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Compressed sensing with near-field THz radiation
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We demonstrate a form of near-field THz imag-
ing that is compatible with compressed sensing
algorithms. By spatially photo-modulating THz
pulses using a set of shaped binary optical pat-
terns and employing a 6 µm - thick silicon wafer,
we are able to reconstruct THz images of an ob-
ject placed on the exit interface of the wafer. A
single-element detector is used to measure the
electric field amplitude of transmitted THz radia-
tion for each projected pattern, with the ultra-thin
wafer allowing us to access the THz evanescent
near fields to achieve a spatial resolution down to
⇠ 9 µm (l/45 at 0.75 THz). We conclude by exper-
imentally demonstrating how the image rate can
be increased by a factor of ⇠ 3 by undersampling
the object with adaptive and compressed sensing
algorithms, and performing image regularization
to combat noisy measurements.
© 2016 Optical Society of America
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1. INTRODUCTION

Imaging using terahertz (THz) radiation (0.1 - 2 THz) is appeal-
ing as many visibly opaque materials are transparent in this
frequency range [1]. THz imaging enables, for example, the
detection of faults in space shuttle panels [2], investigations into
the substructure of paintings [3] and non-destructive quality-
control of pharmaceutical tablets [4]. The THz photon energies
are non-ionizing, unlike X-rays, hence inspections will not dam-
age sensitive electronics [5]. However, THz imaging has two
main outstanding challenges. Firstly, THz detector arrays are
usually expensive and very narrow-band [6, 7]. Secondly, the

relatively long wavelengths (0.15 - 3 mm) impose that diffraction
limited imaging will fail to see micron scale details.

To date, most sub-wavelength THz imaging techniques use
near-field raster scanning techniques, where a sub-diffraction
limited probe tip is raster-scanned over a surface, sampling the
evanescent field at each location [8, 9]. These methods have
achieved 10 nm resolution [9]. Whilst impressive, the weak sig-
nals emanating from the probe are sensitive to detector noise,
necessitating long measurement times, and complex detection
schemes are required to improve acquisition rate [10].

Recently, alternative imaging techniques using single-pixel
detectors have emerged [11, 12]. Single-element detectors are
generally cheaper and more robust than detector arrays. These
methods rely on spatially patterning the incident beam of ra-
diation with a set of known patterns (described later). A set
of orthogonal patterns minimizes the mean square error in this
approach [13]. However, to unambiguously reconstruct an N-
pixel image in this manner, a minimum of N measurements
are normally required. To circumvent the trade-off between
imaging time and resolution, a variety of compressive sampling
techniques have been developed that make use of assumptions
about the nature of the object to reconstruct an image from an
under-sampled set of measurements [14–17].

In this contribution, we demonstrate a near-field terahertz
imaging approach using an ultra-thin, silicon photo-modulator.
The ultra-thin wafer allows us to access the THz evanescent
fields to achieve a spatial resolution of 9 µm (l/45 at 0.75 THz),
demonstrated explicitly in experiment by imaging a resolution
target. We conclude by investigating two different methods of
speeding up the image aquisition time by reconstructing images
from under-sampled sets of measurements: adaptive sampling
and compressed sensing.

2. METHODS

Single-pixel imaging schemes have been successfully imple-
mented in the THz regime [18–20]. A recently demonstrated
approach to this employs dynamic spatial patterning of a THz
beam using a photo-conductive modulator [21]. This technique
exploits the fact that when an optical pump beam is incident
onto a photo-modulator, such as a silicon wafer, electron-hole
pair photo-excitation increases its THz conductivity [22], and
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reduces THz transmission. By shaping the optical pump beam
into a binary intensity pattern, we are able to spatially control
which areas of the modulator transmit THz radiation. In this
way, the pattern in the optical pump beam is imprinted onto
the THz beam that is transmitted through the photo-conductive
modulator. Previous studies have shown that the thickness of
the photo-modulator limits the achievable resolution, as this
determines the amplitude of evanescent fields interacting with
the object [21].

Figure 1 illustrates our imaging setup (a detailed schematic
is also shown in supplementary info of ref. [21]). For generation
and detection of THz radiation we use a pair of ZnTe crystals
in a standard THz time domain spectrometer [23]. The sys-
tem is pumped by an 800 nm (90 f s) amplified Ti-Sapphire laser
running at a repetition rate of 1050 Hz. This laser system also
provides a photo-excitation beam which is spatially structured
by a digital micromirror device. This patterned beam (fluence of
⇠ 100 µJ/cm2 per pulse) is projected onto a silicon wafer (6 µm
thick, 8000 W · cm resist) using a +5 cm lens.

