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Abstract Recognizing the imperative need for biodiversity protection, the Convention on
Biological Diversity (CBD) has recently established new targets towards 2020, the so-called
Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress
towards these targets. Remote sensing has been increasingly contributing to timely, ac-
curate, and cost-effective assessment of biodiversity-related characteristics and functions
during the last years. However, most relevant studies constitute individual research efforts,
rarely related with the extraction of widely adopted CBD biodiversity indicators. Further-
more, systematic operational use of remote sensing data by managing authorities has still
been limited. In this study, the Aichi targets and the related CBD indicators whose mon-
itoring can be facilitated by remote sensing are identified. For each headline indicator a
number of recent remote sensing approaches able for the extraction of related properties
are reviewed. Methods cover a wide range of fields, including: habitat extent and condition
monitoring; species distribution; pressures from unsustainable management, pollution and
climate change; ecosystem service monitoring; and conservation status assessment of pro-
tected areas. The advantages and limitations of different remote sensing data and algorithms
are discussed. Sorting of the methods based on their reported accuracies is attempted, when
possible. The extensive literature survey aims at reviewing highly performing methods that
can be used for large-area, effective, and timely biodiversity assessment, to encourage the
more systematic use of remote sensing solutions in monitoring progress towards the Aichi
targets, and to decrease the gaps between the remote sensing and management communities.
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1 Introduction

Biodiversity is a key factor for ecosystem stability and functioning, severely affecting hu-
man society and health (Cardinale et al. 2012; Balvanera et al. 2006). It is a complex notion,
difficult to measure explicitly (Gillespie et al. 2008; Duro et al. 2007). Various indicators
are used to assess the status and trends of components of biodiversity, measure pressures,
and quantify biodiversity loss at the level of genes, populations, species, and ecosystems,
at various scales (Butchart et al. 2010; EEA 2007; Duelli and Obrist 2003). Several sets of
such indicators have been proposed by organizations, scientists, and policy makers (Feld
et al. 2009; Strand et al. 2007; EEA 2007; Kati et al. 2004; Lindenmayer et al. 2000; Jon-
sson and Jonsell 1999). They can be either directly measured or calculated using statistical
models and may have a global, regional, or national applicability. Among the most widely
adopted sets are the ones proposed by the United Nations (UN) Convention on Biological
Diversity (CBD), aiming at monitoring the progress towards the achievement of the defined
targets at global scale (2010BIP 2010; AHTEG 2011). Further efforts include the definition
of more directly measured variables, to enhance indicator extraction, such as the Essential
Biodiversity Variables (EBV) proposed by the Group on Earth Observations Biodiversity
Observation Network (GEO BON) (Pereira et al. 2013).

The imperative need for biodiversity protection has been highlighted lately (Brooks et al.
2006), with the UN declaring 2010 as the International Year of Biodiversity and 2010-2020
as the Decade on Biodiversity. Realizing that the targets for halting biodiversity loss by
2010 were not met (CBD 2010; Butchart et al. 2010), CBD and the European Union (EU)
updated their mitigation strategies towards 2020 (CBD 2012; EEA 2012b). CBD adopted the
Strategic Plan for Biodiversity 2011-2020 and set the so-called Aichi Biodiversity Targets
(CBD 2012), as criteria of achieving the defined goals by 2020.

Although in-situ campaigns are the most accurate way of measuring certain aspects of
biodiversity, such as the distribution and population of plant and animal species, in many
cases, they are proven particularly costly, time demanding, or impossible (Buchanan et al.
2009; Gong et al. 2007). Remote sensing (RS) data, on the contrary, from airborne or satel-
lite sensors, are increasingly employed in biodiversity monitoring studies (Nagendra et al.
2013; Bergen et al. 2009; Gillespie et al. 2008; Turner et al. 2003). Offering repetitive and
cost-efficient monitoring of large areas, RS data can provide precious information nearly im-
possible to be acquired by field assessment alone (Nagendra 2001). Numerous studies using
RS data to measure biodiversity-related properties are presented in the literature, covering a
broad range of applications, study areas, data and methods.

However, most studies are rarely explicitly connected to any widely adopted biodiversity
indicator that could be extracted through them directly or indirectly. Instead, various indi-
cators have been used by individual studies, resulting in numerous incompatible monitoring
systems (Feld et al. 2009). Furthermore, despite the increasing availability of RS data, the
connection between variables measured by RS and indicators required by the biodiversity
and policy-making community is still poor (Secades et al. 2014). Thus, a link of RS ap-
proaches to a common set of indicators would be highly beneficial and is attempted in this
study.

A contribution of the study is the identification of Aichi targets whose progress can
be monitored through RS data, by distinguishing the biodiversity indicators and EBVs that
can be extracted using such data. Furthermore, a large number of state-of-the-art RS stud-
ies monitoring different biodiversity-related variables with satellite and airborne sensors are
reviewed. A range of applications covering all RS related CBD headline indicators are in-
cluded. A link of the methods to the CBD indicators whose extraction can be facilitated with
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their use is provided. Evaluation of the methods based on their outcomes and the achieved
accuracies, when appropriate, is undertaken identifying the best performing ones. Based on
the discussion on used sensors and processing algorithms, the study attempts to provide a
useful tool for researchers and policy makers to select the most appropriate method for the
extraction of CBD biodiversity indicators, in either local or global scale.

2 Earth Observation for biodiversity monitoring

CBD initially suggested a set of biodiversity indicators to monitor the progress of biodi-
versity conservation by 2010, the so-called 2010 Biodiversity Target (Strand et al. 2007).
The indicators were globally applicable and organized in seven focal areas, ranging from
conservation and sustainable use of biodiversity to social considerations dependent upon its
maintenance. Failing to meet the 2010 targets (Butchart et al. 2010), new indicators and an
updated organization of all biodiversity indicators under 12 headline indicators were pro-
posed (AHTEG 2011), meant to monitor the progress towards the achievement of the 20
Aichi Targets (CBD 2012).

