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Abstract Advances in genomics technology over recent years have led to the surprising discovery

that the genome is far more pervasively transcribed than was previously appreciated. Much of the

newly-discovered transcriptome appears to represent long non-coding RNA (lncRNA), a heteroge-

neous group of largely uncharacterised transcripts. Understanding the biological function of these

molecules represents a major challenge and in this review we discuss some of the progress made to

date. One major theme of lncRNA biology seems to be the existence of a network of interactions

with microRNA (miRNA) pathways. lncRNA has been shown to act as both a source and an inhi-

bitory regulator of miRNA. At the transcriptional level, a model is emerging whereby lncRNA

bridges DNA and protein by binding to chromatin and serving as a scaffold for modifying protein

complexes. Such a mechanism can bridge promoters to enhancers or enhancer-like non-coding

genes by regulating chromatin looping, as well as conferring specificity on histone modifying com-

plexes by directing them to specific loci.
The emerging field of long non-coding RNA

Recent advances in sequencing technologies have demon-
strated that far more of the genome is transcribed than was
previously appreciated. There has been an explosion in the
number of described non-coding genes and with it a corre-

sponding surge in interest in this emerging field. The term
‘‘dark matter” was coined to describe the large number of
previously-overlooked transcripts of uncertain function

revealed by such work [1,2] indicating the existence of a large
non-coding transcriptome far exceeding that of the more famil-
iar coding genes. The rate of discovery has far outpaced our
ability to functionally characterise these transcripts and the

vast majority have no known function. Despite this, the impor-
tance of the dark matter is demonstrated by genome-wide
association studies (GWAS) which have indicated that long

non-coding RNA (lncRNA) genes are enriched for trait or
disease-linked polymorphisms [3,4] and, indeed, over 90% of
all GWAS hits lie outside of known coding genes [5]. This

review will be focussed on efforts to understand the biological
function of lncRNA. Of necessity, we will be focussing on a
nces and
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small number of the best-known genes, but throughout we will
discuss to what extent these may represent widespread
mechanisms.

The diversity of lncRNA

A large proportion of the genome is transcribed into RNA that

lacks protein coding information and is never translated [6–8].
These non-coding RNAs (ncRNAs) are generally divided into
long and short groupings using an arbitrary threshold of 200

nucleotides (nt). Short ncRNAs include the relatively well-
known microRNAs (miRNAs) [9,10], as well as small-
interfering RNAs (siRNAs) and P-element-induced wimpy tes-

tis (PIWI)-interacting RNA (piRNAs) [11], which generally act
to negatively regulate gene expression. In contrast, the long
ncRNA (lncRNAs) are a large, heterogeneous group of
ncRNAs of largely-unknown function. lncRNAs share many

features with coding transcripts, such as the presence of epige-
netic marks indicating differential expression [12], the presence
of introns, and the existence of splice variants. Many but not

all lncRNAs are polyadenylated, and there is evidence indicat-
ing that many lncRNAs exist in both polyadenylated and non-
polyadenylated forms (termed bimorphic) [3]. The broad term

lncRNA includes many different types of RNA, exhibiting a
range of genomic structures and relationships to the coding
transcriptome. Some are pseudogenes, copies of coding genes
harbouring mutations rendering them non-coding [13]. Many

lncRNAs overlap coding genes, and indeed, one estimate sug-
gests that 20% of human transcripts exist as sense-antisense
pairs [14]. These transcripts may overlap the entire gene or

only a part of it, and non-coding transcripts may originate
from either the sense or antisense strand [15,16]. Many
lncRNAs are described as intergenic (meaning that they do

not lie within or overlap coding genes) and are sometimes
known as long intergenic ncRNAs (lincRNAs) [3]. We now
know that transcripts do not have to be linear, with the discov-

ery that circular RNA (circRNA) is a common form of
transcribed RNA [17,18]. Although many circRNAs are tran-
scribed from coding regions, these transcripts are believed to
be non-coding.

With the discovery of all of these forms of RNA, the gen-
ome can no longer be thought of as a linear array of distinct
transcriptional units, but rather is ‘‘an amazingly complex land-

scape of interlacing and overlapping transcripts, not only on
opposite strands, but also on the same strand, so that there is
often no clear distinction between splice variants and overlapping

and neighbouring genes” [19].

