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Abstract. We study the periodic solutions of the second–order
differential equations of the form ẍ ± xn = µf(t), or ẍ ± |x|n =
µf(t), where n = 4, 5, . . ., f(t) is a continuous T–periodic function

such that

∫ T

0

f(t)dt 6= 0, and µ is a positive small parameter. Note

that the differential equations ẍ± xn = µf(t) are only continuous
in t and smooth in x, and that the differential equations ẍ±|x|n =
µf(t) are only continuous in t and locally–Lipschitz in x.

1. Introduction and statement of the main results

The periodic solutions of the second–order differential equations

(1) ẍ+ x3 = f(t),

where f(t) is a T–periodic function have been studied by several au-
thors. Thus, Morris [6] proves that if f(t) is C1 and its averaged is

zero (i.e.

∫ T

0

f(t)dt = 0), then the differential equation (1) has peri-

odic solutions of period kT for all positive integer k. Ding and Zanolin
[4] proved the same result without the assumption that the averaged
of f(t) be zero. Almost there is no results on the stability of these
periodic solutions, but Ortega [7] proved that the differential equation
(1) has finitely many stable periodic solutions of a fixed period.

Our goal is to extend the mentioned results on the periodic solu-
tions of the second–order differential equation (1) to the second–order
differential equations of the form

(2) ẍ± xn = µf(t),

and

(3) ẍ± |x|n = µf(t),

2010 Mathematics Subject Classification. 37G15, 37C80, 37C30.
Key words and phrases. periodic solution, second order differential equations,

averaging theory.
1

This is a preprint of: “Periodic solutions of some classes of continuous second-order differential
equations”, Jaume Llibre, Ammar Makhlouf, Discrete Contin. Dyn. Syst. Ser. B, vol. 22(2),
477–482, 2017.
DOI: [10.3934/dcdsb.2017022]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/132265938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
10.3934/dcdsb.2017022


2 J. LLIBRE AND A. MAKHLOUF

where n = 4, 5, . . ., f(t) is a continuous T–periodic function such that∫ T

0

f(t)dt 6= 0, and µ > 0 is a small parameter. Moreover, we shall

study the linear stability or instability of such periodic solutions.

Note that the differential equations (2) are only continuous in t and
smooth in x, and that the differential equations (3) are only continu-
ous in t and locally–Lipschitz in x. As far as we know these kind of
differential equations have not been studied up to know.

Our main results are the following two theorems.

Theorem 1. Consider the second–order differential equations

(4) ẍ± xn = µf(t),

where n = 4, 5, . . ., f(t) is continuous, T–periodic function such that∫ T

0

f(t)dt 6= 0, and µ > 0 is a small parameter. Then, for µ > 0

sufficiently small there exist two periodic solutions x±(t, µ) of period T
of the differential equation (4) such that

(5) x±(0, µ) = ±µ1/n

∣∣∣∣±
1

T

∫ T

0

f(t)dt

∣∣∣∣
1/n

+O(µ(n−1)/(2n)),

if either ±
∫ T

0

f(t)dt > 0 when n is even, or when n is odd. Moreover

the periodic solution x−(t, µ) is unstable for the equation ẍ+xn = µf(t)
if n is even, and for the equations ẍ± xn = µf(t) if n is odd.

Theorem 1 is proved in section 2.

Note that we are using in (5) and in the rest of the paper the following
notation: for the solutions

(6) x+(0, µ) = µ1/n

(
+

1

T

∫ T

0

f(t)dt

)1/n

+O(µ(n−1)/(2n)),

and

(7) x−(0, µ) = µ1/n

(
− 1

T

∫ T

0

f(t)dt

)1/n

+O(µ(n−1)/(2n)),

we only write (5).

Theorem 2. Consider the second–order differential equations

(8) ẍ± |x|n = µf(t),
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where n = 4, 5, . . ., f(t) is continuous, T–periodic function such that∫ T

0

f(t)dt 6= 0, and µ > 0 is a small parameter. Then, for µ suffi-

ciently small there exist two periodic solutions x±(t, µ) of period T of
the differential equation (8) such that

(9) x±(0, µ) = ±µ1/n

∣∣∣∣
1

T

∫ T

0

f(t)dt

∣∣∣∣
1/n

+O(µ(n−1)/(2n)),

if either ±
∫ T

0

f(t)dt > 0 when n is even, or when n is odd. Moreover,

the periodic solutions x±(t, µ) for the equation ẍ − |x|n = µf(t) are
unstable.

