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Understanding animal social structure: exponential random graph models in 1 

animal behaviour research 2 

 3 

Abstract 4 

The social environment is a pervasive influence on the ecological and evolutionary dynamics 5 

of animal populations. Recently, social network analysis has provided an increasingly 6 

powerful and diverse toolset to enable animal behaviour researchers to quantify the social 7 

environment of animals and the impact that it has on ecological and evolutionary processes. 8 

However, there is considerable scope for improving these methods further. We outline an 9 

approach specifically designed to model the formation of network links, exponential random 10 

graph models (ERGMs), which have great potential for modelling animal social structure. 11 

ERGMs are generative models that treat network topology as a response variable. This 12 

makes them ideal for answering questions related directly to how and why social 13 

associations or interactions occur, from the modelling of population-level transmission, 14 

through within-group behavioural dynamics to social evolutionary processes. We discuss 15 

how ERGMs have been used to study animal behaviour previously, and how recent 16 

developments in the ERGM framework can increase the scope of their use further. We also 17 

highlight the strengths and weaknesses of this approach relative to more conventional 18 

methods, and provide some guidance on the situations and research areas in which they can 19 

be used appropriately. ERGMs have the potential to be an important part of an animal 20 

behaviour researcher’s toolkit and fully integrating them into the field should enhance our 21 

ability to understand what shapes animal social interactions, and identify the underlying 22 

processes that lead to the social structure of animal populations. 23 
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 26 

Introduction 27 

Most animals engage in interactions with conspecifics, and these interactions form 28 

the social environment that is fundamental to ecological and evolutionary processes 29 

operating within these populations (Krause et al., 2014; Kurvers et al., 2014; Pinter-Wollman 30 

et al., 2013). For example, social interactions influence an animal’s risk of infection (Silk et 31 

al., 2017a; White et al., 2015), modulate the collective behaviour of groups (Bode et al., 32 

2011; Farine, et al. 2016; Rosenthal et al. 2015; Strandburg-Peshkin et al. 2013; Sueur et al., 33 

2011), and may form an axis of individual personalities (Aplin et al., 2013; Croft et al., 2009; 34 

Wilson et al., 2013). These interactions are often complex, varying over space and time, 35 

being comprised of behaviours ranging from affiliative to agonistic, and showing 36 

considerable variation among individuals (Croft et al. 2008).  37 

Quantifying a complex social environment can represent a challenge, but can be 38 

achieved through the suite of tools available in social network analysis. A network approach 39 

is useful as social relationships are an emergent property of the interactions of multiple 40 

individuals, and there is increasing evidence that indirect connections among individuals 41 

within animal populations are important (Brent, 2015). In the last decade social network 42 

analysis, originally developed in the social and physical sciences, has become a pervasive 43 

tool in the study of animal behaviour (Krause et al., 2014; Pinter-Wollman et al., 2013). As 44 

well as directly modelling social relationships, it can be integral to understanding other 45 

behaviour in the context of its social environment. For instance, networks have been used in 46 
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the study of the social and spatial components of dispersal behaviours (Blumstein et al., 47 

2009; Fletcher et al., 2011). 48 

 The statistical analysis of social networks is complicated by the non-independence of 49 

individuals within a population that results from linking individuals together within a 50 

network (Croft et al., 2011; Farine & Whitehead, 2015). This confounds the use of the 51 

conventional statistical approaches used in ecology such as the linear model and linear 52 

mixed model, as these methods assume independence of the residuals, which is an invalid 53 

assumption for individuals that are linked in a network. In light of this, numerous statistical 54 

methodologies have been developed to analyse social network structure. Typically, the 55 

analysis of animal social networks has revolved around randomisation-based approaches to 56 

significance testing (Croft et al., 2011; Farine & Whitehead, 2015). The data used to 57 

construct networks is permuted to generate uncertainty around the null hypothesis (e.g. 58 

social interactions are assorted by a phenotype of interest), with permutations typically 59 

constrained to produce biologically plausible null models. For example, if researchers are 60 

studying how body size relates to social network connections in a population spread over 61 

several sites, they would randomise interactions with respect to body size, but constrain the 62 

randomised network connections according to the site use of that individual.  63 

Randomisation-based analyses have many strengths, especially in animal social 64 

network studies in which complex sampling issues often have to be controlled for (Farine & 65 

Whitehead, 2015). However, using this approach controls for, rather than models, the 66 

biological processes, such as site use, that generate network structure. Often these 67 

processes can be directly of interest, yet treating them as a nuisance factor prevents us 68 

from more fully understanding the role they play in shaping animal social systems. 69 