Upon demand by CBD, GEO BON attempted to assess the adequacy of global observa-
tion systems, mainly on information capacity, for monitoring biodiversity and the achieve-
ment of the Aichi targets (GEO BON 2011). Although numerous existing systems were
identified, developing and funding them is needed to achieve global targets. Acknowledging
the lack (Pereira et al. 2012) and envisaging the development of a global harmonized sys-
tem to observe biodiversity (Scholes et al. 2012), a set of candidate EBVs were suggested
(Pereira et al. 2013). They aim at defining a minimum set of essential measurements and act-
ing as an intermediate layer between primary observations (e.g. RS data) and biodiversity
indicators, facilitating the extraction of the latter. Six main EBV classes have been defined,
with the particular EBVs being under development (Pereira et al. 2013).

In addition, several biodiversity-related international projects have recently been imple-
mented, such as the 7th European Framework Programme (FP7) EU_BON (Building the
European Biodiversity Observation Network — http://www.eubon.eu), MS.Monina (Multi-
scale Service for Monitoring Natura 2000 Habitats of European Community Interest —
http://www.ms-monina.eu), and BIO_SOS (BIOdiversity multi-SOurce monitoring System:
From Space to Species — http://www.biosos.eu); the latter two focusing on biodiversity mon-
itoring from space. RS is expected to contribute immensely in assessing the progress towards
certain Aichi targets, by extracting and updating the respective CBD indicators or related
EBVs. Table 1 identifies the CBD headline indicators that may be extracted through RS
data, and the mainly associated Aichi targets. Relevant EBV classes are also reported.
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Table 1 Aichi targets that can be monitored through RS data, and the associated CBD headline indicators
(AHTEG 2011) and EBV classes (Pereira et al. 2013). The index numbers of the Aichi targets and CBD indi-
cators used in their definition documents are given in parenthesis. Abbreviations of CBD headline indicators:
(1) Extent: Trends in extent, condition, and vulnerability of ecosystems, biomes, and habitats; (2) Species:
Trends in abundance, distribution, and extinction risk of species; (4) Pressures practices: Trends in pressures
from unsustainable agriculture, forestry, fisheries, and aquaculture; (5) Pressures various: Trends in pres-
sures from habitat conversion, pollution, invasive species, climate change, overexploitation, and underlying
drivers; (6) Services: Trends in distribution, condition, and sustainability of ecosystem services for equitable
human well-being; (11) Protected areas: Trends in coverage, condition, representativeness, and effectiveness

of protected areas and other area-based approaches.

Aichi targets

CBD headline indicators

EBY classes

(4) Sustainable production and
consumption

(4) Pressures practices
(5) Pressures various

Species populations

(5) Reduction of habitat loss,
fragmentation and degradation

(1) Extent
(4) Pressures practices
(5) Pressures various

Species populations
Ecosystem function
Ecosystem structure

(6) Sustainable exploitation of
marine resources

(4) Pressures practices

Species populations

(7) Sustainable management of
agriculture, aquaculture and
forestry areas

(4) Pressures practices

Species populations
Ecosystem structure

(8) Pollution reduction

(5) Pressures various

Species populations
Community composition
Ecosystem function

(9) Invasive alien species control

(2) Species
(5) Pressures various

Species populations

(10) Protection of vulnerable
ecosystems

(5) Pressures various

Species populations
Community composition
Ecosystem structure

(11) Conservation and protection
of important areas

(11) Protected areas

Species populations
Ecosystem structure

(12) Preventing extinction of
threatened species

(2) Species

Species populations

(14) Safeguarding ecosystems with
essential services

(6) Services
(11) Protected areas

Species populations
Community composition
Ecosystem function
Ecosystem structure

(15) Enhancing ecosystem
resilience

(6) Services
(11) Protected areas

Species populations
Species traits
Ecosystem structure

3 Remote sensing capacity for CBD indicator extraction

Extending previous studies focusing on policy makers and identifying the principal role of
RS data in CBD indicator extraction (Secades et al. 2014), the present study focuses not
only on the potential of various RS data, but also on the data processing and mapping al-
gorithms. A variety of measures, defined in Table 2, have been employed to evaluate the
accuracy of the methods cited in this study, depending on the characteristics of each method
and the nature of the problem. An indicative sorting of the methods is attempted for each
category of measured variables, although an indisputable comparison of the methods would
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Table 2 Accuracy evaluation measures used in the methods cited in this study.

Metric Definition Symbols
Overall accuracy NC: number of correctly classified
OA = E samples; N: total number of samples
N
Producer’s accuracy NCy: Correctly classified samples to
(for class A) PA, = NCy class A; NOy: total observed samples
NO4 of class A

Omission error (for EOy=1—-PA4

class A)

User’s accuracy (for NCy: Correctly classified samples to

class A) UA, = NGy class A; NP, total samples classified

NP, to class A

Commission error (for ECy=1-UA,

class A)

Cohen’s kappa P,: proportion of agreement between

coefficient K= PP classified and observed samples

1—P; = OA; P.: proportion of expected

agreement by chance,
P. =Y, (NO;/N)(NP,/N), C:
number of classes, NO;, NP,, N
defined as above

Pearson’s correlation _ yi: observed values; f;: model

coefficient (= Hoi—) predicted values; 5= YV yi/N;

r=

i=1
VEL i = TP R 302

F=X¥, fi/N; N: number of
samples

Coefficient of

Yi, fi, ¥, N defined as above

determination RR=1 M= fi)?
PG —3)?
Adjusted R? D N: number of samples; D: number of

explanatory variables in the
regression model

Root mean square
error

i, fi, N defined as above

RMSE =
Absolute (standard) . yi, fi,» N defined as above
N
error E=w Yo il
Relative (standard) ¥i, fi» N defined as above
error E — 1 ZN |yi = fil
= L

