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A B S T R A C T

Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the de-

cision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to

this problem, but much uncertainty remains regarding both input data and modelling assumptions. This paper

aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical

optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that

minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on

the optimal vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of

total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the

ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access.

This is also the parameter with the greatest discrepancy between the tools, implying that accurate quantification

and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel

day rates but less sensitive to electricity price and vessel transit speed.

1. Introduction

With more than 3200 offshore wind turbines connected to the Eu-

ropean grid at the start of 2016 (EWEA, 2016), operation and mainte-

nance (O&M) of these assets is a key challenge to achieve commercially

viable projects. The estimated contribution of O&M to the life cycle cost

of an offshore wind farm varies significantly, accounting from 15 to 30%

(Musial and Ram, 2010; Wiser et al., 2016). Offshore logistics and vessels

are major contributors to the O&M costs, estimated to account for almost

45% (GL Garrad Hassan, 2013; Smart et al., 2016), and are decisive

factors in ensuring high availability of the wind turbines and hence high

electric power production. As offshore wind farms are remote, unmanned

and often difficult to access due to weather restrictions, the offshore lo-

gistics related to O&M becomes a highly complex task. Since most

offshore wind farms have been in operation for only a few years, there is a

general lack of O&M industry experience. Developers, original equip-

ment manufacturers (OEM), operators, and financial institutions are

looking for tools to guide decision making when deciding on mainte-

nance strategies, vessels, manning, and investments. The problem is

exacerbated for non-OEMs, since much of the existing operating experi-

ence has been gained during the initial warranty period. This increases

the uncertainty for non-OEMs around future operations.

This paper focuses on decision support tools applied to the selection

of the O&M vessel fleet, i.e. the crew transfer vessels or other logistics

solutions for accessing the wind turbines to conduct maintenance. This is

an example of a decision problem in offshore wind O&M that has

received much attention both in the research literature and in the in-

dustry. For instance, optimising the offshore logistics solution and

investigating its robustness to assumptions are often done as a part of due

diligence in preparation for the investment decision for offshore wind
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projects. In practice, a number of aspects must be considered in the se-

lection of O&M vessels, such as the technical, hydrodynamic evaluation

of the accessibility of the turbines by the vessels (Wu, 2014; Guanche

et al., 2016). However, this paper takes a higher-level, strategic

perspective and considers the economic evaluation of the vessels as part

of the overall logistics system of the wind farm. The research literature

reports a number of tools for such economic evaluation that have been

applied to the problem of selecting the O&M vessel fleet, including an-

alytic cost tools (Besnard et al., 2013), simulation tools (Dalgic et al.,

2014, 2015a, 2015b; Endrerud et al., 2015; Sperstad et al., 2016) and

mathematical optimisation tools (Halvorsen-Weare et al., 2013; Gun-

degjerde et al., 2015). For comprehensive reviews of strategic decision

support tools for offshore wind O&M and logistics more generally, see

Hofmann (2011) and Shafiee (2015).

As a large number of strategic decision support tools have already

been developed, the purpose of this paper is emphatically not to present

yet another new or improved tool. The work is rather motivated by the

need to reduce the uncertainties that still remain related to both

modelling assumptions and input data for such tools. Uncertainties

related to input data assumptions have been studied in some of the

works cited above using sensitivity analysis. Sensitivity analysis for

offshore wind O&M is also treated more generally in Martin et al.

(2016). However, the insights from previous sensitivity studies may

have restricted generality as they depend on the modelling assumptions

implemented in the particular decision support tool considered in each

study. Uncertainties related to modelling assumptions intrinsic to the

tools were previously addressed in Dinwoodie et al. (2015) by

comparing four different simulation tools for calculating O&M costs

and wind farm availability. In that study, a reference wind farm case

with relevant input data was defined, and baseline results were re-

ported for the different tools. The comparison revealed how different

tools can produce significantly different results because of dissimilar

modelling assumptions. However, Dinwoodie et al. (2015) considered

only simulation tools for O&M, and the study did not consider the

application of the tools as decision support tools for optimising the

O&M strategy.

In this paper, four simulation tools, one mathematical optimisation

tool and one analytic spreadsheet-based tool have been tested on the

reference case from Dinwoodie et al. (2015) to compare how they rank a

predefined set of vessel fleets. The objectives of this work is to answer the

following research questions: a) How robust is the ranking of vessel fleets

to the kind of decision support tool that is used? Even if different decision

support tools disagree on the absolute performance measures of different

vessel fleets for offshore wind O&M, do they still agree on the relative

ranking of the vessel fleets? b) How robust is the ranking of the vessel

fleets given by each tool to the assumptions made for different key input

parameters?

Although previous work has compared different offshore wind O&M

decision support tools qualitatively (Hofmann, 2011), this is the first time

the robustness of offshore wind O&M decision support has been inves-

tigated quantitatively, using more than one tool. Furthermore, it is the

first study to consider sensitivities in the ranking of different vessel fleets.

Addressing these research questions through a comparison of different

tools can identify the direction for further model validation and devel-

opment work, reducing the uncertainty associated with decision support

for offshore wind O&M and logistics. Furthermore, model comparison

and sensitivity studies can identify which uncertainties in the input data

are most important to consider and may also provide other recommen-

dations for using advanced tools to support offshore wind O&M and lo-

gistics decisions.

The rest of the paper is organized as follows. Section 2 explains the

proposed methodology for O&M vessel fleet optimisation and sensitivity

analysis. The reference wind farm, vessel alternatives and decision sup-

port tools used are also introduced in this section. Section 3 presents the

results for the vessel fleet ranking and sensitivity analysis. The results are

discussed in Section 4, after which the paper is concluded in Section 5 by

summarizing key findings and suggesting implications for the use of

strategic decision support tools for selecting the O&M vessel fleet.

