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Abstract: We assess the effectiveness of digital backpropagation algorithm for a 1.2 Tb/s high 

spectral efficiency superchannel when the input digital bandwidth is varied around the channel of 

interest. It is shown that the single channel case gives the best performance when 1 sample/s/Hz is 

used. 
OCIS codes: (060.1660) Coherent communications; (060.2330) Fiber optic communications 

 

1. Introduction 

The never-ending demand for capacity in long-haul fiber transmission systems has pushed research to focus the 

attention on the generation and transmission of high capacity, high spectral efficiency (SE) channels made up of 

several optical subcarriers offset at a Nyquist or quasi-Nyquist spacing. In order to improve the performance of these 

so-called “superchannels” in both spectral efficiency and reach, nonlinear compensation using digital back-

propagation (DBP) has been shown to be effective [1]. After detecting the entire superchannel bandwidth it is 

possible to operate DBP at different digital bandwidths in order to include one or more sub-channels. Recently it has 

been shown that there are benefits from back-propagating the entire superchannel (full-bandwidth DBP) compared 

to doing it over a single sub-channel basis [2,3] because of the cancelation of inter-channel nonlinear effects. 

Nevertheless it is well understood that DBP benefit can be limited by different non-ideal scenarios such as the 

amount of back-propagated noise at the receiver, polarization mode dispersion (PMD) [4] or limited sampling rate 

[1]. As a result, arbitrarily increasing the bandwidth may not be optimal in terms of non-linear compensation benefit. 

In this paper we evaluate the improvement as the DBP bandwidth is varied from the single sub-channel case to the 

full bandwidth DBP in the specific case where the sampling rate at which DBP is operated is equal to the 

backpropagated bandwidth. We assess the transmission performance of a PDM-16QAM 1.2 Tbit/s superchannel 

made up of 5 sub-channels at 32 GBaud each and 33 GHz spacing using Nyquist pulse shaping with 3% roll-off.  

 
Fig. 1 : Simulation setup for the 5×32 Gbaud/33 GHz spacing PDM-16QAM superchannel transmission 

performance assessment 

2.  Simulation setup 

The simulation setup used to assess the transmission quality of the superchannel is shown in Fig. 1. A 5 lines, 33 

GHz spacing comb is de-interleaved with a limited extinction ratio (ER) of 36 dB into 2 different sets of sub-

channels (odd and even) that are separately modulated by a 8 binary signals encoding 8 uncorrelated pseudorandom 

binary signals to generate a PDM-16QAM format at 32 GBaud. The behavior of a real digital-to-analog converter 

has been emulated reproducing a Nyquist 3% roll-off pulse shape at 2 samples/sym and subsequent low-pass 

filtering to remove the aliases. In order to keep our results as close as possible to real signal generator devices we 

introduced electrical noise at the transmitter equivalent to a 12% electrical error-vector magnitude (EVM). This 

translates to approximately 24.5 dB OSNR sensitivity at 3.8×10-3 for the single channel case, that we deem to be 

fitting the current the experimental scenario at this baud-rate. The odd and even channels are decorrelated by 128 

symbols and combined before EDFA optical amplification. Fiber transmission was carried out using an 80.1 km 

SSMF fiber span with non-linear parameter γ=1.2   1
 kmW  and a 4.2 dB noise figure EDFA compensating for the 

span losses. At the receiver the entire superchannel with 165 GHz of optical bandwidth is detected and digitally 
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sliced using a resampling filter to capture the desired digital bandwidth around the central channel. The down-

sampled sequence is then passed to the DBP block that mitigates the non-linear distortions and then again down-

sampled to 2 samples/symbol for the following digital signal processing. The digital bandwidth was varied from 2 

samples per symbol up to 5 samples per symbol (full bandwidth DBP) and BER is evaluated for the central sub-  

                 
                                              (a)                          (b)                    

Figure 2: (a) Back-propagated spectral slices of the transmitted superchannel and (b) optimization of DBP in number of 

steps and nonlinear parameter γBP 

channel to characterize the DBP benefit and a result of a trade-off between the in-band noise and inter-channel 

nonlinear distortion. In a real system where the bandwidth of each “stitched” receiver roughly fit the bandwidth of a 

single sub-channel, such an implementation would correspond to stitching by “clusters” of sub-channels before 

applying DBP, differently from [2] where the superchannel bandwidth is entirely digitally reconstructed. It is a 

reasonable to predict that the former technique might be less impaired from the non-ideal phase matching between 

several sub-channels. Moreover if the superchannel is partitioned into non-overlapping slices the DBP algorithm 

results in a lower overall complexity. A matched filter is used to get the optimum signal-to-noise-ratio (SNR) out of 

the received signal and finally polarization de-multiplexing (radially-directed equalizer) and decision-directed 

carrier phase estimation (CPE) are applied before the bit error rate counting.      

