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SUMMARY

In this paper, a mechanism is presented for reducing priority inversion in multi-programmed computing
systems. Contrarily to well-known approaches from the literature, this paper tackles cases where the
dependency relationships among tasks cannot be known in advance to the operating system (OS). The
presented mechanism allows tasks to explicitly declare said relationships, enabling the OS scheduler to
take advantage of such information and trigger priority inheritance, resulting in reduced priority inversion.
We present the prototype implementation of the concept within the Linux kernel, in the form of modifications
to the standard POSIX condition variables code, along with an extensive evaluation including a quantitative
assessment of the benefits for applications making use of the technique, as well as comprehensive overhead
measurements. Also, we present an associated technique for theoretical schedulability analysis of a system
using the new mechanism, which is useful to determine whether all tasks can meet their deadlines or not,
in the specific scenario of tasks interacting only through remote procedure calls, and under partitioned
scheduling. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A broad class of computing systems, from traditional embedded/cyber-physical systems and

personal computing to cloud and distributed infrastructures, are challenged nowadays by the

increasing need for hosting time-sensitive and interactive workloads with precise timing and Quality

of Service (QoS) constraints. These pose unprecedented demands on the underlying resource

management and scheduling mechanisms in terms of responsiveness and flexibility. A particularly

critical resource to manage in this context is the processor. Indeed, the way CPUs are allocated in

a distributed environment, and the way they are temporally scheduled by the underlying operating

system (OS) and kernel, constitute the foundation on top of which interactive services meeting tight

response-time constraints can be built.

In this context, proper scheduling and prioritization of software components becomes key to

ensure low latency, dynamism and responsiveness of applications and services under highly variable

workload conditions. However, even if all the applications in the system are assigned appropriate

priorities, and if the CPU scheduler makes its best to respect such priorities, interaction between the
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various threads or processes can affect the response times. This can happen, for example, because

of the so called priority inversion problem, occurring whenever the execution of an important task

is delayed due to the interference from other less important tasks. This typically happens when the

important task is blocked waiting for another task, which is preempted by a less important task.

Albeit such problem has been largely investigated in the real-time systems literature (see Section 7),

there are still many recurrent situations in which priority inversion could be avoided if the operating

system provided the right mechanisms and abstractions to enable applications to communicate more

about their concurrency structure and tasks’ inter-dependencies. This is witnessed for example by

recent works aimed at improving the real-time responsiveness of the Android OS [1, 2], specifically

on the side of OS services for inter-process communication.

1.1. Contributions

In this paper, a novel mechanism for reducing priority inversion in multi-programmed systems is

presented. It allows the OS kernel to take advantage of the explicit declaration of the dependencies

between tasks. Whenever a task waits for another task (the “helper”) to complete some action, the

OS kernel dynamically boosts the priority of the helper, applying a form of priority inheritance.

The mechanism has been implemented in a Linux-based OS around the condition variables

programming abstraction (defined by POSIX [3]), through proper modifications to the futex code

within the Linux kernel, and a tiny addition to the userspace libraries. Overhead figures from the

real implementation are shown, proving feasibility of the technique.

Notice that, although the presented implementation is based on condition variables as available

through the pthreads library, the idea is generic and is not strictly bound to condition variables

(which are just an implementation detail). Also note that while the priority inheritance mechanism

has been traditionally applied to resource sharing (competition synchronization) or blocking remote

procedure call (RPC) mechanisms, this paper shows how to apply it to generic synchronization

operations, including cooperation synchronization.

The conceptual design of the new mechanism has been preliminarily presented in [4], where the

technique had been prototyped within an open-source simulator for real-time scheduling, and results

were gathered in simulation and from a simple RPC scenario only. In the present paper, we complete

that preliminary work by presenting for the first time:

1. a thorough validation of the concept based on a real implementation within the Linux OS, in

the form of modifications to the futex code-base in the kernel, and to the standard condition

variables pthreads API for user-space applications;

2. a comprehensive evaluation of the overheads of the technique;

3. an assessment of the benefits of the technique based on measurements done on a synthetic

application scenario;

4. an example of theoretical schedulability analysis of real-time applications making use of

the new proposed mechanism (limited to the case of synchronous RPC interactions and

partitioned scheduling, with each task interacting only with other tasks on the same CPU),

showing that the proposed technique can also improve the schedulability in hard real-time

systems.

1.2. Paper organization

This paper is organized as follows. In Section 2, we provide background information on real-

time scheduling and motivate the need for a technique like the one presented in this work. In

Section 3, we propose priority inheritance on Condition Variables (PI-CV) as a means for reducing

priority inversion in time-sensitive applications. In Section 4, we describe a realization of the

proposed technique within the Linux kernel, accompanied by a proper user-space API that integrates

nicely with the pthreads library. In Section 5, we provide a real-time analysis methodology for

schedulability analysis of a real-time system enriched with the proposed mechanism. In Section 6,

we first show what benefits are brought in by PI-CV in terms of tasks performance (Section 6.2), then

we provide overhead measurements demonstrating viability of the technique in various workload
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conditions (Section 6.3). Finally, in Section 7, we briefly recall related work in the research

literature, just before drawing conclusions in Section 8, where we also discuss possible future work

on the topic.

2. BACKGROUND

In multi-programmed computing systems, there is often the need to concurrently run multiple

activities with different importance and urgency. For example, in real-time and embedded systems, it

is commonplace to deploy activities with different importance and/or criticalness at different priority

levels. In operating systems design, drivers carrying out I/O interactions with external peripherals

need to execute as soon as possible, to guarantee prompt reactivity of the computing system with

respect to external events, and sometimes actual execution of the drivers code is handed over to

user-space daemons, as it commonly happens in Linux PREEMPT RT. In virtualized computing

infrastructures supporting virtualized network functions and cloud computing, it is often the case

that a Virtual Machine Monitor (VMM) creates multiple threads for emulating the behavior of a

single Virtual Machine (VM). For example, KVM† runs as a process in Linux, creating a thread

for each emulated Virtual CPU of the VM, plus additional threads (depending on the chosen para-

virtualization options) for handling the virtualized I/O of the VM, including networking. In such a

case, the I/O threads have to run before the threads emulating virtual cores, lest a poor performance

of the VM from a networking latency and throughput perspective, particularly in scenarios with

CPU-intensive workloads running within the VM.

In all these cases, the CPU(s) available on the computing system are dynamically assigned to

the different activities by the OS or VMM scheduler, based on priority levels that are assigned to

them. Such a fixed priority (FP) scheduler, allowing activities having higher priorities to run before

others with lower priorities, is very recurrent in computing systems designs. On the other hand, the

reader should assume that whenever this document refers to priorities of tasks, it actually refers more

generally to their urgency of execution from the CPU scheduler viewpoint, this being represented

as a classical integer priority level, a deadline as with schedulers based on Earliest Deadline First

(EDF), or other types of time-stamps, such as virtual start-time as used in fair schedulers (such as

the Linux CFS), or others.

In complex software infrastructures, it often happens that these different components running at

possibly different priority levels may need to interact with each other, e.g., for accessing common

middleware or OS services, such as messaging, monitoring, logging, etc., leading to potential

priority inversion scenarios. This problem has been previously considered in literature and industrial

practice by considering interactions involving blocking primitives on a mutual exclusion semaphore

(mutex in the following): a higher-priority task is waiting to acquire a mutex lock held by a

lower-priority task, which is preempted by a middle-priority task that ultimately causes delays to

the higher-priority task that is waiting to enter the critical section. This problem can be tackled

within the OS kernel with the classical priority inheritance protocol (see Section 7): a task inherits

dynamically the highest among the priorities of all tasks waiting for mutexes it has locked, if said

highest priority is higher than its own one. Priority inheritance is widely available within nowadays

operating systems, e.g., through the real-time extensions of the POSIX standard [3], supported for

example on Linux via the pthreads API (setting the PTHREAD PRIO INHERIT protocol on the

mutex) and corresponding to what is called a rt-mutex at the kernel level.