N&==D oy

only be possible if experiments were conducted under the same conditions, datasets, or
study areas, which is rarely the case in monitoring applications. The sorting is mainly based
on reported accuracies, taking into account the number of employed classes, in classifi-
cation problems. In cases where accuracies are provided in different measures among the
approaches of the same category, e.g. as a mixture of classification accuracies, root mean
square errors (RMSE), R? values, etc., the provided sorting does not convey any compara-
tive information. In addition, error values evaluating uncertainty of the outcomes are rarely
reported within the huge set of papers reviewed for this work. However, the attempted sort-
ing may convey useful information on the efficiency of certain sensors or algorithms for
specific applications, and provide guidelines to research, monitoring, and policy-making
communities.
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A large number of sensors are employed in the studies discussed in the next paragraphs.
Table 3 presents a list of the sensors and some of their properties as derived from the respec-
tive studies, including their spatial resolution, number of bands, cost, and their acronyms
as used in the following paragraphs and the tables in the Online Resource material. Both
space- and airborne sensors are listed, ranging from passive multispectral and hyperspectral
to active Synthetic Aperture Radar (SAR) and Light Detection And Ranging (LiDAR). Due
to their large number, airborne LiDAR sensors and digital cameras are not included in the
table. Sensors with large archive of data distributed at no cost are indicated as ‘free’, even
though new acquisitions or certain products may be commercially available. In addition, the
CBD headline indicators where these sensors are involved are depicted together with a ref-
erence to an indicative high performing method (see the discussion in the next paragraphs).
As a note, the CBD headline indicator on protected area monitoring is under-represented
in Table 3, since several methods conducted in protected areas are discussed under other
related indicators, such as ecosystem extent or species diversity.

Table 3: Acronyms and characteristics of optical multispectral/hyperspectral, SAR, and (satellite) LIDAR
sensors used in CBD headline indicator extraction related studies. Abbreviations of CBD headline indicators
are given in Table 1. Symbol * indicates upcoming sensors, whose data have been simulated. References to a
high performing method using each sensor are provided as indicative examples.

Acronym Sensor Spatial Bands Cost CBD Reference
resolution
(m)
Optical Multispectral / Hyperspectral
ADS40 airborne 0.2 4 yes (1) Extent Forzieri et al.
(2013)
AHS-160 airborne 2.4 63 yes (11) Prot. Delalieux et al.
areas (2012)
AISA airborne 2-2.5 272 yes (1) Extent Cho et al.
(AISA Eagle) (2012)
ALI EO-1 ALI 30 9 free (1) Extent, (6) Chen et al.
Services (2009)
ASTER Terra ASTER 15, 30, 90 14 free All Reiche et al.
(2012)
AVHRR TIROS-N, ~1100 6 free (1) Extent, (2) Suarez-Seoane
NOAA-7, Species, (6) et al. (2002)
NOAA-15 Services
AVHRR
AVIRIS airborne 3.54 224 yes (5) Press. Fuentes et al.
various (2006)
AVNIR-2 ALOS 10 4 yes (1) Extent, (4) Vaglio Laurin
AVNIR-2 Press. etal. (2013)
practices
AWIFS IRS-P6 56 4 yes (1) Extent Sedano et al.
AWIFS (2013)
CAO- airborne 0.56-1.2 24,72 yes (2) Species Féret and Asner
Alpha (2013)
CASI airborne 1-3 15,36, yes (1) Extent, (2) Belluco et al.
72 Species, (4) (2006)
Press.
practices, (11)
Prot. areas
DuncanTech  airborne 0.2 3 yes (4) Press. Tilling et al.
practices (2007)

Continued on next page. ..
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Table 3 — continued

Acronym Sensor Spatial Bands Cost CBD Reference
resolution
(m)
CHRIS PROBA-1 17, 34 18, 62 free (1) Extent Chan et al.
CHRIS (2012)
DMC Z/11 airborne 2 4 yes (4) Press. Martinez-
practices Lopez et al.
(2014)
ETM+ Landsat-7 30 8 free All Griffiths et al.
ETM+ (2012)
GE-1 GeoEye-1 ~1-2 4 yes (1) Extent Newman et al.
(2014)
GS airborne 0.2 3 yes (4) Press. Perry et al.
(Geospatial practices (2012)
Systems)

HJ HJ-1A/1B 30 4 yes (5) Press. Wang et al.
various (2012)

HRG SPOT-5 HRG 10, 20 4 yes (1) Extent, (4) Lucas et al.
Press. (2011)
practices

HRVIR SPOT-4 10, 20 4 yes (4) Press. Soudani et al.

HRVIR practices (2006)

HYDICE airborne 1.6 210 yes (2) Species Clark and

Roberts (2012)
HyMap airborne 3-5 126, yes (2) Species, Hestir et al.
128 (4) Press. (2008)
practices

Hyperion EO-1 30 220 free (1) Extent, (2) Pu et al. (2010)

Hyperion Species, (4)
Press.
practices

IKONOS IKONOS 1,4 4 yes (1) Extent, (2) Bejarano et al.
Species, (4) (2010)

Press.
practices

LISS-III IRS-P6/ 20-25 4 yes (1) Extent, (4) Lucas et al.

