The Effect of Folic Acid and Methionine Deficiency and Excess on DNA Damage and Cancer Growth in HT29 Colon Cancer Cells and the Apc Min Mouse Model

A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

ARNIDA HANI TEH

School of Medicine,
Faculty of Health Sciences, University of Adelaide
and
CSIRO Health and Biosecurity, Adelaide

November 2016
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>PRESENTATION AND PUBLICATION ARISING FROM THE THESIS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

## Chapter 1: General Introduction

1.1 Colorectal Cancer

1.2 Genetic Factor Affecting Colorectal Cancer

## Chapter 2: Review: The Influence of Folate and Methionine on Intestinal Tumour Development in the Apc\(^{\text{Min}+/+}\) Mouse Model

2.1 Abstract

2.2 Introduction

2.2.1 Background

2.3 The Apc\(^{\text{Min}+/+}\) Mouse Model of Intestinal Cancer

2.4 Literature Search and Inclusion Criteria

2.5 Studies Meeting the Inclusion Criteria

2.5.1 Studies Which Investigated Folate Deficiency Only

2.5.2 Studies with Both Folate Deficiency and Excess

2.5.3 Study with Folate as a Multivitamin Component

2.5.4 Study with Methionine
2.6 Proposed Mechanisms for the Effects of Folate and Methionine on Intestinal Tumour Growth in Apc\textsuperscript{Min/+} Mice

\hspace{1cm} 2.6.1 Modulation of Nucleotide Synthesis Caused by Folate Deficiency or Excess 36

\hspace{1cm} 2.6.2 DNA Methylation Changes Due to Deficiency of Methyl Donors Which May Alter Gene Expression 38

\hspace{1cm} 2.6.3 Altered Polyamine Metabolism Which May Affect the Rate of Cellular Division 39

2.7 Knowledge Gaps and Conclusions 40

Chapter 3: Hypotheses and Objectives 51

3.1 Hypotheses 51

3.2 Aims 52

Chapter 4: In Vitro Studies – I

The Effect of Folic Acid and Methionine on Cell Growth and Genome Stability in HT29 Cells 53

4.1 Objective 53

4.2 Hypotheses 53

4.3 Introduction 53

4.4 Methods and Preliminary Experiments 55

\hspace{1cm} 4.4.1 HT29 Cell Culture 55

\hspace{1cm} 4.4.2 Preparation of Medium with Different Folic Acid and Methionine Concentrations 56
4.4.3 HT29 Cell Proliferation 58
  4.4.3.1 Growth Observation of 14 Day Culture of HT29 in 96 Well Plates 58
  4.4.3.2 HT29 Cell Proliferation in Various Folic Acid and Methionine Concentrations 60
4.4.4 Genomic Stability and Cytostasis of HT29 Cells 62
  4.4.4.1 Preliminary Analysis of Growth Observation of 14 Day Cultures of HT29 in 24 Well Plates 62
  4.4.4.2 DNA Stability in HT29 in Various Folic Acid and Methionine Concentrations 65
4.4.5 CBMN-Cyt Assay 65
4.4.6 Statistical Analyses 73
4.5 Results 74
  4.5.1 HT29 Cell Proliferation 74
  4.5.2 DNA Stability in HT29 Cells 83
    4.5.2.1 Nuclear Division Index (NDI) 83
    4.5.2.2 Apoptosis 86
    4.5.2.3 Necrosis 86
    4.5.2.4 Binucleated Cells with Micronuclei 90
    4.5.2.5 Binucleated Cells with Nucleoplasmic Bridges 90
    4.5.2.6 Binucleated Cells with Nuclear Buds 91
4.6 Discussion 95
Chapter 5:  In Vitro Studies – II

The Effect of Folic Acid and Methionine on Telomere Length and DNA Methylation in HT29