The priority inheritance mechanism has been designed around competition synchronization

(synchronization over mutual exclusion semaphores). Whenever some other kind of synchronization

is required (for example, cooperation synchronization [5], when a task blocks waiting for some

data coming from other tasks, or waiting for other tasks to finish some kind of action), the

traditional priority inheritance mechanism does not help, due to the lack of knowledge of the

dependency relationships among tasks. This paper deals with equally common and widely recurrent

†More information is available at: http://www.linux-kvm.org/page/Main_Page.
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Figure 1. Priority inversion scenario with task A receiving data from a lower-priority task C through a shared
message-queue Q. Task B has middle-priority between A and C.

scenarios where priority inversion still happens, because it cannot be addressed by traditional

priority inheritance on competition synchronization.

Consider for example the scenario depicted in Figure 1, where we have three tasks, A, B and

C, with decreasing priority order. Task A waits for some data from C (passed through a message

queue Q), calling a blocking receive operation on Q. Unfortunately, while C is generating the data

for A, a middle-priority task B wakes up, causing delays in the execution of C, and ultimately

delaying A. The traditional priority inheritance mechanism cannot help here, because it is designed

around critical sections, in which the OS has knowledge about the dependency among tasks, namely

which task is currently in the critical section. However, Task C is not holding any mutex lock while

progressing towards completing the computations that will lead to the production of a data item to be

pushed into the message queue Q. In addition, the system has no prior knowledge of the fact that it

will be C that will generate the data A is waiting for. This is an example of priority inversion scenario

that can be addressed by using the technique proposed in this paper (see Section 3): letting the OS

know that the high-priority task A is blocked (because of cooperation syncrhonization, not because

of competition for a shared resource) waiting for some output to be provided by task C, allows the

OS kernel to forbid the middle priority task B to preempt task C in such a situation. See Section 6 for

an example of how such message queue might be implemented using, for example, POSIX threads

and condition variables, along with examples of real execution of a synthetic producer/consumer

RPC scenario using it.

Another classical example of priority inversion that can be reduced/controlled by using our

proposed technique is the one of a client-server interaction with a software component (the server)

that is part of some middleware, or embedded within the OS, that may perform some system-level

action on behalf of the caller software component (the client). In presence of clients with multiple

different priorities, if such a server is assigned a high priority level, then it might prevent a high

priority client to run even while it is serving a client with a low priority, causing a form of priority

inversion. On the other hand, if the server is given a low priority, then, even while serving a request

on behalf of a high priority client, it might be preempted and delayed by a middle priority client,

causing again priority inversion.

Techniques for addressing these further priority inversion issues include priority inheritance

techniques, as investigated in the Ada language by Sha [6] back in 1987-1990, or more recently

for client-server interactions in reservation-based systems by Abeni et al. [7].
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Figure 2. Two tasks A and B potentially suspending through a wait() on condition variable CV, where
Task C will perform a signal() to wake-up waiters.

3. PRIORITY INHERITANCE ON COOPERATION SYNCHRONIZATION

As explained above, this paper addresses the problem of avoiding priority inversion in scenarios

with multiple interacting tasks running at different priorities in the OS, with focus on blocking

interactions. While in some situations the dependency relationship between these tasks is implicitly

known (for example, consider synchronous client-server calls or RPCs), in this paper we address

more generic interactions where such dependency cannot be known in advance. For example,

consider generic interactions happening via condition variables (see for example Figure 2): these

allow one or more threads (e.g., tasks A and B in the figure) to suspend, via a wait() operation,

until another thread (e.g., task C in the figure) performs a signal() operation, but the run-time

has no prior knowledge of which thread will do that. Similarly, when communicating through a

named FIFO on the file-system, a task can block waiting for other tasks to provide data by writing

to the same FIFO, but the run-time lacks knowledge about what other task(s) in the system might

actually perform the write.

In what follows, without loss of generality, the term task will be used to refer to a single thread

of execution in a computing system. Also, without loss of generality, the term priority will be used

to refer to the right of execution (or “urgency” level) of a task as compared to other tasks from

the CPU(s) scheduler viewpoint. This includes the priority of tasks whenever they are scheduled

according to a priority-based discipline, their deadline whenever they are scheduled according to

a deadline-based discipline, and their time-stamp whenever they are scheduled according to other

policies based for example on virtual times, such as the Linux Completely Fair Scheduler (CFS) [8].

However, the described technique is not specifically tied to any of these scheduling disciplines and

it can be applied in presence of other schedulers as well. Furthermore, it should be clarified that this

paper deals with how to let tasks dynamically inherit priorities (or right of execution) among one

another, which is orthogonal w.r.t. which scheduling algorithm is being used.

In this paper, we propose PI-CV, a mechanism triggering priority inheritance whenever a task

suspends on a blocking interaction via condition variables (CVs). PI-CV constitutes an extension

to the condition variables interface and kernel-level implementation: it allows explicit declaration

of the set of tasks, called helpers, that are supposed to “help out” in the realization of the general

condition that a task blocked on a condition variable is waiting for. Said set can be fixed throughout

the CV life-time, or be dynamically changed at run-time, according to the application needs. For

example, in a classical producer-consumer blocking interaction scenario, a producer pushes items

into a shared queue, while the consumer pops items out of it. When the queue is empty, the consumer

blocks waiting for additional items to be pushed. In such a setting, it is normally statically known

which task is the producer and which one is the consumer, so the producer task can be added to the

set of helpers for the condition variable used by consumers to block on an empty queue.

With PI-CV, whenever a higher-priority task executes a wait() operation on a CV having a non-

null set of helper tasks, it temporarily donates its priority to all the lower-priority helper tasks, so as

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
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Figure 3. General interaction scenario where priority inheritance on condition variables may be applied
transitively. Task F is waiting on a condition variable having tasks D and G registered as helpers.

to “speed-up” their progress towards performing the corresponding signal() operation. At this

time, the dynamically inherited priority is revoked, restoring the original priority of the helper tasks.

PI-CV can be nicely integrated with traditional priority inheritance on mutexes and semaphores,

resulting in priority being inherited from a higher priority task to a lower priority one either because

the former waits to acquire a lock held by the latter, or because the former is suspended due to a

wait operation on a CV for which the latter is a helper task.

In order for the mechanism to work, it is necessary to introduce a few interface modifications to

the classical CV mechanism, so that the operating system knows which lower-priority tasks should

inherit the priority of a higher-priority task suspending its execution waiting for a condition to

become true. The interface allows the mechanism of priority inheritance on CVs to be enabled

selectively on a per-CV basis, depending on the application requirements.

Priority inheritance may be applied transitively, when needed. For example, if Task A blocks on

a CV donating temporarily its priority to Task B, and Task B in turn blocks on another condition

variable donating temporarily its priority to Task C, then Task C should inherit the highest priority

among the one associated with all the 3 tasks. Also, PI-CV can be integrated with traditional priority

inheritance (or deadline inheritance) as available on current operating systems, letting the priority

transitively propagate either due to an attempt of locking a locked mutex, or to a suspension on a

CV with associated one or more helper tasks.

Consider a blocking chain of tasks (τ1, τ2, . . . , τn) where each task τi (1 ≤ i ≤ n− 1) is

suspended on the next one τi+1 either trying to acquire a lock (enhanced with priority or deadline

inheritance) already held by τi+1, or waiting on a condition variable (enhanced with PI-CV as

described in this document) where τi+1 is registered among the helper tasks. All the tasks in such a

blocking chain are suspended, except the last one (that is eligible to run). This last task inherits the

highest priority among the tasks in any blocking chain terminating on it, i.e., any task in the direct

acyclic graph (DAG) of blocking chains that terminate on it.

For example, consider the scenario shown in Figure 3, where each arrow from a task to another

means that the former is suspended on the latter due to either a blocking lock operation or a wait on

a CV where the latter task is one of the helpers. Task A inherits the highest priority among tasks B,

C, D, E, F (if higher than A’s own one), while G inherits the priority of F (if higher than G’s own

one), if all of the suspensions happen through mutex semaphores enriched with priority inheritance

or CV enriched with PI-CV. Note that F is waiting on a CV where both D and G are registered as

helpers. This allows both of them to inherit the priority of F, until the condition is notified.