Furthermore, randomisation-based approaches generate uncertainty around the null 70 
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hypothesis, rather than the observations, yet it is the observations that truly are observed 71 

with error. Finally, null models are often user-defined and system-specific as the validity of 72 

the comparison is sensitive to the way in which null models are constructed. As a result, it is 73 

not always the best option available.  74 

There are also several social network modelling frameworks developed within the 75 

social sciences, some of which are now increasingly being employed in studies of animal 76 

social networks. Many of these modelling frameworks are designed specifically to analyse 77 

network data, and so have no requirement for independence. Further, some are generative 78 

models, with the underlying processes that govern interactions explicitly modelled, with the 79 

local network topology as a response variable (Cranmer et al., 2016; Silk et al., 2017b). This 80 

is extremely useful for researchers specifically aiming to explain the social interactions that 81 

occur among individuals, and the observed structure of the entire network, a very common 82 

topic of research in animal behaviour (e.g. Best et al., 2014; Carter et al., 2013; VanderWaal 83 

et al., 2014). However, the general applicability of these approaches to the study of animal 84 

social behaviour has not yet been discussed or assessed. 85 

 In this article we review the use of one of the more highly developed and flexible of 86 

these statistical network approaches, exponential random graph models (ERGMs) (Lusher et 87 

al., 2013; Robins et al., 2007). We start by providing a basic verbal description of the 88 

modelling approach, illustrating some of the key aspects of model fitting with a toy 89 

example. We then describe the previous uses of these models in the study of animal social 90 

behaviour, before going on to discuss its strengths and weaknesses as a method to model 91 

animal social networks and how these models can be extended to understand more 92 

complex network datasets that are increasingly used to study animal behaviour (temporally 93 

dynamic, bipartite and multilayer networks). Finally, we set an agenda for future research: 94 
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highlighting the importance of both simulation modelling studies to better understand when 95 

ERGMs may represent an appropriate tool, and determining research areas that this method 96 

is best suited to. Our aim is not to displace the use of randomisation-based approaches, but 97 

to describe an alternative tool that can be applied in many situations. This will give animal 98 

behaviour researchers a wider array of options than are currently in use. 99 

 100 

Model description 101 

ERGMs are models of network topology that enable hypotheses about the processes driving 102 

local network structure and edge formation to be tested (Lusher et al., 2013; Robins et al., 103 

2007). They model potential edges between individuals as stochastic variables within an 104 

adjacency matrix. The response variable is the probability of matching the observed 105 

network, with the explanatory variables representing various possible structural features of 106 

the network. They fit broadly within the same exponential family of statistical models as 107 

conventional linear and generalised linear modelling approaches. A mathematical 108 

representation of the model is: 109 

 110 

𝑃(𝑁) = 𝑐𝑒θ1𝑧1(N)+ θ22𝑧2(N)+⋯.+ θ𝑛zn𝑧𝑛(N)                                     111 

 112 

Where P(N) is the probability of a given network and each z is a different network statistic or 113 

property of the network. The effect of each z is weighted by a parameter (θ) in a similar 114 

manner to a generalised linear model. In this equation c is a normalising constant. 115 

 116 

Note that this is for a single network; ERGMs were originally developed for the analysis of 117 

static networks, although recent developments have made the analysis of dynamic 118 
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networks possible (see below). Initially, potential edges (regardless of whether they exist or 119 

not) could only be modelled as binary (present or absent), however recent generalisations 120 

of the ERGM framework now enable models of weighted edges (Desmarais & Cranmer, 121 

2012; Krivitsky, 2012; Wilson et al., 2017). These models for weighted edges are likely to 122 

often be preferred, as edge weights carry a majority of the information on social structure in 123 

many animal networks, and filtering networks by threshold edge weights can affect analysis 124 

(Franks et al. 2010, Farine 2014). Alternatively, researchers can capture repeated 125 

interactions through temporal ERGMs, where the change in the network strucutre over time 126 

is considered. We discuss these two extensions (and others) of the basic ERGM below.  127 

Ultimately, the decision on whether to use binary or weighted, static or temporal networks 128 

will be question, and to some extent data, driven (Carter et al. 2015). 129 

Network edges are modelled in response to attributes of the nodes that they 130 

connect, and the value of other edges within the network. The latter possibility means that 131 

the ERGM framework accounts for the fact that edge values can be dependent on the values 132 

of neighbouring edges or some other aspect of network topology, making the network 133 

structure locally emergent and therefore directly dealing with non-independence related to 134 

this (Lusher et al., 2013). Crucially, unlike randomisation-based methods, this approach 135 

directly models the behaviours that lead to social associations or interactions, and so social 136 

network structure. 137 

 A guide to the types of term that can be included within ERGMs is provided in Figure 138 

1. From a practical perspective terms fit into three broad categories: a) node-based 139 

covariates, b) dyadic covariates and c) structural covariates.  140 

a) Node-based covariates explain differences in edge values as outcomes of the 141 

attributes of the nodes themselves. Taking the case of sex-related differences, 142 



