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Abstract 26 

In a conceptual UK geological disposal facility for nuclear waste within a high-strength, crystalline 27 

geology, a cement-based backfill material, known as Nirex Reference Vault Backfill (NRVB), will be used 28 

to provide a chemical barrier to radionuclide release. The NRVB is required to have specific properties 29 

to fulfil the operational requirements of the geological disposal facility (GDF); these are dependent on 30 

the chemical and physical properties of the cement constituent materials and also on the water 31 

content. With the passage of time, the raw materials eventually used to synthesise the backfill may not 32 

be the same as those used to formulate it. As such, there is a requirement to understand how NRVB 33 

performance may be affected by a change in raw material supply. In this paper, we present a review of 34 

the current knowledge of NRVB and results from a detailed characterisation of this material, comparing 35 

the differences in performance of the final product when different raw materials are used. Results 36 

showed that minor differences in the particle size, surface area and chemical composition of the raw 37 

material had an effect on the workability, compressive strength, the rate of hydration and the porosity, 38 

which may influence some of the design functions of NRVB. This study outlines the requirement to fully 39 

characterise cement backfill raw materials prior to use in a geological disposal facility and supports 40 

ongoing assessment of long-term post-closure safety. 41 

 42 
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 Introduction 55 

Intermediate Level Waste (ILW) comprises a significant proportion, approximately 450 000 m3, of the 56 

UK͛Ɛ projected inventory of radioactive waste (Nuclear Decommissioning Authority, 2015). This includes 57 

waste arising from the reprocessing of spent nuclear fuel (e.g. spent fuel cladding) and from the 58 

operation, maintenance and decommissioning of nuclear facilities (e.g. sludges from the treatment of 59 

radioactive liquid effluents) (Hicks et al., 2008). This waste is destined for final disposal in a Geological 60 

Disposal Facility (GDF) (Nuclear Decommissioning Authority, 2010a), where the conditioned waste 61 

packages will be placed in vaults excavated in host rock, deep underground (Nuclear Decommissioning 62 

Authority, 2010b). In a conceptual scenario where a high-strength crystalline rock will host the facility, 63 

the vaults will be backfilled with a cement-based material to provide a physical and chemical barrier to 64 

radionuclide release (Nuclear Decommissioning Authority, 2010b). For this purpose, the Nirex 65 

Reference Vault Backfill (NRVB) has been considered (Francis et al., 1997).  66 

NRVB was designed in the 1990s to fulfil a number of specific requirements for use in a UK geological 67 

disposal facility (Francis et al., 1997; Hooper, 1998). These include (Crossland and Vines, 2001; Nuclear 68 

Decommissioning Authority, 2010c; United Kingdom Nirex Limited, 2005):  69 

- providing a high alkaline buffered environment, through the dissolution of the different cement 70 

hydrate phases by groundwater, to suppress dissolved concentrations of many radionuclides; 71 

- possessing high permeability and porosity to ensure homogeneous chemical conditions, to allow the 72 

escape of the gases generated in the GDF and to provide a high surface area for radionuclide 73 

sorption; and  74 

- exhibiting low strength to facilitate the possibility of re-excavation of the vaults, if required.     75 

Despite an initial assessment of NRVB at the time of the design and patent (Francis et al., 1997) , and 76 

subsequently, several assessments of various aspects of this material (e.g. mineralogy, strength, or 77 

porosity, as described below), there has not been a comprehensive characterisation of NRVB, where all 78 

tests are performed on a consistent batch. Additionally, some of the raw materials used in early 79 

development of NRVB are no longer available due to changes in the powder suppliers (Radioactive 80 

Waste Management, 2016), therefore, materials to be used when a GDF is in operation may differ in 81 

composition and other key characteristics. It is important to understand how the chemical and physical 82 

properties of the backfill raw materials may affect the short- and long-term performance of the backfill, 83 

to support development of GDF engineering and post-closure safety assessment. We here present a 84 

literature review of the published data on NRVB, even where datasets are incomplete, or details 85 

pertinent to the analysis of the data are absent. 86 
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1.1. NRVB hydration 87 

Portland cement (PC), calcium hydroxide [Ca(OH)2] and calcium carbonate (CaCO3) are the main 88 

components of NRVB (Hooper, 1998). The original formulation used a water/solid ratio (w/s) of 0.55 89 

and, according to this composition, Holland and Tearle (Holland and Tearle, 2003) described the 90 

expected mineralogy of NRVB and the respective changes in relation with temperature. Theoretically, 91 

at ambient temperature, the phase assemblage of NRVB is expected to contain calcium hydroxide (also 92 

known as portlandite), calcite (CaCO3), calcium silicate hydrate (C-S-H), AFt (ettringite) and AFm 93 

(monocarboaluminate) phases, and possibly hydrotalcite if magnesium carbonate is present in the 94 

limestone flour or in the Portland cement  (Holland and Tearle, 2003) . At high temperatures (80 °C), 95 

the formation of hydrogarnet-type phases was also predicted, according to the thermodynamic 96 

modelling (database not specified) performed by the same authors (Holland and Tearle, 2003), 97 

although more recent advances in cement chemistry and phase assemblage prediction models indicate 98 

that this may be less likely due to the high quantity of carbonate present in this cement formulation. 99 

