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Abstract: We present a comparative analysis on three carrier phase extraction approaches, 

including a one-tap normalized least mean square method, a block-average method, and a 
Viterbi-Viterbi method, in coherent transmission system considering equalization enhanced phase 

noise. 
OCIS codes: (060.1660) Coherent communications; (060.2330) Fiber optics communications 

 

1. Introduction 

High bit rate optical communication systems put strong requirements of their tolerance to linear and nonlinear 

channel impairments. Coherent optical receivers using digital signal processing (DSP) techniques can mitigate the 

system impairments, such as chromatic dispersion (CD), polarization mode dispersion (PMD) and phase noise (PN) 

in the electrical domain [1,2]. Several feed-forward and feed-back carrier recovery algorithms have been validated 

as effective methods for carrier phase estimation (CPE) [3-5]. However, the analysis of the phase fluctuation is 

usually performed without considering the influence of large chromatic dispersion. W. Shieh and A. P. T. Lau et al. 

have proposed the theory of equalization enhanced phase noise (EEPN) in digital coherent communication system 

[6,7], and C. Xie has also reported the similar phenomena [8]. 

In this paper, we investigate the behavior of different carrier phase extraction algorithms in 112-Gbit/s 

non-return-to-zero polarization division multiplexed quadrature phase shift keying (NRZ-PDM-QPSK) coherent 

optical transmission system. The performance of three carrier phase estimation algorithms, including a normalized 

least mean square (NLMS) method, a block-average (BA) method and a Viterbi-Viterbi (VV) method are 
comparatively analyzed considering the impacts of EEPN [3-5]. 

2. Principle of equalization enhanced phase noise 

In the coherent optical system using post implementation of digital CD equalization and carrier phase estimation, the 

transmitter (TX) laser phase noise passes through both the transmission fiber and the digital CD equalization module, 

and so the net dispersion experienced by the transmitter PN is close to zero. However, the local oscillator (LO) phase 

noise goes only through the digital CD equalization module, which is heavily dispersed in a transmission system 

without dispersion compensation fibers (DCFs). Therefore, the LO phase noise will significantly influence the 

performance of the high speed coherent system with only digital CD compensation. Theoretical analysis 

demonstrates that the EEPN scales linearly with the accumulated CD and the linewidth of the LO laser [6,7]. 

3. Principle of carrier phase estimation algorithms 

3.1 Normalized LMS filter 

The one-tap NLMS filter can be employed effectively for carrier phase estimation [3], of which the tap weight is 

expressed as 
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where w(n) is the complex tap weight, x(n) is the complex magnitude of the input signal, n represents the number of 

the symbol sequence, d(n) is the desired symbol, e(n) is the estimation error between the output signals and the 
desired symbols, and µ is the step size parameter. 

3.2 Block-average phase extraction 

The block-average method computes the 4-th power of the symbols in each process unit to cancel the phase 
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modulation in QPSK system, and the calculated phases are summed and averaged over the entire block (process 

unit). Then the phase is divided by 4, and the result leads to the phase estimation for the entire block [4]. The 

estimated phase in each process unit using the BA method can be expressed as 
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where  x  represents the nearest integer lager than x. 

3.3 Viterbi-Viterbi phase extraction 

The Viterbi-Viterbi method also processes the symbols in each process unit into the 4-th power to cancel the phase 

modulation in QPSK system. Meanwhile, the calculated phases are also summed and averaged over the entire block. 

However, the difference with regard to the BA method is in the final step, where the extracted phase in the VV 

method is only concerned as the phase estimation for the central symbol in each block [5]. The estimated phase 
using the Viterbi-Viterbi method can be expressed as 
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We can find that compared to the BA method, the Viterbi-Viterbi method will have a smaller phase estimate 
error, but it requires more computational complexity to update the process unit for each symbol phase estimation. 

4. High speed PDM-QPSK coherent optical transmission system 

The setup of the 112-Gbit/s NRZ-PDM-QPSK coherent optical transmission system implemented in the VPI 

simulation platform is illustrated in Fig. 1 [9]. The data sequence output from the four 28-Gbit/s pseudo random bit 

sequence (PRBS) generators are modulated into two orthogonally polarized NRZ-QPSK optical signals by two 

Mach-Zehnder modulators (MZM). The orthogonally polarized signals are fed into one fiber channel by a 

polarization beam combiner (PBC) to form the 112-Gbit/s NRZ-PDM-QPSK optical signal. Using a local oscillator 

in the coherent receiver, the received optical signals are mixed with the LO laser to be transformed into four 

electrical signals by the photodiodes (PD). These signals are digitalized by the 8-bit analog-to-digital convertors 

(ADCs) at twice the symbol rate. The transmission fibers have the CD coefficient equal to 16 ps/nm/km, and the 

central wavelengths of the TX laser and the LO laser are both 1553.6 nm. The CD compensation is performed by 
using a frequency domain blind look-up (BLU) filter [2]. For simplicity, the influences of fiber attenuation, 

polarization mode dispersion and nonlinear effects are neglected in this study. 
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Fig. 1. Block diagram of 112-Gbit/s NRZ-PDM-QPSK coherent optical transmission system 

5. Simulation results and discussion 

As shown in Fig. 2, we have investigated the bit-error-rate (BER) floor using the three carrier phase extraction 

methods in the 112-Gbit/s NRZ-PDM-QPSK coherent optical transmission system, where the EEPN is considered. 

In this simulation work, the optical fiber length is 2000 km, and the linewidths of the TX and the LO lasers are both 

5 MHz. The numerical results are obtained with different block size in the BA and the VV carrier phase extraction 

methods, and a fixed optimum step size in the NLMS method. It is found that the block-average method behaves a 
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little better than the NLMS method when the block size is less than 11, and the Viterbi-Viterbi method also works 

slightly better than the NLMS method when the block size is less than 21. On the other hand, the Viterbi-Viterbi 

method does not show a considerable improvement compared to the block-average method, even if it sacrifices more 

computational complexity. 

 

Fig. 2. The coherent detection results using three carrier phase estimation methods with different block size. 

The weak dependence on the block size in the BA and the VV algorithms implies that the additive noise in the 

transmission channel of the practical coherent systems can be accommodated quite well, since this requires a large 

block size (up to 20) to mitigate the additive Gaussian noise. Meanwhile, the NLMS method can also show a good 
performance with the additive noise in the transmission channel, if the step size is optimized [3,10]. 

It is also worth noting that the NLMS algorithm can be employed for the high level modulation format such as 

the n-PSK and the n-QAM transmission systems, while the block-average and the Viterbi-Viterbi methods can not 

be easily used for the classical n-QAM coherent systems except the circle n-QAM system. 

6. Conclusions 

In this paper, the performance of different carrier phase extraction methods considering the equalization enhanced 

phase noise is investigated in the 112-Gbit/s NRZ-PDM-QPSK coherent optical transmission system. In the 

numerical simulation, the NLMS method can still show an acceptable behavior compared to the other two 

approaches. Moreover, the Viterbi-Viterbi method can only show a slight improvement compared to the 

block-average method, even if it sacrifices more computational complexity. 
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