IRS-1C/1D Press. (2011)
LISS-IIT practices, (6)
Services
LISS-II IRS-1B 36.25 4 yes (4) Press. Abbas et al.
LISS-II practices (2013)
MERIS ENVISAT 300 15 free (6) Services Dente et al.
MERIS (2008)
MIVIS airborne 3 102 yes (1) Extent Belluco et al.
(2006)
MODIS Terra / Aqua 250, 500, 36 free All Fang et al.
MODIS 1000 (2011)
MP39 airborne 0.25 3 yes (4) Press. Hou et al.
(Leica MP practices (2011)
39)
MSS Landsat 1-5 60-80 4-5 free (1) Extent Tang et al.
(2012)
OMI Aura 13000 x 740 free (5) Press. Bechle et al.
24000 various (2013)

Continued on next page. . .
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Table 3 — continued

Acronym Sensor Spatial Bands Cost CBD Reference
resolution
(m)
QB QuickBird 2 0.6, ~2.4 4 yes (1) Extent, (2) Waulder et al.
Species, (4) (2008)
Press.
practices, (6)
Services
REye RapidEye 6.5 5 yes (4) Press. Franke et al.
practices (2012)
ROSIS airborne 1 115 yes (1) Extent Belluco et al.
(2006)
SeaWiFS SeaStar 1100, 8 free (2) Species, Zainuddin et al.
SeaWiFS 4500, (6) Services (2006)
9000
Sentinel-2* Sentinel-2 10, 20, 60 13 free (4) Press. Herrmann et al.
MSI practices (2011)
SSat SumbandilaSat  6.25 6 yes (1) Extent Cho et al.
(2012)
TCAMP airborne 1 1 yes (4) Press. Tilling et al.
(Therma- practices (2007)
CAMP40)
™ Landsat-5 30 7 free All Zhong et al.
™ (2014)
™I TRMM/TMI 5000- 5 free (2) Species Zainuddin et al.
72000 (2006)
TSys airborne 0.4 4 yes (6) Services Latifi et al.
(Toposys (2010)
GmbH)
VENuS* VENuS 5.3 12 yes (4) Press. Herrmann et al.
VSSC practices (2011)
VGT SPOT- 1000 4 free (2) Species Guyon et al.
VEGETATION (2011)
WiFS IRS-1D WiFS  180-188 2 yes (1) Extent Garcia-Gigorro
and Saura
(2005)
WV-2 WorldView-2 ~0.5, =2 8 yes (1) Extent, (2) Petrou et al.
Species (2014)
SAR
ASAR ENVISAT 30 1(C) free (1) Extent, (5) Mera et al.
ASAR Press. various, (2012)
(6) Services
BioSAR airborne 30x300 1 (80— yes (4) Press. Banskota et al.
120 practices (2011)
MHz)
ERS ERS-1/2 AMI  6-30 1(0) free (1) Extent, (5) Topouzelis and
(SAR) Press. various Psyllos (2012)
JERS-1 JERS-1 SAR 12.5-18 1(L) free (1) Extent Bwangoy et al.
SAR (2010)
PALSAR ALOS ~30-50 1(L) yes (1) Extent, Vaglio Laurin
PALSAR (11) Prot. et al. (2013)
areas
RSAT-1 RADARSAT- ~30-50 1(0) yes (5) Press. Garcia-Pineda
1 various et al. (2009)
RSAT-2 RADARSAT- ~30-50 1(0) yes (1) Extent Evans et al.
2 (2010)

Continued on next page. ..
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Table 3 — continued

Acronym Sensor Spatial Bands Cost CBD Reference
resolution
(m)
SIR-C Space Shuttle ~ ~30 2 (C, free (2) Species Bergen et al.
SIR-C L) (2007)
TDX TanDEM-X 12 1 (X) yes (4) Press. Kugler et al.
practices (2014)
TSX TerraSAR-X 18.5-40 1 (X) yes (4) Press. Vastaranta et al.
practices (2014)
LiDAR
GLAS ICESat 70 m 2(532 free (4) Press. Nelson et al.
GLAS footprint; nm, practices, (6) (2009)
172 m 1064 Services
interval nm)

Figure 1 presents an overview of the RS methods reviewed in the following sections
in a succinct manner. It provides information on the extracted features, the employed pro-
cessing and mapping algorithms, the type of data used, and the relative performance of the
method, for each particular application of the six studied CBD headline indicators. Figure
1 may serve as a guideline to detect the optimal methodology depending on the particu-
lar application, data availability, or expertise in particular algorithms. For instance, as seen
from the first row of the table, synergies of active and passive sensor data and employment
of supervised classification schemes (large fully coloured black triangles) usually offer high
performing approaches for forest extent monitoring. As a note, studies that use features
or algorithms of more than one category are represented in multiple cells. The particular
characteristics of each method are analytically presented in Tables A1-A6 in the Online Re-
source material. The methods are indicatively sorted based on their best reported accuracies,
when available. For each study, the principal sensor data are listed (‘RS data’). In addition,
‘Feature extraction’ lists the features employed and the algorithms used for data processing,
whereas ‘Mapping methods’ the classification and regression techniques. The final product
of each method is provided, together with the best achieved accuracies.