How much of the genome is transcribed?

Tiling microarrays, in which arrays are made of probes at
short intervals designed to span the entire genome, were the
first to suggest nearly pervasive transcription of the entire gen-
ome [1]. One study by Affymetrix on our smallest chromo-

somes, Chr.21 and Chr.22, has indicated that 94% of probes
detect transcripts outside of known exons [6], while another
study suggests that 49% of transcribed nucleotides are outside

of any annotated gene [20]. The development of massively par-
allel sequencing technologies, commonly referred to as RNA
sequencing (RNA-seq), has offered many improvements over

microarray-based technology in terms of reproducibility, sensi-
tivity, coverage, and accuracy in mapping homologous
sequences [21]. The Encyclopaedia of DNA Elements
(ENCODE) project has utilised RNA-seq of 15 human cell

lines to demonstrate that 74.7% of the genome is transcribed
[7], while a similar experiment utilising RNA-seq of samples
derived from 23 different human tissue types indicated that

85% of the genome is transcribed [3]. The Functional Annota-
tion of the Mammalian Genome (FANTOM) project has
revealed a similar level of pervasive transcription with 63%

of the genome shown to be transcribed by using the cap anal-
ysis of gene expression (CAGE) to profile transcription initia-
tion sites within the genome [8]. A related method is to predict
the location of transcribed regions of the genome based on the

pattern of histone modification. Actively-transcribed genes
are marked by trimethylation of lysine 4 on histone H3
(H3K4me3) at their promoters and H3K36me3 along the

length of the transcribed regions. These so-called K4-K36
regions can be used in genome-wide chromatin precipitation
assays to predict transcripts [12].

Thus it seems that the majority of our DNA is transcribed
into RNA at some point during development. However, much
of the previously-unappreciated ncRNA exists at a very low

level. Most of the RNA in a cell is rRNA and tRNA, whereas
mRNA makes up 3%–7% of the total by mass. lncRNA
makes up 0.03%–0.20% [22], thus being 15–230 times less
abundant in the cell than coding transcripts.

Functions of lncRNA

While the vast majority of lncRNAs do not yet have any
known function, we are beginning to understand the functions
of a small number of characterised lncRNAs. lncRNAs can act

at many different levels of gene expression and their functions
are highly diverse. This diversity reflects the versatility of RNA
itself: through folding into a variety of secondary structures,
RNA can bind to a large number of substrates in a highly-

specific manner [23]. In addition, without the need for transla-
tion, ncRNA expression is highly dynamic and can be rapidly
up- or down-regulated to modulate gene expression [23]. Here,

we will review some of the major described functions and high-
light what appear to be general principles of lncRNA biology.
For a more detailed discussion on this subject, the reader is

directed to several of the many excellent reviews published
[23–26].

Post-transcriptional regulation by lncRNA

lncRNA as a source of miRNA

miRNA is produced from primary transcript (pri-miRNA) by
two processing stages. Drosha and DiGeorge syndrome chro-
mosomal region 8 (DGCR8) cut the pri-miRNA while it is in

the nucleus into a precursor (pre-miRNA) of �60 nt. The pre-
miRNA is then exported to the cytoplasm where it is processed
by a second enzyme complex, Dicer/TAR RNA protein

(TRBP), to produce the mature miRNA of 20–23 nt [10,27].
Most pri-miRNAs are generally greater than 1 kb in length
[27], and therefore may be regarded as a form of lncRNA.

There are two major sources of pri-miRNAs in the genome:
those that are embedded within another gene and whose
expression is thus normally, but not always, linked to
the expression of the parent transcript; and those that are
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transcribed independently from what had previously been con-
sidered to be intergenic regions. The latter group is transcribed
from miRNA genes, which contain promoters that regulate

their transcription by RNA polymerase II (RNAPII) in a
manner similar to mRNA [28].

Approximately 50% of miRNAs are produced from

non-coding transcripts [29] (Figure 1). Interestingly, in com-
mon with those embedded in coding genes, many miRNAs
within non-coding genes are also located within introns [28].

