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SUMMARY

Misophonia is an affective sound-processing disor-
der characterized by the experience of strong nega-
tive emotions (anger and anxiety) in response to
everyday sounds, such as those generated by other
people eating, drinking, chewing, and breathing
[1–8]. The commonplace nature of these sounds
(often referred to as ‘‘trigger sounds’’) makes miso-
phonia a devastating disorder for sufferers and their
families, and yet nothing is known about the under-
lying mechanism. Using functional and structural
MRI coupled with physiological measurements, we
demonstrate that misophonic subjects show specific
trigger-sound-related responses in brain and body.
Specifically, fMRI showed that in misophonic sub-
jects, trigger sounds elicit greatly exaggerated
blood-oxygen-level-dependent (BOLD) responses
in the anterior insular cortex (AIC), a core hub of
the ‘‘salience network’’ that is critical for perception
of interoceptive signals and emotion processing.
Trigger sounds in misophonics were associated
with abnormal functional connectivity between
AIC and a network of regions responsible for the
processing and regulation of emotions, including
ventromedial prefrontal cortex (vmPFC), posterome-
dial cortex (PMC), hippocampus, and amygdala.
Trigger sounds elicited heightened heart rate (HR)
and galvanic skin response (GSR) inmisophonic sub-
jects, whichweremediated by AIC activity. Question-
naire analysis showed that misophonic subjects
perceived their bodies differently: they scored higher
on interoceptive sensibility than controls, consistent
with abnormal functioning of AIC. Finally, brain struc-
tural measurements implied greater myelination
within vmPFC in misophonic individuals. Overall,
our results show that misophonia is a disorder in
which abnormal salience is attributed to particular
sounds based on the abnormal activation and func-
tional connectivity of AIC.
Current Biology 27, 527–533, Febru
This is an open access article und
RESULTS AND DISCUSSION

fMRI data were acquired in 20 misophonic and 22 age- and sex-

matched controls while they listened to a set of three sounds:

trigger sounds (which evoke a misophonic reaction in miso-

phonic individuals; e.g., eating, breathing sounds), unpleasant

sounds (which are perceived to be annoying by both groups

but do not evoke misophonic distress; e.g., baby cry, a person

screaming), and neutral sounds (e.g., rain). After listening to

each sound, subjects rated (1) how annoying the sound was

(both groups) and (2) how effectively the sound triggered a

typical misophonic reaction (misophonic group only) or how anti-

social (in the sense the subject would not like to be in the environ-

ment in which the sound is produced) the sounds were (control

group only). Behavioral responses, galvanic skin response

(GSR) and heart rate (HR), were acquired during the acquisition

of fMRI data (see Figure 1A for a schematic of the paradigm).

Whole-brain structural MRI data were acquired as multi-param-

eter maps (MPMs) [9] to measure myelination content, water,

and iron levels.

Behavioral data (Figure 1B) showed that trigger sounds

evoked misophonic distress in misophonic subjects, whereas

the unpleasant sounds, although annoying, did not produce a

misophonic reaction. Therewas no difference between themiso-

phonic distress ratings of trigger sounds by the misophonic

group and annoyance ratings of unpleasant sounds by the con-

trol group. It is likely, however, that the two groups used different

subjective scales while rating the sounds. Random-effects anal-

ysis of fMRI data using the general linear model (GLM) [10] with

group (two levels) and sound types (three categories) as factors

demonstrated an interaction in the anterior insular cortex (AIC)

bilaterally (Figure 2A; further regions are listed in Table S1).

Further analysis showed that the interaction in AIC was driven

by greater activation in misophonic subjects compared to con-

trol subjects in response to trigger sounds (see Figure 2B and

Figure S1 for confirmatory plots; see also Figure S2). Significant

activation differences between misophonic and control subjects

did not occur to unpleasant or neutral sounds. Activity in both the

left and right AIC varied linearly with the subjective rating of

misophonic distress in themisophonic group, as shown in confir-

matory plots in Figure 2C. A large body of evidence [11] impli-

cates AIC in subjective feelings associated with emotions,

including anger. Functionally, AIC is known to be a key node of
ary 20, 2017 ª 2016 The Author(s). Published by Elsevier Ltd. 527
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Figure 1. Experimental Paradigm and Subjective Ratings

(A) fMRI paradigm: a standard block design was used in which soundswere presented for 15 s. After every sound, subjects gave two ratings on a scale from 1 to 4

with a button press for (1) how annoying the soundwas and (2) how effective the soundwas in triggeringmisophonic reaction (misophonia group) or how antisocial

the sound was (control group). fMRI data were acquired continuously with a repetition time (TR) of 3.12 s. GSR and HR were also monitored throughout the

experiment.

(B) Subjective ratings: (i) misophonic distress rating of three types of sounds by misophonic group; (ii) antisocialness rating of sounds (control subjects); and (iii)

annoyance rating of sounds by both groups. Misophonic subjects rated the trigger sounds as evoking greater misophonic reaction compared to unpleasant (p <

0.001) and neutral sounds (p < 0.001). Unpleasant sounds were still perceived to be annoying (p < 0.001 compared to neutral sounds) by themisophonic subjects,

demonstrating a dissociation between general annoyance and misophonic reaction. See also Figure S4 for subjective scores on body perception. Data are

represented as mean (±SEM).
the salience network [12], an intrinsic large-scale brain network

for detecting and orienting attention toward stimuli that are

behaviorally relevant and meaningful for an individual. Specific

hyperactivity in AIC to trigger sounds supports the hypothesis

that misophonic subjects assign aberrantly higher salience to

these sounds.