3.1 CBD I: Trends in extent, condition and vulnerability of ecosystems, biomes, and
habitats

RS data are effectively used in various mapping applications, ranging from mixed land cover
(LC) (Hansen and Loveland 2012; Xie et al. 2008) and habitat (McDermid et al. 2005) tasks,
to specific target areas, e.g. forests (Wulder et al. 2012) and wetlands (Adam et al. 2009), ad-
dressing different elements of the related CBD headline indicator. Trends may be extracted
by using time series of data or extracted products. Among the cited methods, several use
data time series; others use single-date imagery, their expansion to studying trends being
straightforward if data time series are available. Methods for LC and habitat mapping, of
both terrestrial and aquatic biomes, provide direct information on their extent and condition,
whereas methods for ecosystem degradation or deforestation, and fragmentation or connec-
tivity offer valuable input to ecosystem condition and, even, vulnerability assessments.
Herein, the studies are organized under: (1) terrestrial mapping, including (1a) forests,
(1b) various vegetation types, such as grasslands, savannas, heathlands, and steppes, and
(1c) mixed LC and habitats; (2) ecosystem degradation and deforestation; (3) ecosystem
fragmentation and connectivity; and (4) aquatic mapping, including (4a) freshwater and (4b)
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Fig. 1 Overview of remote sensing methods for the extraction of CBD headline indicators. Each symbol
represents one or more methods with similar characteristics. Symbol shapes represent different mapping
methods. Symbols with solely their inner, outer, or both layers coloured represent use of solely passive, active,
or both passive and active data, respectively. Shape greyscale filling colours indicate method performance.
Individual method details can be found in Tables A1-A6 in the Online Resource material.
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marine and coastal biomes. The methods described below, succinctly presented in Figure 1
and analytically in Table A1l of the Online Resource, can be employed to monitor progress
to Aichi target 5 (Table 1), on the reduction of habitat loss, fragmentation, and degradation.

3.1.1 Terrestrial mapping

Landsat data, including the Multispectral Scanner (MSS), Thematic Mapper (TM), and En-
hanced Thematic Mapper Plus (ETM+) sensors, are effective sources for terrestrial mapping,
including habitat classification (Boyd et al. 2006; Bock et al. 2005), LC mapping of tropi-
cal areas (Paneque-Galvez et al. 2013), savannas (Sano et al. 2010), grasslands (Price et al.
2002), or forests (Jiang et al. 2004; Wijedasa et al. 2012), and change detection (Demir
et al. 2013; Berberoglu and Akin 2009). Other optical data include: the similar spatial res-
olution (i) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
(Reiche et al. 2012; Lucas et al. 2011) and (ii) Linear Imaging Self Scanning Sensor 3
(LISS-II) (Lucas et al. 2011); the higher resolution (iii) Advanced Visible and Near In-
frared Radiometer type 2 (AVNIR-2) (Vaglio Laurin et al. 2013) and (iv) High Resolution
Geometric (HRG) instrument (Lucas et al. 2011); and the very high resolution (VHR) (v)
QuickBird and (vi) WorldView-2 (Petrou et al. 2014; Adamo et al. 2014) sensors. Although
of lower spatial resolution, data time series from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) have proven successful in mapping dry savanna vegetation, capturing
phenological properties with inter-annual classification average user’s and producer’s accu-
racies reaching 94.86% and 97.73% for 12 classes, respectively (Hiittich et al. 2009). Hyper-
spectral data features have shown high potential in discriminating vegetation types (Forzieri
etal. 2013; Vyas et al. 2011; Chan et al. 2012). Furthermore, besides their ability in provid-
ing vegetation structure information, as discussed in next paragraphs, active data have been
increasingly used in mapping applications. Phased Array type L-band SAR (PALSAR) and
RADARSAT-2 data have provided high potential in LC and forest characterization, used
either individually (Walker et al. 2010; Maghsoudi et al. 2012; Longépé et al. 2011) or in
synergy with optical data (Liesenberg and Gloaguen 2013; Vaglio Laurin et al. 2013). In
a study by Vaglio Laurin et al. (2013), PALSAR coupled with AVNIR-2 identified eight
LC classes in a tropical rainforest and fragmented area with accuracy 97.5%, outperform-
ing PALSAR synergy with Landsat TM. In addition, Airborne Laser Scanning (ALS), i.e.
airborne LiDAR, data proved particularly effective in forest delineation in upper timberline
and fragmented forests in Austria, reaching 96% detection accuracy (Eysn et al. 2012).
Mapping is performed through various classification approaches, including both knowl-
edge (Lucas et al. 2015; Pérez-Luque et al. 2015; Petrou et al. 2014; Adamo et al. 2014) and
data driven (Paneque-Gdlvez et al. 2013; Forzieri et al. 2013; Chan et al. 2012) ones. The
former provide the flexibility to incorporate expert knowledge in the classifier and achieve
rational classification results even in special cases or classes not included in the particular
training site, although with the expense of labour and time consuming trial-and-error rule
fine-tuning. Conversely, data driven approaches can offer fast automated classifier training,
even in cases of multivariate data. However, classifiers in this category, mainly the super-
vised ones, are restricted to the classes present in the training site and fail to identify un-
known classes in different test sites. Adamo et al. (2014) developed a knowledge driven
algorithm based on a variety of spectral, topological, and texture features from multitempo-
ral QuickBird, WorldView-2 and LiDAR data to map Annex I habitats and General Habitat
Categories (GHC). Petrou et al. (2014) expanded this approach, developing a fuzzy eviden-
tial reasoning classifier to handle uncertainty from noise afflicted data and inaccurate expert
rules. On data driven approaches, apart from cases proposing new classification and change
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detection schemes (Demir et al. 2013; Jiang et al. 2004), most studies have employed widely
used, mainly supervised, classifiers. Support Vector Machines (SVM) are among the most
widely used and highly performing ones. In a Natura 2000 heathland characterization study
(Chan et al. 2012), SVM outperformed Random Forest (RF) and AdaBoost tree ensemble
classifiers by around 4.5% in experiments involving 18 features from a hyperspectral image
for 537 samples in 10 classes. Interestingly, using three times more features, the perfor-
mance of RF and AdaBoost reached the one of SVM, whereas the latter remained the same;
this indicated that SVM classifier was more sensitive to the Hughes phenomenon, result-
ing in decrease of classifier performance when the number of features is high compared
with the number of training samples (Chi et al. 2008). In other studies, SVM outperformed
k-nearest neighbour (k-NN), binary Classification And Regression Tree (CART), and Maxi-
mum Likelihood Classifier (MLC) (Paneque-Galvez et al. 2013; Boyd et al. 2006). The lat-
ter has outperformed Spectral Angle Mapper (SAM) and Spectral Information Divergence
(SID) classifiers in a study by Forzieri et al. (2013). Artificial Neural Networks (ANN) have
shown advantages over SVM, SAM, or MLC in different studies (Vaglio Laurin et al. 2013;
Vyas et al. 2011). It is worth noting, though, that ANN implementation proved incapable
to build a model when 165 features were employed by Vyas et al. (2011), probably due to
the very complicated resulting network of nodes; on the contrary, SVM and SAM classifiers
could handle this size of feature sets and perform the classification. Overall, the existence
of a universally best performing classifier in all mapping tasks is highly unlikely, making
research on high performing generic or task oriented classifiers an ongoing process.