In those regions of the photo-conductive modulator that are
illuminated by the optical photo excitation beam, the silicon
conductivity increases, rendering the material response at these
locations opaque to THz radiation [22]. Then a single-cylce THz
pulse (see Fig. 4 of supplimentary info) arrives ⇠ 5 ps after
photo-excitation. Since carrier diffusion can be neglected on
these fast timescales, the pattern from the 800 nm beam is trans-
ferred to THz pulse without spatial blurring. The patterned THz
field then interacts with an object placed on the exit interface
of Si wafer before being collected onto a single-element detec-
tor. We record the peak amplitude of our THz pulse for our
transmission signal, shown in supplementary Fig. 4.
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Fig. 1. Illustration of imaging setup: using a digital micromirror
device and a lens, a pump pulse is spatially structured and pro-
jected onto a silicon wafer. This spatially modulates a coincident
THz pulse. This THz pulse then passes through an object and is
measured on a single-element THz detector. Inset is an optical
image of a resolution test target (cartwheel) manufactured from
gold on a 6µm thick silicon wafer.

Dynamic spatial encoding of the THz beam enables an im-
age to be reconstructed from a series of measurements with a
single-element detector. We measure the total THz field trans-
mitted through an object as it is illuminated with a sequence
of spatially patterned beams. Measurement yi represents the
transmission corresponding to the ith pattern. Our task is then
to reconstruct the image of the unknown object from the series

of correlation measurements with our known patterns. To do
this the spatial structure of the set of illuminating patterns can
be stored in a sampling matrix A. Here the ith row of A is an N-
element vector which is a 1D representation of the ith projected
pattern. Therefore, for an N-pixel image we have measurement
yi = ÂN

j=1 Aijxj where xj is the jth image pixel. This can be
represented as a matrix equation

y = Ax, (1)

where y is a column vector containing the measurements, and x
is a column vector representing the N-pixel image of the object.
The image is obtained by solving the above equation for x, which
is then reshaped into a 2D array of image pixel values.

As described above, A represents the basis the image is ex-
panded in. When the image is fully sampled (i.e. with the same
number of linearly independent measurements as there are pix-
els) A satisfies AAT = I, where I is identity matrix. In this case
the solution is simply given by x = ATy. Further, it is well
known that an orthogonal basis minimizes the detector noise
[13]. For this reason, when the number of measurements equals
the number of image pixels, we use a Hadamard matrix (A = H)
formed from the Paley type-I construction (see supplementary
sec 9 for details). H consists of elements taking the value of 1 or
-1 in equal number. Each Hadamard pattern transmits 50% of the
incident beam, giving the maximal signal level at the detector.
As our intensity masks cannot represent negative numbers, we
use a lock-in amplifier to record the difference in transmission
between a mask consisting of 1s (i.e. transmitting radiation) and
0s (i.e. blocking radiation) and its inverse. This measurement
also minimizes low-frequency intensity fluctuations of our THz
source (see supplementary info of ref. [21]).

If an object is undersampled, A has fewer rows than columns,
and the problem is underconstrained, with infinitely many solu-
tions that satisfy Eqn. 1. Adaptive sampling and compressive
sensing are both strategies that make use of assumptions about
the nature of the object (such as object sparsity when repre-
sented in a particular basis) to choose one solution that most
likely represents the object. Depending upon the strength of
these assumptions, and the level of noise in the measurements,
these approaches have been proven to enable functioning image
reconstruction from highly undersampled measurement sets
[14–17]. More details of the compressive approaches we use in
this work are given in §4.

3. RESOLUTION TESTS

In near field imaging approaches, subwavelength resolution
can be achieved due to the interaction of near-fields with the
object. However, near-fields decay exponentially with distance.
In our approach, the thickness of the modulator can therefore be
expected to play an important role in determining the ultimate
resolution of our THz images. To investigate this, this we image
a subwavelength sized, metallic resolution target (cartwheel)
through a silicon photo-modulator of varying thickness h, shown
in Fig. 2.