2. Methodology

This section describes the proposed methodology for O&M vessel

fleet optimisation and sensitivity analysis. The focus is on the selection of

the access vessel fleet, i.e. the fleet of crew transfer vessels (CTV) and/or

other vessel concepts for transferring and allowing technicians access to

the turbines. The section first defines the optimisation problem and then

introduces the decision support tools used for evaluating different vessel

fleets. This is followed by a description of the base case specifications for

the reference wind farm and the different vessel types and the vessel fleet

alternatives that are considered. Finally, the methodology and cases for

the sensitivity analysis are described.

2.1. Vessel fleet ranking

In this section an optimisation problem for the selection of a vessel

fleet for O&M of an offshore wind farm is formulated. A solution space of

possible vessel fleet alternatives is defined, and for all alternatives in the

solution space, the performance of the vessel fleets are evaluated and

ranked according to the value of the objective function f. The optimal

vessel fleet is the one with the lowest value of f. For this optimisation

problem, a simple objective function, referred to as the total O&M cost, is

defined to capture the trade-off between O&M costs and wind farm

availability:

f ¼ Total O&M cost

¼ Direct O&M costþ Lost revenue due to downtime (1)

Lost revenue due to downtime, or lost production or downtime costs,

is the difference between theoretical revenue for the ideal case of no

wind turbine downtime and actual revenue. This can be expressed

mathematically as follows:

Lost revenue due to downtime ¼ Pel

X

Nhours

t¼1

X

Nturbines

j¼1

Etheor;j;t �
�

1� Aj;t

�

(2)

Here, Pel is the electricity price, i.e. the revenue generated per MWh,

measured in £. The analysis considers a period of Nyears with a number of

hours Nhours ¼ Nyears � 365� 24. Etheor;j;t is the electricity production in

units MWh of turbine j in hour t, given the wind speed and turbine power

curve and given that the turbine is available to generate electric power.

The availability Aj;t of wind turbine j in hour t is 0 during downtime and 1

when the turbine is available to generate electric power.

Direct O&M cost is here composed by the following cost components:

Direct O&M cost ¼ Vessel costþ Personnel costþ Total repair cost (3)

In reality, there are also a number of other direct O&M cost compo-

nents that are not included in this equation (GL Garrad Hassan, 2013;

Smart et al., 2016), but this simplification is made to focus on the key cost

elements that may vary between different O&M vessel fleets. Cost ele-

ments that do not vary between different vessel fleets are constant terms

in the optimisation problem and do not impact the optimal vessel

fleet selection.

The vessel cost is the sum of day rates (i.e. charter costs per day) for

all vessels in the O&M vessel fleet:

Vessel cost ¼ Nyears � 365�
X

v

ðDay rateÞv (4)

The personnel cost is the sum of annual salaries for all Ntech main-

tenance technicians working in the wind farm:

Personnel cost ¼ Nyears � Ntech � Annual technician salary (5)
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Total repair cost is the sum of all repair costs (including costs of spare

parts and consumables but excluding vessel and personnel cost) for all

maintenance tasks considered in the problem:

Total repair cost ¼
X

i

Ntask; i � ðRepair costÞi (6)

Here, Ntask; i is the number of maintenance tasks completed for failure

category i. All cost variables are calculated for the same period of Nyears of

the operational phase of the wind farm.

In the case of corrective maintenance at a turbine, downtime is

incurred from the time of occurrence of a turbine failure and until the

maintenance task is completed. In the case of pre-determined, preventive

maintenance (PM) of a turbine, downtime is only incurred while tech-

nicians are carrying out the PM task at the turbine or accessing the tur-

bine. Including lost revenue due to downtime in the objective function

ensures that a possible vessel fleet solution is penalised for not having the

capacity to perform corrective maintenance in a timely manner. It does

not, on the other hand, ensure that the vessel fleet is also capable of

completing the pre-determined, preventive maintenance that is sched-

uled for the wind turbines. The tools that are considered will typically

give corrective maintenance tasks priority over preventive maintenance

tasks. This may result in vessel fleet solutions where the total O&M cost is

low, but where not all the preventive maintenance tasks are completed.

This is important to take into account in the vessel fleet ranking, since

delaying preventive maintenance beyond the recommended mainte-

nance intervals may adversely affect wind turbine reliability in the long

run. Precisely how reliability is affected by maintenance is very difficult

to quantify until sufficient operating experience is obtained, and none of

the tools in this paper attempts to capture this relationship explicitly. In

these analyses, vessel fleets that are unable to complete all PM are always

considered inferior to vessel fleets that are able to complete all PM.

Therefore, the vessel rankings are performed based on two decision rules

applied in a hierarchical fashion: First, the vessel fleets are ranked ac-

cording to the percentage of the planned PM tasks they have performed.

Second, all vessel fleets that have completed the same percentage of PM

tasks (±0.1%) are ranked according to their total O&M cost.

2.2. Description of the decision support tools

Six different strategic decision support tools with different modelling

methodologies have been applied for the work reported in this paper.

Four of the tools are simulation tools: 1) The NOWIcob tool developed by

SINTEF Energy Research (Hofmann and Sperstad, 2013, 2014), 2)

MAINTSYS developed by the University of Stavanger and Shoreline

(Endrerud et al., 2014, 2015) 3) the ECUME model developed by EDF

R&D (Douard et al., 2012) and 4) the Strathclyde University offshore

wind OPEX model (StrathOW-OM) (Dalgic et al., 2015a). These simula-

tion tools were also presented and compared in Dinwoodie et al. (2015).