Having identified AIC as a key region that differentiates trigger

sounds in misophonic participants, we sought to explore its

stimulus-dependent connectivity profile to establish whether

there are alterations at the network level that are specific to

misophonia. Using left AIC as a seed region, we analyzed its

stimulus-dependent connectivity in the two groups. Greater

functional connectivity of AIC for misophonic subjects was

observed in a network of brain regions comprising the ventrome-

dial prefrontal cortex (vmPFC), posteromedial cortex (PMC; pos-

terior cingulate and retrosplenial cortex), hippocampus, and

amygdala (Figure 3A). This increased functional connectivity

was specific to trigger sounds: no significant differences in con-

nectivity were observed for unpleasant sounds. Importantly, the

functional connectivity pattern between the two groups for the

same sounds was not only different quantitatively but also qual-

itatively: whereas the connectivity to vmPFC is positive (with

respect to connectivity for neutral sounds) in misophonic sub-

jects, the connectivity for controls for the same set of sounds

is negative. Analysis of functional connectivity of right AIC also
528 Current Biology 27, 527–533, February 20, 2017
showed trigger-sound-specific increased connectivity to vmPFC

and PMC (Figure S3A; functional connectivity to amygdala and

hippocampus was also observed but at a slightly relaxed

threshold). The vmPFC and PMC together form core parts of

the default mode network (DMN) [13] (see Figure S3B for overlap

between the DMN and the functional connectivity network of

AIC), which is activated when subjects are engaged in internally

directed thoughts and retrieval of memories [14] and is deacti-

vated when attention is directed to external stimuli. Greater

coupling of AIC with the DMN suggests that misophonic sub-

jects, on hearing trigger sounds, are unable to ‘‘disengage’’

AIC from the DMN, which entails memories and contextual asso-

ciations of trigger sounds to bear on the activation of AIC. This is

also consistent with a recent study [15] usingmultivariate pattern

classification, which showed that patterns of activity in vmPFC

and PMC were most informative in distinguishing different types

of emotions. Distinct functional connectivity of AIC to vmPFC

and PMC in misophonics and controls for the same sounds sug-

gests that these regions play a crucial role in instantiating

different emotional responses for the trigger sounds in the two

groups. This atypical functional connectivity could, therefore,

underlie the abnormal activation of AIC and the aberrant salience

assigned to trigger sounds by the misophonic group.

Because misophonia symptoms start early in life (mean age of

onset is �12 years and can be as early as 5 years [1]), we also



Figure 2. Group-Level, Random-Effects

GLM Analysis of fMRI Data

The GLM was modeled as a factorial design with

group (two levels) and sound types (three levels) as

factors.

(A) Statistical parameter maps (SPMs) overlaid on

a standard MNI-152 template brain for the critical

interaction between the two factors (group and

sound type) thresholded at p = 0.05 family-wise

error (FWE) corrected for whole-brain volume. The

effect is maximal in AIC (bilateral) with maxima at

MNI coordinates (�41, 6, 0).

(B) Confirmatory plots of activity averaged over

cluster in AIC (see also Figures S1 and S2 and

Table S1) show that the interaction effect was

driven by higher activity for trigger sounds in mi-

sophonic subjects compared to controls.

(C) Confirmatory plots of activity in AIC with mi-

sophonic ratings in misophonic subjects.

Data in (B) and (C) show mean (± SEM).
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Figure 3. Functional Connectivity and Structural Data Analysis

(A) Left AIC was taken as a seed region and its functional connectivity to all voxels of the brain was analyzed. The figure illustrates those brain areas that show

greater connectivity for trigger sounds (compared to neutral sounds) in misophonic subjects (compared to controls). The four areas that survive the threshold are

(1) PMC (posterior cingulate cortex [PCC]/precuneus), (2) vmPFC, (3) hippocampus, and (4) amygdala. The bar chart for each region shows confirmatory plots of

connectivity for trigger and unpleasant sounds with respect to neutral sounds. Displayed connectivity strengths are cluster thresholded at p < 0.05 with cluster-

forming threshold at p < 0.001 (see Figure S3 for functional connectivity of right AIC and overlap of the connectivity network with the default mode network).

(legend continued on next page)
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Figure 4. Psychophysiological Responses

and Their Mediation by Brain Areas

(A) HR and GSR for misophonic and control sub-

jects. In misophonic subjects, the trigger sounds

produce sustained increases in HR and GSR.

Statistical analysis of GSR and HR was performed

time by time using a 2 3 3 ANOVA as in the fMRI

analysis. For the HR time series, interaction be-

tween the factors was significant from 2.4 to 10.4 s

and then from 12.4 to 17 s after sound onset. For

the GSR time series, significant interaction was

observed from 7 to 21.4 s after sound onset (time

points at which GSR and HR are significantly

different are indicated by black horizontal bars

between the panels). Both HR and GSR time se-

ries were cluster thresholded at p < 0.05 with

cluster-forming threshold at p < 0.05. Post hoc

comparison showed that the interaction effect in

both HR and GSR was driven by higher responses

to trigger sounds in misophonic subjects. There

was no difference between the two groups in their

responses to unpleasant and neutral sounds.

bpm, beats per min.

(B) Mediation analysis to determine which brain

areas mediate the increased HR and GSR in

misophonic subjects, relative to controls, to

trigger sounds. Whole-brain, single-level media-

tion analysis was used, in which the input X is a

categorical vector (+1 for misophonics and �1 for

controls) and the response vector Y contains an

average increase in HR/GSR (compared to neutral

sounds) over a trial of trigger sounds for each

subject. Themediation variable M is the beta value

(as determined using SPM) for trigger sounds

compared to neutral sounds. (i) Left AIC mediates

GSR changes. (ii) Confirmatory plots of mediation

strength for GSR for the two groups averaged over

the cluster in AIC. (iii) AIC mediates heightened HR

in misophonics. (iv) Confirmatory plots of media-

tion strength for HR for the two groups averaged

over the cluster in AIC. The displayed results (i) and

(iii) are thresholded at p < 0.005 with a cluster

extent threshold of 50 voxels.

Data are represented as mean (± SEM; shaded

areas in A and error bars in B).
predicted that there would be brain structural differences in mi-

sophonic subjects compared to controls. We created whole-

brain structural maps of magnetization transfer (MT) saturation

that reflects myelination in brain gray matter. For significance

testing, we limited our search to brain areas that showed higher
(B) Brain structural changes in misophonia. Misophonic subjects show higher MT saturation, which reflects h

When corrected for multiple comparisons (p < 0.05 FWE corrected for brain areas that show higher functiona

the functional network shown in (A) along with the seed region AIC), 15 voxels of vmPFC with maxima at (�3, 4

in the figure, a threshold of p < 0.001 uncorrected is used. p.u., percent units.

