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We study the Hopf and the fold–Hopf bifurcations of the Rössler–type differential system

ẋ = −y − z, ẏ = x+ ay, ż = −cz + byz,

with b 6= 0. We show that the classical Hopf bifurcation cannot be applied to this system for
detecting the fold–Hopf bifurcation, which here is studied using the averaging theory. Our results
show that a Hopf bifurcation takes place at the equilibrium (−ac/b, c/b,−c/b) when c = a < 0.
This Hopf bifurcation becomes a fold–Hopf bifurcation when c = a = 0.

Keywords: Rössler system, periodic orbits, averaging theory, zero–Hopf bifurcation, fold–Hopf
bifurcation.

1. Introduction

Fold–Hopf bifurcation occurs in minimum three-dimensional systems having minimum two independent
parameters. To define it, we consider a differential system in the form

ẋ = f(x, α), (1)

x ∈ R3, α = (α1, α2) ∈ R2, f smooth, which has an equilibrium x = O (0, 0, 0) for all ||α|| =
√
α2
1 + α2

2
small enough. Assume that for (α1, α2) = (0, 0) , the Jacobian matrix J0 of the system (1) at O has two
purely imaginary eigenvalues ±iω0 and one real eigenvalue equal to 0, for some ω0 > 0. This is known in
the literature as the fold-Hopf (or zero–Hopf) bifurcation. Since the eigenvalues of J0 are assumed simple,
the eigenvalues of the Jacobian matrix Jα of the system (1) at O for ||α|| small enough are of the form
λ1 = ν(α), λ = µ(α) + iω(α) and λ̄, such that ν(0) = µ(0) = 0 and ω(0) = ω0 > 0.

The study of this bifurcation, that is, the study of the behavior of the system (1) when ||α|| is small
enough, is not trivial. In order to study it, the author of [Kuznetsov, 1995] imposed five other conditions,
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G1–G5, to be able to describe some generic properties of the system (1) when ||α|| is small enough. He
used an approach based on the normal forms theory (see also [Algaba et al., 1998]). We explained briefly
in the paper’s Appendix how the G1–G5 generic conditions arise. When the conditions are satisfied we
say the fold–Hopf bifurcation is non-degenerate, otherwise, degenerate. The bifurcation was well studied
in the non-degenerate context in [Kuznetsov, 1995]. All five generic conditions are crucial for the results
obtained in this case. A natural question arises: what happens when one or more of the G1–G5 conditions
are broken, that is, when the fold–Hopf bifurcation becomes degenerate? The motivation of the present
work is to try to bring a partial answer to this question by studying the existence of periodic orbits in a
particular three-dimensional system that has a degenerate fold-Hopf bifurcation. Moreover, because this
kind of bifurcation appears in many differential systems in R3, we illustrate how it can be studied using
the averaging theory. More exactly, we introduce in this paper a Rössler–type system of the form

ẋ = −y − z, ẏ = x+ ay, ż = −cz + byz, (2)

where a, b, c are real parameters and b 6= 0.

We say that the system (2) is of Rössler–type because it has a single nonlinear term and the first two
equations of the system (2) are identical to the Rössler system [Rössler, 1976], which is well–known in the
literature and has been used successfully in applications (secure communications, synchronizations, etc.)
because it has one of the simplest analytical forms but displays complex dynamics, including chaos. We
assume here b 6= 0, otherwise the differential system (2) becomes linear, and consequently it would have a
trivial dynamics.

As we shall see in section 2 the classical theory for studying the fold–Hopf bifurcation does not work
for the Rössler–type differential system (2), but we shall study it using the averaging theory for studying
the bifurcations of periodic solutions from a zero-Hopf bifurcation. This tool for studying the zero-Hopf
bifurcation is very useful and can be adapted to many different kind of differential equations, see for
instance [Castellanos et al., 2013; Euzébio et al., 2015; Llibre et al., 2014; Wei et al., 2016].

2. Degeneracy of the fold–Hopf bifurcation

The equilibria of (2) are O(0, 0, 0) and A(−ac/b, c/b,−c/b) because b 6= 0. The points O and A collide when
the parameter c = 0 and the coinciding equilibria have the eigenvalues 0 and a/2±iω, where ω =

√
4− a2/2

whenever −2 < a < 2. It follows that the system (2) may undergo a fold–Hopf bifurcation at a = 0, when
the eigenvalues are 0,±i.