For a relatively thick modulator (h=400 µm, of the order of the
THz wavelength), we see that very few of the subwavelength
features of the cartwheel are evident in the resulting image (see
fig. 2a). One can understand the resulting image by considering
the diffracted field expected for the object when propagated
through a thickness h of silicon (refractive index = 3.44), plotted
in figure 2d using scalar diffraction theory [24] (see supplemen-
tary §7 for details). While agreement is imperfect (see below),
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Fig. 2. a, b, c: THz images of the cartwheel shown in inset of
Fig. 1 taken through 400, 110, 6µm thick silicon wafers respec-
tively. A close-up annotated version of part c can be found in the
supplementary information. Note, the cartwheels in a, b have
diameters larger than the field of view. The origin of the vertical
lines in a is discussed in supplementary info §8. d, e, f: Cal-
culated diffracted fields of a cartwheel as propagated through
400, 110, 6µm thick silicon, respectively. THz polarization is hori-
zontal in experiment.

we see similar blurring to the cartwheel edges, particularly for
the high spatial frequency components towards the centre of the
cartwheel, completely distorting the final image. If we reduce
the thickness of the photomodulator to 110 µm, we begin to re-
cover an image resembling a cartwheel (see figs. 2b and 2e), with
only the centre of the image distorted. Only when we reduce
the thickness of the modulator to 6 µm do we finally recover a
reasonably complete image of the cartwheel (see figs. 2c and 2d).
The overall trend here is clear: as the thickness of the modulator
is reduced, the images sharpen. Hence, due to the increasing
spatial frequency content of the cartwheel towrds its centre, we
can estimate our obtained resolution by evaluating the minimal
distance for which the cartwheel arms are distinguishable. This
leads to resolution estimates of 154 µm, 100 µm and 9 (±4) µm
for h = 400 µm, 110 µm and 6 µm, respectively.

We note that there are two main reasons for the discrepan-
cies between the left and right hand panels of Fig. 2. Firstly,

the polarisation of the THz field is important, while our scalar
diffraction calculations neglect this. This leads to the breaking of
rotational symmetry in the experimental images. Indeed, the ef-
fect of polarization can be observed explicitly when we vary the
orientation of certain objects (see supplementary §6). Secondly,
we must note that the optical pump light has a finite penetration
depth in silicon (11 µm for 800 nm [25]), which will influence
the diffracted field. This has two effects firstly the modulation
efficiency will decrease due to transmitted pump intensity be-
ing wasted. Conversely this finite penetration depth actually
decreases the effective thickness of the modulator increasing
resolution. We discuss these effects and the optimal selection
of the modulator thickness in the supplimentary information.
Further investigation with direct gap modulators is therefore
required in order to push the THz image resolution lower than
9 µm using this method.

4. MEASUREMENT REDUCTION

As with all near field imaging techniques, small signals go hand
in hand with long measurement times. However, as our imag-
ing approach does not rely on raster scanning, we can reduce
acquisition time by reducing the total number of independent
measurements. It should be noted that this is the first time un-
dersampling with near field radiation has been performed. In
this section, we investigate two strategies to reconstruct images
using undersampled sets of measurements: adaptive sampling
and compressed sensing.

Using adaptive sampling, we first measure a low resolution
image and then sample regions of interest with progressively
higher resolution. In short, identification of coarse edges from
this initial low resolution image determines where to sample
with higher resolution, thus reducing the total number of mea-
surements that are made [15]. Edge identification is achieved
via a single-tier 2D Haar wavelet decomposition of the low res-
olution image. The Haar wavelet transform is a hierarchical
structure that highlights the presence of edges at progressivley
finer scales: edge features yield large wavelet coefficients, while
more uniform areas yield low wavelet coefficients [26]. In our
experiment, after each higher resolution resampling phase, edge
detection is performed on the new image, and the process is
repeated until the required resolution is reached. The algorithm
is described in detail in supplementary § 9.

Compressed sensing is an alternative non-adaptive approach
which draws on assumptions that we can make about the object
to reduce the total number of measurements. This can include
knowledge of the basis in which the representation of the im-
age is sparse [14], or the basis in which the total variance or
curvature of the object is expected to be low. Such assumptions
typically hold for a wide variety of natural images, and com-
pressed sensing theory shows how it is then possible to recover
an image using fewer measurements than the number of pixels
in the image (i.e. A in eqn. 1 has fewer rows than columns) [14].
In this work we make the assumption that the total curvature
of the image will be low. We sample the object using a set of
random binary patterns, which are a chosen due to their high
degree of incoherence with respect to a wide range of basis rep-
resentations that are anticipated to be sparse. Non adaptive
compressed sensing has the advantage that masks can be de-
signed (and loaded onto a modulator) ahead of time rather than
in response to measurement, as is the case for adaptive sampling.

We also note that in both our adaptive and compressive sam-
pling strategies, we have applied regularization to combat noise
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in our measurements. This essentially allows the reconstruction
algorithm to permit solutions that deviate from the measure-
ments by an amount based on the estimated noise level, while
seeking to minimize the level of curvature in the reconstruction.
More details are given in Supplementary Information, alongside
unregularized images.