7 
 

for example, node-based covariates could be used to model which sex formed 143 

more (or stronger) edges, and additionally whether intra-sex edges were more 144 

likely than inter-sex ones (i.e. males tending to interact with other males, and 145 

females with females). Node-based covariates for continuous traits can also 146 

include a difference term, for example: are edges more likely when the attributes 147 

of two individuals are more similar? This might be expected in situations such as 148 

dominance hierarchies where interactions are more likely if two individuals are 149 

more closely matched (e.g. Dey & Quinn, 2014). 150 

b) Dyadic covariates model how other relationships among individuals in a network 151 

affect edge values. For example, with animal social networks, where space use is 152 

often an important component of social structure, a matrix of the distances 153 

between individual home ranges or refuges might be a valuable dyadic covariate. 154 

Another example might be genetic relatedness, if social relationships within a 155 

group are thought to be influenced by kinship (e.g. Carter et al., 2013; Godde, et 156 

al., 2015; Wolf et al., 2007). 157 

c) Structural covariates are aspects of network topology that might be expected to 158 

affect edge formation, and can occur at several levels of complexity (Fig. 1). The 159 

most basic structural term would be a measure of edge density, somewhat 160 

equivalent to having an intercept within a generalised linear model. This models 161 

the general tendency for individuals to be connected to other individuals, and is 162 

typically negative in social networks as individuals tend not to be connected to all 163 

other individuals. Increasingly complex structural terms can be incorporated, and 164 

these define the dependency structure used within the model to understand 165 

how the presence/absence of edges influences the presence/absence of nearby 166 
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edges. For example, this might include configurations of multiple edges from a 167 

node, or measures of transitivity. The former consists of “k-star” terms which 168 

estimate the frequency of edge configurations from a node with k completed 169 

edges (e.g. 3-star measures the frequency of three completed edges connected 170 

to a node). Measures of transitivity model how the likelihood or value of an edge 171 

between i and j changes if both i and j are also already connected to k (a 172 

consideration of “friends-of-friends” effects). For directed networks these 173 

dependencies can include directionality as well, for example, reciprocity might be 174 

hypothesised to be a strong underlying process driving network structure in 175 

some social systems. Similarly, edges completing triads can be either transitive 176 

(ij, ik and jk) or cyclical (ij, jk and ki), and these different properties 177 

might be integral to the structure of some networks, such as linear dominance 178 

hierarchies where cyclical triads would be expected to be much less common 179 

than otherwise expected (Shizuka & McDonald, 2012). 180 

The distinction between node-based and dyadic covariates is somewhat artificial, and in 181 

some cases, a variable could be intuitively considered as either. For example, if individuals 182 

more similar in size are expected to interact more, one could fit difference in size as a node-183 

based covariate or include it directly as a difference matrix. Our recommendation here is 184 

that dyadic covariates should be used when the variable only exists as a function of the two 185 

individuals (e.g. their genetic relatedness), while individual covariates should be used when 186 

the variable can be considered a trait of that individual alone (as for the example with size). 187 

Model fitting and selection differs somewhat from the fitting of generalised linear 188 

models. Full models are typically built up in a stepwise manner from simple models 189 

consisting of structural terms, through to the final models designed to test the hypotheses 190 
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of interest. This is because some more complex models may not be able to be estimated 191 

due to combinations of parameters leading to degeneracy (the model placing most of the 192 

probability on only a few of the complete set of possible networks, often those that are 193 

either completely devoid of edges or completely connected). At each stage, parameter 194 

fitting is achieved by simulating networks and comparing them with the observed network. 195 

Parameter estimation requires the use of Markov Chain Monte Carlo (MCMC). From an 196 

initial starting graph an edge is added or removed at random (in the case of binary ERGMs). 197 

If the new configuration of the graph is closer to the observed data then the new graph is 198 

taken as the next graph in the sequence, and if it is not then it is only taken as the next 199 

graph in the sequence with a low, fixed probability. The MCMC chain is considered to have 200 

converged when it has settled into a pattern centred around a particular combination of 201 

parameter values. This maximum likelihood estimation of each parameter is calculated by 202 

generating values for all parameters that centre the distribution of each parameter fitted on 203 

the observed network data (Lusher et al., 2013). Parameter estimation is conditionally-204 

dependent on other covariates included in the model (Lusher et al., 2013). This allows one 205 

to assess the importance of particular variables (e.g. the tendency for reciprocity) while 206 

accounting for other variables (e.g. shared space use). Estimated values for parameters 207 

provide an indication of likelihood of that network configuration, given the other effects in 208 

the model (Lusher et al. 2013). 209 

Once each model has converged, then goodness-of-fit can be assessed by comparing 210 

measures calculated from networks simulated using the fitted model with equivalent 211 

measures from the observed network (Lusher et al., 2013). This typically involves measures 212 

such as the degree distribution (a frequency distribution of the number of connections that 213 

individuals possess), geodesic distances (the length of paths through the network that link 214 
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individuals) and triad censuses (the frequency of triads – groups of three individuals -  with 215 