Data in bar charts show mean (± SEM).

Current B
functional connectivity to AIC in miso-

phonics compared to controls along

with the seed region. Analysis of struc-

tural maps showed that misophonic sub-

jects have altered MT saturation, which is

consistent with significantly higher myeli-
nation in the gray matter of vmPFC (Figure 3B). This change sug-

gests a possible structural basis for the altered functional con-

nectivity to vmPFC observed in misophonic subjects.

After identification of functional and structural changes in the

brain, we next determined physiological responses of the body
igher myelination, compared to controls in vmPFC.

l connectivity in misophonics to trigger sounds; i.e.,

4,�2) survive the correction. For display purposes

iology 27, 527–533, February 20, 2017 531



and their driving sources in the brain. We measured GSR and

HR while subjects listened to three sets of sounds in the MRI

scanner. Trigger sounds evoked greater GSR and HR responses

in misophonic subjects than control subjects (Figure 4A). Physi-

ological responses were sustained throughout the duration of

sound presentation and were specific to trigger sounds, with

no difference in GSR or HR response between the two groups

for unpleasant and neutral sounds. The heightened trigger-spe-

cific autonomic responses we observed are consistent with the

strong tendency ofmisophonic subjects to escape from the envi-

ronment of trigger sounds [1, 2] or experience strong anxiety and

anger if unable to escape (fight/flight response).

What is the brain source(s) of these heightened autonomic re-

sponses in misophonia? To answer this, we used mediation

analysis [16], which aims to test whether a relation from variable

X (group membership; i.e., misophonic or control) to Y (GSR or

HR) could be explained (mediated) by a third variable, M (brain

activation). A significant mediation implies that there is an indi-

rect path to Y (X to M to Y) and would show brain activity (M)

that can mediate the observed GSR/HR (Y) over and above

what is explained by group membership (X). We ran the whole-

brain mediation analysis separately for GSR and HR. We found

that activity in AIC mediated both the heightened GSR and HR

(Figure 4B) in misophonic subjects.

Over the last decade, there has been a growing recognition

that interoception (perception of internal bodily states) can influ-

ence the salience and experience of emotions associated with a

stimulus [17–20]. Interestingly, AIC is the key brain structure that

integrates ascending visceral inputs from the body with external

sensory inputs. In accordance with this, atypical interoception

and activation in AIC have been shown to underlie a number of

social-emotional disorders [21, 22]. Recently, there has been a

growing interest in extending prediction-based hierarchical

Bayesian inference as a model of interoception [19, 23]. In this

model, interoception involves inferring causes of interoceptive

signals by combining bottom-up interoceptive signals with prior

beliefs (predictions) of their causes. In this multi-level and hierar-

chically organized inference scheme, AIC is at the top of the hi-

erarchy and is suggested to infer the overall state of the body

[24]. Evaluation of subjective beliefs about body perception us-

ing the Body Consciousness Questionnaire [25] showed that mi-

sophonics report greater awareness of internal sensations (Fig-

ure S4) compatible with altered interoceptive sensibility [22] in

misophonics. Given the role of AIC in representing bodily states,

the questionnaire data are also consistent with abnormal AIC

functioning in misophonia.

Conclusions
Overall, our data show that for misophonics, trigger sounds cause

hyperactivity of AIC and an abnormal functional connectivity of

this region with medial frontal, medial parietal, and temporal re-

gions; that there is abnormal myelination in medial frontal cortex

that shows abnormal functional connectivity to AIC; and that the

aberrant neural response mediates the emotional coloring and

physiological arousal that accompany misophonic experiences.

Together, our data suggest that abnormal salience attributed to

otherwise innocuous sounds, coupled with atypical perception

of internal body states, underlies misophonia. With the available

data, it is not possible to decide whether misophonia is a cause
532 Current Biology 27, 527–533, February 20, 2017
or consequence of atypical interoception, and further work is

needed to delineate the relation between the two.

Misophonia does not feature in any neurological or psychiatric

classification of disorders; sufferers do not report it for fear of the

stigma that this might cause, and clinicians are commonly un-

aware of the disorder. This study defines a clear phenotype

based on changes in behavior, autonomic responses, and brain

activity and structure that will guide ongoing efforts to classify

and treat this pernicious disorder.
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4. Schröder, A., van Diepen, R., Mazaheri, A., Petropoulos-Petalas, D., Soto

de Amesti, V., Vulink, N., and Denys, D. (2014). Diminished N1 auditory

evoked potentials to oddball stimuli in misophonia patients. Front.

Behav. Neurosci. 8, 123.

5. Jastreboff, M.M., and Jastreboff, P.J. (2001). Components of decreased

sound tolerance: hyperacusis, misophonia, phonophobia. ITHS News

Lett. 2, 5–7.

6. Krauthamer, J.T. (2013). Sound-Rage: A Primer of the Neurobiology and

Psychology of a Little Known Anger Disorder (Chalcedony Press).

7. Hadjipavlou, G., Baer, S., Lau, A., and Howard, A. (2008). Selective sound

intolerance and emotional distress: what every clinician should hear.

Psychosom. Med. 70, 739–740.

8. Ferreira, G.M., Harrison, B.J., and Fontenelle, L.F. (2013). Hatred of

sounds: misophonic disorder or just an underreported psychiatric symp-

tom? Ann. Clin. Psychiatry 25, 271–274.

9. Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R.,

Ooi, C., Bullmore, E.T., and Lutti, A. (2013). Quantitative multi-parameter

http://dx.doi.org/10.1016/j.cub.2016.12.048
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref1
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref1
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref1
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref2
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref2
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref2
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref3
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref3
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref4
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref4
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref4
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref4
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref5
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref5
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref5
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref6
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref6
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref7
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref7
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref7
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref8
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref8
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref8
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9


mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. Front.

Neurosci. 7, 95.

10. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., and

Frackowiak, R.S.J. (1994). Statistical parametric maps in functional

imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210.

11. Craig, A.D. (2009). How do you feel—now? The anterior insula and human

awareness. Nat. Rev. Neurosci. 10, 59–70.

12. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna,

H., Reiss, A.L., and Greicius, M.D. (2007). Dissociable intrinsic connectiv-

ity networks for salience processing and executive control. J. Neurosci.

27, 2349–2356.

13. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A.,

and Shulman, G.L. (2001). A default mode of brain function. Proc. Natl.

Acad. Sci. USA 98, 676–682.

14. Huijbers, W., Pennartz, C.M., Cabeza, R., and Daselaar, S.M. (2011). The

hippocampus is coupled with the default network during memory retrieval

but not during memory encoding. PLoS ONE 6, e17463.

15. Saarim€aki, H., Gotsopoulos, A., J€a€askel€ainen, I.P., Lampinen, J.,

Vuilleumier, P., Hari, R., Sams, M., and Nummenmaa, L. (2016). Discrete

neural signatures of basic emotions. Cereb. Cortex 26, 2563–2573.

16. Wager, T.D., Waugh, C.E., Lindquist, M., Noll, D.C., Fredrickson, B.L., and

Taylor, S.F. (2009). Brain mediators of cardiovascular responses to social

threat: part I: reciprocal dorsal and ventral sub-regions of the medial pre-

frontal cortex and heart-rate reactivity. Neuroimage 47, 821–835.
17. Craig, A.D. (2007). Interoception and emotion: a neuroanatomical

perspective. In Handbook of Emotions, M. Lewis, J.M. Haviland-Jones,

and L.F. Barett, eds. (Guilford Press), pp. 272–290.

18. Wiens, S. (2005). Interoception in emotional experience. Curr. Opin.

Neurol. 18, 442–447.

19. Seth, A.K. (2013). Interoceptive inference, emotion, and the embodied self.

Trends Cogn. Sci. 17, 565–573.

20. Garfinkel, S.N., andCritchley, H.D. (2013). Interoception, emotion and brain:

new insights link internal physiology to social behaviour. Commentary on:

‘‘Anterior insular cortex mediates bodily sensibility and social anxiety’’ by

Terasawa et al. (2012). Soc. Cogn. Affect. Neurosci. 8, 231–234.

21. Paulus, M.P., and Stein, M.B. (2010). Interoception in anxiety and depres-

sion. Brain Struct. Funct. 214, 451–463.

22. Garfinkel, S.N., Tiley, C., O’Keeffe, S., Harrison, N.A., Seth, A.K., and

Critchley, H.D. (2016). Discrepancies between dimensions of interocep-

tion in autism: implications for emotion and anxiety. Biol. Psychol. 114,

117–126.

23. Seth, A.K., and Friston, K.J. (2016). Active interoceptive inference and the

emotional brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160007.

24. Smith, R., and Lane, R.D. (2015). The neural basis of one’s own conscious

and unconscious emotional states. Neurosci. Biobehav. Rev. 57, 1–29.

25. Miller, L.C., Murphy, R., and Buss, A.H. (1981). Consciousness of body:

private and public. J. Pers. Soc. Psychol. 41, 397–406.
Current Biology 27, 527–533, February 20, 2017 533

http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref9
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref10
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref10
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref10
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref11
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref11
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref12
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref12
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref12
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref12
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref13
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref13
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref13
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref14
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref14
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref14
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref15
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref16
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref16
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref16
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref16
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref17
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref17
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref17
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref18
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref18
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref19
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref19
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref20
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref21
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref21
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref22
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref22
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref22
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref22
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref23
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref23
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref24
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref24
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref25
http://refhub.elsevier.com/S0960-9822(16)31530-5/sref25


Current Biology, Volume 27
Supplemental Information
The Brain Basis for Misophonia

Sukhbinder Kumar, Olana Tansley-Hancock, William Sedley, Joel S. Winston, Martina F.
Callaghan, Micah Allen, Thomas E. Cope, Phillip E. Gander, Doris-Eva
Bamiou, and Timothy D. Griffiths



 

 

 

 

Figure S1: Mean and distribution of anterior insula response; Related to Figure 2. Plots of individual subject 

data along with the mean and standard error for activation (as determined by general linear model analysis) in the 

left and right anterior insula for both groups. Data in the bars are represented as mean (± SEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S2: Post-hoc testing for the interaction in GLM analysis; Related to Figure 2. (A) Statistical 

parametric map showing brain regions with greater BOLD activation in misophonics compared to controls in 

response to trigger sounds compared to neutral sounds. Specifically the contrast as defined in SPM is: 

Misophonics (Trigger sounds- Neutral sounds) > Controls (Trigger sounds- Neutral sounds).  (B) Activation of 

trigger sounds compared to unpleasant sounds: parametric map for the contrast Misophonics (Trigger sounds- 

Unpleasant sounds) > Controls (Trigger sounds- Unpleasant sounds). The parametric maps in both panels are 

thresholded at p =0.05 (FWE corrected for the whole brain volume).   

 

 



 

 

Figure S3: Functional connectivity of anterior insula and its overlap with default mode network; Related 

to Figure 3 (A) Functional connectivity with right AIC as a seed region. The figure shows increased connectivity 

of right AIC to vmPFC and PMC for trigger sounds. The defined contrast is: Misophonics (Trigger sounds- 

Neutral sounds) > Controls (Trigger sounds- Neutral sounds). The connectivity map is cluster thresholded at p < 

0.05 with cluster-forming threshold at p < 0.001. Other areas which show increased connectivity are, left inferior 

parietal (-40, 68, 34), anterior cingulate (-6, 34, 28) and parahippocampal cortex (-20, -36, -18). Hippocampus 

and amygdala are also seen but when the cluster forming threshold is relaxed to 0.005. (B) Overlap between the 

default mode network (DMN) and functional connectivity of left anterior insula shown in Figure 3. The DMN 

map was obtained using reverse inference from the Neurosynth website 

(http://neurosynth.org/analyses/terms/default%20mode/). 
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Figure S4:  Scores on the three subscales of the body consciousness questionnaire (BCQ); Related to Figure 

1. (A) Data from misophonics (n=19) and controls (n=14) who took part in the current study. Statistical 

comparison (Mann-Whitney U test) between the two groups showed that misophonics scored higher both on the 