Let g : R→ R be the 2-periodic function defined by

g(t) =

{
t if t ∈ [0, 1],
2− t if t ∈ [1, 2].

The following two corollaries follow easily from the previous two theo-
rems.

Corollary 3. For µ > 0 sufficiently small the equations ẍ ± x4 =
µg(t) have two periodic solutions x±(t, µ) such that x(0, µ) = ± 4

√
µ/2+

O(µ3/8).

Corollary 4. For µ sufficiently small then equations ẍ+ |x|4 = µ sin2 t

have two periodic solutions x±(t, µ) such that x±(0, µ) = ± 4
√
µ/2 +

O(µ3/8).

2. Proof of the results

In this section we shall prove Theorems 1 and 2, and Corollaries 3
and 4.

Proof of Theorem 1. Under the assumptions of Theorem 1 we write
the second–order differential equation as the differential system of first
order

(10)
ẋ = y,
ẏ = ∓xn + µf(t).

Doing the change of variables

(11) x = ε2/(n−1)X, y = ε(n+1)/(n−1)Y, µ = ε(2n)/(n−1),

with ε > 0, the differential system (10) becomes

(12)
Ẋ = εY,

Ẏ = ε
(
∓Xn + f(t)

)
.
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We note that the change of variables (11) is well defined because n > 1.
Now we apply the averaging theory of first order of the appendix. Using
the notation of Theorem 5 of the appendix system (12) can be written
as system (15) with x = (X, Y ), H = (Y,∓Xn + f(t)), R = (0, 0). The
averaged function h(z) given in (16) for system (12) becomes

h(X, Y ) =

(
Y,∓Xn +

1

T

∫ T

0

f(t)dt

)
.

If n is even then the function h(X, Y ) has two unique zeros

(X∗
±, X

∗
±) = (±(± 1

T

∫ T

0

f(t)dt)1/n, 0).

when ± 1

T

∫ T

0

f(t)dt > 0 for the equation ẍ ± xn = µf(t); note that

only one of these two differential equations has two periodic solutions.
If n is odd then the function h(X, Y ) has two zeros,

(X∗
±, Y

∗
±) = ((± 1

T

∫ T

0

f(t)dt)1/n, 0),

when

∫ T

0

f(t)dt 6= 0 for both equations ẍ± xn = µf(t).

The Jacobian of the function h(X,Y) at theses zeros is ±nX∗(n−1)
± .

By Theorem 5 and Remark 1 we deduce that there are two periodic
solutions (X±(t, ε), Y±(t, ε)) of system (12) satisfying that

(X±(0, ε), Y±(0, ε)) =
(
X∗

±, 0
)

+O(ε).

From (11) we have x = µ1/nX.We conclude that for µ > 0 sufficiently
small there exist two periodic solutions x±(t, µ) of period T of the
differential equation (4) such that

x±(0, µ) = µ1/nX∗
± +O(µ(n−1)/(2n)).

We note that for µ > 0 sufficiently small µ1/n � µ(n−1)/(2n) if and only
if n > 3, which holds by assumption.

The two eigenvalues of the corresponding Jacobian matrix of the

averaged function h(X, Y ) at the zero (X∗, Y ∗) are ±
√
∓nX∗(n−1)

± .

If n is even and ± 1

T

∫ T

0

f(t)dt > 0 the solution (X−(t, ε), Y−(t, ε))

of system (12) provides an unstable periodic solution for the equa-

tion ẍ + xn = µf(t). If n is odd and
1

T

∫ T

0

f(t)dt 6= 0 the solution
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(X−(t, ε), Y−(t, ε)) of system (12) provides an unstable periodic solu-
tion for the equation ẍ ± xn = µf(t). Then from Theorem 6 of this
appendix it follows the results on the instability of the periodic solu-
tions stated in the theorem. �
Proof of Theorem 2. In the assumptions of Theorem 2 we write the
second–order differential equation as the differential system of first or-
der

(13)
ẋ = y,
ẏ = ∓|x|n + µf(t).

Doing the change of variables (11), the differential system (13) becomes

(14)
Ẋ = εY,

Ẏ = ε
(
∓ |X|n + f(t)

)
.