0, 1, 2 and 3 completed edges). However, any combination of network measures can be 216 

used as long as they haven’t been fitted in the model, preferably either those that provide a 217 

good general measure of network structure (such as the three default goodness-of-fit tests 218 

detailed above), or measures chosen specifically to capture features of interest to the 219 

researcher. As more complicated models are fitted it is important to check that goodness-220 

of-fit improves. Terms that worsen the goodness-of-fit should not be retained, although 221 

terms that do not greatly influence goodness-of-fit either way may be retained if they are 222 

relevant to particular hypotheses. More formal testing of hypotheses can also be 223 

conducted. For example, it is possible to perform backwards stepwise deletion to choose a 224 

final model once the full model has been constructed (e.g. Snijders et al., 2006), using 225 

approximate Wald tests to indicate whether particular terms in the model are statistically 226 

significant (Lusher et al. 2013). In addition, it is possible to compare fitted models with 227 

Aikaike information criteria (AIC) or Bayesian information criteria (BIC) to allow the most 228 

parsimonious model to be selected. This could allow the comparison of multiple competing 229 

models (assuming convergence) that test different combinations of hypotheses, in a process 230 

akin to multimodel inference. It is also possible to use methods of Bayesian model selection 231 

such as reversible jump MCMC (Caimo & Friel 2013). 232 

 ERGMs can be implemented within R (R Development Core Team, 2017) and in the 233 

standalone java based software PNet (Wang et al., 2009). In R there are number of packages 234 

within the statnet (Handcock et al., 2008) and xergm (Leifeld et al., 2016) suites of packages 235 

that enable the fitting of ERGMs (see Table 1). Basic ERGMs, including for bipartite 236 

networks, can be fitted using the package ergm (Handcock et al., 2015; Hunter et al., 2008). 237 

We provide an example demonstrating the model output, convergence diagnostics and 238 
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goodness-of-fit tests of basic ERGM fitted to a toy dataset in Figure 2 (network depicted in 239 

Fig. 2a). In this example, there is homophily according to the “colour” of individuals (red or 240 

blue), and a continuous effect of a “size” variable (indicated by the white node labels) on 241 

the likelihood to form connections (Fig. 2b). Model estimates in binary ERGMs are 242 

conditional log-odds estimates. In our example model the (intercept) log-odds estimate for 243 

an edge existing is approximately -2.14. However, for every increase in size by unit 1 this 244 

increases by ≈0.16, and if the edge links to individuals of the same colour this increases by 245 

≈0.94 (with minimal difference for red-red and blue-blue). Trace plots of each Markov chain 246 

and density plots for each variable (normal distributions centred on the estimate) show that 247 

this basic model converges (Fig. 2c), while the goodness-of-fit plots show that it matches the 248 

observed data well, although is unable to replicate a high frequency of individuals with a 249 

degree of 10 (Fig. 2d). The R code for this example is provided in the supplementary 250 

information. The package ergm.count (Krivitsky, 2015) permits the fitting of ERGMs to 251 

weighted networks, in which edge weights are integer count values. Additionally, a recent 252 

development has been the extension of ERGM fitting to all weighted networks with the 253 

package GERGM (Denny et al., 2016). In these models edge weights are converted to a value 254 

between zero and one through a number of user-selected functions. A further extension to 255 

the ERGM framework is the fitting of hierarchical ERGMs, that enable the incorporation of 256 

local rather than global dependency structures, in the package hergm (Schweinberger et al., 257 

2016). Finally, it is also possible to fit ERGMs to temporally dynamic networks in R, either 258 

using the package tergm (Krivitsky & Handcock, 2016) or btergm (Leifeld et al., 2016). These 259 

allow the ERGM framework to be used to model longitudinal network data arranged as a set 260 

of network snapshots (from a single point in time) or aggregated static networks (a static 261 

depiction of interactions over a predefined time interval).  262 
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 263 

How have exponential random graph models been used before? 264 

 ERGMs have been used previously to answer diverse questions related to animal 265 

social behaviour. Ilany et al. (2013) used ERGMs to investigate “structural balance” in 266 

directed networks of rock hyrax Procavia capensis interactions. They found that structural 267 

balance, where individuals take on a similar set of social relationships as their current 268 

contacts, was a feature of these social groups, and that there was a non-significant tendency 269 

for more newly arrived individuals to feature in triads (sets of three individuals) that lacked 270 

structural balance. Edelman and McDonald (2014) used ERGMs to show that cooperative 271 

relationships in male long-tailed manakins Chiroxiphia linearis tend to be transitive and 272 

stable over time. They also exploited the ERGM framework to model the impact of spatial 273 

distribution of individuals, a potentially widely applicable technique which we discuss in 274 

later sections.  275 

ERGMs have also been used to calculate tendencies of individuals to initiate or 276 

receive interactions in social groups of yellow-bellied marmots Marmota flaviventris, for use 277 

in further analyses that related networks of affiliative interactions to age and kinship (Wey 278 