Experimental X-ray diffraction (XRD) performed on fresh (uncured) NRVB revealed that the main phase 100 

present was calcite, whereas for NRVB cured for 4 months and 3 years, the phase assemblage was 101 

dominated by portlandite (Felipe-Sotelo et al., 2012).  102 

Portlandite and C-S-H are expected to provide the high alkaline-buffering capacity of NRVB. It is 103 

proposed that when the backfill material is first in contact with groundwater, the pH will be buffered 104 

by the dissolution of the more soluble phases, alkali (i.e. Na, K) hydroxides and sulfates. After the 105 

removal of the alkali metal salts, buffering will continue through the dissolution of portlandite; a 106 

solution saturated with respect to portlandite is formed with a pH of about 12.5 at 25 °C (Francis et al., 107 

1997). After the portlandite has been exhausted, pH buffering will be maintained by the incongruent 108 

dissolution of C-S-H phases with relatively high calcium/silicon molar ratios (Ca/Si), around 1.5. From 109 

this, dissolution will result in the release of calcium and hydroxide ions, thus lowering the Ca/Si ratio 110 

and reducing the pH value at which the water is buffered (Harris et al., 2002; Hoch et al., 2012). The 111 

buffering timescale and capacity of NRVB will depend mainly on the composition and rate of 112 

groundwater leaching (Bamforth et al., 2012; Francis et al., 1997). According to a recent study regarding 113 

the leaching behaviour of C-S-H using demineralised water, even with a low Ca/Si ratio, the dissolution 114 

of C-S-H will buffer the pH to ~ 10 (Swanton et al., 2016).  115 

 116 

 117 

 118 
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1.2. Physical properties of NRVB 119 

The physical properties of NRVB were summarized by Francis et al. (Francis et al., 1997) and Bamforth 120 

et al. (Bamforth et al., 2012). The compressive strength of the NRVB (w/s = 0.55) was found to be 121 

4.9 MPa, 5.9 MPa and 6.3 MPa after 7, 28 and 90 days of curing respectively (Francis et al., 1997). When 122 

comparing with compressive strength values obtained for Portland cement (w/s = 0.50), (e.g. 31 MPa, 123 

45 MPa and 46 MPa after 7, 28 and 90 days, respectively, from Menéndez et al. (2003)), the values 124 

obtained for NRVB are very low. This relatively low strength thus allows retrievability of waste packages 125 

from within NRVB-backfilled vaults (Crossland and Vines, 2001; Nuclear Decommissioning Authority, 126 

2010c; United Kingdom Nirex Limited, 2005).  127 

Since the repository operating temperatures will be higher than the 20 °C used for standard cement 128 

curing, studies have been performed to assess the effect of curing temperature (30 °C, 60 °C and 90 °C, 129 

cured in moist or excess volume of water) on the strength of NRVB (Francis et al., 1997). Results showed 130 

that increasing the temperature of curing corresponds to a reduction in the strength, for example after 131 

28 days of curing at 90 °C, the compressive strength was halved when compared to curing at 30 °C 132 

(Francis et al., 1997). Similar results have been obtained with Portland-limestone cement, where a 133 

temperature increase negatively influenced compressive strength (Lothenbach et al., 2007). It should 134 

be noted, however, that such high curing temperatures (90 °C) are not expected within a GDF vault for 135 

ILW. 136 

 137 

1.3. Microstructural properties of NRVB 138 

Porosity and permeability must be carefully considered when designing a cementitious material for a 139 

GDF, since these properties will influence the transport characteristics of groundwater and radionuclide 140 

species through the cement. For example, having a high porosity (more than 30%) allows the ingress of 141 

groundwater, dissolution of the different hydrate phases, so providing a high alkaline environment. It 142 

also allows the diffusion of gases produced in the waste packages and gives rise to a high surface area, 143 

capable of sorbing radionuclide species. 144 

NRVB is relatively porous; the total porosity of NRVB (w/s = 0.55; w/c ratio 1.367), includes a high 145 

quantity of unreacted material, was reported to be 50 % using mercury intrusion porosity and nitrogen 146 

desorption methods, at an unspecified curing age (Francis et al., 1997). However, comparing the density 147 

obtained in dry and water conditions we can calculate the porosity to be 35%. X-ray computed 148 

tomography (XCT) gave a segmented porosity of ~ 40 % for large scale samples in the non-carbonated 149 

region of an NRVB-carbonation trial (Heyes et al., 2015).  150 
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After closure, the formation of gases is expected to occur in the GDF, e.g. from corrosion of Magnox 151 

cladding, fuel fragments, uranium and steel under anaerobic conditions; microbial degradation of 152 

organic compounds and; radiolysis of water (Harris et al., 1992). As a result, the permeability of NRVB 153 

should be sufficient to allow gas movement without significant over-pressurisation and cracking 154 

(Francis et al., 1997). The gas permeability coefficient for argon and helium in NRVB at 28 days of curing 155 

(in a membrane of NRVB 20 mm thick, average pressure of 100 kPa) was found to be approximately 156 