Figure 3 compares reconstructed images of a transmissive
object depicting two of Maxwell’s equations as the number of
measurements for both adaptive imaging and compressive sens-
ing are reduced. The main features of the object are clearly
recovered even when the number of samples is reduced to 35%
of the Nyquist limit. These images also display directional con-
trast modulation due to polarisation effects (see supplementary
§6). Comparing the two methods, we observe that adaptive
sampling marginally out performs compressed sensing, yielding
higher contrast features. Note that our aim is to demonstrate
the feasibility of these techniques rather than to optimise the
sampling and reconstruction algorithms to suit the object under
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400 m 400 m

400 m

400 m

 of measurements = 75%

 of measurements = 50%

 of measurements = 35%

400 m

400 m

2.52.01.51.00.50-0.5
Field amplitude (arb. units)

Fig. 3. Compressive 72 ⇥ 72 THz images of r · E = 0 and
r · B = 0 (see supplementary info for optical image) with de-
creasing number of measurements, where the top, middle and
bottom rows respectively use 75%, 50% and 35% measurements
as the number of pixels. Note, a full set of measurements would
take a total of 5 hours. Left column: adaptive sampling. Right
column: compressed sensing.

test and measurement conditions. We anticipate improvements
in image quality should one inject more prior knowledge.

CONCLUSIONS

In summary, we have demonstrated a sub-wavelength THz
imaging technique that is compatible with adaptive and com-
pressive sensing algorithms. We photoexcite a 6µm-thick silicon
wafer with a sequence of optical patterns to dynamically spa-
tially modulate an incident THz beam. By placing an object
at the exit interface of our wafer, we demonstrate imaging at
9 (±4) µm resolution and observe strong polarization effects at
the interface of a conductor. This is the first experimental demon-
stration, in any spectral regime, of under-sampled images at
highly sub-wavelength dimensions. We conclude by comparing
two strategies to reconstruct an image from an undersampled
set of measurements: adaptive sampling and compressed sens-
ing. Using our noisy THz source, we observe that adaptive
sampling provides higher fidelity images than compressed sens-
ing. The imaging rate and performance of these reconstruction
algorithms will be significantly improved by reducing the level
of THz source noise, which is the subject of ongoing efforts. We
also note that there are a wide variety of algorithms available for
both adaptive sampling [15, 16] and compressive sensing [14, 17],
which are optimized for particular performance characteristics
such as reconstruction speed or quality.
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SUPPLEMENTARY INFORMATION

5. A FEW EXPERIMENTAL DETAILS

For generation and detection of THz radiation we use a typical
THz time domain spectrometer [1]s. The spectrometer is pow-
ered by 90 f s, 800 nm pulses emanating from a Ti:Sapphire regen
amplified laser system running at a 1 kHz repetition rate. This
train of pulses is split into three beams: generation, detection
and modulation. The first beam generates our THz radiation via
optical rectification in a ZnTe crystal [2]s. We use 90� off-axis
parabolic mirrors to collect and focus the THz onto a sample and
then again onto a detector. The second detection beam measures
our THz waveform via electro-optic sampling in another ZnTe
crystal [3]s. In short, by temporally overlapping the picosecond
THz and femtosecond optical pulses one can discretely sample
the temporal THz profile. In Fig. 4a we show our THz transient
and detection pulse envelope. For all results in the main paper
we measured the peak of our THz pulse as our detector readout,
shown my black arrow in Fig. 4a. This gives a spectrally aver-
aged measurement. The inset shows the frequency spectrum of
our pulse. Our central wavelength is 400 µm. The third beam
is used to spatially modulate a THz pulse. This is achieved by
first patterning the optical pump pulse, via a digital micromirror
device, followed by a lens, in order to project a binary inten-
sity pattern onto a silicon wafer. The photo-excitation of charge
carriers increases the plasma frequency of the material to a re-
gion well above THz frequencies, thus rendering the material a
conductor [4]s. Further, by temporal synchronization of all the
pulses, we pass the THz a few picoseconds after photoexcitation.
This minimizes carrier diffusion and hence transfers the optical
pump pattern to the THz pulse without spatial blurring. Further
details can be found in supplementary information of ref. [5]s.
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Fig. 4. Blue: THz transient detected by our system. Measure-
ment arrow indicates the temporal point we sample for our
individual mask measurements. Red: envelope of the optical
probe pulse used to detect the THz transient. Inset shows the
Fourier spectrum of our pulse, central frequency is 0.75THz and
full-width-half-maximum is 1.4THz.