Such a genomic organisation suggests that the host lncRNA
does not simply act as a pri-miRNA but may have other addi-
tional roles encoded by the exons. Examples of lncRNAs har-
bouring intronic miRNAs include DLEU2, which is the host

gene of the tumour suppressor miR-15a/16.1 cluster located
within its third intron [30,31]. These miRNAs are frequently
down-regulated in leukaemia. Interestingly, in adult chronic

lymphocytic leukaemia, the expression of miR-15a/16.1 seems
to be regulated by the host gene promoter, which is bound by
the transcription factors (TFs) MYC [31] and paired box 5

(PAX5; previously also known as B-cell-specific activator pro-
tein, BSAP) [32], while in childhood acute myeloid leukaemia,
data from methylation assays indicate that this miRNA cluster

is regulated independently of its host gene [33]. A second
example is the tumour suppressor miR-31 that is down-
regulated in breast cancer. MIR-31 gene is embedded within
an intron of the lncRNA LOC554202 and its transcription is

regulated by the methylation state of the host gene promoter
[34].

A minority of lncRNA-embedded miRNAs reside not

within introns but within an exon of the spliced lncRNA
[28,35]. Many such lncRNAs are named for the miRNA which
they encode. For example, the lncRNA MIR155 host gene

(MIR155HG; formerly known as B-cell integration cluster,
BIC) harbours an exonic miRNA, miR-155, and this region
of the lncRNA shows the strongest cross-species conservation

[36,37]. Similarly,MIR22HG encodes miR-22 within its second
exon [35], while MIR17HG harbours a cluster of six miRNAs
within its second exon [38].

One of the first lncRNAs to be discovered and perhaps the

most studied, H19, contains miR-675 embedded within its first
intron [39]. Although the H19 transcript is widely expressed in
the mouse embryo, miR-675 expression is limited to the pla-

centa [40]. This indicates that processing of the H19 transcript
Figure 1 lncRNA as a source of miRNA

Many lncRNA genes contain embedded miRNA sequences (red boxe

intron (line) of the gene. Furthermore, miRNAs are encoded by indep

genome. The three sources result in very different types of primary

structure. lncRNA, long non-coding RNA; miRNA, microRNA; pri-m
to release miR-675 is inhibited, which would seem to be medi-
ated by binding of a RBP, human antigen R (HuR), to a site
upstream of miR-675, thus blocking Drosha processing of

the primary transcript [40]. Furthermore, the disparity between
H19 and miR-675 expression suggests that H19 may not sim-
ply function as a pri-miRNA but may have additional func-

tions. This hypothesis is supported by the discovery of
additional H19 functions (discussed below).

lncRNA as a negative regulator of miRNA

miRNAs are negative regulators of gene expression. Tran-
scripts are targeted through binding of a short 7-nt seed

sequence within the miRNA to an miRNA response element
(MRE). MREs are short and binding does not have to be per-
fectly complementary [41], which makes predicting miRNA

targets difficult. Computational predictions suggest that,
potentially, a single miRNA may target hundreds of tran-
scripts [41]. However, the number of target genes that are
physiologically relevant targets of a given miRNA is often

much lower [42]. There seems to be a disconnection between
the number of predicted targets and the number of actual tar-
gets. Given the promiscuity of miRNA seed sequences, it is

perhaps unsurprising that many lncRNAs contain predicted
miRNA binding sites. This raises an interesting possibility that
the function of many lncRNAs may be to regulate gene expres-

sion by sequestering miRNAs, thus limiting their concentra-
tion within the cell and thereby reducing the pool of
available miRNA in the cell. In this way, the lncRNA acts

as a negative regulator of miRNA function and, by extension,
a positive regulator of gene expression. This is known as the
‘‘competing endogenous RNA (ceRNA)” hypothesis [43]
(Figure 2).

Examples of this type of interaction include the intergenic
lincRNA-ROR, which inhibits miR-145 in pluripotent embry-
onic stem cells (ESCs) [44]. lincRNA-ROR expression is acti-

vated by pluripotent TFs such as NANOG, SOX2, and
OCT4 and genes encoding these TFs are targeted by miR-
145. Therefore, this lncRNA creates a feedback loop within

the pluripotent gene network [44]. OCT4 expression is up-
regulated in many cancers including hepatocellular carcinoma
[45], and thus in these cells miR-145 acts as a tumour suppres-

sor. Interestingly, a non-coding pseudogene of OCT4 called
OCT4-pg4 is co-expressed with OCT4 and appears to serve
s), which may be located within either an exon (blue box) or an

endent transcriptional units and often occur in clusters within the

transcript but the pathways converge at the level of pre-miRNA

iRNA, primary miRNA; pre-miRNA, precursor miRNA.