Object-based image analysis (OBIA) and classification approaches gain space over pixel
based ones (Blaschke 2010; Blaschke et al. 2008; Manakos et al. 2000), mainly in applica-
tions using VHR data (with spatial resolution finer than 3 m), e.g. habitat mapping (Adamo
et al. 2014, 2013; Lucas et al. 2011). However, object-based classification has proven more
effective than pixel based also in some cases where coarser resolution data were used, e.g.
the delineation of forest clear cuts with Landsat data, using spectral features, polygon shape
parameters, and context with other classes (Flanders et al. 2003). In general, multiple rea-
sons favour the use of object-based analysis over pixel-based approaches, particularly for
mapping applications. The large spectral variabilities within habitats may create inaccurate
classifications and salt-and-pepper effects under pixel-based approaches for VHR images,
proving them inappropriate for habitat classification (Zohmann et al. 2013; Kobler et al.
2006; Bock et al. 2005). Furthermore, pixel-based approaches prohibit the extraction of spa-
tial, contextual, and topological features, such as object area or adjacency to other objects
of specific class, that are valuable for certain classification tasks (Petrou et al. 2014).

3.1.2 Degradation / deforestation

Satellite data are considered as the only realistic means to monitor deforestation and forest
degradation at a timely manner (Lynch et al. 2013). Data time series are necessary to de-
tect deforestation. Landsat data have been primarily used in monitoring forest disturbance
(Griffiths et al. 2012; Schroeder et al. 2011; Zhu et al. 2012; Grinand et al. 2013; Huang
et al. 2010; Gorsevski et al. 2012; Rend et al. 2011; Goodwin and Collett 2014), mainly
due to the long archive, spectral and spatial resolution properties, and the free availability
of data. Tasseled Cap Transformation (TCT) indices from Landsat near-annual time series,
evaluated under trajectory-based change detection methods, resulted in identifying forest
disturbances within 22 years with overall accuracy (OA) 95.72% (Griffiths et al. 2012). The
Continuous Monitoring of Forest Disturbance Algorithm (CMFDA) has taken advantage of
the full Landsat archive of an area to timely detect forest disturbances, by even predicting
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unseen Landsat pixel reflectance values (Zhu et al. 2012). Although highly accurate distur-
bance maps may be extracted, a period of more than one month is required to confidently
detect changes, expected to be more in areas with low Landsat imagery coverage. Thus,
fusion with similar sensors that have shown consistent results, e.g. HRG (Liick-Vogel et al.
2013), or sensors with higher temporal resolution is expected to be crucial for global near-
real time deforestation monitoring. Other employed data include the passive Advanced Very
High Resolution Radiometer (AVHRR) (Dubinin et al. 2010), Advanced Wide Field Sen-
sor (AWiFS), and MODIS (Sedano et al. 2013) sensors, as well as active PALSAR time
series (Motohka et al. 2014; Whittle et al. 2012). The latter, providing the ability of cloud
unobstructed monitoring, can have comparative advantages in highly cloud covered areas,
such as tropical rainforests. Wider availability of free satellite data, at least from government
agencies, should be a policy-makers’ priority (Turner 2013).

3.1.3 Fragmentation / connectivity

Fragmentation and connectivity can affect biodiversity significantly, isolating living species
areas and allowing the invasion of alien or destructive species, respectively. Despite the
common notion, Fahrig (2003) argued that fragmentation per se may affect biodiversity also
positively and should be distinguished by habitat loss, whereas Kindlmann and Burel (2008)
suggested that connectivity should be assessed both in landscape and organism (functional)
diversion, allowing different degrees of connectivity for different species within a landscape.

Numerous landscape measures are proposed to assess fragmentation and connectivity,
at the patch or landscape level, whose estimation is based on LC or habitat map monitoring,
or change assessment. FRAGSTATS software measures (McGarigal et al. 2012) are widely
adopted for fragmentation, estimated using Landsat (Tang et al. 2012; Wang et al. 2011; Liu
et al. 2014; Virtanen and Ek 2014; Garcia-Gigorro and Saura 2005), IKONOS-2, GeoEye-1
(Newman et al. 2014), QuickBird, ASTER (Virtanen and Ek 2014), or Wide Field Sensor
(WiFS) (Garcia-Gigorro and Saura 2005) imagery. Variogram analysis is also employed to
assess forest heterogeneity (Cho et al. 2012). In addition, a number of indices are used to
assess connectivity, e.g. in forested areas, including the Integral Index of Connectivity (IIC)
(Liu et al. 2014) or the Equivalent Connected Area Index (Martin-Martin et al. 2013).

Direct comparison on the efficiency of the measures describing the degree of fragmenta-
tion or connectivity is not straightforward (Goodwin 2003). Various criteria are suggested by
Saura and Pascual-Hortal (2007), where the proposed Probability of Connectivity index is
acknowledged as the only satisfying all defined requirements. Plexida et al. (2014) identified
Patch Density, Area-Weighted Mean Fractal Dimension Index, and Patch Cohesion Index as
the most suitable measures to describe landscape patterns in different scales. Garcia-Gigorro
and Saura (2005) evaluated the sensitivity to scale of various fragmentation indices.