  
(a)                                                                                                      (b) 

Figure 3: (a) Central channel reach curves and (b) variation of Q2 factor vs. distance at the optimal launch power of -1.8 dBm as a 

function of DBP bandwidth 

 

3.  1.2 Tb/s Superchannel Transmission Results 

For a fair performance comparison among the different bandwidths at which DBP was operated we first optimized 

the algorithm in terms of two key parameters: the nonlinear coefficient γBP used to undo the nonlinear phase shift at 

each step and the number of steps per span. We found that the optimal values are different for different digital 

bandwidths and, consistent with [2], varying for different distances and launch powers. Therefore, we selected 

optimal values for which the longest transmission distance (reach) was achieved at the BER threshold of 10-2 

(Q2=7.33 dB), which represents a conservative threshold for 20% or higher redundancy soft-decision FEC schemes. 

In fig. 2b it is shown that when DBP was operated with an input bandwidth corresponding to resampling at 3 

samples per symbol the detected superchannel spectrum, the Q2 factor can dramatically decrease as the DBP 



parameters are varied way from the optimal values. A fine tuning of the algorithm at each bandwidth is then 

required in order to obtain optimal results. After undergoing this optimization we found the optimal γBP values to be 

equal to 0.1   1
 kmW  for DBP operated at 2 samples/symbol, 0.2   1

 kmW for 3 samples/symbol, 0.3   1
 kmW  

for 4 samples/symbol and 0.4   1
 kmW  for 5 samples/symbol. We didn’t notice any significant improvement in 

using more than 10 steps/span (up to 40 steps/span) for each of these γBP values. Figure 3a shows the resultant reach 

curves for the central sub-channel as a function of different backpropagation bandwidths. The results show a marked 

improvement (~22%) in reach using single channel backpropagation while, unexpectedly, increasing the DBP 

spectral window leads to a decrease in reach from 2245 km to 2084 km. This is also observed if the bandwidth is 

increased to 5 samples/symbol (full-field DBP) where a small (5%) increase in maximum reach with respect to 

chromatic dispersion compensation only was achieved. We also show the full-field DBP reach curve when a 

sampling rate of 8 samples/symbol (256 Gsamples/sym) was used. In this case we do observe a gain in reach of 60% 

with respect to CD only and 53% to the full-field at 1 sample/s/Hz. This result shows that limiting the sampling rate 

to 1 sample/s/Hz can incur in a significant penalty, which turns out to impact more as the DBP bandwidth increases. 

Examining fig. 3b we can also see that, as we increase the reach, the lower OSNR values impact too on the 

performance increasing the Q2 factor gap between the different bandwidths. Finally in figure 4 we analyze the Q2 

factor as a function of launch power at different distances. The comparison shows that at short distances (10 spans) 

(a) where the signal-noise nonlinear interaction is lower the difference in the optimal Q2 factors between the best 

case (single sub-channel DBP) and the worst case (full-field DBP) is just around 0.2 dB and this gap remains quite 

constant even at high launch powers. At longer distance (20 spans - 1600 km) (b) increasing DBP bandwidth results 

in a higher deterioration and the Q2 gap between single sub-channel DBP and full-field DBP increases with launch 

power. Fig. 4c instead shows how this trend can be inverted using a fixed sampling rate of 256 Gsamples/s for all 

the different bandwidths. In this case a maximum gain of 1.4 dB in Q factor can be achieved using full-field DBP.   

 
                         (a)                                                         (b)                                                            (c) 

Fig. 4: Q2 factor vs. launch power at (a) 10 spans, (b) 20 spans and (c) 20 spans with DBP at 256 Gsamples/s 

4.  Conclusions 

We report on the effectiveness of the digital backpropagation as a function of different backpropagated bandwidths 

when applied to a 1.2 Tb/s superchannel made up of 5 quasi-Nyquist spaced subcarriers at 32 GBaud and PDM-

16QAM modulation format. When the algorithm is operated with realistic complexity, that is 1 sample/s/Hz 

sampling rate and relatively limited number of steps per span, it is shown that single channel DBP outperforms all 

other cases where the suboptimal equalization outbalances the benefit given by the increased bandwidth. As a result, 

depending on the system constraints, partial or full field reconstruction may not be indicated for optimum 

performance. 
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