Denote further by α = (a, c) . Writing (2) in form (15) (see section 5), one can compute effectively the
eigenvectors of the Jacobian matrix J (α) of system (2) at O for all α. Indeed, the eigenvalues of J (α) are
λ1 = −c, respectively λ± = a/2± iω, with the corresponding eigenvectors

q0 =




a+ c

c2 + ac+ 1

− 1

c2 + ac+ 1

1



, q± =




−1

2
a± iω

1

0


 .

The adjoint eigenvectors p0 (α) and p± (α) are

p0 =




0

0

1


 , p± = − 1

4ω2 ∓ 2iaω




−a∓ 2iω

−2

2
a± 2iω

a+ 2c∓ 2iω


 .

Using the transformation u = 〈p0(α), X〉, v = 〈p1(α), X〉 , where X =
(
x y z

)T
, the system (2)
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becomes

u̇ = −cu− b

1 + ac+ c2
u2 + buv + buv̄,

v̇ =

(
1

2
a+ iω

)
v +

b

4

2ω + (a+ 2c) i

ω (1 + ac+ c2)

(
− 1

1 + ac+ c2
u2 + uv + uv̄

)
.

(3)

At α = (0, 0) we have B (0) = −b 6= 0, D(0) = b/2 and G011 (0) = 0. The expressions of these
coefficients are given in section 5. Hence, the fold–Hopf bifurcation of system (2) is degenerate with respect
to (G.2) G011 (0) 6= 0. Therefore, system (2) cannot be put in the normal forms (19), (20) or (21). Yet system
(2) can be brought to the Poincaré normal form (18), because this uses only the first generic condition,
(G.1) g200 (0) = −b 6= 0, which is still valid. However, the Poincaré form does not offer significant tools
in studying the system. The implications on the system’s dynamics of this degeneracy cannot be inferred
from what is known presently in the literature, what makes the system worth studying as a case study
for this degeneracy. But we can use the averaging theory as it was done in the paper [Llibre, 2014] for a
partial study of this degenerate fold–Hopf bifurcation.

The next result provides a first order approximation for the periodic solutions of a non–autonomous
periodic differential system using the averaging theory for computing periodic solutions, for a proof see
Theorems 11.5 and 11.6 of [Verhulst, 1991].

Consider the differential system

ẋ = εF (t,x) + ε2G(t,x, ε), (4)

with x ∈ D, where D is an open subset of Rn, t ≥ 0. We suppose that both F (t,x) and G(t,x, ε) are
T−periodic in t. We define the averaged function

f(x) =
1

T

∫ T

0
F (t,x)dt. (5)

Theorem 1. Assume that

(i) F , its Jacobian ∂F/∂x, its Hessian ∂2F/∂x2, G and its Jacobian ∂G/∂x are defined, continuous and
bounded by a constant independent of ε in [0,∞)×D and ε ∈ (0, ε0].

(ii) F and G are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is a zero of the averaged function f(x) and

det

(
∂f

∂x

)∣∣∣∣
x=p

6= 0, (6)

then there exists a T−periodic solution x(t, ε) of equation (4) such that x(0, ε)→ p as ε→ 0.
(b) If all the eigenvalues of the Jacobian matrix (∂f/∂x) have negative real part, then the periodic solution

x(t, ε) is asymptotically stable. If some of these eigenvalues have positive real parts, this periodic orbit is
unstable.

Our first main result is the following.

Theorem 2. Let (a, c) = (εα, εγ), b 6= 0 and ε a sufficiently small parameter. If (α − γ)γ 6= 0, then
the Rössler–type system (2) has a fold–Hopf bifurcation at the equilibrium point localized at the origin of
coordinates when ε = 0, and a periodic orbit (x(t, ε), y(t, ε), z(t, ε)) borns at this equilibrium for ε > 0
sufficiently small satisfying

(x(0, ε), y(0, ε), z(0, ε)) =
(

0,
εγ

b
,
εγ

b

)
+O(ε2).

Moreover, this periodic solution is asymptotically stable if α− γ < 0 and γ < 0, otherwise it is unstable.
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Proof. If (a, b, c) = (εα, b, εγ) with ε > 0 a sufficiently small parameter, then the Rössler-type system
becomes

ẋ = −y − z,
ẏ = x+ εα y,
ż = −εγz + b yz.

(7)

Doing the rescaling of the variables (x, y, z) = (εX, εY, εZ), system (7) in the new variables (X,Y, Z)
writes

Ẋ = −Y − Z,
Ẏ = X + εαY,

Ż = −ε(γZ + b Y Z).