In this paper, also 5) the MARINTEK vessel fleet optimisation model

(Stålhane et al., 2016) and 6) the Energy Research Centre of the

Netherland's (ECN) O&M Tool (Obdam et al., 2011) are included. Except

from the MARINTEK vessel fleet optimisation model, these tools can be

viewed as long-term cost estimation tools that can be applied for plan-

ning purposes and strategic decision support. Although all the decision

support tools have been developed independently, they are all considered

applicable to the problem of selecting O&M vessel fleets and are hence

comparable for the purposes of this paper. All the tools are developed in

cooperation with the industry (offshore wind farm devel-

opers/owners/operators) and have been applied to provide decision

support for actual wind farm projects. It could be noted that, being

designed for strategic applications, the tools are not applicable to oper-

ational (short-term) decision support.

The four simulation tools are based on a discrete-event time-

sequential Monte Carlo simulation modelling approach. They produce

estimates of performance parameters such as wind farm availability and

O&M costs as output parameters. Applying the simulation tools to an

optimisation problem, the tools must evaluate each of the alternative

solutions of the problem and estimate its objective value based on these

output parameters. By using a mathematical optimisation tool such as the

MARINTEK tool, on the other hand, all alternatives may be evaluated

implicitly through the optimisation procedure, which then only returns

the solution with the lowest objective value. However, for this work the

MARINTEK optimisation tool has also been set to consider only one

vessel fleet at a time to allow for comparison with the simulation tools. In

the optimisation tool, a penalty term is included in the objective function

to explicitly penalize vessel fleets for each PM task that they are not,

according to the tool, able to complete. Both the simulation tools and the

optimisation tool are dynamic in the sense that they capture the time

dependence resulting from metocean conditions and stochastic wind

turbine failures.

The ECN O&M Tool is a commercially available Microsoft Excel tool

developed to estimate long-term annual average O&M costs and other

outputs. As such it is not dynamic in the sense described above for the

simulation and optimisation tools but treats several aspects of O&M in a

more simplified manner. However, it allows significant user control over

inputs and for this work was modified by analysts at the National

Renewable Energy Laboratory (NREL) to represent specific vessel capa-

bilities, costs, and metocean conditions as detailed as for the other tools.

The ECN O&MTool includes a set of macros for post-processing of results

that optimise the use of resources. In contrast to the simulation tools, the

ECN O&M Tool hence automatically estimates the number of technicians

and vessels needed to fully complete repairs for each season for an

average year.

2.3. Description of reference case

For the computational study, the performance of 10 alternative vessel

fleets used for the O&M of a reference offshore wind farm have been

compared. The reference wind farm is based on Dinwoodie et al. (2015),

which defined a number of reference cases designed for comparing O&M

simulation tools. These reference cases specify representative values for

the minimal set of input parameters needed to run such tools in a

meaningful manner. The base case from Dinwoodie et al. (2015),

including wind turbine data, metocean data, failure data and vessel data,

is henceforth simply referred to as the reference case. The reference wind

farm consists of 80 Vestas V90 3.0 MWwind turbines located 50 km from

an onshore maintenance base.

The failure data for the reference case are given in Table 1. The failure

data used in Dinwoodie et al. (2015) are assumed but the present study

does not include the failure categories of major repair and major

replacement. The reason for leaving out these failure categories is that

they require that specialist vessels (referred to as Field Support Vessels

and Heavy Lift Vessels in the reference case) are chartered. The results

from optimal vessel fleet selection are not significantly affected by the

presence or absence of other failure categories requiring specialist vessels

(Sperstad et al., 2016). The reason is that the interactions between

maintenance tasks performed by access vessels and maintenance tasks

performed by specialist vessels are negligible. Thus, the decision of when,

and for how long, to charter specialist vessels to perform these mainte-

nance tasks, and as an extension their contribution to the objective

Table 1

Base case failure data for the reference case (from Dinwoodie et al. (2015)).

Failure category Manual

reset

Minor

repair

Medium

repair

Annual

service

Active maintenance time

(hours)

3 7.5 22 60

Required technicians 2 2 3 3

Failure rate (per turbine

per year)

7.5 3.0 0.275 n/a

Repair cost (£) 0 1000 18 500 18 500
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function, can be seen as independent of the fleet of access vessels.

However, such failure categories can contribute substantially to the sta-

tistical uncertainty in simulation results (Sperstad et al., 2016), which

makes a statistically significant comparison of different vessel fleets more

computationally demanding. Furthermore, the modelling of the charter

of Heavy Lift Vessels (or jack-up vessels) has previously been identified as

a major source of discrepancies between different tools (Dinwoodie et al.,

2015). Therefore, only maintenance categories where only crew transfer

vessels are required for the maintenance are considered: three corrective

maintenance categories (manual reset, minor repair and medium repair)

and one preventive maintenance task (annual service). For more infor-

mation on these maintenance categories and the failure data set, we refer

to Smart et al. (2016). A corrective maintenance strategy as in the

reference case is assumed, and it is assumed that corrective maintenance

tasks are always given priority over preventive maintenance tasks.

As in the reference case, the metocean data used in this study come

from the FINO 1 offshore research platform (BSH, 2012). However, for

the present study, the same historical 8-year wind and wave time series

are used for all decision support tools. In other words, those tools that

have the functionality for generating synthetic metocean time series do

not employ this functionality. The reason for this choice is to ensure that

the comparison is not biased by any differences in the generation of

synthetic metocean time series, as such modelling differences were found

for the reference case to be a source of discrepancies between results from

different tools (Dinwoodie et al., 2015).

