 

return flow to occur  

1000 -704.56 -1000 -350 

V_CH_N2.rte Manning's "n" value for the main 

channel 

0.014 0.323 0.2 0.35 

V_CH_K2.rte Hydraulic conductivity in main channel 0 543.772 315 550 

A_GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.151 0.12 0.18 

A_REVAPMN.gw Threshold water depth (mm) in the 

shallow aquifer  to occur 'revap' 

750 149.46 -370 390 

R_SOL_AWC.sol Water holding capacity of soil layers Soil 

layer 

0.0117 0 0.2 

Snow Parameters      

V_SFTMP.bsn Snowfall temperature (oC) 1 -2.194 -6 -2 

V_SMTMP.bsn Snowmelt base temperature (oC) 0.5 4.8435 3 6 

V_SMFMX.bsn Maximum melt rate for snow during 

year 

4.5 5.849 4 6 

V_SMFMN.bsn Minimum melt rate for snow during 

year 

4.5 3.061 2 4 

V_TIMP.bsn Snowpack temperature lag factor 1 0.203 0 0.3 

V_SNOCOVMX.bsn Snow water equivalent (mm) during 

the 50% snow cover 

1 66.075 60 90 

V_SNO50COV.bsn Snow water equivalent (mm) 

during100% snow cover 

0.5 0.203 0 0.35 

Elevation band 

Parameters 

     

SNOEB.sub Initial water content in the elevation 

bands 

100m Constant for snow dominated 

sub-basins 

R_TLAPS.sub Precipitation lapse rate oC/km -6 -0.528 -1.2 0.38 

R_PLAPS.sub Temperature lapse rate mm/km 200 0.46 -0.2 1.35 
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Table 7.5: Streamflow simulation statistics for different stream gauge sites of Gandak River basin 

Station 
Model simulation Statistics 

p-factor r-factor R2 NSE PBIAS 

Arughat_13 0.95 1.28 0.75 0.71 9.7 

Betravati_23 0.66 0.8 0.82 0.79 11.8 

Kumalgaon_25 0.92 1.04 0.71 0.68 15.8 

Narayanighat_36 0.83 1.07 0.67 0.65 12.2 

Triveni_39 0.86 1.21 0.68 0.67 2.9 

 

7.3.2 Evaluation of TRMM Simulated vs. Observed Streamflow for 

Various Rain Events  

The Hydrograph (Figure 7.2) is only depicting pattern with respect to the rain events but it 

does not reveal the characteristics/or response of TRMM simulated streamflow to different 

class of rain fall intensities. For this, PBIAS and RSR statistics between TRMM simulated 

and observed streamflow have been evaluated for various rain fall intensity classes 

(described in the section 7.2.4). 

The BIAS statistics is able to indicate about the nature as well as magnitude of error, 

however RSR gives information on the error index in terms of accumulated residual error. 

A simple linear trend line for PBIAS and RSR by plotting increasing rainfall intensities in 

the x-axis and magnitude to statistics (BIAS and RSR) in y-axis have also been drawn 

(Figure 7.3), that shows the overall character of particular statistical parameters with respect 

to rain fall intensity classes.   

From Figure 7.3, it can be seen that light rain events shows very high and positive 

PBIAS for all sites except at Kumalgaon-25 where it is considerably low. High and positive 

BIAS for low rain events shows that TRMM simulated streamflow are underestimated. In 

case of high rain events Arughat-13 and Betravati-23 shows large negative PBIAS which 

means, for extreme rain events TRMM simulated stream flow is overestimating for these 

sub-basins. At the Narayanighat-36 and Triveni-39 sites, PBIAS is ±10% for rain events 

>7.5 mm/day, which shows a consistent TRMM based stream flow simulations at these 

sites. All stream gauge sites show a decreasing trend line for PBIAS. Conversely, 

Kumalgaon-25 shows a gradual positive increase in the PBIAS with respect to increase in 

the rain fall intensities.  
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Figure 7.2:  Daily average (2000-2010) TRMM simulated streamflow vs. Observed streamflow (in 

primary axis), and daily average rainfall (in secondary axis) 
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Figure 7.3: The statistical results for TRMM simulated streamflow vs. observed streamflow at 

various Rain events 
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This change in the nature of PBIAS trend for this site may be due to human induced 

innervation [302], which may be affecting natural flow regime. The RSR statistics shows a 

gradual increase for Arughat-13, Betravati-23 and Kumalgaon-25, which reveals a 

consistent increase in the residual error by moving from light to extreme rain events. 

However, the trend line for the RSR at the downstream sites have almost zero tangent, 

showing no change in the character of residual error for various rain events. Considering 

both the statistics at all sites, in general TRMM simulated stream flow is worse for extreme 

events and low events, however it does well for moderate and heavy rain events.  

7.4 Summary  

The present research work comprises of the application of SWAT model to simulate the 

stream flow based on TRMM 3B42 precipitation data product and assessing their 

applicability for various rainfall intensity classes. The work has been carried out at a 

Himalayan “Gandak River Basin. The five stream gauge sites from upstream to downstream 

have been used to get  better fit between TRMM simulated and observed stream flow. The 

summary point are as follows- 

 The whole basin has been divided into 41 sub-basins to use their own channel 

characteristics and climatic data. Sub-basins are further divided into 420 HRUs 

using similar threshold for soil, land use and slope characteristics. The model 

performance is rated to be reasonably good in terms of NSE>0.65, R2>0.67 and 

PBIAS≤ 15 percent. The SWAT model is simulated for three iterations with 

NSE≥0.5 as objective functions to achieve the said stream flow simulation results. 