‘private’ (p=0.02) and ‘public’ (p=0.03) categories but were not different from controls on ‘body competence’ 

(p= 0.22). (B) Comparison of the misophonics scores with data collected from a larger sample (n=136) of normal 

healthy controls. Misophonics scored higher (p =0.002) on ‘private’ but were not different from controls in rest 

of the two categories: ‘public’ (p = 0.17), ‘competence’ (p= 0.42). In order to rule out effect of age and gender in 

the above analysis, we also compared the two groups by tightly matching each misophonic in terms of age (±3 

years) and gender of control participants (n=2-132) and looking for systematic effects with the sign test. This 

comparison showed misophonics scored more highly (p = 0.02) on ‘private’ but were not different on ‘public’ (p= 

0.65) and ‘body competence’ (p = 0.36). Dots in the figure show score of individual subjects. For details of the 

questionnaire, see the section on ‘Questionnaire data analysis in supplemental experimental procedure. Data are 

represented as mean (± SEM). 

 

 

 

 

 

 

 

 



 

Table S1: Brain areas which show interaction between group and sound type. The SPM is thresholded at p 

< 0.05 (FWE corrected for the whole brain volume). Related to Figure 2. 

Brain Area name MNI coordinates  F-value at the 

maxima 

Size of the 

cluster 

Left anterior insula 

Left dorsal anterior insula 

Left inferior frontal gyrus 

-41, 6, 0 

-33, 23, 3 

-51, 2, 11 

34.37 

30.18 

27.42 

1720 

Left cerebellum 

 

-30, -65, -53 29.20 207 

-27, -65, -24 

-36, -57, -26 

-45, -63, -29 

29.07 

26.55 

16.56 

522 

Right inferior frontal gyrus 

Right anterior insula 

Right anterior insula 

48, 11, 2 

39, 23, -3 

35, 30,0 

26.87 

25.18 

19.72 

1140 

Right SMA 

 

5, 8, 66 

5, -3, 68 

23.90 

20.35 

289 

Right cerebellum 32, -63, -23 

35, -56, -27 

21, -68, -47 

32, -56, -50 

27, -65, -54 

22.47 

18.91 

19.06 

18.97 

16.83 

223 

 

16 

55 

6 

Left middle frontal gyrus -38, 39, 21 20.30 42 

Right brain stem 9, -30, -11 

9, -41, -44 

5, -45, -47 

19.31 

16.91 

16.64 

10 

2 

1 

Left supramarginal gyrus -59, -41, 29 18.05 12 

Left thalamus -11, -23, -11 17.49 8 

Right precentral gyrus 48, 5, 39 

47, 2, 53 

17.19 

16.68 

18 

5 

Left cingulate sulcus -3, 27, 33 16.95 8 

Left superior frontal gyrus -50, 12, 29 16.09 1 

 

 

 

 

 

 



 

Supplemental Experimental Procedures 

Subjects  

Twenty four misophonic subjects (16 females, mean age 33.8 years, age-range: 18-57 years) and 22 control 

subjects (15 females, mean age-range 32.5 years, age-range: 19-57 years) participated in the study after providing 

written informed consent to procedures approved by the local ethics committee. The misophonic subjects were 

recruited by putting an advertisement on a misophonia support website: http://www.misophonia-uk.org/. 

Misophonic participants were first required to complete a questionnaire (Please see the supplemental 

Questionnaire S1). A misophonic participant was recruited for the study if (i) he/she identified sounds of eating, 

breathing, chewing as trigger sounds (ii) sounds alone could trigger the misophonic reaction (that is, no picture or 

video of the person producing trigger sounds was needed along with sounds) (iii) the person producing trigger 

sounds did not have to be a close family member (that is, a stranger producing trigger sounds could produce 

similar if not the same reaction). The controls were recruited by advertising on a local university website. In the 

advertisement, the exact purpose of the study was not mentioned. Instead it was stated that the objective of the 

study was to determine brain responses to our day-to-day environmental sounds. Once participants signed up for 

study, they were asked how they respond to environmental sounds including sounds of eating, breathing. If typical 

symptoms of misophonia were absent (e.g. responding angrily, leaving the place) the subject was recruited. No 

subject who signed up for the study was incidentally diagnosed as misophonic. The misophonics and controls 

were matched in age and sex. Four misophonic subjects could not be included in the analysis because one subject 

did not complete the full paradigm (because of emotional distress) and three subjects moved excessively in the 

MRI scanner.  Participants were paid £10/hour plus travel expenses, if any, for their participation.   

 

Stimuli 

One objective of the study was to test if misophonic reactions were related to the typical annoyance that is 

experienced by most people when listening to certain sounds such as sound of a person screaming or a baby cry. 

Our experiment, therefore included a set of unpleasant sounds (expected to prove annoying to both misophonic 

and control group) in addition to a set of common misophonic trigger sounds which evoke a misophonic reaction 

in susceptible individuals. Additionally a set of affectively neutral sounds were used as control sounds. In 

summary, the experimental stimuli consisted of three sets of sounds (1. Trigger sounds, e.g. eating, breathing, 

drinking sounds) 2. Unpleasant sounds, e.g. baby cry, a person screaming 3. Neutral sounds, e.g. sounds of a busy 

café, rain sound), each consisting of 14 stimuli. The trigger sounds were recorded in our lab while people were 

eating, breathing or chewing. The unpleasant and neutral sounds were downloaded from internet websites. Sounds 

were sampled at a rate of 44.1 kHz and trimmed to 15s duration. 

 

Experimental Procedure 

The study was divided in two parts and required participants to visit our lab on two separate days (24-48 hours 

separation between the two parts). The reason for dividing the study into two parts was that we were not sure how 

the misophonic subjects would respond to trigger sounds in the confined space of MRI scanner. In the first visit 

subjects were acquainted with the sounds and the MRI scanning environment and in the second visit fMRI data 

were acquired while subjects listened to the three sets of sounds.  