2 x 10-15 m2 in dry conditions and 5 x 10-17 m2 in saturated grout (Francis et al., 1997; Harris et al., 1992). 157 

The average pore radius was determined to be 0.45 µm, with a pore size distribution ranging from 5 nm 158 

to > 1 µm (Harris et al., 1992). Harris and colleagues concluded, using the premise that a material is 159 

considered to crack if the calculated stress exceeds the tensile strength, that NRVB is able to release 160 

gas at a sufficient rate without generating cracks (Harris et al., 1992). 161 

Most of the results presented in the above summary were reported on the basis of unspecified testing 162 

methods and precursor materials, and little other detailed information is available about the cement 163 

hydration and microstructure of NRVB. Due to the importance of a backfill material in stabilising 164 

radioactive waste in a GDF, a thorough understanding of these properties of NRVB is crucial to build a 165 

robust post-closure safety case. In this paper, a full characterisation of NRVB is performed. The 166 

hydration reaction, the mineralogy and the mechanical properties are studied using two different types 167 

of raw materials to assess the implications of security of cement material supply on cement 168 

characteristics and performance. These results will have important implications regarding the 169 

applicability of older studies to present day materials in the disposal of nuclear wastes. 170 

 171 

 Materials and Methods 172 

 173 

2.1. Materials 174 

Batches of NRVB paste were prepared according to the formulation presented in Table 1, with a 175 

water/solid ratio (where solid includes all the powder materials used) of 0.55. It is possible to find in 176 

the literature data pertaining to NRVB prepared with laboratory (pure) materials (e.g. Corkhill et al., 177 

2013) and also with industrial materials (e.g. Butcher et al., 2012). To verify the consistency between 178 

the cement formed using these two types of starting materials, two different batches of NRVB were 179 

studied. For the NRVB formulated using laboratory chemicals, denoted NRVB (Lab), the starting 180 

materials were: CEM I 52.5 N sourced from Hanson Cement Ltd, Ribblesdale works (i.e. Sellafield 181 

specification; BS EN 197-1:2011); Ca(OH)2 ;ш ϵϱ͘Ϭ йͿ ĂŶĚ CĂCO3 ;ш ϵϵ͘Ϭ йͿ ǁere sourced from Sigma-182 

Aldrich. In the case of NRVB formulated using industrial materials, denoted NRVB (Ind), the following 183 
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products were used: CEM I 52.5 N (as above); hydrated lime sourced from Tarmac Cement & Lime 184 

(Tunstead Quarry, Buxton, UK); and limestone flour sourced from National Nuclear Laboratory (Tendley 185 

Quarry, Cumbria, UK; BS EN 13043:2002).  186 

 187 

Table 1. NRVB formulation (Francis et al., 1997; Hooper, 1998) 188 

Material Content (kg m-3) 

CEM I 52.5 N 450 

Ca(OH)2 / Hydrated lime 170 

CaCO3 / Limestone flour 495 

Water 615 

 189 

The particle size distribution was measured using a Mastersizer 3000 PSA, and the results analysed 190 

using Malvern Instruments software. 191 

The chemical composition of the starting materials, as calculated using X-ray fluorescence (PANalytical 192 

Zetium XRF) of powdered materials, is shown in Table 2. The composition was very similar for both 193 

Ca(OH)2 and hydrated lime. However, a slight difference was observed between CaCO3 and limestone 194 

flour. For example, CaCO3 contained more CaO than the limestone flour (57 wt% and 48 wt%, 195 

respectively). On the other hand, limestone flour presented a higher concentration (between 1.6 and 196 

5.4 wt%) of SiO2, Fe2O3, MgO and Al2O3 than reagent grade CaCO3, which contained below 0.05 wt% of 197 

these elements (Table 2). 198 

 199 

Table 2. Composition of raw materials, as determined by X-Ray Fluorescence analysis (precision ± 0.1 200 

wt%). 201 

Compound 

(wt. %) 

CEM I 52.5 N Limestone Flour 

(Ind) 

CaCO3 

(Lab) 

Hydrated Lime 

(Ind) 

Ca(OH)2 

(Lab) 

Na2O 0.3 0.2 < 0.1 < 0.1 < 0.1 

MgO 1.2 1.6 < 0.1 0.5 0.5 

Al2O3 5.2 1.9 < 0.1 < 0.1 0.1 

SiO2 19.7 5.4 < 0.1 0.5 0.7 

P2O5 0.2 0.1 < 0.1 < 0.1 < 0.1 

K2O 0.5 0.3 < 0.1 < 0.1 < 0.1 
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CaO 64.1 48.1 57.0 73.9 74.5 

Fe2O3 2.1 1.7 < 0.1 < 0.1 < 0.1 

SO3 - 893 ppm 37 ppm - - 

 202 

Both cement batches were mixed using a Kenwood benchtop mixer for 5 minutes. Subsequently, the 203 

cement pastes were placed in centrifuge tubes or steel moulds (for compressive strength analysis) and 204 

cured at 20 °C and 95 % relative humidity, for 28 days.  205 

 206 

2.2. Analytical Methods 207 

 208 

Mechanical properties 209 

The workability of both NRVB formulations was investigated using a mini-slump test (Kantro, 1980). The 210 

cement paste was placed in a cone (19 mm top opening x 38 mm bottom opening x 57 mm height) 211 

resting on a sheet of polymethyl-methacrylate. The cone was lifted vertically upwards and the resulting 212 

slump area measured using a scale. Each mini-slump test was repeated in triplicate.  213 