 After the TRMM based stream flow simulations, the suitability for four broad 

category of rainfall intensities have been evaluated by using two frequently used 

statistics PBIAS and RSR. Both the statistics reveal that TRMM 3B42 V7 based 

stream flow simulation is performing well for moderate to high rainfall intensities, 

however it is not found reasonable better for low and extreme rainfall intensities. 

The analysis reveals critical information about the watershed response to TRMM 

3B42 V7 based stream flow simulation for various rainfall intensities. Therefore, the 

results based on this analysis will assist in the methodical water resources allocation, 

planning and management by using TRMM 3B42 V7 precipitation product over the 

Himalayan River Basins.
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Chapter 8 

 

8 Conclusions 
 

8.1 Conclusions  

In this study various uncertainties due to input, model structure/setup and parameters have 

been evaluated for a Himalayan River Basin Gandak. The conclusions drawn based on 

objective themes are segmented below- 

In the first segment (Chapter 4), error in the inputs especially physical as well as 

topographical model inputs derived from DEMs and error in satellite precipitation products 

have been analyzed. The conclusions based on the study are follows- 

 In the first part of this work, error in the basin morphology for three DEMs namely 

SRTM 30m, ASTER 30m and SRTM 90m have been evaluated. The error in the 

basin area shows that SRTM 90m delineates close to the GFCC (reference) map. 

Relative difference (RD) statistics shows a close agreement between digital stream 

networks and reference stream networks for ASTER 30m at upper mountainous part 

of the basin, however SRTM 90m proved better at over all basin scale. In general, 

SRTM 90m DEM performs well in all respects, whereas SRTM30m and 

ASTER30m DEMs can be used with due care over flat terrains. 

 In the second part of this work, two satellite precipitation products: gauge adjusted 

TRMM 3B42 V7 and exclusively satellite derived CMORPH have been evaluated 

for their qualitative and quantitative feasibility. The results of the study show that 

the quality of satellite precipitation product varies with the elevation of the area. The 

gauge adjusted TRMM 3B42 V7 precipitation product is found more accurate than 

exclusively satellite-based precipitation product CMORPH. Therefore, TRMM 

3B42V7 product can be used for water balance modeling and extreme event analysis 

in mountainous Himalayan basin with caution. 

  In second segment (Chapter 5) different DEM grid size and resampling techniques 

have been evaluated for model output uncertainties. For this, SRTM DEM 90m is resampled 

for sixteen grid size from 40-1000m with three methods namely nearest neighborhood, 
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bilinear and cubic convolution. Thereafter, all scenarios were used to setup SWAT model. 

The uncertainty in the modeling outputs for these scenarios have been evaluated with the 

relative difference (RD) statistics. In general, DEM grid sizes ≤150m resampled with 

bilinear method performs well for flow, sediment, TN and TP. Also, the t-test statistics show  

no significant change in the SWAT outputs for DEM grid size ≤ 500m at monthly and yearly 

scale. 

The third segment (chapter 6) highlight the effect of different model setups to 

simulate snow dynamics and streamflow over the alpine Himalayan region. The study 

concludes that the use of elevation band approach has very meaningful enhancement in the 

results of streamflow as well as other hydrological components. Therefore, it is 

recommended to implement SWAT model with snow model setup along with appropriate 

number of elevation bands in this region. 

Fourth and final segment (Chapter 7) is on the streamflow simulation by using TRMM 

3B42 V7 gauge adjusted precipitation data for Gandak River Basin. The simulations were 

constraints with the minimum attainable NSE≥0.5. The statistical results based on NSE, R2 

and PBIAS shows a good simulation of streamflow based on the calibrated parameters. Also 

the statistics PBIAS and RSR between observed and simulated streamflow for various 

rainfall intensity classes show that simulated streamflow performs well for moderate to high 

rainfall intensity classes. 
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8.2  Scope of the Future Work  

The following are some suggestions for future work based on the findings, 

conclusions and problems identified on the course of the present work. 

i) The first objective only illustrates the error in the topography and basin area by using 

three widely available DEMs SRTM 30m, SRTM 90m and ASTER 30m, it would 

be interesting to see the feasibility of other available DEM like  Carto-Sat. 

ii) The second objective analyses the error in the TRMM 3B42 V7 and CMROPH at 

daily time steps, so other satellite products like PERSIANN and CPC REF 2.0 can 

also be accessed for their accuracy at daily and sub-daily time steps. 

iii)  Our study have not checked the accuracy of simulated sediment, TN and TP, it 

would be great to simulate these with their observed values. 

iv) It would be interesting to simulate the hydrological component, streamflow, 

evapotranspiration and infiltration simultaneously with their observed data. 

v) Evapotranspiration can also be modelled using MODIS evapotranspiration data as 

an input in the SWAT model for the study area.   

vi) Uncertainty in the SWAT model outputs can be accessed for various land use grid 

size and number of rain gauge points for the basin. 
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