5.1 Objective

5.2 Hypotheses

5.3 Introduction

5.4 Material and Methods
  5.4.1 Study Design
  5.4.2 14 Day Culture of HT29 Cells
  5.4.3 DNA Isolation
  5.4.4 Telomere Length Assay
    5.4.4.1 Quantitative Real-time Polymerase Chain Reaction (qPCR) for Telomere Length
    5.4.4.2 qPCR for 36B4 Single Copy Gene (SCG)
    5.4.4.3 Calculation of Telomere Length
  5.4.5 DNA Methylation Assay
  5.4.6 Statistical Analyses

5.5 Results
  5.5.1 Telomere Length
  5.5.2 DNA Methylation
  5.5.3 Correlation

5.6 Discussion
Chapter 6: *In Vivo Studies – I*

The Effect of Folate and Methionine on Cancer Development in the Apc\textsuperscript{Min/+} Mouse Model

6.1 Objective

6.2 Hypotheses

6.3 Introduction

6.4 Material and Methods

6.4.1 Mouse Model

6.4.2 Genotyping

6.4.3 Study Design

6.4.4 Diet

6.4.5 Animal Welfare

6.4.6 Body Weight

6.4.7 Food Intake Observation

6.4.8 Sacrifice of Mice at End of Experiments

6.4.9 Organs Weight and Size

6.4.10 Haematocrit Measurement

6.4.11 Plasma Methionine and Folate Measurement

6.4.12 Tumour Measurement in APC\textsuperscript{Min/+} Mice

6.4.13 Tissue Folate and Methionine Measurement

6.4.14 Statistical Analyses

6.5 Results

6.5.1 Body Weight

6.5.2 Food Intake
Chapter 7: *In Vivo Studies – II*

The Effect of Folic Acid and Methionine on Genomic Instability in the *Apc^{Min/+}* Mouse Model

7.1 Objective
7.2 Hypotheses
7.3 Introduction
7.4 Material and Methods
  7.4.1 Mouse Model and Dietary Regimen
  7.4.2 Study Design
  7.4.3 Blood Collection for Whole Blood Micronucleus Erythrocyte Assay
    7.4.3.1 Acridine Orange Staining
  7.4.4 DNA Isolation from the Colon Tissue
  7.4.5 Telomere Length Assay
7.4.5.1 Quantitative Real-time Polymerase Chain Reaction (qPCR) for Telomere Length 183

7.4.5.2 qPCR for 36B4 Single Copy Gene (SCG) 183

7.4.5.3 Calculation of Telomere Length 183

7.4.6 DNA Methylation Assay 184

7.4.7 Statistical Analyses 184

7.5 Results 185

7.5.1 Whole Blood Micronucleus Erythrocyte Assay 185

7.5.1.1 Ratio of Polychromatic Erythrocytes (PCE) to Non Polychromatic Erythrocytes (NCE) 185

7.5.1.2 Micronucleated Non Polychromatic Erythrocytes (MN-NCE) 186

7.5.1.3 Micronucleated Polychromatic Erythrocytes (MN-PCE) 187

7.5.2 Telomere Length 192

7.5.3 DNA Methylation 196

7.5.4 Correlation 200

7.6 Discussion 202

Chapter 8: Conclusion, General Discussion & Future Direction 207

References 213

APPENDIX: PAPER REPRINTS 227
ABSTRACT

Folate and methionine are critical for one-carbon metabolism, impacting DNA synthesis, repair, and methylation processes, as well as polyamine synthesis. These micronutrients have been implicated in colorectal cancer risk. The aim of this thesis was to examine in greater detail the role of folate and methionine in colon cancer initiation and progression by assessing DNA stability and tumour incidence. Studies were performed in vitro (using human colorectal adenocarcinoma HT29 cell line) and in vivo (using ApcMin/+ mouse model).

The in vitro studies examining the effects of various folic acid and methionine concentrations within the physiological range on cell proliferation and genomic instability of HT29 cells, showed that restriction of folic acid or methionine inhibited cellular proliferation, while supra-physiological folate induced apoptosis. HT29 cells may be resistant to genome instability induced by folic acid or methionine deficiency under the experimental conditions reported for this study because no significant increases in micronuclei, nuclear buds or nucleoplasmic bridges were observed in the Cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The investigation on the effect of folic acid and methionine depletion on telomere length and DNA methylation in HT29 cells demonstrated that folate and methionine depletion may increase both telomere length and DNA methylation in HT29 cells. The length of telomere was positively correlated with DNA methylation.