The setting time was ascertained using a Vicatronic automatic recording apparatus (Vicat needle 214 

method) and 400 g of paste at 19-21 °C and 30-38 % relative humidity. The penetration of a needle 215 

(1.13 mm diameter) was monitored and the initial setting time was considered as the time when the 216 

needle penetration was 35 mm; the final setting time corresponded to less than 0.5 mm of penetration. 217 

After 28 days of curing, compressive strength was measured on cubes with dimensions of 50 x 50 x 218 

50 mm, in triplicate. Cubes were placed within a Controls Automax automatic compressive tester for 219 

analysis, with a loading rate of 0.25 MPa/s. The density of both formulations was measured using He 220 

pycnometry (Micromeritics AccuPyc II 1340) using approximately 0.40 g of powder (< 63 µm). A fill 221 

pressure of 82.7 kPa was purged 50 times over 20 cycles at 25 °C with an equilibration rate of 34.5 222 

Pa/min. 223 

Chemical analysis (hydration) 224 

The heat flow resulting from the NRVB hydration reaction was studied using isothermal calorimetry 225 

analysis (TAM Air, TA Instruments) at 20 °C. Approximately 20 g of cement paste was mixed and the 226 

measurements were performed for 7 days. As reference sample, tap water was used. 227 

For identification of the hydrate phases present in NRVB at an early age (28 days of curing), XRD and 228 

TGA-MS were performed on powder samples (< 63 µm). The former was carried out using a Bruker D2 229 
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Phaser diffractometer utilisŝŶŐ Ă CƵ Kɲ ƐŽƵƌĐĞ and Ni filter. Measurements were taken from 5° to 70° 230 

2ɽ ǁŝƚŚ Ă ƐƚĞƉ ƐŝǌĞ ŽĨ Ϭ͘ϬϮΣ ĂŶĚ Ϯ Ɛ ĐŽƵŶƚŝŶŐ ƚŝŵĞ ƉĞƌ ƐƚĞƉ͘ For TG-MS analysis, a PerkinElmer Pyris 1 231 

thermogravimetric analyser was used. The temperature ranged from 20 °C to 1000 °C with a heating 232 

rate of 10 °C/minute under N2 (nitrogen) atmosphere. A Hiden Analytical mass spectrometer (HPR-20 233 

GIC EGA) was used to record the mass spectrometric signals for H2O and CO2. 234 

Scanning Electron Microscopy (SEM) imaging and Energy Dispersive X-ray (EDX) analysis were 235 

performed on NRVB monolith samples mounted in epoxy resin and polished to a 0.25 µm finish using 236 

diamond paste. Backscattered electron (BSE) images were recorded using a Hitachi TM3030 scanning 237 

electron microscope operating with an accelerating voltage of 15 kV. EDX analysis was performed using 238 

Quantax 70 software and elemental maps were collected for 10 minutes. 239 

Solid-state nuclear magnetic resonance (NMR) spectra for 29Si were collected on a Varian VNMRS 400 240 

(9.4 T) spectrometer at 79.435 MHz using a probe for 6 mm o.d. zirconia rotors and a spinning speed 241 

of 6 kHz, a pulse width of 4 µs (90°), a relaxation delay of 2.0 s, and with a minimum of 30000 scans. 242 

27Al NMR spectra were collected on the same instrument at 104.198 MHz using a probe for 4 mm o.d. 243 

zirconia rotors and a spinning speed of 12 kHz, a pulse width of 1 µs (25°), a relaxation delay of 0.2 s, 244 

and a minimum of 7000 scans.  245 

Microstructure analysis (porosity) 246 

To determine the Brunauer-Emmett-Teller (BET) surface area, nitrogen adsorption-desorption 247 

measurements were studied at 77 K on a Micromeritics 3 Flex apparatus. Powder samples of raw 248 

material were cooled with liquid nitrogen and analysed by measuring the volume of gas (N2) adsorbed 249 

at specific pressures. The pore volume was taken from the adsorption branch of the isotherm at 250 

P/P0 = 0.3. Mercury intrusion porosimetry (MIP) was used to study the total porosity and pore 251 

distribution of the samples. Small pieces of cement paste were placed into the sample holder of an 252 

Autopore V 9600 (Micromeritics Instruments)͘ WĂƐŚďƵƌŶ͛Ɛ ůĂǁ ǁĂƐ ƵƐĞĚ ƚŽ ĚĞƚĞƌŵŝŶĞ ƚŚĞ ƉŽƌĞ 253 

diameter, by applying the following equation: D = ;оϰĐŽƐɽͿ/P, where D is the pore diameter (µm), ɽ 254 

the contact angle between the fluid and the pore mouth (°),  the surface tension of the fluid (N/m), 255 

and P the applied pressure to fill the pore with mercury (MPa). The maximum pressure applied was 256 