2.4. Description of vessel fleet alternatives

In addition to a standard CTV based on the specifications in the

reference case, three other access vessel concepts are considered. A sur-

face effect ship (SES) is an advanced crew transfer vessel with higher

service speed and higher limiting significant wave height (Hs) for tech-

nician access/transfer to the turbine. Both CTV and SES need to return to

the onshore maintenance base at the end of each shift. A small accom-

modation vessel (SAV) is an access vessel that also offers offshore ac-

commodation for the technicians. A mini mother vessel (MM) is a

somewhat larger vessel offering offshore accommodation and hosts two

small daughter vessels. Technicians can be transferred from the MM to

the turbines both via the daughter vessels and directly via a gangway or

similar access system. The SAV and the MM vessel types are assumed to

stay offshore for 14 days before they have to spend 1 day travelling back

to shore to resupply.

The specifications of the vessel types are given in Table 2 and are, in

part, based on experience from research projects with offshore wind farm

developers/owners/operators. In addition to the input parameters used

in the reference case to describe the CTV, the access time of the vessels has

been introduced. This parameter describes the time it takes from when

the vessel is in the vicinity of the turbine to when the last technician is on

the turbine, with the equipment needed to start working. This parameter

is introduced to model the crew transfer capabilities of the vessels more

accurately for the vessel fleet comparison. The same time is assumed to

be required for picking up the technicians as for deploying them to the

turbine. Internal travel distances within the wind farm are neglected in

the tools which have this as an input parameter, but the time spent

travelling within the wind farm can be regarded as included in the ac-

cess time.

Technicians operating from the onshore maintenance base, and

transported by CTVs or SESs, work 1 � 12 h shifts each day, and tech-

nicians operating from a SAV or a MM work 2 � 12 h shifts per day. It is

assumed that the number of technicians available for working from the

vessels each shift equals the maximal number the vessels have capacity

for transporting or accommodating (the technician capacity). Since the

SAV and MM vessels operate with two shifts per day, these vessels

accommodate twice the number of technicians available to work each

shift: For the MM vessel, e.g., there are 8 technicians working day shifts

and 8 technicians working night shifts. Although two working shifts for

access vessel operations may not be common industry practice today, it is

likely to be relevant for mother vessels and similar access vessel concepts

in the future.

The composition of the 10 vessel fleet alternatives considered in the

computational study is given in Table 3. This defines the solution space

considered for the optimisation problem. The ECN O&M Tool is only able

to produce results for a subset of these fleet compositions. Since the tool's

post-processing of results estimates the number of vessels required to

fully complete repairs, the number of vessels is not specified by the user.

For example, the ECN results for the vessel fleet “2 CTV” indicates that

two CTVs are needed in three seasons and three CTVs are needed in one

season; hence the vessel fleet “3 CTV” is not represented in the results for

the ECN O&M Tool. Furthermore, the MAINTSYS model is not able to

represent the MM.

2.5. Sensitivity analysis

From the procedure described in Section 2.1, it is possible to obtain

the ranking of the n alternative vessel fleets; the rank of vessel fleet i is

denoted by ri. Changing the assumptions of the input data may change

how a tool assesses the performance of a vessel fleet and thus how well

the decision support tool ranks it compared to the alternatives. To assess

the robustness of the results from a tool, the sensitivity index of the

objective function has been considered. The total O&M cost is denoted

f(x) as a function of an input parameter x, where x for instance could be

the service speed of a given vessel. The following sensitivity index is

then defined:

Table 2

Base case parameter values specifying the vessel types.

Vessels Hs limit (m) Vessel speed (knots) Day rate (£) Technician capacity Access time (min)

Crew transfer vessel (CTV) 1.5 20 1750 12 15

Surface effect ship (SES) 2.0 35 5000 12 15

Small accommodation vessel (SAV) 2.0 20 12 500 12 15

Mini mother vessel (MM) 2.5 14 25 000 16 30

Daughter vessel 1.2 16 n/a 6 15

Table 3

Definition of the vessel fleets considered.

Vessels Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 Fleet 9 Fleet 10

Crew transfer vessel (CTV) 2 3 1 2 0 1 0 1 0 0

Surface effect ship (SES) 0 0 1 1 2 2 0 0 3 0

Small accommodation vessel (SAV) 0 0 0 0 0 0 1 1 0 0

Mini mother vessel (MM) 0 0 0 0 0 0 0 0 0 1
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cf ¼
½j f ðx0 þ ΔxÞj þ jf ðx0 � ΔxÞj �=2

Δx
⋅

x0

f ðx0Þ
: (7)

This sensitivity index measures the changes in the performance (i.e.

objective value) of a vessel fleet, as assessed by one of the tools, when an

input parameter x is changed by ±Δx. As it measures the sensitivity to

changes around a base case value x ¼ x0, it is a local sensitivity index. A

two-sided sensitivity index is chosen to average over the effect of

increasing and decreasing the input parameter. For instance, if changing

x by increasing or decreasing x0 by 20% also changes f ðx0Þ by 20%, the

sensitivity index is cf ¼ 1.