4. IMPLEMENTATION

In this section, we describe the user-space API calls that we designed to support PI-CV in a way that

is as POSIX-oriented as possible, namely flanking it to the pthreads library. Then, we provide

details on how the mechanism has been realized in the Linux kernel.
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4.1. User-space interface

From an interface standpoint, the proposed mechanism is made available to applications via a

specialized library call that can be used by a task to declare which other tasks are the potential

helpers towards the verification of the condition associated with a condition variable. In our

implementation, based on the pthreads library, this is realized through the following C library

calls:

int pthread_cond_helpers_add(pthread_cond_t *cond, pid_t helper);
int pthread_cond_helpers_del(pthread_cond_t *cond, pid_t helper);

These two functions add or delete the helper thread to the pool of threads (empty

after a pthread cond init() call) that can potentially inherit the priority of any

thread waiting on the condition variable cond by means of a pthread cond wait() or

pthread cond timedwait() call.

For convenience, our introduced new pthreads calls are currently made available through a

separate library, and they are realized directly in terms of low level syscalls (i.e., sys futex(), see

below). The pthreads library uses pthread t values to identify individual threads, however in

our current implementation we pass the Linux thread ID of helpers (as available through gettid()

syscall). This can easily be changed in the future, though.

In our kernel level implementation, the condition variable is associated with a list of helper

threads, and a kernel-level modification ensures that the highest priority among the ones of all

the waiters blocked on the condition variable is dynamically inherited by the registered helper

thread(s), whenever higher than their own priority (and also that this inheritance is transitively

propagated across both condition variables and rt-mutexes supporting priority inheritance).

Whenever the pthread cond signal() or pthread cond broadcast() function is

called, the corresponding woken-up thread(s) will revoke donation of their own priority.

In what follows, we describe the kernel-level changes that were necessary to integrate PI-CV with

traditional priority inheritance in the Linux futex code base. We refer the reader to [9] for the needed

background information.

4.2. Data structures

Major changes to in-kernel data structures are summarized in Figure 4, where the added fields and

data structures are highlighted in italics. In the following, for the sake of brevity, we report just

elements that are essential to understand what changes we made to the in-kernel data structures,

simplifying the explanation of the code in various aspects, e.g., omitting aspects related to the

synchronization for concurrent access.

Futexes are looked up in the kernel through the global futex data structure, using a

futex key data structure as look-up key. This is roughly equivalent to hashing the user-space

virtual address of a process-private futex, or its physical address, for process-shared ones. The

futex data.queues field is a hash-table where each futex hash bucket points (via the

chain field) to a priority list (plist.h) of futex q nodes. Each such node corresponds to a task

(pointed to by futex q.task) blocked on a pthread cond wait() operation on the futex

whose exact key is contained in the futex q.key field. On a pthread cond signal(), in

order to find the top-priority waiter task to be woken up for a futex with key hashing to h, the kernel

scans the futex data.queues[h]->chain priority list of futex q nodes till it finds the

first node with the matching correct key. On a pthread cond broadcast() instead, all waiters

to be woken up can be found by scanning the same list till the end, and retrieving the tasks from

futex q nodes with the right key.

We added a second hash-table futex data.helpers, where the futex key is used to look-

up a futex hash bucket whose chain field points to a priority list of nodes of the new type

futex h. Each such node corresponds to a task (futex h.task) added as helper to the futex

whose key is equal to futex h.key. Our introduced mechanism PI-CV needs to propagate the

priority of the top-priority waiter task of a condition variable, to all the helpers with current lower
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Figure 4. Summary of major changes to in-kernel data structures.

priority. This is done by simply scanning through the futex data.helpers[h]->chain

list.

Whenever a task suspends on a condition variable, its priority may potentially have to be

propagated through the whole chain of suspensions due to both futexes and rt-mutexes, till we

encounter a ready task, which inherits the suspending task priority if higher than its own. In order to

enable this walkthrough, we added within the task descriptor task struct the cond waiter

field to point to the futex q node identifying the condition variable this task is suspended on, and

at the same time pointing back to the task.

In order to explain how priority inheritance has been realized supporting the transitive propagation

of priority across futexes and rt-mutexes, we need to recall shortly how priority inheritance is

handled for regular rt-mutexes in the kernel.

The task struct task descriptor had already a red-black tree (RBT) of top-priority

waiters blocked on rt-mutexes held by the task, pointed to by the pi waiters and

pi waiters leftmost fields; this enables fast retrieval of the highest priority task among

tasks blocked waiting for any of the mutexes held by a task, so as to realize the priority

inheritance protocol on rt-mutexes. The rt mutex structure itself has also pi waiters and

pi waiters leftmost fields, constituting a RBT of all the tasks blocked on the mutex.

Only the top-priority task among those waiting for a rt-mutex, is also inserted into the RBT

of the waiters associated to the task owning the mutex lock (rt mutex.owner). Finally, the

task struct.pi blocked on field points to the rt-mutex the task is currently blocked on,

if any, through a rt mutex waiter node. Each such node associates a rt-mutex with one of the

tasks waiting for it to be released. The same rt mutex waiter node can be inserted into both a

task and a rt-mutex RBT structures (through the tree entry and pi tree entry fields).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
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Similarly to the pi waiters field, we added a new cv waiters field to the task descriptor,

pointing to a priority list of the top-priority tasks waiting on condition variables this task is helping.

This is done by linking in the priority list nodes of the new added type waiter node (through

the task struct.cv list entry field). Each such node points back to the futex q node

(waiter node.futex qp) of one of the helped condition variables, corresponding to the top-

priority waiter task.

For further details about the design of internal data structures of the Linux kernel, please, refer to

the official documentation and source-code.

4.3. How it works

Helpers can be associated to a CV using the sys futex() syscall. We added a new operation to

this syscall, called FUTEX COND HELPER MANAGE, with which a helper for a CV can be added

or removed. Actual arguments are the CV user-space address (u32 *), helper’s Linux thread ID

(TID, as a u32) and a flag to switch between add or remove operations (u32).

Once a CV got helpers associated, any waiter that blocks on it can trigger the inheritance mech-

anism. The core of the implementation resides in two functions, task blocks on condvar()

and task wakes on condvar(). The former is called before a waiter task w is actually put to

sleep and is responsible to check if any of the helpers can inherit the waiter’s priority. This is done

through the following steps:

1. find the CV helpers hash bucket

2. for each helper task h in the bucket with key matching with the CV

(a) get the old top-priority waiter task old for h, i.e., the first item in h->cv waiters

(b) insert w into h->cv waiters, allocating a new waiter node pointing to the

futex q node corresponding to the suspension of w on the CV

(c) if the priority of w is strictly lower than the minimum among the helper’s own priority

and the priority of the old top-priority waiter old, then boost the current priority of h to

the one of w and propagate calling helper adjust prio(h, w) (note that higher

priorities in the kernel correspond to lower urgency/importance in the scheduler).

The function task wakes on condvar() is called after a pthread cond signal() or

pthread cond broadcast() for each waiter w that is going to be woken-up, and it performs

dual operations w.r.t. the previous one:

1. find the CV helpers hash bucket

2. for each helper task h in the bucket with key matching with the CV

(a) remove w from h->cv waiters, disposing of the associated waiter node

(b) if h->prio was boosted due to w waiting on the CV, then deboost the current priority

of h to the minimum among its own priority and the one of the new top-priority waiter,

and propagate calling helper adjust prio(h, w).