208 MPa, the surface tension was 485 mN/m and the contact angle was 130°. 257 

The XCT scans were performed at the University of Strathclyde using a Nikon XTH 320/225 system, 258 

equipped with a 225 kV reflection gun, a microfocus multimetal target, and a 2000 × 2000 pixel flat 259 

panel photodetector (cell size 0.2 × 0.2 mm). The rotation stage position was set so the X-ray source-to 260 

sample distance was minimal and allowed a minimum voxel size of 3 micrometres. Scanning conditions 261 
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were an accelerating voltage of 100 keV, 28 µA current (corresponding to power 2.8 W) using a silver 262 

target. The exposure time for each projection was 2.829 seconds, lasting 3141 projections (1 frame per 263 

projection) and leading to a scan-time of 2.5 hours. Gun conditions would not saturate photodetector, 264 

consequently no metallic filter was required during the scans. Projections were overlapped in 3 265 

different heights of the sample with CT Pro 3D software ( 2004-2016 Nikon Metrology) to reconstruct 266 

the centre of rotation of the 3D volumes. Once reconstructed, a software built-in algorithmic correction 267 

has been applied to correct for artifacts related to beam-hardening (Brooks and Dichiro, 1976). All 268 

volumes were reconstructed in 16 bit greyscale, and converted to a .tif stack. A volume of interest (VOI) 269 

was selected for each sample, using standards previously reported in the literature, i.e. the VOI should 270 

be at least 100 µm3, or higher than 3 to 5 times the size of the largest distinct feature, to minimise finite 271 

size error. In this study, the VOI size chosen was 0.42 mm3 (250 x 250 x 250 voxels at 3 µm resolution).  272 

 Results and Discussion 273 

 274 

3.1. Mechanical Properties 275 

The workability, determined by mini-slump testing, of NRVB (Lab) and NRVB (Ind) was found to be 276 

56.5 ± 0.8 mm diameter and 68.4 ± 1.7 mm diameter, respectively. The higher fluidity of NRVB (Ind) is 277 

likely related to the difference observed in the particle size distribution between the sources of calcium 278 

carbonate (Figure 1a), where 50 % of the particles were smaller than 19.7 µm for CaCO3, and 11.5 µm 279 

for limestone flour. For laboratory and industrial grade Ca(OH)2 (Figure 1b), the particle size distribution 280 

was found to be very similar. 281 

 282 

 283 

 284 

 285 

 286 
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 287 

Fig 1. Particle size distribution of (a) CaCO3 and limestone flour and; (b) Ca(OH)2 and hydrated lime. 288 

 289 

For general applications, the initial setting time of a cement should not be less than 45 min, and the 290 

final setting time should not be greater than 10 hours (Bensted and Barnes, 2008; Taylor, 1997). Using 291 

the Vicat method, it was possible to obtain an initial setting time of 5.3 hours, and a final setting time 292 

of 7.7 hours for NRVB (Lab). For NRVB (Ind) the values were very similar, with the initial and final setting 293 
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times at 5.5 hours and 7.3 hours. This is in contrast to the initial NRVB formulation study, where an 294 

initial setting time of 4.05 hours and a final setting of 4.50 hours was observed (Francis et al., 1997). 295 

Since the w/s ratio in the present study is the same as that used by Francis et al. (Francis et al., 1997), 296 

this difference is likely to be related to the use of different raw material, and a consequent difference 297 

in the reactivity of the materials.  298 

After 28 days of curing, the compressive strength and density of the two materials were compared. The 299 

compressive strength was determined to be 8.2 ± 0.2 MPa for NRVB formulated using laboratory 300 

materials and 7.15 ± 0.04 MPa for NRVB formulated with industrial materials. This is somewhat greater 301 

than that measured by Francis et al. (Francis et al., 1997), who found a compressive strength of 5.9 MPa 302 

at 28 days for NRVB prepared using components available in the early 1990s. Since no characterisation 303 

of these starting materials was published, it is not possible to ascertain which component of this early 304 

NRVB formulation gave rise to the reduced strength, although it may be postulated that the 52.5 MPa 305 

grade cement used in our trials was of a higher strength grade than the materials used historically, as 306 

cement production at this high strength grade was much less common in the early 1990s. The density 307 

was determined by helium pycnometry to be 2.251 ± 0.001 g/cm3 for NRVB (Lab) and 308 

2.328 ± 0.002 g/cm3 NRVB (Ind); previous measurements of NRVB density using the Archimedes 309 

method (100 mm cubes) gave a density of 1.7 g/cm3 in water-saturated NRVB samples and 1.1 g/cm3 310 

in oven dried samples (Francis et al., 1997). This lower value could reflect the difference in the 311 

methodology used; the Archimedes method determines bulk density, whereas pycnometry allows the 312 

determination of solid density as helium gas reaches all of the pores within the cement. 313 

 314 

3.2. Chemical analysis (Hydration) 315 

Figure 2a shows the isotherm generated for both NRVB formulations during hydration. It is possible to 316 

identify the four main hydration stages, as observed in a plain Portland cement. In comparison to 317 

Portland cement, the heat flow was lower (Figure 2b) by a factor of ~2 (Jansen et al., 2012). This is 318 

related to the much lower fraction of material undergoing hydration in the NRVB formulation. 319 