A. Optimal Thickness of the Modulator
The optimal thickness of the modulator depends on two major
factors the modulation efficiency of the photo-modulator and

the effective minimum size of the pattern at the sample plane.

Fig. 5. a. Absorbtion as a function of distance into the mod-
ulator. In order to minimize Fabry Perot interference fringes
the average absorbtion over the range (780-830nm) is calculated.
b. The refractive index as a function of depth into the photo-
modulator calculated using a Drude model the oscillations come
from residual Fabry Perot effects.

The refractive index of the photo-excited silicon, which de-
termines the modulation efficiency, depends on the absorbtion
of pump photons into the modulator. Figure 5a. shows the ab-
sorbtion as a function of modulator thickness calculated using
the transfer matrix method [6]s assuming a refractive index at
800nm of 3.6941+0.0065435i. Figure 5b. shows the correspond-
ing refractive index (atw = 1THz) calculated using a Drude
model

nsilicon =

s

e• �
w2

p

w ⇤ (w + ig)
(2)

where wp =
q

nelectrone2

e0m? ,m? = 0.26 ⇤ m0 is the electron mass and
g = 3THz is the scattering rate. The number of electrons is
calculated from the absorbtion model via

nelectron =
f ⇤ A

Epump ⇤ t
(3)

where f is the incident fluence, A is the absorption, t is the
thickness of the layer and Epump is the energy of an 800nm
photon.

We divide the photomodulator into 40 layers with refractive
index as shown in 5b and calculate the THz transmission at
1THz for modulators with increasing numbers of layers included.
The results are shown in 6 where it can be seen that the THz
transmission is independent of thickness above ⇡ 5µm.

The other consideration is the effect of diffraction away from
our photoexcited aperture, assuming a size for the aperture of
a = 6µm (the size of the image of the DMD mirrors assuming
perfect imaging) the field in the sample plane x0 can be written
as

Z a/2

�a/2

exp�ik
p

t2+(x0�x)
p

t2 + (x0 � x)
dx (4)

where t is the thickness of the modulator, x is distance in the
aperture plane and k = 2plTHzn. The FWHM of the field in
the sample plane is characteristic of the resolution. Note we
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use field here as this is the measured quantity in experiment.
The FWHM is shown in figure 6 it should be noted that the
size of the diffracted aperture for our choice of modulator is
⇡ 20µm a factor of two larger the achieved imaging resolution
of 9µm. This can be explained by consideration of the thickness
of the photo-modulated region as seen in figure 5 where for
the thinnest samples the photo-modulation extends all the way
through the sample giving an effective thickness much smaller
than calculated.

Fig. 6. Comparison of the two most important quantities in
determining the optimal size of the photo-modulator. (blue)
THz transmission through photo-excited silicon showing that
below 10 µm ⇡ the photo-modulator begins to block less THz.

6. POLARIZATION

In Fig. 2c we observe an apparently lower resolution (nominally
51 µm as opposed to 9 µm) depending on which cartwheel arms
one evaluates. This effect arises from polarization boundary
conditions at the interface of a conductor. Namely, the electric-
field component parallel to the to interface of a conductor must
vanish. Thus, if our incident THz field is polarized parallel to
two metallic edges which are separated by less than half wave-
length in the material, one can expect a reduced transmission.
This leads to a superficial increase in the observed resolution for
regions where this boundary condition is satisfied. This polar-
ization effect can also be seen when imaging the del operator in
the Maxwell equations of Figure 3. With two perpendicular po-
larizations in Figs. 2e and 2f: the sides of the triangle which are
perpendicular to the polarization show the largest transmission.

7. SCALAR DIFFRACTION THEORY

The Rayleigh resolution criterion is defined as when the first
diffraction minimum of a source coincides with the maximum
of another source. We use this to estimate the resolution of
our imaging system. Using scalar diffraction theory [7]s, we
calculate the diffraction pattern, at the exit interfaces of our
silicon photomodulators, for two parallel slits with variable
separation.

In ref. [7]s, by assuming that all scatterers, sources and
diffracting apertures are located in negative z-space, Kowarz
obtains a solution to the 2D Helmholtz equation for positive
z-space. His solution for the electric field U(x, z) is the sum of
two parts, a homogeneous propagating field Uh(x, z) and an
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Fig. 7. Annotated graph of part of fig. 2c. The electric field
is polarized horizontally. There are two resolvable distances
depending on which cartwheel arms one evaluates. These have
both been indicated on the graph.
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Fig. 8. a, b: THz images of a sub-wavelength triangle manufac-
tured on 6µm thick Si wafer with near horizontal and vertical
polarization, respectively.

evanescent field Ui(x, z):

Uh(x, z) =
Z

|ux |1
A(ux)eikux xeikz

p
1�u2

x dux, (5)

Ui(x, z) =
Z

|ux |�1
A(ux)eikux xe�kz

p
u2

x�1dux, (6)

where ux is the free space wavenumber, k is the free space
wavenumber in x and A(ux) is a spectral amplitude function
that is the Fourier transform of the scatterer’s field distribution
in the plane z = 0, ie.