However, if the performance estimate for a vessel fleet changes for

changing assumptions, this does not necessarily mean that the rank of the

vessel fleet when compared to the alternatives also changes. For each

input parameter x, the ranking of vessel fleet i can be expressed as a

function of that parameter as riðxÞ. The overall ranking of the vessel fleets

can be expressed as the sequence friðxÞg
n
i¼1. To investigate how robust

the ranking of the vessel fleets is, a measure of the ranking's sensitivity to

changes in different input parameters is needed. The Spearman's rank

correlation coefficient ρ, has been introduced as a measure of how much

the ranking of the vessel fleets friðxÞg
n
i¼1 for one value of x differs from

the ranking for another value of x (Walpole et al., 1993). Denoting the

base case value of x as x0, the Spearman's rank correlation coefficient can

be expressed as follows:

ρðxÞ ¼ 1�
6
Pn

i¼1½riðxÞ � riðx0Þ�
2

nðn2 � 1Þ
(8)

This correlation coefficient by definition equals one for the base case,

ρðx ¼ x0Þ ¼ 1, and it decreases if the ranking of the vessel fleets changes

as one is moving away from the base case, as ρðxÞ � 1:

To measure howmuch a ranking changes when changing parameter x

by Δx, a sensitivity index cx for the rank correlation is defined as follows:

cx ¼
1� ½ρðx0 þ ΔxÞ þ ρðx0 � ΔxÞ �=2

Δx=x0
(9)

If neither increasing nor decreasing x by Δx changes the ranking of

the vessel fleets, the Spearman's rank correlation coefficients will equal

one and the rank sensitivity index cx will be zero. If changing the

parameter value changes the value, however, cx >0, and the magnitude

of cx increases as the correlation coefficient ρðxÞ decreases.

For sensitivity analysis, a number of input parameters have been

considered that are assumed to influence the ranking of the vessel fleet

alternatives: 1) Expected average failure rates are generally uncertain

and may depend on a number of factors. The number of failures also

greatly impacts the maintenance requirements of the wind farm that the

vessel fleet needs to serve. 2) The expected revenue generated by the

wind farm project per MWh of electric energy that is produced (the

electricity price): The future values of this parameter may be certain or

uncertain depending on the electricity market and what support scheme

is in place, if any. Changes in this parameter can also be taken to

represent changes in the assumptions about wind power production

depending on turbine performance or wind speeds. 3) Vessel day rates

are generally uncertain for the wind farm owner/operator in the devel-

opment and planning phase and they constitute an appreciable part of the

direct O&M cost. 4) The average limiting significant wave height (Hs) for

technicians to access the turbines should be understood as an effective

limit for Hs when averaging over sea states (characterised by wave di-

rection, wave period, etc. in addition to Hs) where the operation is

possible and safe. Hence, the actual value of this parameter depends on

the metocean conditions at the wind farm site and is generally uncertain

(Sperstad et al., 2014). 5) The service speed of a vessel is typically stated

by the vessel provider. However, there is uncertainty associated with the

actual average vessel speed, which may depend on e.g. sea states or the

maintenance strategy.

Sensitivity cases for each of the vessel fleets are defined by changing

the assumptions for each of these input parameters to a higher and lower

level around the assumptions of the base case. The base case values x0 are

defined in Table 1 for the failure rate assumptions and in Table 2 for the

vessel assumptions, and the base case electricity price is 90 £/MWh. The

sensitivity cases considered are listed in Table 4, which also shows which

vessels a parameter changes for each of the cases. New simulations need

to be carried out for the parameters failure rate, Hs limit and vessel speed,

whereas sensitivity analyses can be performed for vessel day rates and

the electricity price simply by post-processing simulation results from the

base case.

3. Computational study

This section presents the results of the computational study using six

different decision support tools for O&M vessel fleet selection. Results for

the objective value for different vessel fleet alternatives and the sensi-

tivity of these results are presented in Section 3.1. Section 3.2 presents

the resulting ranking of the vessel fleets, and in Section 3.3 the sensitivity

of this ranking to changes in input data assumptions is considered.

3.1. Objective function sensitivity analysis

Each of the tools described in Section 2.2 has been used to evaluate

the objective function as described by Eqs. (1) and (2) for each of the 10

vessel fleet cases described in Section 2.3. For each of the simulation

tools, the number of Monte Carlo iterations was chosen so that the sta-

tistical uncertainty in the objective value was sufficiently low for

comparing the different vessel fleets with that tool. The exact number of

iterations was not equal for all tools because different tools have levels of

statistical variability in the Monte Carlo results and different procedures

for selecting the number of iterations.

A comparison of the performance of the different vessel fleets as

evaluated by the different decision support tools is shown in Fig. 1. To

allow a clearer comparison of the relative performance of the different

vessel fleets across different tools, the objective value estimates for each

tool have been scaled to the value of the vessel fleet with the lowest

objective value according to that tool. In other words, for each tool, the

vessel fleet with the lowest objective value is shown with objective value

100%. In the previous study conducted with many of the same tools by

Dinwoodie et al. (2015), it was observed that the absolute value of the

total O&M cost varied significantly between different tools. For the

present study, the primary interest is rather on the differences between

the tools in how they rank different vessel fleets. Therefore, relative total

O&M cost values, rather than absolute values, are considered.

The results in Fig. 1 are shown with vessel fleets ordered from the

lowest to the highest charter cost of the vessel fleet (left to right). In

general, the following trend can be expected for the total O&M cost as a

Table 4

Definition of sensitivity cases considered.