In the first visit, the full paradigm was explained and after informed consent was obtained subjects were seated in 

a sound-proof room.  Two Ag/AgCl electrodes were placed on the middle and ring fingers of left hand to monitor 

galvanic skin response (GSR). All three sets of sounds were played binaurally over headphones (SENNHEISSER, 

HD380 Pro http://en-uk.sennheiser.com/headphones) in a pseudo-randomized order using the following 

paradigm. The start of a trial was indicated by text instructions appearing on the screen (‘Sound to Start Soon’).  

After a gap of 5-7s (chosen randomly), sound was played for 15s. After sound offset, subjects were prompted to 

give two sequential ratings on a scale from 1 to 4 with a right-handed button press. In the misophonia group the 

two ratings were (i) ‘how annoying the sound was’ (“1: Not annoying” and “4: highly annoying”) (ii) ‘how 

effective the sound was in triggering misophonic reaction (“1: Not at all” and “4: Highly effective”). The 

http://www.misophonia-uk.org/
http://en-uk.sennheiser.com/headphones


 

procedure for control subjects was same except for the second rating when they rated the ‘ant-socialness’ of the 

sound in the sense that they would not like to be in the environment in which this sound is made.  This task was 

chosen as it made no sense to ask the non-misophonic participants about misophonic experiences and misophonic 

subjects have a strong tendency to escape from the environment in which trigger sounds are made.   A total of 4 

sessions (126 trials) each lasting ~12 minutes were used. After this session, subjects were taken to MRI scanner 

and a structural scan using Multiparameter maps (MPM) [S1] was acquired which  took about ~25 minutes. The 

GSR data collected in this session is not presented here. 

In the second visit, after attaching two Ag/AgCl electrodes on the left middle and ring fingers for monitoring GSR 

and an MR-compatible pulse oximeter (Nonin Medical; Minnesota, USA) on the distal left index finger, subjects 

lay in the MRI scanner and EPI data were acquired continuously while all three sets of sounds were played 

binaurally in a pseudorandom order through MRI compatible headphones (http://www.mr-

confon.de/en/products.html) at a comfortable volume of approximately 75dBA. As in the first session outside the 

scanner, after each sound offset subjects were prompted to give two ratings using an MRI-compatible 4-button 

response pad. The total scanning time was ~56 minutes (divided into 5 sessions).  

Functional imaging data acquisition 

All imaging data were collected on Siemens 3 Tesla Tim whole-body MRI scanner (Siemens Healthcare, Erlangen 

Germany) at the Wellcome Trust Centre for Neuroimaging. Functional MRI data were acquired continuously with 

a 12 channel coil using a sequence that was optimized for acquisition from amygdala and orbitofrontal cortex 

[S2].  Subject movement was discouraged by instruction and by use of soft padding around the head within the 

headcoil. The acquisition parameters used were (TR=3.36s; in-plane resolution=3mm isotropic; TE=30ms; 48 

slices (covering the whole brain); matrix size=64x74; echo spacing=0.5ms; orientation=transverse; slice tilt=-30° 

relative to the AC-PC line).  A total of 1005 volumes were acquired across 5 sessions. Fieldmaps were acquired 

(parameters: short TE=10ms; Long TE=12.46ms; polarity of phase-encoding blips=-1; EPI readout time=37ms) 

for every subject after third session. 

 

Structural data acquisition 

A whole brain quantitative MPM protocol (with 32 channel headcoil) was used which consisted of a total of 5 

sequences: three FLASH sequences and two calibration sequences for correcting field inhomogeneities [S3,S4]. 

The three FLASH sequences were respectively proton density (PD), magnetization transfer (MT) and T1 weighted 

by choosing appropriate values of repetition time (TR) and flip angle (α) for each of them. The repetition times 

and flip angles for the three FLASH sequences were (PD: TR=23.7ms, α=6°; MT: TR=23.7ms, α=6°; T1: 

TR=18.7ms, α=20°). For the MT-weighted acquisition, a Gaussian RF pulse of 4ms duration and 220° nominal 

flip angle was applied 2 kHz off-resonance before non-selective excitation. Gradient echoes were acquired with 

alternating readout gradient polarity at 6 equidistant times between 2.2ms and 14.7ms. For PD-weighted 

acquisition, two additional at 17.2ms and 19.7ms were acquired. A high readout bandwidth of 425Hz/pixel was 

used to reduce off-resonance artefacts.  During acquisition subjects were encouraged to be as still as possible with 

eyes open or closed.  

 

MRI data analysis  

Functional imaging data analysis were carried out using SPM12.   

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). After discarding the first three volumes to allow for magnetic 

saturation effects, the remaining images were realigned and unwarped to the first volume to correct for movement 

of subjects during scanning. Realigned images were then normalized to stereotactic space corresponding to the 

Montreal Neurological Institute “ICBM152” with parameters estimated from the structural scans and finally 

smoothed with a 3D Gaussian kernel of 6mm full-width at half maximum. After pre-processing the general linear 

model (GLM) was used for statistical analysis. The design matrix comprised events using a boxcar function 

http://www.mr-confon.de/en/products.html
http://www.mr-confon.de/en/products.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


 

convolved with the canonical haemodynamic response function provided in SPM.   Motion parameters estimated 

during the realignment step were included in the design matrix. 

In the GLM analysis we modelled each of the three types of sound (trigger, unpleasant and neutral) as a separate 

event of duration 15s with silent periods as implicit baseline. The design matrix also included button presses and 

motion regressors as regressors of no-interest. A high pass filter with a cut off frequency of 1/128 Hz was applied 

to remove low frequency fluctuations in the BOLD signal. Once the GLM for each subject was estimated, whole-

brain random effects analysis was implemented by entering contrasts of parameter estimates for each individual 

subject into second-level F and t-tests. Interaction between group and sound type was computed using a 2x3 

ANOVA with group (Misophonic and Controls) and sound type (trigger, unpleasant and neutral) as factors, and 

subject effects modelled.  Post hoc comparison of activity for simple effects between the two groups was done 

using two sample t-tests. 