Figure 2 The ceRNA hypothesis

mRNA contains MREs (ovals), which are normally located within the 30UTR. miRNA binding to the identical MREs may be present in a

number of ncRNA species, including pseudogenes, circRNAs, other forms of lncRNA, and independently-transcribed mRNA 30UTRs.

All of these RNAs could potentially compete for a limited pool of miRNA, thus positively regulating gene expression. lncRNA and

circRNA may carry MREs for multiple miRNAs (indicated by differently coloured ovals). MRE, miRNA response element; UTR,

untranslated region; miRNA, microRNA; lncRNA, long non-coding RNA; circRNA, circular RNA; CDS, coding sequence; ceRNA,

competing endogenous RNA.
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as an endogenous competitor of OCT4, protecting OCT4 from

miR-145-mediated degradation [46]. Pseudogenes are copies of
coding genes that arise through DNA duplication followed by
the accumulation of mutations in one copy, rendering the gene
non-coding. Despite this, many pseudogenes are expressed as

lncRNAs. Clearly, a non-coding transcript that shares a high
degree of homology with a coding gene is likely to share many
of its MREs and therefore pseudogenes are good candidates to

act as ceRNAs. Indeed, this seems to be the case [13,47,48].
Examples of such lncRNAs include a pseudogene homologous
to the gene encoding tumour suppressor phosphatase and ten-

sin homologue (PTEN), which contains multiple MREs within
the 30UTR shared with the coding gene [48], as well as pseudo-
genes homologous to the 30UTRs of the genes encoding

tumour suppressor candidate 2 (TUSC2) [49] and forkhead
box protein O1 (FOXO1) [50].

Some researchers remain sceptical about how widespread
this mechanism may be, arguing that the low levels of expres-

sion of most lncRNAs relative to mRNAs means that alter-
ations in lncRNA levels will not have more than a minor
effect on miRNA availability, and so will be ineffective as a

competitor [51]. Indeed, many studies on ceRNAs rely on ecto-
pic overexpression of the ceRNA at artificially-elevated levels
[49,50]. Thomson and Dinger argue that while the ceRNA

hypothesis is attractive because it could provide an explanation
of the functions for so many uncharacterised transcripts, its
biological relevance may be limited [51]. mRNA would be a

more effective ceRNA for this reason and, interestingly, the
ceRNA hypothesis is not limited to lncRNA. Salmena et al.
[43] suggest that mRNAs could also function, in part, to regu-

late the expression of other mRNAs through a similar mecha-
nism. If true, the mRNA of some coding genes may have a
protein-independent non-coding function [43], in effect acting
as a lncRNA. This is supported by the observation that the

30UTRs of over 1500 human mRNAs are expressed indepen-
dently of the coding part of the same transcript [52]. Further-
more, in about half of such genes examined in mice, the

expression pattern of the independent 30UTRs is distinct from
that of the parent mRNAs [52].

One lncRNA that is expressed at a high level, and therefore

may be effective as a ceRNA, is the previously-mentionedH19.
This lncRNA is highly expressed in undifferentiated muscle
cells, while its expression decreases in differentiated cells at

about the same time as the expression of miRNA let-7
increases [53]. H19 contains let-7 binding sites and siRNA-
induced depletion of H19 in mouse C2C12 muscle cells leads
to reduced expression of let-7 target genes and increased

expression of markers of muscle differentiation [53]. H19 also
binds to members of the miR-17-5p seed family. Expression
levels of H19 target mRNAs during myoblast differentiation

suggest H19 is competing for miR-17-5p binding [54]. Thus,
H19 acts as a primary transcript of one miRNA and a ceRNA
for a number of others.