The mentioned helper adjust prio(h, w) function is used to propagate boosting or

deboosting of the priority of w to all the tasks reachable following all the blocking chains

from h forward; while doing so, a recursive call to helper adjust prio() is done

to propagate inheritance due to a block on another condition variable, whilst a call to

rt mutex adjust prio chain() is done to propagate inheritance due to a block on

a rt-mutex. The rt-mutex existing code has also been slightly changed. For example, the

rt mutex getprio(t) function was previously returning the minimum (lower priority values

correspond to higher urgency in the scheduler) among the task own priority t->normal prio

and the priority of the top-waiter task t->pi waiters leftmost; now this function computes

a 3-way minimum considering also the priority of the top-priority waiter task due to blocking on

condition variables, found as the first node in the t->cv waiters priority list.
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4.4. Theoretical overheads

Overheads due to PI-CV are clearly related to the number of declared helpers and the possible

blocking patterns that can occur at run-time. We can distinguish a set of major contributions to

PI-CV overheads, depending on the operation being performed, i.e., block due to a wait on a CV,

wake-up due to a signal, addition or removal of a helper. In the following, for the sake of clarity and

simplicity, we assume that hash-based look-ups of tasks and helpers within condition variables hash

buckets, as well as within the tasks table, and memory allocation and deallocation operations, have

all a constant complexity O(1).
Whenever a task w blocks on a condition variable, in order to check whether to apply priority

inheritance, the list of helpers has to be walked, and for each helper task with lower priority than

the one of w, we need to: 1) inherit the priority, which is done by dequeueing the helper from its

runqueue, and enqueueing it back with the new priority (note that each of these operations has a

computational complexity that is constant for the real-time scheduling class and logarithmic for the

CFS scheduler); 2) chain w into the helper’s task struct.cv waiters priority list; 3) if the

helper is blocked on its own (on another condition variable or on a rt-mutex), then propagate the

inheritance. Let n denote the worst-case number of reachable tasks walking through the blocking

chains including w at any given time. Then, the worst-case computational complexity is O(n) if all

involved tasks are under the real-time scheduling policy.

For each waiter task w that is woken up due to a signal on a CV, we need to scan again the

list of helper tasks, and, for each helper that was inheriting the priority of w, we need to: 1)

restore its original priority cancelling the effect of the inheritance; 2) unlink w from the helper’s

task struct.cv waiters priority list; 3) propagate the inheritance cancellation. This is again

an O(n) complexity.

When adding a helper to a condition variable, if no task is waiting for the condition, then we

just need to insert the helper into futex data.helpers[h]->chain hash bucket priority

list, where h is the hash of the condition variable key. This results in a linear complexity with the

number of helpers associated to the condition variable. On the other hand, if at least one task is

already waiting on the condition variable when a helper is added, then additional actions are needed

for inheritance propagation, if the new helper has lower priority than the priority of the highest-

priority blocked task, resulting in a O(n) complexity, similar to the task blocking case.

When removing a helper from a condition variable, if no task is waiting for the condition, then we

have a simple node removal from the priority list of helpers, with a linear complexity in the number

of helpers. If at least one task is waiting instead, then if the helper being removed was boosted due

to PI-CV, then its priority has to go back to its original value, and we may need to propagate priority

adjustments, resulting in a O(n) complexity as above.

Note that, in a real scenario: a) the number of helpers is often expected to be 1 or a very small

number, because the use of PI-CV is recommendable in settings where it is clear throughout the

application logic what is the task that is in charge of helping a given condition variable; b) the

blocking chains should be very short, ideally at most 2-3 elements, and so the worst-case blocking

graph to be expected at run-time will not contain many elements. Therefore, our implementation is

not optimized to reduce computational complexity in the number of helpers.

Finally, note that the standard Linux kernel support for priority inheritance within rt-mutexes

among tasks belonging to different scheduling classes is incomplete [10, 11], notably since the

introduction of the new SCHED DEADLINE scheduler. Our current implementation of PI-CV is

limited to handling tasks in the real-time class. A fully engineered implementation dealing with all

the possible cases with tasks under different priority classes is out of the scope of the present work.

5. SCHEDULABILITY ANALYSIS

Similarly to the priority inheritance mechanism traditionally used by real-time operating systems to

access shared resources, PI-CV helps in reducing unneeded priority inversion in certain scenarios.

There are two main advantages. The first one is an improved responsiveness of interactive and
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soft-real-time applications: this can be quantified by measuring statistics on the response times

distributions of the tasks, and we will discuss it in Section 6.2.

The second advantage is the possibility to perform a worst-case analysis to bound the response

time of critical real-time tasks that cooperate through condition variables. The analysis depends

on the task model, and on the type of cooperation synchronization pattern that the tasks use. In

particular, unlike the priority inheritance protocol for mutex semaphores, in this case the worst-case

blocking analysis depends on how these variables are used in the program, and a completely generic

analysis is impossible. Therefore, in this section, we give an example of the schedulability analysis

for a Remote Procedure Call (RPC) programming pattern.

We assume a real-time system consisting of n periodic client tasks T , {τ1, . . . , τn} , and m
server tasks S , {S1, . . . , Sm} . A client task τi is a periodic task with priority pi that every

period Ti releases an instance (also called job) which performs some computation with worst-case

execution time Ci
‡, to be completed within its next activation (i.e., the relative deadline of τi is

equal to its period Ti). During its execution, the task invokes one or more remote procedures. Each

remote procedure is implemented by a server task Sj , having a configured priority lower than the

one of any client task, which is boosted via PI-CV every time a client makes a RPC. Each task τi
performs Ki remote procedure invocations, where the k-th invocation is done to the ri,k-th server,

Sri,k , and requires a processing time with WCET of Di,k. Each activation of a task τi requires an

overall worst-case execution time Ei on the CPU that includes both local processing within τi and

Ki remote procedures, resulting in: Ei , Ci +
∑

k∈{1,...,Ki}
Di,k.

The analysis in this section assumes a single-processor system, but the same results apply also to

partitioned multi-processor systems, where each task is pinned down on a specific processor, and

each client task can make calls only to servers on the same processor.

Requests are served sequentially: we assume that each server has an incoming queue where client

tasks enqueue their requests. We assume that the incoming queue is large enough to contain all

requests from all clients, so that every time a client posts a request, there is at least one free position

in the queue. We also assume that, for every client i and server j, there exists a data structure where

the client waits for completion of the remote procedure invocation, and retrieves the result, if any.

This is done using a condition variable CVi,j . The client sends the request to the server incoming

queue, then it performs a wait operation on CVi,j .

Each server Sj is blocked waiting for requests to be pushed within its incoming queue. When

a request arrives from a client τi, the server pulls it out of the queue and performs the requested

procedure, which has a worst-case execution time Di,j ; when it completes, it sends the result to the

corresponding data structure, it performs a signal on CVi,j , and returns checking its input queue. For

simplicity, we assume that servers do not invoke other RPC operations on other servers. We assume

that requests in the incoming queue of each server are ordered by the priority of the corresponding

client task. We apply our PI-CV protocol on each condition variable CVi,j : server Sj is set as the

helper task for CVj , so it inherits the priority of τi when the latter performs a wait on CVi,j . In

Section 6 we will show how the server incoming queue and the client-server response data structure

have been realized in the presented experiments.

Given the assumptions above, we apply the well-known response-time analysis (RTA) [12] to the

set of client tasks, consisting in computing the worst-case response time Ri of each client task τi,
from the highest priority to the lowest priority task, verifying that Ri ≤ Ti ∀ τi ∈ T .

With reference to a client task τi, it is convenient to introduce the set of higher-

priority client tasks T hp
i , {τj ∈ T | pj ≥ pi ∧ j 6= i} , and the set of lower-priority ones T lp

i ,

{τj ∈ T | pj ≤ pi ∧ j 6= i} . §

The worst-case scenario for a client task τi is the one of synchronous activation with all higher

priority client tasks T hp
i , in an instant in which lower-priority client tasks just submitted a request

‡ The WCET refers to the time needed to complete each activation/instance excluding any time slice in which the CPU
is preempted by other higher priority tasks in the system.
§ The discussion is more easily followed thinking of a system with client tasks with pairwise distinct priorities. However,
in those cases with more client tasks with the same priorities, these definitions allow to count same-priority tasks with
their worst-case possible interference.
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to the same servers needed by τi. The response time can then be computed as the sum of the overall

WCET Ei due to an activation of τi (including the WCET of its own RPCs, which execute at

priority ≥ pi thanks to PI-CV), plus the overall WCET Ej of all activations of higher priority tasks

that may preempt τi (including the WCET of their RPCs, which execute at priority ≥ pj ≥ pi), plus

the WCET of RPCs to servers inheriting a higher priority than τi, when these calls were issued just

before τi’s activation. This can be computed by finding the fixed point of the following iterative

formula:

Ri = Ei + Ii +
∑

j∈T hp

i

⌈

Ri

Tj

⌉

Ej , (1)

where ⌈·⌉ denotes the ceil operator and Ii is a term due to two contributions:

• the queueing time for RPCs made by τi to servers which are already serving a request from a

lower priority task¶

• the time during which τi is preempted by higher-priority servers serving requests from lower-

priority tasks.