(8)

Now we shall write the linear part at the origin of the differential system (8) when ε = 0 into its real
Jordan normal form, i.e. as




0 −1 0
1 0 0
0 0 0


 .

For doing that we consider the linear change (X,Y, Z)→ (u, v, w) of variables given by X = v, Y = −u−w,
Z = −w. In these new variables (u, v, w) the differential system (8) writes

u̇ = −v + ε(αu+ (α+ γ)w + b uw + bw2),

v̇ = u,

ẇ = −ε(γ + b u+ bw)w.

(9)

Now we pass the differential system (9) to cylindrical coordinates (r, θ, w) defined by u = r cos θ and
v = r sin θ, and we obtain

ṙ = ε cos θ(α cos θ r + (α+ γ)w + b cos θ rw + bw2),

θ̇ = 1− ε sin θ

r
(α cos θ r + (α+ γ)w + b cos θ rw + bw2),

ẇ = −ε(γ + b cos θ r + bw)w.

(10)

Now taking as new independent variable the variable θ the previous differential system writes

dr

dθ
= ε cos θ(α cos θ r + (α+ γ)w + b cos θ rw + bw2) +O(ε2),

= εF1(θ, r, w) +O(ε2),

dw

dθ
= −ε(γ + b cos θ r + bw)w +O(ε2)

= εF2(θ, r, w) +O(ε2).

(11)

We shall apply the averaging theory described in Theorem 1 to the differential system (11). Using the
notation introduced in Theorem 1 we have t = θ, T = 2π, x = (r, w)T and

F (θ, r, w) =

(
F1(θ, r, w)
F2(θ, r, w)

)
, and f(r, w) =

(
f1(r, w)
f2(r, w)

)
.

It is easy to check that system (9) satisfies all the assumptions of Theorem 1.

Now we compute the integrals (5), i.e.

f1(r, w) =
1

2π

∫ 2π

0
F1(θ, r, w)dθ =

1

2
r(α+ bw),

f2(r, w) =
1

2π

∫ 2π

0
F2(θ, r, w)dθ = −(γ + bw)w.
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The system f1(r, w) = f2(r, w) = 0 has two solution (0, 0) and (0,−γ/b). The first corresponds to an
equilibrium point of system (11), but the second according Theorem 1 provides a periodic solution of system
(11) because the Jacobian (6) takes the value (α− γ)γ/2 which is not zero by assumptions. Moreover the
eigenvalues of the Jacobian matrix are (α− γ)/2 and γ.

Theorem 1 guarantees for ε > 0 sufficiently small the existence of a periodic solution (r(θ, ε), w(θ, ε))
of system (11) such that (r(0, ε), w(0, ε)) = (0,−γ/b) + O(ε). Hence, system (10) has a peri-
odic solution (r(t, ε), θ(t, ε), w(t, ε)) such that (r(0, ε), θ(0, ε), w(0, ε)) = (0, 0,−γ/b) + O(ε). Conse-
quently, system (9) has the periodic solution (u(t, ε), v(t, ε), w(t, ε)) such that (u(0, ε), v(0, ε), w(0, ε)) =
(0, 0, −γ/b) + O(ε). Then, system (8) has the periodic solution (X(t, ε), Y (t, ε), Z(t, ε)) such that
(X(0, ε), Y (0, ε), Z(0, ε)) = (0, γ/b, γ/b) + O(ε). Finally, for ε > 0 sufficiently small system (7) has a
periodic solution (x(t, ε), y(t, ε), z(t, ε)) such that (x(0, ε), y(0, ε), z(0, ε)) = (0, εγ/b, εγ/b) +O(ε2). There-
fore, it is a periodic solution starting at the equilibrium point located at the origin of coordinates when
ε = 0. This completes the proof of the theorem. �

3. Local dynamics at equilibria

The eigenvalues at the equilibrium O are real when a2 − 4 ≥ 0, namely −c and a/2 ±
√
a2 − 4/2. Hence,

O is asymptotically stable whenever c > 0 and a ≤ −2, and unstable on c < 0 or a ≥ 2. On a2 − 4 < 0
the eigenvalues are complex and O is stable whenever c > 0 and −2 < a ≤ 0 and unstable on c < 0 or
0 < a ≤ 2.