CircRNAs are potentially very stable because, unlike linear
lncRNAs, they are resistant to exonuclease digestion. This fea-
ture raises the possibility that these RNA species may act as

ceRNAs. The natural antisense transcript of the gene encoding
cerebellar degeneration-related protein 1 (CDR1-AS, also
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known as ciRS-7) is one of the best-characterised circRNAs
[55–57]. It is highly expressed in mouse hippocampus and neo-
cortex, where expression of CDR1-AS overlaps with miR-7

expression domains [55,57]. CDR1-AS contains a large number
of miR-7 binding sites, which have been shown to deplete
miR-7 and therefore to regulate expression of miR-7 target

genes in vitro [55,57]. Interestingly, there are mismatches in
the central region of the miR-7 binding sites within CDR1-AS
[55]. These render CDR1-AS resistant to miRNA-mediated

degradation, thus the pool of ceRNA is not depleted by the pro-
cess of competition, making it a very effective competitor [55].
In contrast, the binding site within CDR1-AS for miR-671 is
nearly perfectly complementary, and so binding of this miRNA

negatively regulates the level of CDR1-AS expression [55].

miRNA-independent mRNA degradation

In addition to regulating gene expression through an interac-
tion with miRNA, there is evidence that some lncRNAs can
directly target mRNA for degradation. Staufen 1 (STAU1) is

a protein that recognises a specific motif in the 30UTR of
mRNAs and mediates their degradation by nonsense-
mediated mRNA decay (NMD) [58]. For example, STAU1

binds to a double-stranded RNA motif within the 30UTR of
the mRNA encoding ADP-ribosylation factor 1 (ARF1) [59],
where it is formed by a stem loop structure within the mRNA

itself. However, some mRNAs targeted by Staufen-mediated
decay, such as the one encoding serpin peptidase inhibitor,
clade E member 1 (SERPINE1), contain only a single-

stranded binding site within the 30UTR, lacking the stem loop
structure. Interestingly, it appears that such mRNAs may be
targeted by a lncRNA carrying a complementary single-
stranded binding site, imperfect binding of the lncRNA to

the mRNA thus creating a double-stranded RNA binding
motif for STAU1 [60]. This class of lncRNAs has been named
half STAU1 binding site RNA (1/2-SBS1RNA) [60]. It is of

note that the lncRNA terminal differentiation-induced ncRNA
(TINCR) also recruits STAU1 to mRNAs such as the one
encoding peptidoglycan recognition protein 3 (PGLYRP3) in

epidermis [61]. Nonetheless, the interaction between TINCR
and STAU1 does not trigger NMD and instead such binding
increases stability of interacting mRNAs containing the

TINCR box motif [61]. These findings suggest that a number
of outcomes are possible, perhaps dependent on recruitment
of additional factors.

Transcriptional regulation by lncRNA

Transient lncRNA is transcribed from active enhancers

Transcription of most genes involves an interaction of a prox-
imal promoter with more distant enhancer elements. Enhan-

cers are located often at a large distance away from the
transcriptional start site (TSS) and bind tissue-specific TFs
that function to regulate differential gene expression [62].

The expression of a given gene is often regulated by the com-
binatorial effects of one or more enhancers, each active at a
specific developmental time point or in a specific tissue. For
example, expression of the gene NODAL during embryonic

development is regulated by the interaction between at least
five enhancers [63].

Active enhancers are bound by RNAPII, which may reflect

their interaction with the promoter. By studying enhancers
activated by calcium signalling in mouse neurons, Kim et al.
[64] made the surprising discovery that an ncRNA of about
2 kb is bidirectionally transcribed from active enhancers.

Expression of this enhancer RNA (eRNA) seems to be corre-
lated with the activity of the enhancer [64,65]. eRNA may
either be polyadenylated [66] or lack polyadenylation [64],

the latter suggesting transience and instability. However, a
number of studies suggest that it may nevertheless be func-
tional. For example, the nuclear receptors nardilysin 1

(NRD1) and NRD2 (also known as Rev-Erbs) regulate tran-
scription of the target gene encoding matrix metallopeptidase
9 (MMP9) by inhibiting the expression of the eRNA tran-
scribed from an MMP9 enhancer [67]. Global run-on sequenc-

ing was used to characterise these transcripts, demonstrating
that the MMP9 enhancer is 983 bp in length and consists of
a central core of 388 bp containing TF binding sites flanked

by sequence encoding sense and antisense eRNAs [67].
It has been proposed that eRNAs may play a role in chro-

matin remodelling, acting to promote chromatin accessibility

[66] and stabilise the DNA loop necessary to bring a distal
enhancer into apposition with its promoter [68]. For instance,
chromatin at the FOXC1 locus is stabilised by a complex

including the oestrogen receptor alpha (ERa) and its ligand,
as well as an eRNA transcribed from a FOXC1 enhancer [68].