The worst-case Ii can be computed by using two properties similar to the ones valid for priority

inheritance on mutexes [6]:

• each lower priority task τj can contribute to Ii with at most one RPC;

• each server Sk can preempt a job of τi serving requests from lower priority tasks at most once.

First of all, we are going to prove these 2 properties.

Lemma 1

Any lower-priority task τj ∈ T lp
i can delay the execution of a job of task τi for at most the duration

of a single server call from τj .

Proof

Since the priority of task τj is lower than the priority of task τi, τj has only 2 ways to delay the

execution of τi: making a RPC to a server Sk with inherited priority ≥ pi, or using a server Sx that

is also used by τi (so that the RPC from τi will incur queueing delay). The first situation happens

when τj starts an RPC to Sk (not used by τi) before another task τh with priority ≥ pi starts an RPC

to the same server Sk. Hence, Sk inherits τh’s priority and can preempt τi. The second situation

happens when τj starts an RPC to Sx before τi starts its own RPC; hence, τi has to wait for τj’s

request to be served. In both cases, τj must start its RPC before the job of τi arrives; after this

request has been served, τj is not able to execute until τi’s job finishes (because if τi blocks again

waiting for a server, the server will inherit τi’s priority, which is larger than τj’s one).

Hence, τj may delay the execution of τi for at most the duration of one RPC.

Lemma 2

While a job of task τi is active, any server Sk can serve at most one request from any task τj with

priority pj ≤ pi.

Proof

This comes from the fact that the incoming requests queue of a server is ordered according to the

client tasks’ priorities: Sk can execute requests from lower priority tasks only if it is inheriting the

priority of a higher priority task or if τi is blocked on an RPC on Sk while Sk is serving a lower

priority task. In both cases, after the lower priority task’s request is served Sk will not serve other

requests from lower priority tasks (in the first case, it will serve requests from higher priority tasks,

and in the second case it will serve τi’s request).

¶Notice that the preemption from servers serving RPCs from higher priority tasks is already accounted for in the Ej

terms in Equation (1);
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Based on these two properties, it is possible to compute Ii as follows, after introducing some

further notation. Let Ki denote the set of indexes of servers called by τi: Ki , {k ∈ {1, . . . ,m} |
∃h ∈ {1, . . . ,Ki} s.t. ri,h = k}. Let Qi denote the set of server calls (j, k) made by any lower

priority task τj to any server Sk that might cause queueing delay to τi:

Qi ,

{

(j, k) | τj ∈ T lp
i ∧ k ∈ Ki ∩ Kj

}

. (2)

Let Pi denote the set of server calls (j, k) made by any lower priority task τj to any server Sk that

can also be called by any higher priority task τh:

Pi ,

{

(j, k) | τj ∈ T lp
i ∧ ∃τh ∈ T hp

i s.t. k ∈ Kj ∩ Kh

}

. (3)

Then, Ii is obtained as the worst-case sum of WCETs of a subset of the calls referenced in Qi ∪ Pi,
where, in each sum, a lower-priority task cannot appear more than once (due to Lemma 1), and a

called server task cannot appear more than once (due to Lemma 2), i.e.:

W∗
i ,

{

A ⊆ Qi ∪ Pi s.t. ∀(j, k) ∈ A,

∣

∣{(j̃, k̃) ∈ A s.t. j̃ = j}
∣

∣ = 1

∧
∣

∣{(j̃, k̃) ∈ A s.t. k̃ = k}
∣

∣ = 1

}

(4)

Ii = max
A∈W∗

i

∑

(j,k)∈A

max {Dj,h | rj,h = k} , (5)

where | · | in Equation (4) denotes the set cardinality operator, and the rightmost max in Equation (5)

is due to the fact that, in theory, a task j could make multiple calls to the same server k, so we

need to consider the worst-case call. Note that the formula for Ii obtained above is similar to the

formula for computing the blocking time of the Priority Inheritance Protocol for non-nested critical

sections [6, 13].

6. EXPERIMENTAL EVALUATION

In this section, we provide extensive experimental validation of our proposed PI-CV mechanism,

using the implementation in the Linux kernel as described in Section 4. The experiments have been

run on an Intel R©CoreTM i7-4790K CPU at 4GHz (4 hyper-threaded cores, visible as 8 CPUs on

Linux), with frequency locked at the maximum, running Linux Fedora 25 with a 4.10.0-rc3 kernel,

modified with PI-CV.

First, we show a simple experiment validating the correct behavior of our implementation. Then,

we highlight the benefits of using the mechanism on a synthetic application scenario, and finally

we show what additional overheads PI-CV adds to the system when it is used under various stress

conditions.

In the experiments that are described below, a common synchronization module has been re-

used, realizing a synchronized finite priority queue between senders (or producers) and receivers (or

consumers). This is a minimalistic variant of a standard textbook implementation of a synchronized

finite queue, whose code is summarized in the listing in Figure 5, where for the sake of brevity

we omitted error handling code, header/interface files, and the actual implementation details for the

priority queue (prqueue). The synchronized queue has an initialization method queue init()

where one specifies the maximum queue size qsize. The queue is protected by the q->mutex rt-

mutex (to ensure mutual exclusion during queue operations). The queue push() operation blocks

on a full queue, suspending the calling task on the q->less condition variable. Similarly, the

queue pop() operation blocks on an empty queue, suspending the calling task on the q->more

condition variable. The queue can optionally take advantage of the PI-CV mechanism presented

in this paper, when the queue add producer() and queue add consumer() functions are

called after the queue init(), so that the OS/kernel knows which tasks are expected to signal

on each of the used condition variables.
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// Push an item into the queue (block if full)

void queue_push(queue_t *q, qitem_t item, int pr) {

pthread_mutex_lock(&q->mutex);

while (prqueue_full(&q->prqueue))

pthread_cond_wait(&q->less, &q->mutex);

prqueue_push(&q->prqueue, item, pr);

pthread_cond_signal(&q->more);

pthread_mutex_unlock(&q->mutex);

}

// Initialize queue with maximum given size

void queue_init(queue_t *q, int qsize) {

prqueue_init(&q->prqueue, qsize);

/* Initialize mutex and cond vars */

pthread_mutexattr_t mutex_attr;

pthread_mutexattr_init(&mutex_attr);

pthread_mutexattr_setprotocol(

&mutex_attr, PTHREAD_PRIO_INHERIT);

pthread_mutex_init(&q->mutex, &mutex_attr);

pthread_mutexattr_destroy(&mutex_attr);

pthread_cond_init(&q->more, NULL);

pthread_cond_init(&q->less, NULL);

}

// Pop an item out of the queue (block if empty)

qitem_t queue_pop(queue_t *q) {

qitem_t item;

pthread_mutex_lock(&q->mutex);

while(prqueue_empty(&q->prqueue))

pthread_cond_wait(&q->more, &q->mutex);

item = prqueue_pop(&q->prqueue);

pthread_cond_signal(&q->less);

pthread_mutex_unlock(&q->mutex);

return item;

}

// Add producer thread for queue

void queue_add_producer(queue_t *q, pid_t prod) {

pthread_cond_helpers_add(&q->more, prod);

}

// Add consumer thread for queue

void queue_add_consumer(queue_t *q, pid_t cons) {

pthread_cond_helpers_add(&q->less, cons);

}

Figure 5. Shared queue implementation taking advantage of the proposed PI-CV mechanism when
queue init helpers() is called.

In order to highlight the advantages of our presented technique, producer and consumer tasks,

as well as annoyer tasks, are all pinned down on the same CPU, and they are scheduled using the

POSIX real-time scheduling class on Linux, using different real-time priorities, as detailed in each

experiment.