Note that we can apply the averaging theory of first order of the
appendix because the function |X|n is locally Lipschitz. Using the
notation of Theorem 5 of the appendix system (14) can be written as
system (15) with x = (X, Y ), H = (Y,∓|X|n + f(t)), R = (0, 0). The
averaged function h(z) given in (16) for system (14) becomes

h(X, Y ) =

(
Y,∓|X|n +

1

T

∫ T

0

f(t)dt

)
.

The function h(X, Y ) has the two zeros

(
X∗

±, Y
∗
±
)

=

(
±
(
± 1

T

∫ T

0

f(t)dt

)1/n

, 0

)
,

such zeros exist when±
∫ T

0

f(t)dt > 0 and n is even, or when

∫ T

0

f(t)dt 6=
0 and n is odd. The Jacobians of the function h(X,Y) at the zeros(
X∗

±, Y
∗
±
)

are ±n|X∗
±|n−1. By Theorem 5 and Remark 1 we deduce that

there is two periodic solutions (X±(t, ε), Y±(t, ε)) of system (14) satis-
fying that

(X±(0, ε), Y±(0, ε)) =
(
X∗

±, 0
)

+O(ε).

Since x = ε2/(n−1)X and µ = ε(2n)/(n−1), we have x = µ1/nX. So for
µ > 0 sufficiently small there exists two periodic solutions x±(t, µ) of
period T of the differential equation (13) such that

x±(0, µ) = µ1/nX∗
± +O(µ(n−1)/(2n)).

The two eigenvalues of the corresponding Jacobian matrix of the
averaged function h(X, Y ) at the zeros (X∗

±, 0) are ±
√
−n|X∗

±|n−1 for

the equation ẍ+|x|n = µf(t), and at the zeros (X∗
±, 0) are±

√
n|X∗

±|n−1
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for the equation ẍ− |x|n = µf(t). Again by Theorem 6 it follows that
the periodic solutions x±(t, µ) are unstable for the equation ẍ− |x|n =
µf(t). This completes the proof of the theorem. �

Appendix: averaging theory of first order

In this section we present the first order averaging method as it was
extended in [1], where the differentiability of the vector field is not
needed. The sufficient conditions for the existence of a simple isolated
zero of the averaged function are given in terms of the Brouwer degree,
see [5] for precise definitions.

Theorem 5. We consider the following differential system

(15) ẋ(t) = εH(t,x) + ε2R(t,x, ε),

where H : R ×D → Rn, R : R ×D × (−εf , εf ) → Rn are continuous
functions, T–periodic in t, and D is an open subset of Rn. We define
h : D → Rn as

(16) h(z) =
1

T

∫ T

0

H(s, z)ds,

and assume that

(i) H and R are locally Lipschitz in x;
(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a

such that h(z) 6= 0 for all z ∈ V \{a} and dB(h, V, a) 6= 0 (where
dB(h, V, a) denotes the Brouwer degree of h in the neighborhood
V of a).

Then, for |ε| > 0 sufficiently small, there exists an isolated T–periodic
solution x(t, ε) of system (15) such that x(0, ε)→ a as ε→ 0.

If the averaged function h(z) is differentiable in some neighborhood
of a fixed isolated zero a of h(z), then we can use the following remark
in order to verify the hypothesis (ii) of Theorem 5. For more details
see again [5].

Remark 1. Let h : D → Rn be a C1 function, with h(a) = 0, where
D is an open subset of Rn and a ∈ D. Whenever a is a simple zero of
h (det(Dh(a)) 6= 0), i.e the determinant of the Jacobian matrix of the
function h at a is not zero), there exists a neighborhood V of a such
that h(z) 6= 0 for all z ∈ V \ {a}. Then dB(h, a, V, 0) ∈ {−1, 1}.

In [2] Theorem 5 is improved as follows.

Theorem 6. Under the assumptions of Theorem 5, for small ε the
condition det(Dh(a)) 6= 0 ensures the existence and uniqueness of a
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T−periodic solution x(t, ε) of system (15) such that x(0, ε)→ a as ε→
0, and if all eigenvalues of the matrix Dh(a) have negative real parts,
then the periodic solution x(t, ε) is stable. If some of the eigenvalue
has positive real part the periodic solution x(t, ε) is unstable.

The averaging theory for studying periodic solutions is very useful
see for instance [3].
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