Sensitivity case

label

Change for

CTV

Change for

SES

Change for

SAV

Change for

MM

Failure rate X X X X

Electricity price X X X X

Day rate all

vessels

X X X X

CTV day rate X

SES day rate X

SAV day rate X

MM day rate X

Hs all vessels X X X X

Hs CTV X

Hs SES X

Hs SAV X

Hs MM X

Speed all vessels X X X X

Speed CTV X

Speed SES X
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function of the charter cost of the vessel fleet: The total O&M cost is high

for the least expensive fleets since they have insufficient capacity to

perform all of the corrective O&M tasks at the wind farm and therefore

result in a high revenue lost due to downtime. Increasing the vessel cost,

the total O&M cost then decreases towards a minimum as a trade-off is

being made between vessel cost and downtime costs. For the most

expensive fleets, the total O&M cost then increases again since the in-

crease in vessel costs are larger than the reduction in revenue lost due to

downtime for these vessel fleets. This general trend can be seen in Fig. 1

for most of the tools. However, Fig. 1 also shows several differences

between the results from different tools, and these differences will be

investigated in more detail below.

It is important to keep in mind that the objective values shown in

Fig. 1 alone do not identify whether or not the vessel fleet is able to

complete all annual services. Therefore, the fraction of annual services

completed is presented in Table 5. The MARINTEK tool does not give the

exact percentage of annual services completed so “<99.90%” means that

not all of them were performed.

Fig. 1 shows a similarity in how the tools evaluate the differences in

performance between the vessel fleets for the base case. For instance, all

tools agree that the least expensive alternatives, “2 CTV” and “3 CTV”,

are insufficient for the maintenance requirements of the reference case.

However, the tools disagree strongly on the relative performance dif-

ference between these fleets and the better performing ones. For the

MARINTEK tool, the explanation is that the objective function for this

optimisation tool explicitly includes a penalty cost for not completing all

maintenance activities. For the StrathOW-OM model, the low relative

performance of “2 CTV” and “3 CTV” can be explained by this tool having

in general less optimistic modelling assumptions than the other tools.

This leads to overall lower availability estimates, and the effect is

aggravated for cases with insufficient maintenance resources. These re-

sults are in line with the findings in Dinwoodie et al. (2015), which

concluded that differences between tools are most pronounced for cases

where maintenance resources are heavily constrained.

The tools also disagree strongly on the performance of the “SAV”

vessel fleet. All simulation tools agree that a single SAV is unable to

complete all the required annual services due to its small capacity for

technicians. In the MARINTEK tool this again results in large penalty

costs being added to the total O&M cost. Only the ECN O&M Tool is able

to complete all annual services with using 1.25 SAVs annually (i.e., two

SAVs were required for a single season of the year). However, the ECN

O&M Tool's estimate of the objective function is far above that of most

vessel fleets. The ECN O&M Tool is incentivized to complete annual

services in a different manner than in the other tools. Annual services are

completed, but the SAVs are operating nearly continuously throughout

the year in order minimize turbine downtime. The results presented in

Fig. 1 highlight the importance of taking into account the completion of

preventive maintenance in assessing the performance of access vessels.

They also illustrate the importance of how preventive and corrective

maintenance is prioritised in O&M tools. Separate tests also showed that

changing these priorities gave substantial differences in results for some

of the tools.

To investigate how strongly the objective value is affected by

different input parameters, the sensitivity index of the total O&M cost as

defined in Eq. (7) has been calculated. The results for relative changes of

Δx=x0 ¼ ± 20 % to the values all the considered parameters are given in

Fig. 2. Here the results for each parameter are averaged over all vessel

fleets for which the parameter is relevant. The normalization of the

sensitivity index is such that a value of 1 means that increasing the input

parameter by 20% gives a 20% increase in the total O&M cost. As can be

seen by the figure, there is only partial agreement between the tools as to

which parameters affect the total O&M cost the most. The day rates and

the speed of the vessels seem to have little effect on the total O&M cost,

while the objective function on average is most sensitive to changes in

the wave height limits of the vessels. There is also a considerable sensi-

tivity to changes in the price of electricity and the failure rates. Both of

these influence the total downtime cost of the wind farm, which is one of

the major cost components. For some wave height limit parameters, the

results for the sensitivity index for MARINTEK and StrathOW-OM are

outside the range chosen for Fig. 2.

For electricity price and vessel day rates, a linear relationship be-

tween the value of the parameter and the objective value of a given vessel

Fig. 1. Total O&M cost for the vessel fleets for each decision support tool relative to the vessel fleet found to be optimal for that tool.

Table 5

Fraction of annual services completed for each vessel fleet for each of the decision support tools.

2 CTV 3 CTV 1 CTV þ1 SES 2 CTV þ1 SES 2 SES 1 CTV þ2 SES 1 SAV 1 SAV þ1 CTV 3 SES 1 MM

ECUME 95.39% 99.98% 98.94% 100.00% 100.00% 100.00% 84.67% 100.00% 100.00% 100.00%

NOWIcob 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 71.47% 100.00% 100.00% 100.00%

StrathOW-OM 73.69% 100.00% 97.85% 100.00% 100.00% 100.00% 90.38% 100.00% 100.00% 100.00%

MARINTEK <99.90% <99.90% 100.00% 100.00% 100.00% 100.00% <99.90% 100.00% 100.00% 100.00%

MAINTSYS 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 98.00% 100.00% 100.00% n/a

ECN 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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fleet would be expected. This trend is evident in Fig. 2 where the sensi-

tivity of all tools to changes in these parameters is more or less the same.

The effect of changing the limiting wave height parameter has a great

impact on the objective value of all tools; however, the magnitude of the

impact varies to a large extent. Finally, changing the speed of the vessels

seems to have little effect on the objective value of all tools. An expla-

nation for this may be that the objective value as a function of the speed is

more similar to a step function where there are only small changes in the

objective value until the speed reaches a given threshold value, at which

point it will increase/decrease drastically. Increasing the speed of a vessel

will only improve the objective value significantly if the additional time

available at a wind farm can be used to perform additional maintenance

tasks. Thus, this parameter is likely to have a greater impact if the wind

farm is located further offshore than in our tests, or if the parameters are

changed by considerably more than 20%.