& Blumstein, 2010). Two further studies have used ERGMs to model dominance 279 

relationships within animal groups. For example, Dey and Quinn (2014) used ERGMs to 280 

demonstrate that pukekos Porphyrio melanotus melanotus had linear dominance 281 

hierarchies. They are also demonstrated that the type of dominance interactions (display or 282 

physical aggression) differed between the sexes, were driven by differences in status signals 283 

(the size of the bill shield) and showed sexual homophily. Dey et al. (2015) also investigated 284 

dominance hierarchies, and observed that the dominance networks of cooperatively 285 
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breeding cichlids Neolamprologus pulcher were stable between parental care and non-286 

reproductive periods.   287 

Finally, two studies to date have used ERGMs to model population social structure. 288 

Fisher et al. (2016) compared networks of interactions in field crickets Gryllus campestris 289 

and demonstrated that social structure remained similar over time. More specifically, it was 290 

possible to predict network structure between years, especially when the populations were 291 

similar in size. Meanwhile, Reynolds et el. (2015) used ERGMs to simulate raccoon Procyon 292 

lotor contact networks to model the dynamics of rabies transmission.  293 

 These diverse applications demonstrate that ERGMs can be used to model affiliative 294 

and antagonistic networks, to analyse differences within and among-populations, and to 295 

understand dyadic and whole network-level processes. Moreover, they can be used in both 296 

free-living and captive animals, and can be applied across a range of taxa. However, the 297 

applicability of the ERGM framework will very much depend on the questions being 298 

addressed and any constraints of the data being analysed, and we highlight the most 299 

important of these considerations below. 300 

 301 

ERGM advantages and drawbacks 302 

Advantages 303 

An important strength of the ERGM framework is that it explicitly incorporates the 304 

dependence structures that are integral to many animal social networks (Krause et al., 2014; 305 

Pinter-Wollman et al., 2013), and represent a difficulty with using conventional linear 306 

modelling approaches (Croft et al., 2011; Farine & Whitehead, 2015). ERGMs are particularly 307 

valuable as it is possible to directly test hypotheses related to the role of emergent network 308 

properties, such as transitivity, in structuring interactions (Dey & Quinn, 2014; Ilany et al., 309 
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2013). Even in other modelling frameworks designed to be implemented specifically in social 310 

networks, such as latent space models and multiple regression quadratic assignment 311 

procedures, it is not possible for these to be estimated (Cranmer et al., 2016).  312 

A second advantage of ERGMs is that they model network topology as a response 313 

variable, so are ideally suited for questions related to interactions or social relationships 314 

themselves, as well as any questions for which the structure of the network is of primary 315 

interest. The former could include questions related to homophily (are within-sex 316 

interactions more likely to occur than between-sex ones?), or alternatively the number of 317 

social relationships (do bold individuals form more interactions than shy individuals?). There 318 

is also an important role for questions about network structure in studies investigating the 319 

emergent group-level properties of individual social interactions, for example the transitive 320 

nature of dominance interactions (Dey & Quinn, 2014; Shizuka & McDonald, 2012). In 321 

randomisation-based approaches one would compare an observed metric, such as 322 

transitivity in the above example, to the range of values generated by the null model, and 323 

conclude that an observed network is more or less transitive than expected given the null 324 

processes. This however makes it difficult to assess to what extent transitivity is an 325 

emergent property of other predictors of network formation (which may covary with 326 

transitivity), rather than a fundamental process driving network structure (as transitivity and 327 

cyclicity may well be in dominance hierarchies). Such information is available if correctly 328 

specified generative models of network structure such as ERGMs are used. 329 

ERGMs can also be used as generative models of network structure, which offer 330 

great potential as tools in animal social network analysis. Once parameters for the model 331 

have been estimated, new networks can be simulated using these values. This makes it 332 

possible to generate uncertainty around the observed network structure, and facilitates the 333 
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comparison of network structure between different populations. For example, simulating 334 

social network structure for a population using the parameters for the network structure 335 

from a different population would allow you to compare the fundamental network structure 336 

between these populations, controlling for differences in population size or composition 337 

(e.g. Fisher et al., 2016). This might provide a promising solution to the problems in 338 

comparing networks between populations and species (Faust & Skvoretz, 2002). 339 

 340 

Drawbacks 341 

 There are, however, also drawbacks in the application of ERGMs to animal networks, 342 

as well as some more general issues that might impact on their use to study animal social 343 

behaviour. First, ERGMs have been developed in the social sciences where there is greater 344 

confidence that edges within a network represent true social ties. Therefore, the ability to 345 

extend them to studying animal social relationships is uncertain in situations where social 346 

relationships are inferred rather than observed, for instance from spatio-temporal co-347 

occurrences. This applies principally to association-based networks calculated by converting 348 

a bipartite network of individuals and groups to a social network using the “gambit of the 349 

group” assumption (Whitehead & Dufault, 1999), which has been widely used to construct 350 

animal social networks (Farine & Whitehead, 2015). In general, ERGMs may not be 351 

appropriate for analysing such networks, at least in the absence of further work to 352 