3.1.4 Aquatic mapping

Airborne LiDAR is extensively used in aquatic area mapping, due to the ability of its point
cloud or full waveform to extract accurate Digital Elevation Models (DEM). Lang and Mc-
Carty (2009) distinguished wetland inundation below the forest canopy from non-inundated
and transitional areas with overall accuracy up to 96.3%. Other applications include upland
swamp boundary detection (Jenkins and Frazier 2010), and river (Hofle and Vetter 2009)
or tidal (Brzank et al. 2008a,b; Schmidt and Soergel 2013) water mapping. In addition, L-
band and C-band SAR data are effectively used in wetland and mangrove characterization
(Bwangoy et al. 2010; Evans et al. 2010; Lang et al. 2008; Kumar and Patnaik 2013).
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On passive sensors, Belluco et al. (2006) evaluated a range of multispectral and hyper-
spectral ones, namely the airborne Reflective Optics System Imaging Spectrometer (RO-
SIS), Compact Airborne Spectrographic Imager (CASI), and Multispectral Infrared and
Visible Imaging Spectrometer (MOVIS), and the satellite QuickBird and IKONOS-2, in
salt-marsh vegetation mapping. Hyperspectral ROSIS and CASI slightly outperformed the
multispectral ones, whereas MLC the SAM and K-means classifiers consistently. Minimum
Noise Fraction (MinNF) and band averaging outperformed Principal Component Analy-
sis (PCA) in feature dimensionality reduction. In Pu et al. (2010), hyperspectral Hyperion
data surpassed the same or higher spatial resolution data of Advanced Land Imager (ALI),
Landsat TM, and IKONOS in seagrass habitat mapping. Both studies confirmed the advan-
tages of dense spectral information for wetland mapping, with the former highlighting the
even greater importance of high spatial resolution (HR) data. Thus, future HR hyperspectral
satellite sensors, beside the only existing coarser resolution Hyperion, would highly bene-
fit timely wetland monitoring. Airborne optical cameras have been used for upland swamp
(Lechner et al. 2012) and wetland (Mwita et al. 2013) mapping, coarser resolution Landsat
data being insufficient if used alone, for the latter application. Super-resolution techniques
have been proposed to improve mapping by increasing the spatial resolution of satellite im-
ages, while preserving their spectral properties, e.g. in representation of lakes using data
time series, halftoning, and morphological filtering (Muad and Foody 2012). Approaches
based on discrete wavelet transform for hyperspectral images (Patel and Joshi 2015) and
structural self-similarity, identifying similar structures in RS images (Pan et al. 2013), have
been recently proposed. Assuming the existence of co-registered images of different spa-
tial and spectral resolutions, Atkinson et al. (2008) used downscaling cokriging for image
mapping, whereas Song et al. (2015) avoided the restriction for co-registration through an
image degradation model via blurring and downsampling and deriving a simulated medium
resolution image from a high resolution one; the former was then used to extract a dictionary
employed to increase the resolution of the originally targeted medium resolution image.

3.2 CBD 2: Trends in abundance, distribution, and extinction risk of species

Abundance and distribution of species constitute a core part of biodiversity. The respec-
tive CBD headline indicator encompasses both plant and animal species. A number of re-
cent studies are reviewed, successfully employing RS data to study species distribution and
abundance, either through direct monitoring or through proxy variables. The methods are
organized under: (1) plant species, including (1a) alien and (1b) indigenous species; and (2)
animals, including (2a) birds, (2b) fishes, (2c) mammals, and (2d) invertebrates. The meth-
ods are connected to Aichi targets 9 and 12 (Table 1), on monitoring invasive and threatened
species, respectively. Additional details are listed in Table A2 in the Online Resource.

3.2.1 Plant species

The spatial resolution of the remote sensor is crucial in species monitoring (Joshi et al.
2004). As rule of thumb, the optimal spatial resolution of the sensor is suggested to be two
to five times smaller—i.e. finer—than the monitored object, to provide an effective trade-
off between within-object and between-object variance (Nagendra 2001). Some of the best
performing studies in alien and invasive species detection are based on fine resolution data,
either aerial (Dorigo et al. 2012; Shouse et al. 2013; Artigas and Pechmann 2010; Hantson
et al. 2012; Clark and Roberts 2012; Colgan et al. 2012) or satellite (Laba et al. 2008; Walsh
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et al. 2008; Immitzer et al. 2012). Dorigo et al. (2012) extracted a bi-temporal band ratio
(BTBR) and a number of Haralick texture features from bi-seasonal digital orthophotos and
successfully detected Fallopia japonica, one of the world’s worst invasive alien species, with
up to 90.3% PA and 98.1% UA. Similar results were achieved neglecting the near infrared
(NIR) band one of the photos had, suggesting the transferability of the method to cases
where only true colour photos are available.

Similar to vegetation and wetland mapping, hyperspectral data perform high in species
mapping and plant invasion applications during the last years (He et al. 2011), especially in
areas of high habitat and species diversity (Nagendra et al. 2013), and are widely employed
(Clark and Roberts 2012; Artigas and Pechmann 2010; Féret and Asner 2013; Colgan et al.
2012; Hestir et al. 2008; Baldeck et al. 2014; Ghiyamat et al. 2013; Pengra et al. 2007; Miao
et al. 2006; Somers and Asner 2012). Thenkabail et al. (2004) demonstrated the use of hy-
perspectral data by simulating the bands of Hyperion with a hand-held spectroradiometer
to discriminate vegetation and agricultural crops. Use of PCA, lambda-lambda R? models,
stepwise discriminant analysis (SDA), and derivative greenness vegetation indices (DGVI),
identified 22 optimal bands that resulted in classification of five weed species with 97%
OA. Despite their high utility, the application of hyperspectral data may be limited by the
restricted availability of satellite data and the necessity of aerial surveys. Satellite data from
Hyperion, although having shown better discrimination ability than multispectral or VHR
sensors (Pu et al. 2010), have limited spatial resolution compared with aerial surveys. Tech-
nical challenges by the large amount of data are expected to be reduced with the increasing
research on feature selection and dimensionality reduction approaches.