3.2. Vessel fleet ranking

Table 6 shows the vessel fleet ranking for all tools for the reference

case when it is also required that the vessel fleets be capable of

completing all preventive maintenance as explained in Section 2.1. For

this reference case, it is clear that there are some fleets that all tools find

to be good and some fleets that all tools agree are bad. However, for many

of the fleets, the tools disagree on the actual ranking, just as they disagree

on the relative performance as shown in Fig. 1. The fact that the relative

performance curves in Fig. 1 are so different for different tools also makes

it less likely that different tools in general would agree on the optimal

solution to the vessel fleet optimisation problem.

In Table 7, the Spearman's rank correlation between each pair of tools

is presented, as defined in Eq. (8). The ECUME, StrathOW-OM, and

MARINTEK tools seem to agree fairly well on the vessel ranking; the same

goes for NOWIcob and MAINTSYS. However, between many pairs of

tools there is virtually no correlation of the fleet rankings. Some pairs of

tools even have a slightly negative correlation, meaning that fleets

ranked high by one tool are generally ranked low by the other tool and

vice versa.

3.3. Vessel fleet ranking sensitivity analysis

Having found that there are differences in how different tools rank

different vessel fleets, also when one takes into account whether pre-

ventive maintenance is completed, an investigation into how sensitive

the rankings themselves are to changes in the inputs was carried out.

Changes in the correlation coefficients for the ranking are considered as a

measure of how robust the results for the vessel fleet ranking are. To be

able to compare the sensitivity of the vessel fleet ranking to changes in

Fig. 2. Sensitivity of the objective value averaged over all vessel fleets.

Table 6

The vessel fleet ranking for each of the decision support tools according to the total O&M cost, taking also into account that all annual services should be completed. A darker shade of grey

indicates a higher ranking of a vessel fleet for a tool.
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different parameters, the sensitivity index defined in Eq. (9) is consid-

ered. The results are shown in Fig. 3 for relative changes of Δx=x0 ¼

± 20 % to all the considered parameter values. The normalization of the

sensitivity index is such that a value of 1 means that changing the input

parameter by 20% gives a 20% decrease in the Spearman's rank corre-

lation function. The figure shows that the findings for the objective

function value sensitivities are also broadly valid for the ranking of the

vessel fleets: The ranking of different vessels is strongly dependent on the

Hs assumptions and appreciably less dependent on the vessel speed as-

sumptions. Simply put, the implication is that when ranking which vessel

fleets perform best, the ranking is robust to the uncertainty in the actual

speed of a vessel, but making inaccurate estimates for the accessibility of

a vessel could result in a completely different ranking. However, the Hs

limit could be a less important parameter for wind farms in milder

metocean conditions, as the metocean conditions of the reference case

are relatively harsh (Dinwoodie et al., 2015). It should also be pointed

out that the sensitivity to vessel speed would be stronger had a reference

wind farm with a greater distance to shore been chosen. Fig. 3 also shows

that different tools disagree strongly on the extent to which the vessel

fleet ranking is affected by changes in the different parameters. Most

importantly, there is a wide span between the tools in the sensitivity of

the ranking to changes in Hs and in the failure rate.

The sensitivity case “Hs all vessels” can also be interpreted as inves-

tigating sensitivity to changes in the metocean data, since decreasing the

Hs limit of all vessels by 20% has the same effect as increasing the wave

height of all metocean states in the input data by 20%, and vice versa. As

can be seen in Fig. 3, this is one of the changes to which the tools are the

most sensitive. This indicates that representing the metocean data

correctly will also have a great impact on the vessel fleet ranking.

4. Discussion of the results

As shown in the comparison of the vessel fleet rankings and

sensitivities in the preceding section, there are discrepancies between the

results from different decision support tools. One possible explanation for

the discrepancies is that tools assuming more efficient utilization of small

weather windows will favour less capable and less costly vessels. Tools

that do not allowmaintenance tasks to be split over multiple shifts or that

have pessimistic failure modelling may on the other hand favour vessel

fleets with higher capacity. For instance, the MARINTEK optimisation

tool has a time resolution of 6 h in considering weather windows, using

the worst-case metocean conditions during each 6-h period. In contrast,

the simulation tools consider metocean conditions with a time resolution

of 1 h. Some discrepancies for specific vessel fleets (e.g. for the SAV) were

also explained in Section 3.1 to be due to how the completion of pre-

ventive maintenance is taken into account in different tools. Apart from

this, it has proven challenging to pinpoint the modelling assumptions

that cause the discrepancies between different tools.

From this it may be concluded that what constitutes the best fleet to

perform maintenance at an offshore wind farm depends heavily on the

actual assumptions made in developing each decision support tool. Since

the tools compared in this paper were developed independently of each

other, and developed in cooperation with the industry, it is likely that the

differences in assumptions stem from the fact that different wind farm

owners/operators plan and perform their maintenance differently.

Consequently, it is important to ensure that the assumptions in the tool

reflect the operational strategy of the wind farm owner/operator. One

implication is that wind farm operators or other stakeholders may want

to use different and possibly complementary tools and estimation tech-

niques if it is uncertain what decision support tool has the overall most

representative assumptions for a particular wind farm project.

The reference wind farm considered is relatively close to shore.