determine the impact that the sampling issues and data structure imposed by these 353 

methods has on model outputs.  354 

One possible solution to this is to use ERGMs to model the bipartite networks that 355 

links individuals and groups directly, and make inferences about the socio-spatial behaviour 356 

of individuals in this manner. In situations where networks have been constructed for pre-357 
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defined behavioural interactions (e.g. dominance interactions), there is not the same issue 358 

with network ties being inferred. However, care still needs to be taken in incorporating 359 

individuals with differing observation times. One solution may be to fit nodal covariates for 360 

time spend under observation, or dyadic covariates for time spent jointly under observation, 361 

within the ERGM. Alternatively, social relationships may need to be converted to rates of 362 

interaction (Whitehead, 2008), or generalised affiliation indices (Whitehead & James, 2015) 363 

before being modelled.  364 

 A second potential issue with the application of ERGMs (or other statistical network 365 

models) to studying animal social networks are issues related to missing nodes (incomplete 366 

sampling of individuals) or edges (not observing all social interactions). The impact of 367 

missing nodes and edges on network analysis has received some research focus in a range of 368 

fields (Silk et al., 2015; Smith & Moody, 2013; Smith et al., 2017), although much of this has 369 

focussed on the calculation of network metrics rather than any impacts on hypothesis 370 

testing methods (Silk et al., et al., 2017b). Shalizi and Rinaldo (2013) suggested that ERGMs 371 

would not be able to accurately estimate structural parameter estimates in sub-sampled 372 

networks, however they made no comment on their ability to test hypotheses related to 373 

differences in individual behaviour in these situations. Although the inferences made about 374 

individual differences in behaviour are reliant on relative differences rather than being able 375 

to precisely parameterise the full network, ERGMs should be used with caution in systems 376 

where high proportions of individuals or interactions are not recorded.  377 

Finally, there are two disadvantages more generally to the ERGM framework that 378 

animal behaviour researchers should be aware of; computationally intensive parameter 379 

estimation and degeneracy. The former occurs as a result of exact parameter inference 380 

typically being intractable, and therefore relying on Monte Carlo methods. Practically, this 381 
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limits the size of networks that ERGMs can be used on to networks with 10s or a few 100s of 382 

nodes (depending on the model being fitted), rather than the large networks generated in 383 

some studies of social animals. Degeneracy is a well-established issue in the fitting of ERGMs 384 

(Handcock et al., 2003; Lusher et al., 2013), and means that for certain combinations of 385 

parameters the Markov chain Monte Carlo estimation rarely converges or does not 386 

converge. In these situations, it can be difficult to fit models in a stepwise fashion. Structural 387 

terms involving triads (modelling transitivity within the network) are often especially likely 388 

to result in instability and lead to model degeneracy. One possible solution is to attempt 389 

fitting hierarchical ERGMs (using the R package hergm) with local rather than strong 390 

dependence structures (which restrict dependencies within particular regions of the 391 

network), which can reduce problems with model degeneracy, especially in larger networks 392 

(Handcock et al., 2003; Schweinberger, 2011; Schweinberger & Handcock, 2015).  393 

 394 

Potential future applications 395 

 As discussed previously, ERGMs offer a flexible framework for testing hypotheses 396 

related to edge formation and network topology. As a result they could be useful in 397 

answering a wide range of questions related to animal social network analysis. We focus on 398 

a few key areas here, for which ERGMs are likely to be useful but have rarely been applied. 399 

 400 

Generating uncertainty for modelling transmission processes 401 

 As previously highlighted, a major advantage of the ERGM modelling framework is 402 

that it is possible to simulate networks using the parameters fitted to the originally 403 

observed network. This can be used to generate a set of networks that are similar but not 404 

identical to the original network (e.g. Fig. 3). Almost all animal social networks are a sub-405 
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sample of the full set of interactions that occur, and the subsequent simulation of dynamic 406 

processes on these networks may be subject to error. Therefore, being able to simulate 407 

networks fitted with the same set of parameters, that are important in generating the 408 

observed network but without its exact structure, offers an important route to robust 409 

conclusions when testing hypotheses relating to network topology, such as the factors 410 

influencing information and disease transmission within animal populations. For example, 411 

Reynolds et al. (2015) fitted ERGMs to contact networks of raccoons in different seasons, 412 

and used the generated networks to apply simulation models of rabies spread to 413 

demonstrate seasonality in disease dynamics caused by changes in contact network 414 

structure. The ability to use ERGMs in this way also facilitates comparison in transmission 415 

dynamics between species by quantifying differences in network structure between them, 416 

and making it possible to simulate dynamic processes more broadly than on the single 417 

observed network. A caveat to this is that the usefulness of the simulated networks depends 418 

on the goodness-of-fit of the model; poorly fitting models will generate networks that show 419 

transmission dynamics unlike the observed one.  420 

 421 

Hypotheses related to social dominance 422 

 One area where ERGMs have been employed particularly successfully in studying 423 

animal social behaviour is in studies of social dominance (Dey & Quinn, 2014; Dey et al., 424 