A(ux) =
k

2p

Z •

�•
U(x, 0)e�ikux xdx. (7)

Now we can obtain intensity distribution, defined as I(x, z) ⌘
|U(x, z)|2 = |Uh(x, z) + Ui(x, z)|2, for any field distribution
|U(x, 0)|. Furthermore, in experiment we have multiple fre-
quencies. To to account for this, we sum the diffracted fields
for all our frequencies, where each frequency component has
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an input amplitude given by our pulse spectrum (fig. 4) and a
silicon equivalent wavelength. Finally, we extend this theory to
two dimensions by considering the 2D Fourier transform of eq.
7 and adding an extra integral over uy

1 in eqs. 5 & 6.

8. ORIGIN OF VERTICAL LINES IN FIG 2A

We begin with an empirical observation of how to eradicate
the vertical lines: moving the silicon wafer out our lens focus
increases the amplitude of the vertical lines. This effect is shown
for a 6µm thick Si photomodulator in Fig. 6. Here, strong vertical
lines appear as one of moves out of focus. The lower panels in
fig. 6 show the first 350 measurements of the corresponding
image above. It can be seen that the out of focus image contains
periodically occurring masks with abnormally high values. We
now proceed to explain these observations.

Consider imaging a perfectly homogeneous field with
Hadamard multiplexing 2. The first mask has values of +1 ev-
erywhere, ie. every pixel is turned on. Therefore this mask
will measure to the total field transmitted through our object.
However, every other mask will contain equal numbers of +1s
as -1s 3. For a homogeneous field, these masks are expected to
have a detector readout of zero. However, imperfect projection
using our +5cm imaging lens will lead to some +ve and �ve
mask pairs which are not perfect inverses of each other. As such,
these mask pairs will give rise to a reading on the detector. The
strength of the signal for any particular mask pair will depend
on their degree of cancellation: the further one lies from the
image plane of the lens, the less perfect will be the cancellation.
Hence, this explains why the image artefacts that appear in the
out of focus image have the largest values. Finally, we believe
these signal artefacts occur in a periodic manner due to the Paley
type-I Hadamard sampling matrix, namely that it is constructed
from a cyclical permutation.

Fig. 9. Left to right; THz images of the cartwheel as the silicon
wafer is moved out of the focus of our projection lens. Top row
are the images with the corresponding Hadamard signals below.
Semi-focus (Out of focus) is defined as when the object is moved
by ⇠30(60)µm out of the focal plane.

1Note the square root terms become
q

1 � u2
x � u2

y and there is an extra eikuy y

term.
2The same method that was used to obtain the images in Figs. 2b-f
3As mentioned in the main text, to achieve this desired encoding scheme we

use a Lock-In amplifier to record the difference in THz transmissions of a mask
and its complimentary inverse.

9. ADAPTIVE SAMPLING METHODS

We follow an adaptive approach similar to that described in [15].
As described in the main text, we first measure a low resolution
image (Ii) consisting of Ni ⇥ Ni pixels, where i is the tier number.
i = 1 in the first case. This image is measured using a full
set of Hadamard projections (Sylvester construction), and the
reconstruction is the weighted sum of the Hadamard patterns,
each weighted by its measured level of correlation with the
object. Next we perform a single tier Haar Wavelet transform
on I1. In general the single tier Haar wavelet transform Ti is
calculated as follows, where T0

i is the partial Haar transform
calculated as an intermediate step.