Functional connectivity analysis was performed using CONN toolbox [S5] (v 15.d). The time series was extracted 

from anatomically defined ROI (as given in SPM12, neuromorphometrics toolbox) of anterior insula. The effect 

of movement on the BOLD signal was reduced by regressing out motion parameters, along with their first order 

temporal derivative, by running whole brain voxel-wise regression. Additionally, five covariates generated using 

the aCmpCorr method [S6], which uses principal component analysis (PCA) on the measurements made in the 

white matter and CSF of each individual subjects segmented white matter and CSF masks, were used. The data 

were then high pass filtered with a cut-off frequency of 1/125 Hz. First-level functional connectivity for each 

group and condition was computed using bivariate correlation coefficient between the seed time series and time 

series from all other voxels in the brain.  The ‘neutral sounds’ condition was taken as a baseline and comparison 

of connectivity between the two groups at second level was undertaken using  two sample t-tests. 

Structural data were analysed using voxel-based quantification (VBQ) toolbox [S1] in SPM12. Four quantitative 

maps (effective proton density, PD*; longitudinal relaxation rate, R1; magnetization transfer saturation, MT and 

effective transverse relaxation rate, R2*) were computed for each subject in the two groups. Briefly for MT, PD* 

and R1 maps, the set of echoes for respective weightings were averaged to increase the signal to noise ratio and 

the resulting 3 volumes were subjected to the procedure as outlined in [S1,S7, S8] . To obtain R2* maps, log signal 

from the 8-PD weighted images was regressed against echo time. For further details of map creation, please see 

Callaghan et al (2014) [S9]. For performing voxel-based analysis, the MT maps (from each subject) were 

segmented into gray and white matter probability maps using the unified segmentation algorithm [S10]. Inter-

subject co-registration of these tissue segments was performed using DARTEL, a nonlinear diffeomorphic 

algorithm as implemented in SPM12. This algorithm iteratively creates an average (across subjects) template and 

determines the deformations that best align the tissue maps to the average template. In our study average template 

was created by combining images from the two groups. The quantitative maps were co-registered, they were 

normalized to MNI space using subject specific deformations using a combined probability weighting and  

smoothing (Gaussian kernel of 3mm FWHM) procedure [S11]. This approach aims to preserve the quantitative 

values during the normalisation procedure by minimizing any partial volume effects introduced by the smoothing 

process.  Statistically significant differences in tissues between the two groups were assessed using two sample t-

tests implemented in SPM12. Age, sex and total intracranial cranial volume were included as regressors of no-

interest. We also did a conventional voxel based morphometry (VBM) analysis on the cohort’s MT maps, but this 

analysis did not reveal any significant differences. VBM analyses are dependent on many different parameters 

(algorithm, priors, and the contrast of the input) and interpretation of any findings, or lack thereof, is complex. 

Presumably the difference in MT values between the two groups, which could be identified via our quantitative 

comparison, was insufficient to greatly alter the segmentation result (since the expected MT value of adjacent 

white matter will be even higher still, e.g. reported as >1.7 in [S12] underpinning the VBM analysis. 

Galvanic skin response and heart rate analysis 

Galvanic skin response was recorded by placing two Ag/AgCl electrodes on the middle and ring fingers of non-

dominant hand. The electrodes were connected to a custom built constant voltage (2.5 volt) coupler. The output 

of the voltage coupler was converted into an optical pulse frequency with an offset of 125Hz. The pulse signal 

was digitally recorded using Micro 1401/Spike2 (Cambridge Design) and then converted back to units of 



 

conductance.  Heart rate data was measured using a pulse oximeter connected on the index figure of the non-

dominant hand and was digitally recorded using Micro 1401/Spike2.  The amplifier encoding heart rate and GSR 

received TTL pulses from the scanner console identifying the current acquisition slice allowing synchronisation 

of physiological data to the fMRI data and experimental paradigm. 

GSR data for 2 misophonic and 4 control subjects could not be used in the final analysis because of technical 

problems in recording data. Heart rate data for 2 control subjects could also not be used in the final analysis 

because of technical issues in data recording. 

GSR data were first resampled to a sampling frequency of 10 Hz before filtering with a 2nd  order Butterworth 

bandpass filter with cut-off frequencies [0.0015 2.5] Hz. The data were then epoched for each trial from 5s prior 

to sound onset of sound until 23s after onset. Data were visually inspected (blinded to trial type) and trials with 

artefacts were rejected. The trials were then sorted into different conditions (Trigger sounds/Unpleasant sounds/ 

Neutral sounds). After baseline (5s prior to onset of sound) correction, average evoked GSR across trials was 

computed. Statistical analysis was performed on the evoked GSR time series using a 2x3 ANOVA, as in the fMRI 

analysis. Correction for multiple comparison was done using cluster level thresholding implemented in SPM for 

M/EEG with a family wise error (FWE) threshold of p < 0.05 and cluster forming threshold of p=0.05.  This 

method of correction finds periods of data where more contiguous data points than would be expected by chance 

pass the cluster forming threshold based upon estimation of the 1-dimensional smoothness inherent in the time 

series. 

HR data were first converted into a continuous time series by inferring instantaneous heart rate based upon the 

interbeat interval and using spline interpolation with a supersampled 10Hz timecourse. The data were visually 

inspected for artefacts and periods with average HR < 45 bpm or > 120 bpm automatically rejected. Data were 

then epoched into trials, and baseline corrected as in the analysis of GSR data. After computing the evoked HR 

response, it was subjected to statistical analysis using the same procedure as for GSR data.  

 

Mediation Analysis 

 We used whole brain single-level mediation analysis. Mediation analysis is a 3-variable path analysis [S13] which 

tests if the relationship between an input (X) and output variable (Y) is mediated by a third variable (M). It 

compares two models: a reduced model (equation 1) and a full model (equation 2) 

     𝑌 = 𝑐𝑋 + 𝑒𝑦         (1) 

                                                      𝑀 = 𝑎𝑋 + 𝑒𝑀;    𝑌 = 𝑏𝑀 + 𝑐′𝑋 + 𝑒𝑌     (2) 

Mediation analysis tests if the difference:  

𝑐 − 𝑐′ = 𝑎𝑏 

 is significantly different. If the difference is significant then it means that part (or whole) of the variance of Y 

which is explained by 𝑋 alone (equation 1) can be explained by the mediator variable 𝑀 (equation 2, second half) 

leading to a reduced value of 𝑐′ compared to 𝑐. 