Comparing the two formulations of NRVB, it can be observed that the heat flow was very similar, 320 

however one subtle difference was observed: the curve corresponding to the sulfate depletion period 321 

(labelled 4, Figure 2a) of NRVB (Ind) indicates that it evidenced a more intense reaction than NRVB 322 

(Lab). One possible explanation is the formation of additional calcium monocarboaluminate hydrate in 323 

NRVB (Ind) as observed in XRD and NMR data (discussed below). In accordance with the particle size 324 

analysis (Figure 1a), determination of the surface area of the CaCO3 sources indicated that the 325 

limestone flour used in NRVB (Ind) had a significantly higher surface area than CaCO3 used in NRVB 326 
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(Lab), with values of 5.2 ± 0.2 m2/g and 3.7 ± 0.2 m2/g, respectively. The higher surface area is 327 

responsible for a higher rate of calcite dissolution and also the availability of more nucleation sites, 328 

resulting in the formation of more hydration products (Scrivener et al., 2015). Another factor to 329 

consider is the higher content of sulfate present in the industrial raw material, which give rise to the 330 

observed differences; the limestone flour of NRVB (Ind) had 893 ppm sulfur, compared with 37 ppm in 331 

the hydrated lime of NRVB (Lab) (Table 2).  332 

 333 

Fig. 2 (a) Isothermal calorimetry of NRVB (Lab) and NRVB (Ind). Thermal features identified are: (1) 334 

dissolution and C3A reaction; (2) induction period; (3) reaction of alite and formation of calcium silicate 335 

hydrate; (4) sulfate depletion; (b) Cumulative heat of NRVB (Lab) and NRVB (Ind). 336 
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 337 

The main phases identified in the NRVB formulations by X-ray Diffraction (XRD) were calcite (CaCO3; 338 

PDF 01-086-0174) and portlandite (Ca(OH)2; PDF 01-072-0156) (Figure 3a). Ettringite 339 

(Ca6Al2(OH)12(SO4)3·26H2O; PDF 00-041-1451), calcium monocarboaluminate hydrate 340 

(Ca4Al2(OH)12(CO3)3·5H2O; PDF 01-087-0493) and calcium hemicarboaluminate hydrate 341 

(Ca4Al2(OH)12[OH(CO3)0.5]·5.5H2O; PDF 00-041-0221) were also identified. These results are in 342 

agreement with those identified previously in NRVB cured at ambient temperature (Felipe-Sotelo et al., 343 

2012). While the phase assemblage for each formulation was similar, subtle differences were observed 344 

in the peak intensities of several reflections; monocarboaluminate reflections were more intense in 345 

NRVB (Ind) than NRVB (Lab), while reflections of calcite were more intense in NRVB (Lab), which is also 346 

apparent in the XRD patterns corresponding to limestone flour and CaCO3 (Figure 3b). These differences 347 

may be attributed to the chemical composition, particle size distribution and surface area of the CaCO3 348 

and limestone flour, however, preferential orientation cannot be ruled out, especially for layered or 349 

platy phases such as monocarboaluminate and portlandite. 350 

 351 

(a) 
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 352 

Fig 3. X-ray diffraction patterns for (a) NRVB (Lab) and NRVB (Ind) after 28 days of curing, and (b) 353 

Limestone Flour and CaCO3. Crystalline phases are labelled.  354 

 355 

TG-MS analysis confirmed the presence of these phases (Figure 4). The two peaks between 100 and 356 

200 °C can be attributed to the presence of ettringite and monocarboaluminate, while the peaks 357 

between 400 to 500 °C, and 650 to 800 °C correspond to portlandite and calcite, respectively 358 

(Lothenbach et al., 2007; Sun, 2011). The same peaks were observed for both formulations, however 359 

for the NRVB (Ind) (Figure 4b) an additional peak was observed at ~ 650 °C, corresponding to the 360 

presence of magnesian calcite and supported by the presence of more Mg in NRVB (Ind) than NRVB 361 

(Lab) (Table 2). 362 

(b) 
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 363 

Fig. 4. TGA-MS for (a) NRVB (Lab); and (b) NRVB (Ind) after 28 days of curing. 364 

 365 

Through SEM imaging and EDX analysis it was possible to identify the microstructure of the different 366 

hydrate phases, as shown in Figure 5. The large Ca-containing rhombohedral crystals (labelled A, Figure 367 

5) are portlandite. The Ca and Si-rich phase surrounding portlandite crystals (labelled B, Figure 5) may 368 

be C-S-H. The areas containing higher concentrations of aluminium (labelled C, Figure 5) suggest the 369 
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presence of AFm phases. The areas labelled D are indicative of the presence of sulfate-containing AFm 370 

phases and/or ettringite, due to the higher concentration of both aluminium and sulfate. Comparing 371 

the SEM images of the two formulations, it is possible to identify the same hydrate phases, however 372 

the matrix of NRVB formulated with industrial materials has a more fine grained morphology, consistent 373 

with the analysis of limestone flour.  374 

 375 

Fig. 5. BSE SEM micrograph of (a) NRVB (Lab) and (b) NRVB (Ind) at 28 days of curing, with the 376 

corresponding EDX maps. 377 

In the 29Si MAS NMR spectra (Figure 6) it was possible to identify some unreacted Portland cement 378 

through the presence of alite (chemical shifts -69 and -73.9 ppm) and belite (-71.2 ppm) (Scrivener et 379 

al., 2016) in both NRVB formulations. Contributions from Q1 (-79 ppm), Q2(1Al) (-83 ppm) and Q2 (-84 380 

ppm) silicate environments were also observed in both formulations; these chemical shifts are 381 

characteristic of C-S-H (Richardson, 2008; Richardson et al., 2010). A small resonance was also observed 382 

at -90 ppm corresponding to Q3(1Al). The presence of Al shows the incorporation of this element in the 383 