T0
i (x, y) = Ii(2x, y) + Ii(2x + 1, y) (8)

T0
i (x + Ni/2, y) = Ii(2x, y)� Ii(2x + 1, y) (9)

Ti(x, y) = T0
i (x, 2y) + T0

i (x, 2y + 1) (10)

Ti(x, y + Ni/2) = T0
i (x, 2y)� T0

i (x, 2y + 1) (11)

Here x and y are Cartesian coordinates defining pixel locations.
Eqns. 8 to 11 essentially calculate the sum and differences be-
tween adjacent rows and columns of pixels. Ti consist of 4
quadrants (here referred to as Q1-Q4). Q1 is a downscaled ver-
sion of the original image, with the linear resolution reduced
by a factor of two. Q2-Q4 represent images of the object at the
same resolution as Q1, with vertical, horizontal and diagonal
edges highlighted respectively, at the scale of the pixels sizes in
the original low resolution image. We now use the identifica-
tion of edges highlighted in Ti to guide where to make further
measurements at higher resolution. We form image Iedge, which
combines the highlighted edge information present in images
Q2-Q4. Iedge is formed by calculating the pixel-by-pixel quadra-
ture sum of Q2, Q3 and Q4 to create the image:

Iedge(x, y) =

2

4
j=4

Â
j=2

Qj2(x, y)

3

5

1
2

(12)

We now create an image mask by binarising Iedge based on either
a threshold value or by setting a required percantage of pixels to
image at higher resolution. This mask denotes the regions with
the highest wavelet coefficients and so defines where the object
will be sampled at the next phase.

The next tier of imaging is performed by making a series of
Hadamard projection measurements using a fully sampled set of
patterns confined to the regions defined by the mask. Here the
commonly used Sylvester Hadamard construction is no longer
optimal, as the number of patterns (and therefore pixels) in the
Sylvester Hadamard sets are confined to 2k, where k is a non-
negative integer, while the number of pixels within the next
phase is unlikely to equal 2k. Therefore we now use the Paley
type-I Hadamard construction, which is of more flexible scale,
since it can possess a number of patterns equal to p + 1, where
p is a Prime number that is congruent to 3 (mod 4). Therefore
we create the smallest Paley type-I Hadamard matrix which can
be used to critically or slightly oversample the target area of the
object defined by the mask, at twice the resolution of the initial
low resolution initial image I1. The fully sampled higher reso-
lution image of the masked regions is once again reconstructed
from a weighted sum of the Paley Type-I Hadamard patterns,
each weighted by its measured correlation with the object.

Finally, image I1 is upscaled by a factor of 2, and updated to
I2 by either replacing those parts of I1 with the higher resolution
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information, or to make the best use of all measurements, we can
combine both low and high resolution measurements by repre-
senting all our measurements as a matrix equation as shown in
Eqn. 1, and solving for the image. In the second case, the newly
imaged areas are now oversampled, and so a least squares fit
provides a level of noise suppression. In the regions that have
not been resampled at higher resolution we keep our initial low
resolution measurements with uniform intensity across each
larger scale pixel.

Once I2 is obtained, it is used as the input for the single tier
Haar wavelet transform and the process is repeated at increasing
resolutions. Evidently, as the algorithm progresses, the selec-
tion of new regions to image at higher resolutions is likely to
be made inside regions that were imaged in the previous phase.
This represents the truncation of the Wavelet tree, which is fol-
lowing the assumption that high values of wavelet coefficients
at coarse scales are highly correlated with high values at finer
scales. This is a reasonable assumption which can be understood
by considering that sharp edges are represented by Fourier com-
ponents across a wide range of frequencies. Figure 10 (left hand
side) shows the resulting image reconstructions prior to regular-
isation. More details of the regularization procedure are given
below.

10. COMPRESSIVE SENSING METHODS

As mentioned in the main paper, if we have performed M mea-
surements for an N-pixel image, then A is an M by N matrix, y
is an M sized vector of our measurements and x is our N-pixel
image that is to be reconstructed. Unfortunately, A is no longer
invertible and there exist an infinite number of solutions that sat-
isfy these constraints. Obtaining the physically relevant solution
is therefore the challenge in this type of reconstruction.

A. L1 minimization
In addition to the compressive reconstruction presented in Fig. 3
(right hand side) in the main paper, in this section we also show a
reconstruction from the same measurements but this time based
on L1 minimization. This form of reconstruction relies on the
assumption that we know in advance that our solution will be
sparse when transformed into a known basis representation (for
example the Fourier transform or Wavelet transform of many
natural images is sparse). Therefore we search for a solution
that satisfys such a sparsity criterion. A vector is considered k-
sparse if it has k non-zero components. The number of non-zero
components are measured with a L0 norm, defined as:

||x||0 := #{i : xi 6= 0}. (13)

However, minimizing the L0 norm is an NP-hard problem [8]s.
Fortunately it has been shown that a successful approach [14] is
to find a solution that minimizes the L1-norm, which is given by
the sum over the all of the components in x. This is an attractive
option as minimization of the L1-norm is not an NP-hard prob-
lem and so is considerably less computationally intensive than
finding the L0 norm. Therefore when representing x in the basis
in which we assume it will be sparse, the problem becomes;

min ||x||1 subject to y = Ax. (14)

Figure 10 (right-hand side) gives an example of this approach. It
was obtained by solving Eq. (14) via the L1-magic package [9]s,
under the assumption that the solution would be sparse in the
Fourier basis.