Enhancer-like activity of lncRNA genes

A related class of lncRNAs is the activating ncRNAs (ncRNA-
as). These are a species of lncRNAs transcribed from indepen-

dent loci, but not from enhancers. They also have a transcrip-
tional activation function [69–71]. ncRNA-as specifically
activate the transcription of neighbouring coding genes in an
RNA-dependent fashion, requiring the activity of the coding

gene promoter [69]. Thus functionally they are highly similar
to eRNAs. However, in contrast to eRNAs, ncRNA-as are
spliced, polyadenylated stable transcripts. In common with

both DNA enhancers and eRNAs, gene activation mediated
by the ncRNA-a requires a change in chromosomal conforma-
tion to bring the ncRNA-a locus close to the promoter of its

target gene [72]. Mediator is a protein complex which, along
with cohesin, is involved in bridging together enhancers and
promoters [73]. A number of ncRNA-as have been shown to

be associated with the mediator complex, and depletion of
the complex inhibits looping between the ncRNA-a locus
and its target gene. Thus eRNA and ncRNA-a may function
by interacting with the same set of molecules, forming a scaf-

fold for a protein complex that bridges the enhancer-like ele-
ment and the promoter of a coding gene (Figure 3).

While most circRNAs are cytoplasmic and thus may func-

tion in post-transcriptional regulation, a specific subclass of
circRNAs demonstrates nuclear localisation and appears to
function in transcriptional regulation. These circRNAs, in

contrast to those described above, retain both exons and
introns and therefore have been named exon–intron circRNAs
(EIcircRNAs) [74]. EIcircRNAs are able to enhance transcrip-
tion of their parental (coding) genes by interacting with RNA-

PII in an interaction that requires the U1 small nuclear RNA
(snRNA) [74].

Transcriptional regulation by recruitment of chromatin modifiers

A number of the best-characterised lncRNAs, such as
X-chromosome inactivation (XIST) and H19, are involved in



Figure 3 Models of transcriptional regulation

In the bridging scaffold model (A), activating RNAs (red line) are transcribed from enhancer-like non-coding genes and are required to

recruit the mediator complex and to mediate chromatin conformational changes bridging the enhancer-like non-coding gene and the

promoter of a coding gene. In the tethered scaffold model (B), lncRNA (red line) recognises specific DNA motifs and recruits histone

modifying enzymes such as PRC2 to the locus. lncRNA, long non-coding RNA; PRC2, polycomb repressive complex 2; RNAPII, RNA

polymerase II.
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processes such as X-chromosome inactivation (XIST) and

imprinting (H19), in which a large region of a chromosome
is inactivated such that only one copy is expressed [75]. In both
cases, the lncRNA is expressed from the inactivated
chromosome and has a binary relationship with its coding gene

expression from the other chromosome, which is controlled by
a cis-acting master control region [75]. H19 is expressed exclu-
sively from the maternally-inherited chromosome, while the

adjacent gene encoding insulin-like growth factor 2 (IGF2) is
expressed exclusively from the paternal chromosome [76,77].
Deletion of H19 in mice leads to maternal expression of

IGF2, resulting in an overgrowth phenotype [78] which can
be rescued by transgenic expression of H19 [79]. Mechanisti-
cally, it has been shown that many of these lncRNAs are asso-

ciated with chromatin modifying complexes and that this
interaction directs inhibitory epigenetic modification of his-
tones at adjacent loci. For example, the master control region
lying between H19 and IGF2 consists of a region of

differentially-methylated chromatin. It seems that H19 is able
to modify this control region by interacting with methyl CpG
binding domain protein 1 (MBD1), which in turn interacts

with histone lysine methyltransferases resulting in H3K9Me3
[80]. Another imprinted lncRNA, antisense Igf2r RNA (AIR),
has been shown to be localised to the promoter of a target gene

encoding solute carrier family 22 member 3 (SLC22A3) and to
direct the histone methyltransferase G9a to this locus [81]. The
imprinted KCNQ1 overlapping transcript 1 (KCNQ1OT1)