2015). Existing measures of dominance hierarchies seek to estimate the linearity of 425 

hierarchies (De Vries et al., 2006; Douglas et al., 2017), and operate in the absence of other 426 

variables. ERGMs can be used alongside these approaches to provide a useful quantification 427 

of the linearity of hierarchies arising as an emergent property of network structure. For 428 

example, the terms estimating the importance of transitive and cyclical interactions in an 429 
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ERGM provide a direct quantification of how tendencies for transitive and cyclical triads 430 

contribute to the linearity of a hierarchy (Shizuka & McDonald, 2012). Importantly, these 431 

effects can be tested alongside the influence of phenotypic traits such as body size, age and 432 

sex, as well as dyadic covariates such as relatedness, which may be expected to play a 433 

substantial role in many systems. In addition, the fact that parameters are estimated with 434 

standard error while controlling for other possible effects facilitates comparisons of 435 

hierarchies between different behaviours (e.g. ritualised dominance behaviours versus 436 

agonistic behaviours), or between different species, and offers a great opportunity for 437 

effective cross-species comparisons.  438 

The use of ERGMs also enables a very natural extension to considering dominance 439 

interactions as temporally dynamic. The use of temporal ERGMs makes it possible to 440 

determine the stability of hierarchical interactions over time, which is likely to influence the 441 

benefits of hierarchy formation and therefore have important implications for individuals 442 

living in groups. Further, it would additionally be possible to consider how changes in traits 443 

influence hierarchical interactions, for example whether dominance interactions are more 444 

likely to change as individuals get closer in body weight or condition. 445 

 446 

Hypotheses related to differences in network structure 447 

 ERGMs quantify network structure by providing parameter values that describe the 448 

structure of the network. While these parameters are context specific (i.e. they depend 449 

closely on the other parameters included in the model), they do offer a great opportunity to 450 

test for differences in network structure between populations or for different types of 451 

behavioural interaction within a population. In particular, comparisons of social networks 452 

between populations are complicated by many network measures being influenced by the 453 
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size of the network (Croft et al., 2008). Cross-species comparisons of network structure 454 

using a standardised approach would allow an improved understanding of the more general 455 

evolutionary processes and constraints shaping animal sociality. The application of an ERGM 456 

framework would enable this to be done while considering system-specific effects that are 457 

known to be important by researchers. For example, an analysis exploring the impact of 458 

relatedness on the tendency for within-group behavioural interactions could be completed 459 

while controlling for differences between species in how males and females interacted, or 460 

the age-structure of within-group interactions. The resulting estimate for the effect of 461 

relatedness could then be compared across populations or species. 462 

 463 

Hypotheses related to network stability over time 464 

 Temporal ERGMs have not been used in animal behaviour research. There are other 465 

methods available to study dynamic networks (Fisher et al., 2017; Silk et al., 2017b; Tranmer 466 

et al., 2015), and the choice of model should be driven by the data available and questions 467 

of interest (Silk et al. 2017b). Temporal ERGMs are somewhat similar to stochastic actor-468 

oriented models (SAOMs) as both are based on an ERGM-type framework, however each 469 

take different approaches to modelling network change. Temporal ERGMs have the 470 

advantage of being able to accommodate more complex temporal dependencies, thereby 471 

not requiring linear change in network structure over time (Silk et al. 2017b). Relational 472 

event models (REMs) in contrast model temporally explicit interaction data, so are less 473 

focussed on network structure (focussing instead on the temporal dynamics of interactions 474 

themselves, albeit in a social context) (Tranmer et al. 2015). The stability of animal social 475 

interactions or relationships is a topic of great interest (Pinter-Wollman et al., 2013), and in 476 

many species long-term stable associations or alliances are likely to be beneficial (Brent et 477 
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al., 2015; Gomes et al., 2009; McComb et al., 2001). Temporal ERGMs offer an excellent 478 

framework to test the stability of social relationships within animal groups. Edelman and 479 

McDonald (2014) used an approach similar to that of a temporal ERGM, by using the 480 

previous year’s network as a dyadic covariate for the current year’s network in male long-481 

tailed manakins. They found that the previous year’s network was a significant predictor of 482 

the current network, indicating that cooperative relationships between males persisted over 483 

time. Further, it is possible to use temporal ERGMs to model network change over time 484 

according to a user-specified function, allowing the incorporation of non-linear rates of 485 

change. Within this, parameters for the rate of change in social relationships can be linked 486 

with dyadic covariates, so that it is possible to test hypotheses that relationships between 487 

particular types of individuals are likely to change faster than others. 488 

 489 

Outstanding issues 490 

 The use of ERGMs in animal behaviour research would benefit from simulation-491 

modelling studies that can provide greater evidence for when their use (and the use of 492 

other similar models) is likely to be appropriate. In particular, exploring the impact of 493 

subsampling network interactions on hypothesis testing in networks will be especially useful 494 