When c 6= 0 a Hopf bifurcation may occur at O when a = 0 because the eigenvalues are −c and ±i.
Indeed, the first condition of Hopf bifurcation is fulfilled, Re (dλ/da)|a=0,λ=i = 1/2 6= 0. We need further

to determine the first Lyapunov coefficient. To this end, write system (2) at a = 0 in the form

Ẋ = J0X + F (X)

where X =
(
x y z

)T
, J0 = J(0, c) and F (X) =

(
0 0 b yz

)T
. Write further F (X) = B (X,X) /2 where

B (x, y) =
(

0 0 b (x2y3 + x3y2)
)T

(12)

for any two vectors x =
(
x1 x2 x3

)
and y =

(
y1 y2 y3

)
. A complex eigenvector q corresponding to the

eigenvalue i, J0q = iq, respectively, an adjoint complex eigenvector p, JT0 p = −ip, can be determined from
the above eigenvectors q+ and p+ for a = 0 and are given by

q =



i

1

0


 , p =




1

2
i

1

2

− i

2c− 2i




which satisfy 〈p, q〉 = 1. Here we use 〈u, v〉 =
∑n

i=1 ūivi. With these notations, the first Lyapunov coefficient
(see [Kuznetsov, 1995]) is `1 (0) given by

1

2ω0
Re
[
−2
〈
p,B

(
q, J−1

0 B (q, q̄)
)〉

+
〈
p,B

(
q̄, (2iω0I3 − J0)−1B (q, q)

)〉]
,

which leads to `1 (0) = 0. This means that the Hopf bifurcation is degenerate. Moreover, the second
Lyapunov coefficient is also zero, `2 (0) = 0, which implies that the degeneracy of the Hopf bifurcation
does not give rise to a non-degenerate Bautin bifurcation. Hence, no conclusion using this analysis can be
drawn on the existence of periodic orbits in the system (2) bifurcating from 0 when a = 0 and c 6= 0. The
second paper’s result is the following theorem.

Theorem 3. Let c = a < 0 and b 6= 0, then the Rössler–type system (2) has a Hopf bifurcation at the
equilibrium point (−ac/b, c/b,−c/b), and a stable periodic orbit borns at this equilibrium for a − c > 0

sufficiently small, which in the normalized system to (2) is near a circle of radius
√

1
2(a2+1)

(a− c).
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Proof. Consider in the following system (2) in a neighborhood of the equilibrium point A (−ac/b, c/b,−c/b)
of course with b 6= 0. Translating A to the origin by x→ x+ ac/b, y → y − c/b and z → z + c/b, system
(2) becomes

ẋ = −y − z, ẏ = x+ ay, ż = −cy + byz. (13)

The characteristic polynomial of system (13) at O is P (λ) = λ3 − aλ2 + λ− c, which has the roots a and
±i if and only if c = a. Since

Re
dλ

dc

∣∣∣∣
c=a,λ=i

=
−1

2 (a2 + 1)
6= 0,

a potential Hopf bifurcation arises when ac > 0 at c = a.

At c = a we have Ja =




0 −1 −1
1 a 0
0 −a 0


 , q =

1√
2 (a− i)



ia+ 1
−i
a


 and p =

1√
2



i
1
1


 , where Jaq = iq

and JTa p = −ip, respectively.

Since an eigenvalue of Ja is λ1 = a, a Hopf bifurcation may occur only when a < 0. Proceeding as
above, we find that B (x, y) has the same form as in (12) which leads to

`1 (0) = −
√

2

12

a2b2

(a2 + 1) (a2 + 4)
. (14)

Since `1 (0) 6= 0 system (2) undergoes a Hopf bifurcation for all b 6= 0 and a < 0 at the equilibrium A.
A periodic solution bifurcates from the equilibrium A when c crosses a with a < 0 and |c−a| small enough.
More exactly, because `1 (0) < 0 and Re (dλ/dc)|c=a,λ=i < 0, a unique and stable periodic solution exists

for c < a and |c− a| is sufficiently small. In addition, the equilibrium A is unstable on c < a and stable on

c > a. The periodic solution in the normalized system to (2) is near a circle of radius r '
√
− 1

2(a2+1)
(c− a)

when c− a < 0 is sufficiently small. �

From Theorem 3 the local system’s dynamics around the equilibrium A in terms of periodic orbits is
well characterized for all a < 0 and |c− a| small enough. This is not the case for the equilibrium O for the
values of the parameters (a, c) around (0, c) . When c 6= 0 and a = 0 the two equilibria O and A are still
different but `1 (0) = 0, so the Hopf bifurcation does not exist anymore, while for a = c = 0 a degenerate
fold-Hopf bifurcation occurs studied in Theorem 2.