operates via a similar mechanism [15].
While many imprinted lncRNAs appear to act in cis, regu-

lating nearby loci, there is also evidence that lncRNAs can act
in trans. An elegant model for this is regulation of the home-

obox (HOX) gene clusters, a group of homeotic genes that
function to convey positional information in the embryo to
establish the antero-posterior body axis. Each HOX gene is

expressed in a specific domain along this axis, demonstrating
colinearity, in which the order of genes on the chromosome
reflects their expression domains in the body [82]. Remarkably,

human fibroblasts retain this positional information in pri-
mary culture, permitting in vitro studies [83]. Differential gene
expression is maintained by the creation of broad regions of
open or closed chromatin within the HOX gene clusters by

the action of the histone lysine methyltransferases polycomb
repressive complex 2 (PRC2) and trithorax, which have oppos-
ing actions [84]. Over 200 lncRNAs are transcribed from the

HOX clusters and seem to play a central role in the regulation
of histone methylation states [84]. HOX transcript antisense
RNA (HOTAIR), one of these lncRNAs expressed from the

HOX-C cluster, has been shown to recruit PRC2 and lysine
(K)-specific demethylase 1A (LSD1) to the HOX-D cluster
by recognising a specific GA-rich DNA motif [85], maintaining

repression over a 40-kb region of the chromosome [84,86,87].
Similarly, XIST also recruits PRC2 [88]. Indeed a genome-
wide RNA immunoprecipitation experiment suggests that as
many as 20% of lncRNAs across various human cell types

may be associated with PRC2, suggesting that this is a general
mechanism [89]. Another HOX cluster lncRNA, HOX-A tran-
script at the distal tip (HOTTIP), is transcribed from the 50 end
of theHOX-A cluster and targets a methylation complex to the
locus required for expression of a number of HOX-A genes
[90]. There are many more examples of this kind of interaction

[23].
Details on the precise mechanisms underlying these activi-

ties are unclear. It seems that the lncRNA must serve two func-

tions: (1) it must bind to a protein or protein complex, or at
least facilitate the formation of a complex, perhaps acting as
a scaffold [87]; and (2) the lncRNA must be able to target this
complex to a specific DNA sequence. Thus, the function of the

lncRNA is to provide specificity to the chromatin modifying
enzymes, acting as a tethered scaffold (Figure 3).

Histone modifications have been demonstrated to be able to

influence alternative splicing of mRNA, acting through an
adaptor complex consisting of a chromatin-reading protein
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linked to RNAPII and the splicing machinery [91]. For
example, a different splice form of the gene encoding fibroblast
growth factor receptor 2 (FGFR2) is expressed in epithelial

cells compared to that expressed in mesenchymal cells. It has
been shown that differential splicing is dependent on the
methylation state of histone H3K36 and H3K27 at the FGFR2

locus [91]. An antisense lncRNA to FGFR2, asFGFR2, is
expressed in epithelial cells and acts to repress mesenchymal-
type splicing by recruiting PRC2 and the histone demethylase

lysine-specific demethylase 2a (KDM2a) to the locus [92].
Concluding remarks

In this review we have described the highly diverse biological
functions of lncRNAs, reflecting the versatility of the RNA
molecule itself. We have proposed a general model in which

these functions may broadly be divided into those representing
an interaction with miRNA networks in order to regulate gene
expression at the post-transcriptional level and those repre-

senting an interaction of lncRNA with enhancers, promoters,
and chromatin-modifying complexes to regulate gene expres-
sion at the transcriptional level. Some lncRNAs such as H19
appear to act at multiple levels of gene regulation. It remains

to be seen whether this is a general phenomenon. Indeed, it
should be noted that much of our current understanding of
lncRNA comes from studies of a small number of lncRNAs

and it is presently unclear whether these are representative of
the group as a whole. One thing that seems likely is that as
we begin to understand these molecules better, the rather crude

classification into long and short ncRNAs will need to be
refined to better reflect their diverse functions.