Therefore, accommodation vessels and mother vessel concepts would

probably have been ranked higher for wind farms farther from shore than

in the results shown here. The small accommodation vessel and the mini

mother vessel included among the vessel fleets considered are examples

Table 7

The Spearman's rank correlation coefficient between the vessel fleet ranking for the different decision support tools.

ECUME NOWIcob StrathOW-OM MARINTEK MAINTSYS ECN

ECUME 1.00 0.28 0.76 0.83 0.45 �0.23

NOWIcob 0.28 1.00 �0.09 0.30 0.75 0.61

StrathOW-OM 0.76 �0.09 1.00 0.83 0.33 �0.10

MARINTEK 0.83 0.30 0.83 1.00 0.65 0.07

MAINTSYS 0.45 0.75 0.33 0.65 1.00 0.54

ECN �0.23 0.61 �0.10 0.07 0.54 1.00

Fig. 3. Sensitivity index as a measure of the sensitivity of the vessel fleet ranking to different input parameters.
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of such vessel concepts. However, even for this reference case, different

tools disagreed strongly on the ranking of the small accommodation

vessel. Therefore, more work may be necessary to represent such vessel

alternatives in a way that is more realistic for a more accurate compar-

ison with conventional logistics strategies. For instance, as our results

showed, a small accommodation vessel with only six technicians avail-

able to do maintenance each shift does not have sufficient capacity to

handle the maintenance requirements of this reference wind farm.

Additional modelling considerations may also be required when using

shore-based maintenance logistics approaches for wind farms farther

offshore. For instance, it could be more important to capture the effect of

sea sickness, the effect of wave state-dependent vessel speeds and how

increased transit times might change task priorities and vessel utilization.

The solution space of possible combinations of the different vessels is

much larger than the 10 vessel fleets considered in this study. This means

that the optimal vessel fleet could, in principle, be in a part of the solution

space that has not been considered. When faced with a large solution

space, using mathematical optimisation rather than simulation may be

particularly advantageous. In fact, when the MARINTEK optimisation

tool was used to consider all possible combinations, i.e. not restricting the

solution space to the 10 combinations considered above, it was demon-

strated that “2 SES” remains the optimal solution according to that tool.

Although they are simplified representations, the vessel types included in

this study are believed to be representative of the kinds of alternatives

decisionmakers have to choose from. Furthermore, possible biases due to

the characteristics of any of the chosen vessel types are reduced by

considering the combined results for all the vessel fleet alternatives. In

this way, it the sensitivity trends exhibited by the results can be assumed

to be fairly general.

Due to the number of vessel fleet alternatives, the number of input

parameters varied in the sensitivity analysis, and the number of different

tools, a large total number of cases was considered for this work. For

practical reasons, compromises were necessary and a number of potential

cases and analyses omitted. For instance, a local sensitivity analysis was

performed, with parameter value changes restricted to ± 20 %. Hence it

would not be possible to identify any nonlinear effects for the different

parameters. Furthermore, in restricting the analysis to a one-at-a-time

approach it is not possible to identify any significant interactions be-

tween the different parameters. However, it is possible to argue intui-

tively for what the implications of such interactions are likely to be. For

example, when assuming a higher base electricity price than the base

case value, downtime costs would become higher relative to direct O&M

costs, and the sensitivities for e.g. Hs limits would be relatively stronger

than sensitivities for vessel day rates. See also Martin et al. (2016) for

other sensitivity analysis methods applied to offshore wind O&M.

5. Conclusions

In this study, six different strategic decision support tools for offshore

wind farm O&M and logistics were applied to the problem of selecting

the best O&M vessel fleet for a reference wind farm. It has been estab-

lished that the decision support tools show general agreement on which

vessel fleet is the best, but they agree only partially on the overall ranking

of the different vessel fleets. The tools agree only partially on how sen-

sitive the performance of each vessel fleet alternative (the objective

value) is to different input assumptions. However, they generally agree

on how sensitive the ranking of the vessel fleet alternatives is to different

input assumptions. The ranking of different vessel fleets is i) strongly

dependent on the assumption for the limiting significant wave height for

access, ii) appreciably less dependent on the vessel speed assumptions,

and iii) moderately dependent on assumptions for failure rates and vessel

day rates. Different tools disagree on precisely how sensitive the results

are to changes in these parameters, especially for failure rates and the

limiting significant wave height. The disagreements do not appear to be

due to differences intrinsic in the type of tool (e.g. based on simulation or

on mathematical optimisation) as such, but rather due to how optimistic

or pessimistic the modelling assumptions are.

The work reported in this paper suggests some recommendations for

optimising the O&M and logistics strategies for offshore wind farms:

First, it is crucial to take into account the completion of preventive

maintenance (e.g. annual services) when evaluating the performance of

vessel fleets for O&M. The sum of direct O&M costs and lost revenue due

to downtime appears to be an appropriate objective function for making

the trade-off between availability and O&M costs but does not by itself

consider whether or not preventive maintenance is completed. In an

optimisation tool, non-completion of preventive maintenance can be

taken into account explicitly in the form of penalty terms in the objective

function or as constraints. When using a simulation tool for optimisation,

it may be necessary to take this into account separately. Furthermore,

results from our sensitivity analyses confirm that it is important to be

aware of and, if possible, to try to reduce uncertainties in input data,

particularly in the significant wave height limit. This also implies that it is

important to consider how metocean conditions and accessibility of the

turbines are modelled in the tool. Finally, since different tools provide

somewhat different results for the same input data, decision makers need

to ensure that the modelling assumptions are representative of the wind

farm project in question and might also consider using several tools to

support their decisions.
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