Remark 3.1. Notice that we have proved that a Hopf bifurcation occurs at c = a ≤ 0. In fact, at c = a = 0
we have a fold–Hopf bifurcation. We also note that for c = a < 0 if one chooses other eigenvectors, for

example q =
(
1
a (ia+ 1) − i

a 1
)T

and p = a
2(a+i)

(
i 1 1

)T
, we find

`1 (0) =
b2

a (a2 + 1) (a2 + 4)
,

which is different from (14) but has the same sign since a < 0.

4. Conclusions

In this work we studied the behavior of a three-dimensional Rössler–type differential system in terms of
the existence of periodic orbits emerging from degenerate fold-Hopf bifurcations. While the local behavior
of a general differential system undergoing degenerate fold-Hopf bifurcations is not known in the literature,
we showed that the averaging theory for detecting periodic orbits is a viable approach that can be applied
at least for particular differential systems undergoing the bifurcation. Two open problems arise from this
work related to the local behavior at the equilibria of system (2). More exactly, the system’s behavior is
not completely known when the parameters satisfy: 1) a 6= 0 and c is small enough around 0, respectively,
2) c 6= 0 and a is small enough around 0.



December 28, 2016 13:48 ”deg-fold-Hopf - revised”

Degenerate fold–Hopf bifurcations in a Rössler system 7

5. Appendix

In this section we provide the reader the main results on the non-degenerate fold-Hopf bifurcations. More
details can be found in [Kuznetsov, 1995].

We write in this appendix x = 0 and α = 0 for x = (0, 0, 0) and α = (0, 0) . Expanding f(x, α) with
respect to x at x = 0, the system (1) reads

ẋ = a(α) + J(α)x+ F (x, α), (15)

where a(0) = 0 and F (x, α) = O(||x||2). The system can be further put in the form

u̇ = Γ (α) + ν (α)u+ g(u, z, z̄, α),
ż = Ω (α) + λ (α) z + h(u, z, z̄, α),

(16)

where u = 〈p0(α), x〉 , z = 〈p1(α), x〉 and p0(α) ∈ R3, p1(α) ∈ C3 are two adjoint eigenvectors given by

JT (α)p0(α) = ν (α) p0(α) and JT (α)p1(α) = λ̄(α)p1(α),

such that

〈p0(α), q0(α)〉 = 〈p1(α), q1(α)〉 = 1 and 〈p1(α), q0(α)〉 = 〈p0(α), q1(α)〉 = 0,

for all ||α|| small enough. The vectors q0(α), q1(α) are two eigenvectors corresponding to the eigenvalues
ν (α) , λ = µ(α) + iω(α), i.e. J(α)q0(α) = ν (α) q0(α) and J(α)q1(α) = λ(α)q1(α). We can write

x = uq0(α) + zq1(α) + z̄q̄1(α).

Here

Γ (α) = 〈p0(α), a (α)〉 and Ω (α) = 〈p1(α), a (α)〉
are smooth functions of α with Γ (0) = Ω (0) = 0 and

g(u, z, z̄, α) = 〈p0(α), F (uq0(α) + zq1(α) + z̄q̄1(α), α)〉 ,
h(u, z, z̄, α) = 〈p1(α), F (uq0(α) + zq1(α) + z̄q̄1(α), α)〉 ,

are smooth functions of their variables whose Taylor expansions in u, z, z̄ start with quadratic terms

g(u, z, z̄, α) =
∑

j+k+l≥2

1

j!k!l!
gjkl(α)ujzkz̄l,

h(u, z, z̄, α) =
∑

j+k+l≥2

1

j!k!l!
hjkl(α)ujzkz̄l.

Using the changes

v = u+ δ0 + δ1u+ δ2z + δ3z̄ + 1
2V020z

2 + 1
2V002z̄

2 + V110uz + V101uz̄,

w = z + ∆0 + ∆1u+ ∆2z + ∆3z̄ + 1
2W200u

2 + 1
2W020z

2 + 1
2W002z̄

2

+W101uz̄ +W011zz̄,

(17)

where δi (α) ,∆i (α) are smooth functions, δi (0) = ∆i (0) = 0, i = 0, 1, 2, 3, the system (16) can be further
brought to Poincaré normal form. More exactly we have the following Theorem [Kuznetsov, 1995].