C-(A)-S-H (Richardson et al., 2010). Comparison of the two formulations reveals a small difference in 384 
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the spectra (Figures 6a,b) between NRVB (Lab) and NRVB (Ind); this is related to the intensity of Q2 (-84 385 

ppm), Q2(1Al) (-83 ppm) and Q3 (1Al) (-90 ppm). A possible reason is the difference observed in the 386 

reactivity of the raw materials used in the two formulations, specifically the higher surface area of the 387 

limestone flour. 388 

 389 

Fig. 6. 29Si MAS NMR spectra, and deconvolution results, for (a) NRVB (Lab) and; (b) NRVB (Ind) after 28 390 

days of curing. 391 

 392 

Figure 7 shows the 27Al NMR spectra of NRVB (Lab) and NRVB (Ind). The small peak observed at 393 

approximately -69 ppm (more evident for NRVB Ind) is attributed to the substitution of Al for Si in C-S-394 

H (Lothenbach et al., 2008), in agreement with the observation of small peaks corresponding to Q2(1Al) 395 

and Q3(1Al) in the 29Si MAS NMR spectra (Fig. 6). The peaks visible at approximately +13 and +9 ppm 396 

indicate the presence of octahedrally coordinated Al in ettringite and AFm phases. As stated previously 397 

in the literature (Lothenbach et al., 2008), it is not possible to distinguish between the different AFm 398 

phases due to the similar chemical shift. Comparing the two formulations, it is possible to see a 399 

difference in the proportion of ettringite and AFm phases present; the presence of more AFm in NRVB 400 

(Ind) is related to the higher availability of dissolved carbonate (higher surface area) and consequent 401 

formation of monocarboaluminate, in accordance with the results observed by isothermal calorimetry 402 

(Figure 2a) and XRD (Figure 3a). 403 
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 404 

Fig. 7. 27Al MAS NMR spectra of NRVB (Lab) and NRVB (Ind) after 28 days of curing. 405 

 406 

3.3. Microstructure (Porosity) 407 

A two-fold approach was applied to determine the porosity of the two NRVB formulations, to ensure 408 

all pore sizes were considered in the analysis. Mercury Intrusion Porosimetry, where it is understood 409 

that the pore diameters obtained correspond to the pore entry size and not the real size of the pore 410 

(Scrivener et al., 2016), was performed to compare the trend and changes in the pore size distribution 411 

between the two NRVB formulations (Diamond, 2000). Figure 8 shows the pore entry size diameter in 412 

relation to the cumulative intrusion for NRVB (Lab) and NRVB (Ind). The curve for NRVB (Lab) allocates 413 

essentially all of the pores to threshold pore entry radii below 0.8 µm, whereas for NRVB (Ind) the curve 414 

allocates all of the pores to sizes below 0.5 µm. This small difference is also evident in the total porosity 415 

obtained, where for NRVB (Lab) the percentage of total porosity obtained was 38 ± 1 % and for NRVB 416 

(Ind) was 32 ± 1 %. It is important to note that, due to the low compressive strength of NRVB (around 417 

8 MPa), this technique (which reaches pressures of 208 MPa in the instrument used in this study) might 418 

not be suitable to use to quantify the finer pores due to the potential for collapse of pores during 419 

analysis. This is expected to occur at ~0.14 mL/g of intrusion for NRVB (Lab) and at ~0.15 mL/g for NRVB 420 

(Ind) based on the strength data. 421 

 422 
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 423 

Fig. 8. Pore entry size distribution of NRVB (Lab) and NRVB (Ind) using MIP. 424 

 425 

X-ray Computed Tomography was also used to study the porosity of NRVB. This technique has the 426 

advantage of being non-invasive and to allow three-dimensional reconstructions, but has limitations in 427 

spatial resolution. Figure 9 shows selected slices of the VOI for the two samples analysed. Quantitative 428 

analysis was performed using segmentation of the VOI. A threshold value was chosen based on the line 429 

shape of the image histograms, which show peaks of higher and lower absorption voxels, where the 430 

lower absorption voxels correspond to surrounding air and internal void space (Landis and Keane, 431 

2010), allowing discrimination between pore space and binder phases (solid).  The MIP results were 432 

used to guide the thresholding process, so the comparison between the results obtained by the two 433 

techniques is to some degree influenced by this. 434 
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 435 