In experiments taking advantage of the presented PI-CV mechanism: tasks that are known to

push elements (producers) in the shared queue are added at the beginning as helpers for the more

CV (they signal on it after having added a new element); tasks that are known to pop elements

(consumers) are added as helpers for the less CV (they signal on it after having removed an

element).

6.1. Runtime validation

We used a synthetic benchmark implementing the classical producer(s) - consumer(s) scenario on

a finite size queue of elements. An additional set of periodic, middle-priority annoyer threads is

used to check if the inheritance mechanism works. The benchmark creates a specified number of

producers and consumers that work on the same finite-size queue. Each of these two types of threads

runs for a random amount of time (between 10ms and 100ms) each time they are activated. It is

furthermore possible to specify a number of annoyers, with priorities higher than producers and

lower than consumers, that activate and execute periodically (exact parameters are detailed below

in each experiment).

We performed a simple test to validate the implementation. In the first test we ran the benchmark

with one producer (Prod), one consumer (Cons) and one annoyer (Annoy). PI-CV can be enabled

or disabled at start-up. In Figure 6 we show a visual representation ‖ of the threads execution with

and without it.

When PI-CV is disabled (top sub-figure), Annoy can preempt Prod at any time instant in

which it starts running, like the one denoted as P in the plot. Since Cons is blocked waiting for

Prod, which is preempted by Annoy, we have priority inversion (Cons is actually waiting for

the lower priority thread Annoy to finish execution) until instant F, when Annoy terminates.

On the contrary, when PI-CV is active (bottom sub-figure), Cons donates its priority to Prod

when it blocks calling pthread cond wait() on the PI-aware CV (upward red arrow). At

‖Execution diagrams in this section are created through the KernelShark (https://lwn.
net/Articles/425583/) utility from execution traces extracted from the kernel via ftrace
(Documentation/trace/ftrace.txt).
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wait(A)

signal(A)

Cons (1)

Annoy (2)

Prod (3)

Cons (1)

Annoy (2)

Prod (3)

P F

C2C1

Priority inversion induced delay

sched_wakeup_new

sched_wakeup_new

sched_wakeup_new

sched_wakeup_new

sched_wakeup

wait(A)

signal(A)

sched_switch

Figure 6. One producer (priority 3), one annoyer (priority 2) and one consumer (priority 1). PI-CV disabled
(top figure) and enabled (bottom figure).

lock(M)

wait(C)

lock(M)

unlock(M)

unlock(M)
signal(C)

Cons (1)

Annoy (2)

Prod (3)

Mutex (4)

wait(C)

lock(M)
sched_switch

lock(M)

unlock(M)

unlock(M)
signal(C)

Figure 7. One producer (priority 3), one annoyer (priority 2) and one consumer (priority 1). Mutex thread
(priority 4) shares rt mutex M with producer. PI-CV enabled.

time P, Prod is not preempted by Annoy, since now has priority 1. When Prod terminates it calls

pthread cond signal(), wakes Cons up and returns to its original priority (downward red

arrow). Cons starts executing, since now the condition is true. Annoy can resume execution only

after Cons is done. As a consequence, a priority inversion of duration C2-C1 was avoided.

We performed a second validation test slightly modifying the benchmark. In this second test we

wanted to prove that PI-CV can inter-operate with stock rt mutex priority inheritance mechanism.

We added another thread (called Mutex), to the application that shares some variable with producer.

Mutual execution on the shared variable is achieved through the use of an rt mutex. Figure 7

shows an execution in which PI-CV is enabled (we omit the non PI-CV case for space reasons).

The Mutex thread starts execution before the others and locks mutex M. It is then preempted by the

consumer, that has higher priority. The consumer blocks on the PI aware condition variable and the

producer starts to execute. The annoyer is ready to run in the middle of the producer execution, but

it cannot perform preemption since the consumer donates its (higher) priority to the producer. When

the producer tries to lock mutex M it has to wait, as the Mutex thread is holding the mutex. At this

time the producer has (inherited) priority 1, and it gives this priority to thread Mutex that can resume

execution (since consumer and producer are blocked and the annoyer has lower priority). If the PI-

CV mechanism were not integrated with the standard rt mutex priority inheritance, Annoyer

could have resumed and delayed Mutex by an unbounded amount of time (causing a domino effect

on producer and consumer). Original priorities are taken back after unlock(M) by thread Mutex

and signal(C) by the producer.

6.2. Impact on Response Times

To better check the correctness of the the implementation presented in this paper, we implemented

the client-server interaction scenario analyzed in Section 5 and we compared the theoretical analysis

with the measurement performed on the real implementation. We tested multiple tasksets, verifying

that the experimental results were always compatible with the theoretical expectations.
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Parameter Client1 Client2 Annoyer Server

Task period 40ms 50ms 60ms -

RT priority 90 80 70 50

Comp. time 10ms 10ms 10ms 4.5ms

Table I. Task parameters for the scenario.

Figure 8. Scenario under consideration.

To highlight the advantages that PI-CV brings, here we report the results obtained in a simple

testcase (see Figure 8) with 2 client tasks running at different real-time priorities, making calls to

the same server task. In the scenario, each client task is periodic: it spends some time processing, it

invokes the server by pushing a message onto the server receive queue, then it waits for a response

to be placed by the server onto the client’s own receive queue. The server waits for an incoming

message on its receive queue, then it computes for some time, then it pushes a message back onto

the receive queue of the caller task, and it repeats forever. All queues are enhanced by PI-CV as

described above and helper tasks are declared so that the empty-queue condvar more of each client

receive-queue has the Server as helper, enabling donation of their priority to the Server whenever

waiting for it to deliver them a response to a call.

Table I summarizes the parameters used for all the tasks in the scenario. For example, Client1

wakes up every 40ms, it computes for 10ms, then it makes a call to Server, where its request needs

4.5ms of computing time before an answer is delivered to Client1, that goes to sleep until the next

instance. The server uses the enqueued integer on its incoming receive queue to distinguish among

calling clients, and to identify the queue onto which the response has to be pushed.

In a first scenario, the server has been assigned a static RT priority of 50, the lowest among all the

real-time tasks within the scenario. A further task, called Annoyer, is also periodic, but it does not

interact with others. Its priority is lower than clients, but higher than the server priority.

Note that the execution times mentioned in Table I are actually WCETs: the computation parts

of the tasks are implemented as busy loops, executing a pre-fixed number of iterations tuned so

as to match experimentally the reported/wanted WCETs. The resulting average computation times

throughout the experiments have been slightly lower.

Again, notice that multiple different tasksets have been tested and the particular scenario reported

here has been selected to easily highlight the advantages of PI-CV – the task periods reflect typical

periods of multimedia applications, in the range of tens of milliseconds, and priorities of periodic

tasks have been set according to a typical rate-monotonic assignment. The overall experiment

duration has been set to 60 seconds, amounting to roughly 1200-1500 activations for the client

tasks.

All tasks have been configured with a SCHED FIFO scheduling discipline, and the RT

priority as indicated above. Their affinity has been set to pin them down to the same CPU,

to keep the experiment simple and its outcomes easily understandable. Similar results can

be obtained with more tasks without setting their affinity. On a related note, the default

950ms cap for RT tasks on Linux (via RT throttling) has been disabled by writing −1 into

/proc/sys/kernel/sched rt runtime us.
Two sets of experiments have been performed, one with only the traditional priority inheritance

on all mutexes, and the other one with also PI-CV on all condition variables (the two mechanisms

acted in an integrated fashion as explained above).
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No PI-CV PI-CV

Statistic Client1 Client2 Client1 Client2

Average 25.776 33.587 15.379 22.816

90th perc. 33.71 38.489 18.913 28.938

Maximum 33.76 38.55 18.995 28.996

Analytical Worst-Case — — 19 29

Table II. Response-time statistics (in milliseconds) for Client1 and Client2 in the scenario.
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Figure 9. Response time CDFs of Client1 and Client2 in the two cases of with and without PI-CV.