In the in vivo studies using the ApcMin/+ mouse model, the effect of supplementing a western-style diet with dietary folic acid and/or methionine on intestinal tumour development was assessed. A total of 113 mice were randomised to receive one of the four diet treatments; New Western Diet (NWD) as control diet, NWD with additional folic acid, NWD with additional methionine, and NWD with additional folic acid and methionine, administered at age of 3 until 13 weeks, with wild type (WT) mice used as controls. Supplementation of folic acid and methionine separately, resulted in marginally lower tumour numbers, when compared to the control diet. However, supplementation with both folic acid and methionine together appeared to annul the
marginal protective effect of supplementing individually. The investigation on the effect of supplementing a western-style diet with dietary folic acid and/or methionine on genomic stability (measured via micronucleated erythrocyte assay on blood sample; telomere length and DNA methylation on the colon tissue) showed insufficient evidence that additional folic acid and/or methionine promotes DNA stability or instability in Apc\textsuperscript{Min/+} or WT mice. Dietary supplementation with folic acid and/or methionine at the levels and duration used in this study did not substantially promote or protect against DNA damage in WT or intestinal cancer-prone Apc\textsuperscript{Min/+} mouse model fed a western-style diet although a marginal effect on tumour number was evident.

In conclusion, the results of this thesis support a role of methionine and folate in affecting intestinal cell proliferation and possibly tumour number. However, the impact of supplementation with folate and methionine on genome stability was marginal.
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent for a copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature: ………………………………………. Date: ……………………………..

ARNIDA HANI TEH
ACKNOWLEDGEMENTS

Praise to God the Almighty for the successful completion of this thesis. I am grateful to be given the strength to make this materialise eventually.

My sincere appreciation to my highly respectable principle supervisor; Professor Michael Fenech and astonishing co-supervisors, Dr. Caroline Bull and Professor Peter Clifton for the guidance and opportunities given. The knowledge and experience gained are truly appreciated.

I would like to thank these nice people who helped me in this study; Carolyn Salisbury, Theodora Almond and Maryam Hor for helping me in in vitro studies and CBMN-Cyt assay; Dr. Erin Symonds, Darien Sander, Ben Scherer, Dr. Varinderpal Dhillon, Dr. Phil Thomas, Dr. Damien Belobrajdic and Thelma Bridle for helping me with the in vivo studies; Dr. Nathan O'Callaghan for helping me in telomere length assay; and Kylie Lange for helping me with statistical analysis.

Special thanks to my parents that never tired of giving support and pray for my success. I am also grateful for the friends that crosses paths; Razinah, Sau Lai, Mansi, Jing Wu, Carly, Anne, Penny, Sarah, Sabbir, Awan, Zati, Min, Yanti, Rafisah, Aida, Fauziah, Liyana, Nadiah, Nadia and Izzah. Thank you for the friendship and company that I never felt alone in this PhD journey.
I would also like to acknowledge CSIRO for the studentship opportunity, and to my employer (the National University of Malaysia) and the government of Malaysia (Ministry of Higher Education) for the scholarship provided.

The journey was long and winding. I fell and able to get up again with all help and support that I received. Thank you so much.
PRESENTATION AND PUBLICATION ARISING FROM THE THESIS