Fig.  XCT data of (a) NRVB (Lab) and (b) NRVB (Ind). Top: Slices through the tomographic 436 

reconstruction, showing the selected VOI (square); centre: selected slices through the VOI in each 437 

sample; and bottom: segmented into solid (white) and pore (black) regions. 438 

 439 
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No cracks were observed in the samples at this early age (28 days of hydration).The porosities obtained 440 

from tomographic data were 39 % for NRVB (Lab) and 35 % for NRVB (Ind). This difference is related, 441 

once more, to the difference observed in the hydration reaction of both cements, due to the smaller 442 

particle size and higher surface area of limestone flour. 443 

The porosity results are in the same range presented by Heyes et al. (Heyes et al., 2015) (~ 40 %), 444 

however they are lower than those reported by Francis et al. (Francis et al., 1997), where the porosity 445 

measured using MIP and nitrogen desorption was around 50 %. It is important to note, however, that 446 

by estimating the porosity using the density values measured in Francis et al. (~35 %), the results 447 

obtained in this paper are very similar. Differences in the characteristics between the raw materials 448 

used in the 19ϵϬ͛Ɛ ĂŶĚ ƚŚose used in the present study are likely to be responsible for the differences 449 

observed. Also, in the early characterisation, there may have been more air bubbles that influenced the 450 

total porosity detected. 451 

 452 

3.4. Influence of precursor materials on NRVB characteristics and properties 453 

In summary, the differences in the surface area and chemical composition of the raw materials, 454 

particularly CaCO3 and limestone flour, impacted the properties of the NRVB formulations. In addition 455 

to differences between the NRVB formulations investigated here, we also observed differences 456 

between the results obtained in this study when compared to the characterisation performed in the 457 

early 19ϵϬ͛Ɛ͕ likely due to differences in the raw material and other unspecified properties. The impact 458 

of raw material selection on properties required for geological disposal are discussed below.  459 

Workability, compressive strength and setting time were affected by the use of different raw materials. 460 

In the present study, the higher surface area of limestone flour resulted in a higher workability and 461 

lower compressive strength for NRVB formulated with industrial raw materials when compared to NRVB 462 

formulated with laboratory raw materials. When comparing our data with those from the early 19ϵϬ͛Ɛ 463 

(Francis et al., 1997), the workability and setting time were a factor of ~ 1.5 lower in the present study, 464 

which we attribute to differences in fineness of the precursor materials used. The differences observed 465 

should not strongly influence the ability for the backfill to be poured within vaults, and the compressive 466 

strength values obtained are low enough to allow re-excavation of the vaults if necessary. 467 

With regards to the long-term behaviour of NRVB, differences in the rate of hydration, the quantity of 468 

different hydrate phases, and the hydrate phase assemblage may influence the buffering capacity of 469 

the material.  In the present study, the rate of hydration was faster in NRVB formulated with industrial 470 

raw materials due to the high surface area of limestone flour. The quantity of monocarboaluminate was 471 
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also greater, which is a consequence of the higher availability and reactivity of dissolved carbonate in 472 

limestone flour. Furthermore, small differences in the chemical composition of limestone flour, for 473 

example, the presence of S (and, to a lesser extent, Mg) influenced the rate of hydration. This may have 474 

implications for the hydrate phase assemblage at timescales longer than 28 days of curing; further work 475 

is required to investigate this.  476 

Through 29Si MAS NMR spectroscopy we have shown the incorporation of aluminium in the C-(A)-S-H 477 

of NRVB, and that the choice of raw material influences the quantity incorporated (Figs. 6 and 7). 478 

Previous studies have shown that aluminium incorporated into amorphous silica reduces significantly 479 

the dissolution rate, even in high alkaline environments (Chappex and Scrivener, 2013, 2012; Iler, 1973). 480 

Therefore, the buffering behaviour of the repository may not occur on the predicted time scale, or 481 

result in a pH comparable to that estimated when considering C-S-H dissolution only (Nuclear 482 

Decommissioning Authority, 2010b).  483 

Finally, we observed that the choice of raw material also influences the 28-day porosity of the final 484 

NRVB, which is associated with the differences in hydration reaction outlined above; the formation of 485 

more hydrate products in NRVB formulated with industrial materials resulted in a slightly lower 486 

porosity. Significantly, the porosity measured in this study (~32 ʹ 39%) was much lower than that 487 

reported by Francis et al. (1997), which was 50%. In a repository environment, such a difference may 488 

strongly influence the rate of groundwater ingress and the egress of gas, which are key design functions 489 

of NRVB. 490 

 491 

 Conclusion 492 

The use of different raw materials in the synthesis of NRVB has been investigated, and the differences 493 

in workability, setting time, hydration and porosity analysed. These results are compared with those 494 

previously reported in the literature for this material, and the potential effects of differences in raw 495 

materials on the final use of NRVB have been explored. Surface area, fineness and chemical composition 496 

of the raw materials, particularly limestone flour, have been shown to influence, to a small extent, final 497 

backfill properties including setting time, compressive strength and buffering capacity. The effects on 498 

porosity seem to be significant, but this may also be due to differences in analysis techniques applied 499 

to investigate this property. This study highlights the importance of a detailed characterisation of raw 500 

materials used in the formulation of NRVB for use in a geological disposal facility, especially in light of 501 

concerns surrounding security of cement supply for future applications. 502 

 503 
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