Theorem 4. If (G.1) g200 (0) 6= 0, then there exists a locally defined smooth, invertible variable transforma-
tion of the form (17), smoothly depending on the parameters, that for ||α|| small enough brings the system
(16) in the form

v̇ = γ(α) + 1
2G200(α)v2 +G011(α)|w|2 + 1

6G300(α)v3

+G111(α)v|w|2 +O
(
||(v, w, w̄)||4

)
,

ẇ = R (α)w +H110(α)vw + 1
2H210(α)v2w + 1

2H021(α)w|w|2

+O
(
||(v, w, w̄)||4

)
,

(18)
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where v ∈ R, w ∈ C and γ (α) , Gjkl (α) are real-valued smooth functions while R(α), Hjkl (α) are complex-
valued smooth functions such that γ(0) = 0, R(0) = iω0. Their expressions at α = 0 are given in the
Appendix.

If in addition (G.2) G011 (0) 6= 0, the Poincaré form (18) can be further reduced to (19) by means of
time reparametrization

dt =
(
1 + e1 (α) v + e2 (α) |w|2

)
dτ

and transformations

u = v + e4 (α) v +
1

2
e3 (α) v2 and z = w +K (α) vw

where ei ∈ R,K ∈ C are smooth functions and e4 (0) = 0. More exactly, the system (18) is locally smoothly
orbitally equivalent near the origin to the system

u̇ = δ(α) +B(α)u2 + C(α)|z|2 +O(||u, z, z̄||4)
ż = Σ(α)z +D(α)uz + E(α)u2z +O(||u, z, z̄||4), (19)

where u ∈ R, z ∈ C and δ(α), B (α) , C(α), E(α) are real-valued smooth functions while Σ(α), D(α) are
complex-valued smooth functions (given below for α = 0) such that δ(0) = 0,Σ(0) = iω0.

Finally, if (G.3) E (0) 6= 0 is satisfied, using the linear scaling u = B(α)
E(α)ξ, z = B3(α)

C(α)E2(α)
ζ and the

time–reparametrization, t = E(α)
B2(α)

τ, the system (19) leads to normal form

ξ̇ = β1(α) + ξ2 + s|ζ|2 +O(||
(
ξ, ζ, ζ̄

)
||4),

ζ̇ = (β2(α) + iω1(α))ζ + (θ(α) + iω2(α))ξζ + ξ2ζ +O(||
(
ξ, ζ, ζ̄

)
||4), (20)

where s = sign [B(0)C(0)] = ±1 and

β1(α) =
E2(α)

B3(α)
δ(α), β2(α) =

E(α)

B2(α)
Re(Σ(α)),

θ(α) + iω2(α) =
D(α)

B(α)
, ω1(α) =

E(α)

B2(α)
Im(Σ(α)),

with ||
(
ξ, ζ, ζ̄

)
||4 =

(
ξ2 + |ζ|2

)2
.

This form (20), for (G.4) θ0 = θ (0) 6= 0 and (G.5) the map α 7−→ β (α) is regular at α = 0, leads to
the truncated normal form

ξ̇ = β1 + ξ2 + sr2,
ṙ = r

(
β2 + θ (α) ξ + ξ2

)
,

ϕ̇ = ω1 + ω2ξ.
(21)

The coefficients needed above in Theorem 4 are

G200(0) = g200(0), G011(0) = g011(0), H110(0) = h110(0),

G300(0) = g300(0)− 6

ω0
Im (g110(0)h200(0)) ,

G111(0) = g111(0)− 1

ω0
[2Im (g110(0)h011(0)) + Im (g020(0)h101(0))] ,

H210(0) = h210(0) +
i

ω0

[
h200(0) (h020(0)− 2g110(0))− |h101(0)|2 − h011(0)h̄200(0)

]
,

H021(0) = h021(0) +
i

ω0

(
h011(0)h020(0)− 1

2
g020(0)h101(0)− 2|h011(0)|2 − 1

3
|h002(0)|2

)
,
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respectively,

B(0) =
1

2
G200(0), C(0) = G011(0),

D(0) = H110(0)− iω0
G300(0)

3G200(0)
,

E(0) =
1

2
Re

[
H210(0) +H110(0)

(
Re (H021(0))

G011(0)
− G300(0)

G200(0)
+
G111(0)

G011(0)

)
− H021(0)G200(0)

2G011(0)

]
.
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