Figure 9 reports the obtained cumulative distribution functions (CDFs) ∗∗ of the response time

(i.e., the difference between the job finishing and arrival times) of the two clients, with and without

PI-CV. The impact of PI-CV on the tasks performance is also quantified in terms of change in

the average, 90th percentile and maximum observed response times for the two tasks, as visible in

Table II.

It is clearly visible that, when using PI-CV, the response times of both the two clients (Client1 and

Client2) are greatly reduced. This is due to the PI-CV mechanism allowing to avoid unnecessary

priority inversion. For example, the highest-priority task (Client1), benefits from PI-CV with: a

reduction of its worst-case response time by about 44% (from 33.76ms down to 18.995ms) and a

reduction in its average response time by about 40% (from 25.776ms down to 15.379ms). The other

client (Client2) also greatly reduces its worst-case and average response time.

But there is more than a simple reduction of the response times: using PI-CV, the real-time

performance of the two clients become predictable, allowing to provide real-time guarantees as

shown in Section 5. In fact, the maximum response times measured for the two clients (indicated as

“Maximum” in the table) are consistent with the worst-case response times computed according

to Equation (1) (indicated as “Analytical Worst-Case” in the table). For Client 1, the equation

gives R1 = 10 + 4.5 + 4.5 = 19ms, since C1 = 10ms, D1 = 4.5ms and I1 = 4.5ms (because a

request from C1 can arrive when the server just started to serve a request from C2) and there is

no interference from higher priority tasks. The measured maximum response time (18.995ms) is

consistent with this result. For Client 2, the equation gives R2 = 10 + 4.5 + 14.5 = 29ms, since

C2 = 10ms, D2 = 4.5ms, I2 = 0ms (because there are no tasks with priority lower than Client 2)

and the interference from Client 1 is equal to C1 +D1,1 = 10 + 4.5 = 14.5ms. In this case, the

worst-case situation is reproduced in our test-case, and the measured maximum response time is

about the same as the worst-case computed according to the theoretical analysis.

In the above experiments, the server task has been run as the lowest priority task in the system.

Therefore, when a high-priority task in the system calls the server, it is subject to interference by

∗∗Note that the upper bound for the plots has been stretched to 1.05, just to visually highlight the maximum observed
response-time for the various curves, that was non-visible otherwise.
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lower-priority tasks (other clients or the annoyer) whose priority is higher than the server. PI-CV

remedies to the problem by raising dynamically the priority of the server as needed, when needed.

An alternative approach would have been to assign a higher priority to the server task, so that it

can immediately execute as soon as a client submits a request. This approach, which is similar to

Immediate Priority Ceiling [6], requires to know the priorities of all the clients in advance. Such a

knowledge is needed because the priority of the server has to be as large as the priority of the highest

priority real-time client; however, if the server’s priority is too high the server risks to preempt

unrelated real-time tasks, increasing their response times (and generating other priority inversions).

On the other hand, with PI-CV the priority of server tasks is automatically and optimally tuned

by the operating system (as opposed to having to be manually tuned), simplifying the design of

real-time applications composed by multiple interacting tasks.

It has to be noted that the effectiveness of PI-CV and its quantitative impact on the tasks

performance depends essentially on how much time a task spends wait()-ing on a condition variable

for which helper tasks are defined, i.e., how much time is needed for the corresponding signal()

to occur. This time is of course very application-specific. Comparing with traditional priority

inheritance on mutex semaphores, in that case the effectiveness of the mechanism depends on how

much time a task spends in a critical section with a mutex locked, which is also very application-

specific. Though, the time spent with a mutex locked may be expected to be lower than the one

spent wait()-ing for a signal() by some other task. Therefore, whenever it is possible to identify

dependency relationships among real-time tasks, the presented PI-CV mechanism may be exploited

to avoid situations of priority inversion expected to generally be of longer duration, compared to

situations in which only priority inheritance on mutexes is used.

6.3. PI-CV overheads

In this section, we perform an experimental evaluation of the runtime overheads comparing the

Linux kernel patched with PI-CV modifications to a vanilla one. All the experiments have been

performed using the same hardware and software configurations described in Section 6.1.

We measured the runtime overheads comparing execution of the same benchmark as introduced

in Section 6.1 with and without PI-CV. We measured kernel functions duration, using the ftrace

infrastructure, when the mechanism is enabled and when not. We run the benchmark several times,

for 60 seconds each time, varying the number of running threads. Producer and consumer threads

behave similarly. Producers lock the mutex associated to the CV, check if space is available in the

queue and wait for it if not, run for certain amount of time comprised between 10ms and 100ms

(they logically produce new data in this interval), signal that a new item is ready, unlock the mutex

and sleep for one second. Consumers lock the mutex, wait for new data (they block on the PI-aware

CV boosting producers), when woken up they consume an item (running for an interval between

10ms and 100ms), signal that a slot is empty and release the mutex. Annoyers execute for 300ms

and then sleep for a second.

Every kernel function can be profiled through ftrace. We report here the duration

measurements of only six of them, those that could be ill-affected by PI-CV. We provide

measurement plots for the functions:

a) do futex(), that is the function performing sys futex() demuxing;

b) futex lock pi atomic(), that implements the atomic work required to acquire a PI

aware futex;

c) futex requeue(), that is the function invoked by a pthread cond signal() and

includes time spent on task wakes on condvar();

d) futex wait queue me(), that is the function invoked by ta pthread cond wait()

and includes time spent on task blocks on condvar();

e) task blocks on condvar(), that is a new function potentially boosting helpers and

starting priority inheritance propagation;

f) task wakes on condvar(), that is new function responsible for revoking priority

boosting if necessary.
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Figure 10. Time consumed by do futex() (a), futex lock pi atomic() (b),
futex requeue() (c), futex wait queue me() (d), task blocks on condvar() (e)

and task wakes on condvar() (f) with a producer, an annoyer and a consumer.

Figure 10 shows the simplest case (one producer, one consumer and one annoyer). In this case

the overheads are small, since the duration of the functions in the PI-CV case is slightly higher than

without the mechanism. The functions that implement priority boosting last considerably longer

when PI-CV is enabled, but they do not affect the syscall duration as they represent a small fraction

of it. Figure 11 shows results with one producer, three consumers and two annoyers. The number of

consumers waiting on a PI-aware CV do not increase syscalls duration. It is instead interesting to

note (Figure 12) that overheads increase with an increase in the number of producers, as expected

due to the reasons explained in Section 4.4.

We performed a further experiment to highlight the growth of overheads with the number of

helpers: we kept a single high-priority producer with a 10ms activation period, and a variable

number of low-priority consumers between 1 and 16. All consumers are registered as helpers for the

client blocking call. The consumers immediately reply back to the blocked client, in order to gather

the pure operating system overheads, due essentially to execution of system calls, task scheduling,

context switch. Among the PI-CV theoretical overheads introduced in Section 4.4, we are focusing

here on the sum of the overheads due to a task blocking on a wait, and being woken up with a signal.

In Figure 13, we report the average and standard deviation of the ping-pong times as observed by

the client task, over a 2 minutes run, where 24000 calls are done. Overheads grow with the number

of helpers roughly at a rate of 0.4µs per additional helper. Note that this scenario is designed so that

all the low-priority helper tasks actually inherit the priority of the higher-priority producer making

the blocking request. What contributes to the measured overheads in this case, is the actual action

of changing the real-time priority of a task in the kernel, which is done for all the 1, 2, . . . , 16 helper

tasks in the scenario. However, in a real settings, whenever a task blocks on a condition variable,

the blocked tasks DAG is only visited as long as lower-priority tasks are met, in which case their

priority needs to be changed. Whenever encountering tasks with already the same or higher priority

than the blocking task, the corresponding blocking chains walk can terminate earlier, saving time.