Abstract/Poster Presentation


Publication

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,10-MeTHF</td>
<td>5,10- methylenetetrahydrofolate</td>
</tr>
<tr>
<td>5-MeTHF</td>
<td>5-methyltetrahydrofolate</td>
</tr>
<tr>
<td>ACF</td>
<td>aberrant crypt foci</td>
</tr>
<tr>
<td>AHT</td>
<td>Arnida Hani Teh</td>
</tr>
<tr>
<td>ALT</td>
<td>alternative lengthening of telomeres</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AOM</td>
<td>azoxymethane</td>
</tr>
<tr>
<td>ApC</td>
<td>adenomatous polyposis coli</td>
</tr>
<tr>
<td>BER</td>
<td>base excision repair</td>
</tr>
<tr>
<td>BHMT</td>
<td>betaine:homocysteine methyltransferase</td>
</tr>
<tr>
<td>BN</td>
<td>binucleated</td>
</tr>
<tr>
<td>CB</td>
<td>Caroline Bull</td>
</tr>
<tr>
<td>CBMN Cyt assay</td>
<td>Cytokinesis Block Micronucleus Cytome assay</td>
</tr>
<tr>
<td>Cq</td>
<td>cycle threshold</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>Cyto-B</td>
<td>cytochalasin-B</td>
</tr>
<tr>
<td>dcSAM</td>
<td>decarboxylated SAM</td>
</tr>
<tr>
<td>DFMO</td>
<td>α-difluoromethylornithine</td>
</tr>
<tr>
<td>DHF</td>
<td>dihydrofolate</td>
</tr>
<tr>
<td>DMG</td>
<td>dimethylglycine</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNMT1</td>
<td>DNA (cytosine-5’)-methyltransferase 1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DSH</td>
<td>dishevelled</td>
</tr>
<tr>
<td>dTMP</td>
<td>deoxythymidine monophosphate</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxythymidine triphosphate</td>
</tr>
<tr>
<td>dUMP</td>
<td>deoxyuridine monophosphate</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FAP</td>
<td>familial adenomatous polyposis</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDR</td>
<td>false discovery rate</td>
</tr>
<tr>
<td>Folbp1</td>
<td>folate binding protein</td>
</tr>
<tr>
<td>GSK 3</td>
<td>glycogen synthase kinase 3</td>
</tr>
<tr>
<td>LRP</td>
<td>LDL receptor related protein</td>
</tr>
<tr>
<td>MF</td>
<td>Michael Fenech</td>
</tr>
<tr>
<td>MMRs</td>
<td>mismatch repair enzymes</td>
</tr>
<tr>
<td>MNi</td>
<td>micronuclei</td>
</tr>
<tr>
<td>MN-NCE</td>
<td>micronucleated normochromatic or non polychromatic erythrocytes</td>
</tr>
<tr>
<td>MN-PCE</td>
<td>micronucleated polychromatic erythrocytes</td>
</tr>
<tr>
<td>MTAP</td>
<td>methylthioadenosine phosphorylase</td>
</tr>
<tr>
<td>Mthdf1</td>
<td>methylenetetrahydrofolate dehydrogenase</td>
</tr>
<tr>
<td>MTHFR</td>
<td>methylenetetrahydrofolate reductase</td>
</tr>
<tr>
<td>MTR</td>
<td>methionine synthase</td>
</tr>
<tr>
<td>MTSI</td>
<td>mucosal tissue of the small intestine</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NBUDs</td>
<td>nuclear buds</td>
</tr>
</tbody>
</table>
NCE  normochromatic or non polychromatic erythrocytes
NDI  nuclear division index
NPBs  nucleoplasmic bridges
NWD  New Western Diet
NWD+FA  New Western Diet with additional folic acid
NWD+FA+M  New Western Diet with additional folate and methionine
NWD+M  New Western Diet with additional methionine
OD  optical density
PBS  phosphate-buffered saline
PCE  polychromatic erythrocytes
qPCR  Quantitative Real-time Polymerase Chain Reaction
Rfc1  reduced folate carrier 1
RNA  ribonucleic acid
RPMI  Roswell Park Memorial Institute
SAH  S-adenosyl homocysteine
SAM  S-adenosyl methionine
SAMDC  S-adenosyl methionine decarboxylase
SCG  single copy gene
SD  standard deviation
SE  standard error
SHMT1  cytoplasmic serine hydroxymethyltransferase
SHMT1  serine hydroxymethyltransferase
TCF  T-cell transcription factor
THF  tetrahydrofolate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>thymidylate synthase</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
</tbody>
</table>