(Silk et al., 2017b). This is ideally suited to simulation modelling approaches in which “real” 495 

scenarios (e.g. realistic levels of missing data) can be generated and then sampled. 496 

Theoretical work has suggested that parameter estimates for structural terms are unlikely to 497 

accurately reflect the true properties of the unsampled network in these cases (Shalizi & 498 

Rinaldo, 2013), however hypothesis testing may still be appropriate when relative 499 

differences are important. A simulation-modelling approach could also reveal whether it is 500 

appropriate to apply ERGMs to association-based networks of animals, and if so how this 501 
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might be achieved. Two possibilities seem most likely here: (1) using ERGMs of bipartite 502 

networks linking individuals and groups, and (2) including terms that can control for biases 503 

introduced by the method of data collection (e.g. effects of gregariousness, number of times 504 

observed etc.) and ensuring that this can result in accurate parameter estimation and low 505 

statistical error rate.  506 

 507 

Conclusions 508 

 Exponential random graph models have received relatively limited use to study 509 

animal behaviour, but have provided some interesting insights. This is despite animal 510 

behaviour researchers only exploiting some of the more basic approaches within this 511 

flexible network modelling framework. We have provided an outline of the strengths and 512 

weaknesses of using ERGMs to study animal behaviour, and have used this to highlight both 513 

some research areas where they offer real potential, and where further simulation 514 

modelling work is required to test their appropriateness in testing hypotheses about animal 515 

network structure. Together, this information should provide an important guide to 516 

researchers hoping to extend the application of ERGMs in the study of animal social 517 

networks, and contribute to developing our understanding of the underlying processes 518 

driving animal social relationships. 519 
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Tables 712 

Table 1. A list of the different software packages available to analyse ERGMs, and their 713 

respective capabilities i.e. the types of network data (beyond static and binary networks) 714 

that they can be used to analyse 715 

Software Platform Capabilities Source / reference 
PNet Windows 

(Java based) 
Binary, 
Hierarchical (local dependency 
structures) 

http://www.melnet.org.au/pnet/ 
Wang et al., 2009 

MPNet Windows 
(Java based) 

Bipartite, 
Two-layer 

http://www.melnet.org.au/pnet/ 

ergm R Bipartite https://cran.r-
project.org/web/packages/ergm/index.html 
Handcock et al., 2015; Hunter et al., 2008 

ergm.count R Weighted (positive integers 
only) 

https://cran.r-
project.org/web/packages/ergm.count/index.html 
Krivitsky, 2015 

GERGM R Weighted https://cran.r-
project.org/web/packages/GERGM/index.html 
Denny et al., 2016 

hergm R Hierarchical (local dependency 
structures) 

https://cran.r-
project.org/web/packages/hergm/index.html 
Schweinberger et al., 2016 

tergm R Temporally dynamic https://cran.r-
project.org/web/packages/tergm/index.html 
Krivitsky & Handcock, 2016 

btergm R Temporally dynamic https://cran.r-
project.org/web/packages/btergm/index.html 
Leifeld et al., 2016 
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Figures  718 

 719 

Figure 1. A diagrammatic guide to the key terms that can be used in ERGMs. Grey box (top left): 720 

Basic structural terms estimating the tendency for the number of edges and multi-edge 721 

configurations in a graph. Blue box (middle left): the tendency to form mutual ties, a dyadic 722 

structural terms specific to directed networks. Orange box (bottom right): dyadic covariates on the 723 

tendency to form edges (i.e. as a result of other relationships between the individuals). Green box 724 

(top centre): Individual or nodal terms for effects of homophily. Yellow box (bottom centre): 725 

Individual or nodal terms for effects on the number of edges formed. Purple box (right): Basic triadic 726 

effects for undirected (triangle, top) and directed networks. 727 

 728 
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 729 

Figure 2. The fitting of an ERGM to a toy dataset consisting of two types of individual (red and blue) 730 

that additionally vary in size (white node labels). a) Shows the network that the ERGM is fitted to. b) 731 

Shows the summary of the model output, revealing significant homophily and a positive effect of 732 

size on the number of interactions. c) Shows the model convergence plots produced by running 733 

mcmc.diagnostics(), with the left column of panels showing that the parameters have converged and 734 

so only vary around a stable point, while the right column of panels shows the distribution of 735 

estimates for the parameters is approximately normal in each case. d) shows the model goodness-736 

of-fit produced by the function gof(). Goodness-of-fit for degree (top), edge-wise shared partners 737 

(middle) and minimum geodesic distance (bottom) are shown, with the range of values in the 738 

simulated models (box plots) generally showing the same pattern as the observed network (black 739 

line). Full R code is provided in the supplementary information. 740 
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743 
Figure 3. The original toy network used in our simple example of ERGM fitting (a) compared to three 744 

networks simulated using the fitted ERGM (b-d). 745 
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