Any review on this subject will be always incomplete for

the simple reason that the field is rapidly expanding. In
addition to the mechanisms described here, lncRNA has also
been implicated in the regulation of mRNA splicing by
modulating the levels of serine/arginine splicing factors

within nuclear speckles [93]. An antisense lncRNA overlap-
ping the start codon of ubiquitin carboxy-terminal hydrolase
L1 (UCHL1) has been shown to positively regulate transla-

tion [94]. These lncRNAs consist of two domains: one
domain overlapping the coding gene, which confers target
specificity, and the other domain containing a SINEB2

repeat element that seems to recruit polysomes [94]. In con-
trast, lincRNA-p21 inhibits translation by recruiting the
translational repressor Rck [95]. Finally, the lncRNA growth

arrest-specific 5 (GAS5) has been shown to act as a DNA
mimic, sequestering the glucocorticoid receptor, and acting
as a decoy to prevent its binding to a DNA motif in target
genes [96] in an interesting parallel to the sequestration of

miRNAs described above.
While we have made great strides in our understanding of

lncRNA, we are still only at the start of this road. Many chal-

lenges must be overcome. One difficulty facing the field is the
low level of cross-species conservation of the many lncRNAs,
which makes the use of model organisms such as mice or fish

difficult. This creates challenges to the understanding of
lncRNA functions in whole body processes such as embryonic
development and complex diseases. This lack of primary
sequence conservation could be interpreted to mean a lack of

evolutionary constraints on lncRNA. However, some have
argued that we should not apply the same criteria for sequence
conservation to lncRNA as we do to coding genes because lack
of sequence conservation does not in itself indicate lack of
functional conservation [97] and evolution may act on lncRNA

at another level [98]. For example, the lncRNA HOTAIR
shows poor primary sequence conservation between humans
and mice, yet both its function and its genomic location within

the HOX-C cluster are conserved [86].
In fact, there is some evidence that selection may act on

lncRNA at the structural level rather than at the level of the

primary sequence [99,100]. This raises the possibility that func-
tional orthologues may be studied in model organisms. For
this reason, methods to determine the structure of lncRNA will
become increasingly important. Traditionally RNA secondary

structures have been determined using either nuclease diges-
tion, in which enzymes specifically cleave either single or dou-
ble stranded RNA, or with the use of chemicals to modify

exposed nucleotides [101]. Such methods have been successful
in determining the structure of individual lncRNAs such as
HOTAIR [102]. However we need to find ways to adapt these

methods for high-throughput genome-wide applications. Early
attempts to do just this include parallel analysis of RNA struc-
ture (PARS) [103] and FraqSeq [104], in which RNA sequenc-

ing is used to analyse the resulting products of nuclease
digestion.

Another important line for future research will be to deter-
mine the binding partners of lncRNA. Many studies take a

protein-centric approach to this problem and use an antibody
to purify all lncRNAs associated with a particular protein.
This is useful in identifying that many lncRNAs associate with

the PRC2 complex [89]. However, in some cases it is more
helpful to look at this problem from an RNA-centric view-
point. A useful tool for such studies is the S1 tag, an RNA

motif that mimics the structure of biotin and may thus be puri-
fied from cell extracts using streptavidin [105,106]. The S1 tag
is short and so may be used to tag lncRNA molecules in a sim-

ilar manner to protein tags such as HA and V5. This method
has been successfully employed to identify binding partners
of the lncRNA H19 [53].

One of the exciting prospects arising from our increased

understanding of the lncRNA field is the possibility of under-
standing the roles of lnRNA in human disease. GWAS analy-
ses have in the past tended to focus only on the coding part of

the genome, although it has been known for some time that
certain diseases show a strong association with regions of the
genome lacking coding genes. For example, multiple SNPs

linked to a number of cancers map to a gene desert surround-
ing the oncogene MYC at the 8q24 locus [107]. As it becomes
clear that lncRNA is both abundant within the genome and
that it has a distinct biological role, it is logical to suggest that

mutations within these sequences will be found to have clinical
implications. Indeed this seems to be the case and a number of
lncRNAs are now known to be transcribed from 8q24 and to

regulate the expression of MYC [108]. Similarly in heart
disease, SNPs mapped to a number of lncRNAs including
myocardial infarction associated transcript (MIAT) [109],

antisense non-coding RNA in the INK4 locus (ANRIL) [110],
and the aforementioned H19 [111] have been shown to have
a disease association. The challenge facing such research will

be to predict which of the many variants within the population
are functionally significant, a question that can only be
answered by functional studies such as those described in this
review.
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