We finally performed a series of runs relaxing the single-core assumption, using all the 8 CPUs

available on the platform. In Figure 14 we show that the overheads are still comparable in one of this
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Figure 11. Time consumed by do futex() (a), futex lock pi atomic() (b),
futex requeue() (c), futex wait queue me() (d), task blocks on condvar() (e)

and task wakes on condvar() (f) with a producer, two annoyers and three consumers.
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Figure 12. Time consumed by do futex() (a), futex lock pi atomic() (b),
futex requeue() (c), futex wait queue me() (d), task blocks on condvar() (e)

and task wakes on condvar() (f) with three producers, two annoyers and one consumer.

extreme cases (10 producers, 4 consumers and 2 annoyers). Since the load is spread across available

processors, helpers boosting chains are kept short resulting in low overheads.
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Figure 13. Ping-pong times (refer to the left Y axis) between a high-priority producer and a variable number
(on the X axis) of low-priority consumers, with and without PI-CV (second and first curve, respectively).
The relative increase in response times due to PI-CV is reported in percentage (third curve, refer to the right

Y axis).

7. RELATED WORK

Although the priority inversion problem has been noticed earlier in 1980 [14], the first works

investigating its impact in real-time systems date back to 1987, when Cornhill and Sha reported [15,

16] that, in the Ada language, a high-priority task could be delayed indefinitely by lower priority

tasks under certain conditions, and formalized what are the correct interactions between client

and server tasks in form of assertions on the program execution. Also, they introduced priority

inheritance as a general mechanism for bounding priority inversion. Later, Sha et al. [6] formalized

the two well-known Basic Priority Inheritance (BPI) and Priority Ceiling (PCP) protocols. While

BPI allows a task to be blocked multiple times by lower priority tasks, with PCP a task can be

blocked at most once by lower-priority tasks, so priority inversion is bounded by the execution time

of the longest critical-section of lower-priority tasks; also, PCP prevents deadlock. Also, Locke and

Goodenough discussed [17] some practical issues in applying PCP to concrete real-time systems.

Various extensions to PCP have been proposed, for example to deal with reader-writer locks [18],

multi-processor systems [19, 20] and dynamically recomputed priority ceilings [21]. Furthermore,

Baker introduced [22] Stack Resource Policy (SRP), extending PCP so as to handle multi-unit

resources, dynamic priority schemes (e.g., EDF), and task groups sharing a single stack. More

recently, Lakshmanan et al. [23] further extended PCP for multi-processors grouping tasks that

access a common shared resource and co-locating them on the same processor. Schmidt et al.

investigated [24] on various priority inversion issues in the CORBA middleware, and proposed

an architecture (TAO) mitigating them.

When scheduling under the Constant Bandwidth Server (CBS) [25], Lamastra et al. proposed [26]

the BandWidth Inheritance (BWI) protocol, allowing a task owning a lock on a mutex not only to

inherit the (dynamic) priority of the highest priority waiting task (if higher than its own), but also
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Figure 14. Time consumed by do futex() (a), futex lock pi atomic() (b),
futex requeue() (c), futex wait queue me() (d), task blocks on condvar() (e)
and task wakes on condvar() (f) with 10 producers, 4 consumers and 2 annoyers. Threads are free

to execute on any out of 8 CPUs.

to account for its execution within the reservation of the task whose priority is being inherited. This

allows to keep the temporal isolation property ensured by the CBS, in the sense that non-interacting

task groups cannot interfere on each other’s ability to meet their timing constraints. Later, Faggioli

et al. [27] discussed issues and optimizations in the implementation of the protocol in the Linux

kernel, and extended BWI to multi-processors [28].

Block et al. proposed FMLP [29], a resource locking protocol for multi-processor systems

allowing for unrestricted critical-section nesting and efficient handling of the common case of short

non-nested accesses. Guan et al. dealt [30] with real-time task sets where interactions among tasks

are only known at run-time depending on which particular branches are actually executed.

Many other works exist in the literature [31, 32, 33, 34, 35, 36] on variants of the above resource-

sharing protocols and their analysis. A comprehensive overview and comparative evaluation of them

can be found in the recent work by Yang et al. [37].

Although the previously mentioned works focus on priority inversion due to mutual access to

shared resources, some works also applied some form of inheritance in different contexts. For

example, techniques to mitigate priority inversion have been applied in the context of scheduling

virtual machines communicating with each other [38]. Other works considered client-server

interactions between tasks, applying some form of inheritance [39]. For example, BWI can also

be adapted to trigger inheritance when a client blocks waiting for the server’s response [7], allowing

to perform a schedulability analysis for that particular type of scenario. Also noteworthy is the

proposed set of modifications to the Android Binder framework to preserve the nice level of the

calling thread across remote procedure calls (RPCs) [2], extending the Binder standard capability to

inherint nice levels across synchronous RPC calls††.

The mechanism being presented in this paper is generic and can be used with custom inter-thread

communications: while the other mechanisms focus on mutexes or client-server interactions, PI-CV

†† For details, refer to the source code available at: https://android.googlesource.com/kernel/
common/+/android-4.9/drivers/android/binder.c.
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is useful every time tasks interact via a generic blocking interaction model, such as made possible

through the use of condition variables associated with mutexes. These are generally used in the

implementation of custom shared data types supporting custom communication and synchronization

protocols in concurrent systems. To the best of our knowledge, there are no alternatives for dealing

with the specific type of problem of priority inversion as described above, in presence of CVs.

Commonly known alternatives to using mutexes and locks at all, include recurring to lock-free

data structures, and solutions based on the Transactional Memory programming paradigm [40].

Lock-free programming is well-known to be more complex and difficult to master, than traditional

lock-based programming. On the other hand, the Transactional Memory programming paradigm is

particularly useful in presence of non-blocking operations on shared data structures, thus it does

not constitute an alternative to the presented technique. A thorough and detailed comparison among

these communication and synchronization techniques is outside the scope of this paper.

Finally, note that Hart and Guniguntala [9] made changes to the GNU libc pthreads library

and kernel in order to support efficient wake-up of multiple tasks waiting on a CV (as due to

a pthreads cond broadcast()) used in connection with an rt-mutex, so as to avoid the

“thundering herd” effect, and guaranteeing the correct wake-up order (considering also priority

inheritance). Such changes relate to the support for priority inheritance in rt-mutexes and they are

not to be confused with the mechanism being proposed in this paper.

8. CONCLUSIONS AND FUTURE WORK

In this paper, a mechanism has been presented for enhancing responsiveness of real-time software

components in computing systems. It allows for explicitly declaring task dependencies that enable

the OS to properly trigger priority inheritance on blocking interactions. An implementation of the

mechanism has been presented for the Linux kernel and evaluated, demonstrating viability of the

approach, leading for example to a 31% reduction in the worst-case response-time for the highest-

priority task in a synthetic scenario. Also, a preliminary analysis technique has been shown that

allows for ensuring schedulability of a set of interacting periodic real-time tasks.

In the future, we plan to extend this work along various directions. First, we would like to explore

applicability of the presented concepts to interactions that do not necessarily rely on condition

variables. Second, we would like to demonstrate the usefulness of the mechanism in real life,

modifying existing applications. To this regard, it may be useful to integrate PI-CV within reusable

frameworks that expose higher level abstractions for inter-task communications. For example, the

well-known Apache Runtime Libraries (APR) expose already a synchronized queue abstraction

leveraging condition variables, that may conveniently be extended to integrate PI-CV. In terms of

application use-cases, an interesting scenario may be the one of multiple real-time applications

communicating through a common publish-subscribe messaging daemon in a service-oriented

architected embedded system [41]. Third, we would like to apply the technique under resource

reservations scheduling along the lines of BWI [26, 42], e.g., integrating the current implementation

with the SCHED DEADLINE [43] CBS/EDF-based scheduler, that is integrated within the mainline

Linux kernel since version 3.14. Also, it would be interesting to see how PI-CV could be integrated

within the set of real-time enhancements to Android recently presented in [1].

The schedulability analysis method shown in this work was limited to a particular subset only

of the possible interactions among tasks. In the future, we plan to extend the method to consider

more general scenarios, for example when there are arbitrary DAG of dependencies among tasks,

e.g., for cases where condition variables are used to synchronize parallel real-time computations,

and possibly in presence of global multi-processor scheduling disciplines. Valuable starting points

for such a kind of analysis might be the ones appeared in [44, 45].
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