In our study we asked which brain regions would explain higher heart rate and skin conductance in misophonic 

subjects compared to control subjects. For this analysis, our input variable X was a categorical variable (1 for the 

misophonic -1 for controls). The output variable Y was the average heart rate or skin conductance value for the 

subject. The mediator variable was the contrast (trigger sound-neutral sound) for each subject. The significance 

of mediation (𝑎𝑏) was tested using bias corrected bootstrap testing [S14] with 10000 samples at each voxel and 

the p-value at each voxel was calculated.   

 

 



 

Questionnaire data analysis  

To evaluate interoceptive sensibility [S15], the body consciousness questionnaire (BCQ) [S16] was administered 

after completion of the fMRI component of the study.  Participants were requested to fill-in the questionnaire 

online. Nineteen misophonic and 14 control subjects filled in the questionnaire. The BCQ questionnaire has 15 

questions in total with 5 questions in each of the three categories: Private Body Consciousness, Public Body 

Consciousness and Body Competence. The part of the BCQ related to private body evaluates perception of body 

as perceived from inside and comprises questions like: I am sensitive to internal bodily tensions; I know 

immediately when my mouth or throat gets dry. In public body consciousness, perception of body as visible to 

others is evaluated and consists of questions like: when with others, I want my hands to be clean and look nice; I 

am aware of my best and worst facial features. The body competence part of the BCQ evaluates awareness of the 

physical condition of body and includes questions like: For my size, I am pretty strong; I am better coordinated 

than most people. Each question has 5 options which are scored from 0 (Extremely uncharacteristic) to 4 

(Extremely characteristic) thus making a maximum possible score of 60. Data were analysed by comparing the 

scores between misophonics and controls on the three categories separately using non-parametric equivalent to 

the two sample t-test (Mann-Whitney U test for unequal medians).  Because of relatively small sample size of the 

control population who completed the questionnaire and to further check the reliability of our results, we also 

compared the BCQ scores of misophonic participants with scores of a larger population (n=136; 74 females, age 

range 25 to 63 years) of healthy controls on the same questionnaire. These data are a subset of data collected from 

healthy control participants by one of the co-authors (JSW) as a part of a separate study; the larger sample includes 

a large number of younger participants (n=208) who were excluded from this comparison to ensure average age 

matching between groups (t153=0.5, p=0.61) although we checked that inclusion of the remaining younger control 

participants made no difference to the pattern of results).  In order to further explore differences between 

misophonic participants and healthy controls, we also performed a type of case-control analysis, in which the 

scores for each patient were compared to the mean scores of healthy controls within this larger population matched 

for gender and within 3 years of age.  The sign test was then used to assess whether participants with misophonia 

scored systematically differently from controls for the subscales of the questionnaire; the pattern of results was 

the same as for the more traditional analysis against a control population. 
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Supplemental Misophonia Questionaire S1 

 

Name :   ____________________________________ 

 

Age :  ____________________________________ 

 

Sex:  ______________ 

 

 

Q1: Please list the sounds that you dislike most (the best trigger sound first) 

 

 

 

Q2: Does it make a difference who is making these sounds? (e.g. whether a close friend or family member 

makes them, or a stranger). If ‘yes’, please explain how it affects your reaction. 

 

 

Q3: Could you plz rate on a scale, from 1 to 10 (1: no effect; 10 = maximum effect), your reaction when 

the trigger sound is produced by 

 

i) A stranger    _________________ 

 

ii) A close family member   _________________ 

 

 

Q4: If we have to produce a strong trigger in our lab (in a MRI scanner for example) so that your brain 

activity under that condition could be monitored, do you think it could be done if 

  

i. The recorded sounds alone, of the person who triggers strong reaction, are played back 

to you 

ii.  Just a picture of the person is shown. 

iii. A silent video of the person doing the action that acts as a trigger (e.g. eating, breathing) 

is played. 

iv.  Both sounds and picture of the person are used. 

v. Video with sounds is used 

  

Please rate each of the above option on a scale from 1 to 10 (1 = no effect; 10= maximum effect)  

 

 

 

 

Q5: Does the situation you are in make a difference to your reaction to these sounds? (e.g. whether you 

are at work, enjoying leisure activities or trying to relax). If ‘yes’, please explain how the situation affects 

your reaction. 

 

 

 

Q6: Does the noise level around you affect your reaction to these sounds? (i.e. do you have more or less of 

a reaction in noisy surroundings). 



 

 

 

 

 

Q7: If you can, please explain what it is about these sounds that you dislike. 

 

 

 

 

Q8: Please describe the feeling you get when you hear these particular sounds. 

 

 

 

 

Q9: Please describe what you do when you hear these sounds. 

 

 

 

 

Q10: Please describe any steps you have taken to avoid hearing these sounds. 

 

 

 

 

Q11: Please describe the effect that having misophonia has had on your life (including effects on 

employment, study, hobbies, social activities and relationship with friends and family). 

 

 

 

Q12: When did you first notice these symptoms of strongly disliking certain sounds? Was there any 

particular event or trigger associated with the symptoms starting? 

 

 

 

 

Q13: Have your symptoms changed over time since they began? If so, please explain in what way they 

have changed (e.g. getting worse, getting better, the reaction itself changing). 

 

 

 

 

Q14: Please list any sounds that you particularly like. 

 

 

 

 

Q15: Do you often experience tinnitus (ringing in the ears)? If so, how much of the time do you hear it, 

how loud is it (on a scale of 0-10) and how much does it bother you (on a scale of 1-10)? 

 

 

 

 

Q16: As well as particularly disliking particular sounds, do you have a strong dislike of loud sounds in 

general (ones that other people around you do not seem to mind)? 

 

 



 

 

 

Q17: Does anybody in your family have similar symptoms to yours? If so, please give details. 

 

 

 

 

 

Q18: Do you have hearing loss?  Have you had a hearing test? If so, what was the result? 

 

 

 

 

 

Q19: Would you be happy  if we contacted you in future to discuss taking part in research on misophonia  

which requires brain imaging (fMRI or MEG)? If so, please state your preferred contact details (e.g. e-

mail address, phone number, postal address). 

 

 

 

 

Q20 . Please provide any additional information. 
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