B. Minimum curvature regularization
Regularization is a general term to describe the process of solv-
ing an under-constrained problem by injecting additional infor-
mation or assumptions. The adaptive and compressed sensing
images shown in Fig. 3 were all reconstructed using a regular-
izer that sought to minimize the curvature in the image (i.e. the
second spatial derivative of the image pixel intensities), while
simultaneously permitting the solution to deviate from that aris-
ing from the measurements alone by an amount based on the
estimated levels of noise. Analagously to above, the problem
can be expressed as

min ||C|| subject to
c2

N
 1, (15)

where the C is a cost function given by

C =
c2

N
+ lR(p). (16)

 Adaptive imaging Compressed sensing
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Fig. 10. Compressive 72 ⇥ 72 THz images of r · E = 0 and
r · B = 0 with decreasing number of measurements, where the
top, middle and bottom rows respectively use 75%, 50% and 35%
measurements as the number of pixels. Left column: adaptive
sampling. Right column: compressed sensing.
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C is the sum of two components: the first term (c2/N) specifies
the ratio of the size of the discrepancy between the measured sig-
nals (ym) and the predicted signals in the current reconstruction
estimate (yp), and the estimated level of noise in the measure-
ments (s). Ensuring this is less than 1 stops the image estimate
from diverging too far from the measurements. Here c2 is given
by

c2 =
N

Â
i=1

" �
ymi � ypi

�2

s2

#
, (17)

where N is the total number of measurements and s is the es-
timate of the standard deviation of these noise in the measure-
ments.

The second term in Eqn. 16 (lR(p)) specifies the level of total
curvature squared in the reconstruction estimate. Taking the
square of the image curvature better ensures a differentiable cost
function suited to gradient descent based optimisation. Here
R(p) is given by

R(p) =

2

4
n

Â
j=0

 �����
∂2 pj

∂x2

�����+

�����
∂2 pj

∂y2

�����

!3

5
2

, (18)

where n is the total number of pixels in the reconstruction, and
pj is the intensity of pixel of index j. l is an autoselected scalar
that weights the importance of the first and second terms in
Eqn. 16. l is itself optimised to search for the solution for which
c2/N = 1. Our regularizer searches the parameter space using
a gradient descent algorithm interjected with random moves to
attempt to climb out of local minima.

The choice between total variation minimization or total cur-
vature minimization is dependent upon which assumption best
suits our expectation of the qualities of the object (i.e. do we
expect the image of the object to have a low total variation or a
low total curvature). In our present case, observing our binary
objects, a low total variation in the image, or a low total curva-
ture are both good assumptions about what the object is like,
and so it is not critical which assumption we use.

11. SNR OF RECONSTRUCTED IMAGES

In correlation based imaging techniques, such as both of the
methods we demonstrate in this work, there are two main
sources of noise which govern what types of pattern should
be used: illumination fluctuations and detector noise. We have
previously performed a comparison of the imaging performance
of our system using a raster scan set of patterns vs a fully sam-
pled Hadamard set, showing that we are in the detector noise
dominated regime (see ref [21]). If the system is dominated by
detector noise, as in our case, then it is advantageous to send
as much light as possible to the detector for each measurement.
Therefore we use patterns which are each 50% transmissive
(such as the Hadamard basis). However, there is no free lunch
and so this choice of patterns also comes with a different draw-
back – the reconstruction is now more sensitive to illumination
fluctuations than a simple raster scan. We also note that in our
reconstruction we combat this noise using a regularization algo-
rithm to improve the quality of our images, as described in the
supplementary information.

There are a variety of methods to calculate SNR for images,
depending upon the type of scene, the level of the background,
and whether one has knowledge of the object or scene that is
being imaged for comparison. Here the objects are known to be
binary and the background of the reconstructions is near zero.

Therefore we follow the method used in [10]s and choose two
regions of the image, one representing an area we know to be a
feature, and one representing an area we know to be background.
We now calculate SNR according to:

SNR =
µ(feature)

s(background)
(19)

where µ is the mean pixel intensity, and s is the standard devia-
tion of the pixel intensity within the selected regions. Figure ??
shows the location of these regions on each image.
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Fig. 11. Optical image of the object (Maxwell’s equations) im-
aged in fig. 3. Note, this was taken in a transmission microscope
hence red is the ultra-thin silicon and black is the gold.