Féret and Asner (2013) evaluated parametric and non-parametric classifiers, including
SVM, ANN, k-NN, and Linear (LDA), Quadratic (QDA), and Regularized Discriminant
Analysis (RDA), in tropical tree species discrimination; RDA achieved the best performance
with small training sample sets, whereas SVM with larger ones. Object-based classifica-
tion outperformed pixel-based, with both providing inferior accuracies to majority-class rule
classification, where an object is classified to the class where the majority of its pixels are
classified. Artigas and Pechmann (2010) applied MinNF and SAM on airborne hyperspec-
tral data and digital photos, to successfully map invasive Phragmites australis with 93% PA
and 96% UA. Among other sensors, ALS data have shown high potential in discriminating
wetland vegetation species (Zlinszky et al. 2012).

3.2.2 Animal species

Whereas monitoring the distribution and abundance of animal species is crucial for biodiver-
sity assessment and species interrelations, e.g. with invasive animal species (EEA 2012a),
direct observation is rarely possible and mainly restricted in large mammals with the use of
VHR sensors. As an example, WorldView-2 data, and particularly a thresholding classifier
using the Coastal band (400-450 nm), detected whales with up to 84.6% PA and 76.3%
UA (Fretwell et al. 2014). Instead, the most common way to estimate distribution of animal
species, including mammals, birds, fishes, or invertebrates, is to model it based on proxies,
such as spectral or structural properties (Suarez-Seoane et al. 2002; Buchanan et al. 2005;
Vogeler et al. 2014; Bejarano et al. 2010; Mairota et al. 2015), habitat suitability (Duro et al.
2014; Yen et al. 2012; Melin et al. 2013), or detection of colonies (Fretwell and Trathan
2009; Fretwell et al. 2012).

Suarez-Seoane et al. (2002) combined AVHRR with topographic and Geographic In-
formation System (GIS) data to model the occurrence of three agricultural steppe birds in



16 Zisis 1. Petrou et al.

Spain, using PCA and Generalized Additive Models (GAM). Other studies included Land-
sat imagery, either individually (Buchanan et al. 2005; Duro et al. 2014) or in synergy with
SAR data (Bergen et al. 2007), to derive forest parameters and relate them with species
distribution through linear regression. The fusion of LiDAR structure variables with spec-
tral information appears beneficial for avian species distribution assessment (Vogeler et al.
2014; Clawges et al. 2008). Based on the notion that the 3D structure of coral reef fish habi-
tat intensely affects their communities, acoustic data have been used in synergy with VHR
IKONOS-2 to correlate abundance of species with habitat characterization and topographic
features, using regression and Negative Binomial General Linear Models (NBGLM) (Be-
jarano et al. 2010; Purkis et al. 2008). Airborne LiDAR data have also been used to model
the presence of invertebrates spider (Vierling et al. 2011) and beetle (Miiller and Brandl
2009), using Constrained Redundancy Analysis (CRA), and Canonical Correlation Anal-
ysis (CCA) and Multiple Linear Regression Models (MLRM), respectively. Other passive
data, such as MODIS (Kumar et al. 2009; Yen et al. 2012), VEGETATION (Pittiglio et al.
2012), Landsat (Arias-Gonzalez et al. 2011; Koy et al. 2005), or Tropical Rainfall Measuring
Mission’s Microwave Imager (TRMM/TMI) and Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) (Zainuddin et al. 2006) have been used in different animal abundance modelling
studies with satisfactory accuracies, employing mainly a plethora of regression techniques.

3.3 CBD 4: Trends in pressures from unsustainable agriculture, forestry, fisheries, and
aquaculture

Pressures from unsustainable management in agricultural, forest, and aquatic areas can
be inferred up to a degree by RS methods. Most studies focus on forestry applications,
mainly on biomass and forest structural parameters, supporting United Nations (UN) Re-
ducing Emissions from Deforestation and Forest Degradation (REDD+) activities (Langner
et al. 2012), whereas pressures from unsustainable agriculture can be inferred mainly from
changes in Land Use (LU), irrigation strategies, or nitrogen concentration. Pressures from
unsustainable fisheries and aquaculture through RS have not been extensively studied per
se, but can be deduced up to a degree by monitoring fish distribution and abundance, or pol-
Iution in aquatic areas. Several high performing methodologies that can be used to monitor
agriculture and forestry management unsustainable practices and serve monitoring of Aichi
targets 4, 5, 6, and 7 (Table 1) are discussed below and analytically listed in Table A3.

3.3.1 Agriculture monitoring

Studies revealing pressures from unsustainable agriculture practices have mainly focused on
effects from irrigation strategies (Abbas et al. 2013; Martinez-Lopez et al. 2014; Shahriar
Pervez et al. 2014), nitrogen treatment (Tilling et al. 2007; Chen et al. 2010; Perry et al.
2012), and crop characterization (Zhong et al. 2014; Alcantara et al. 2012; Jain et al. 2013).
Structural properties of the studied areas are less revealing than spectral ones for these tasks,
therefore passive multispectral or hyperspectral data have mainly been used.

LISS-II time series have been useful in extracting ground salinity indices (Abbas et al.
2013). Following the LU mapping of the study area, salinity affected soils of different degree
were identified as crucial tool for irrigation management. The forthcoming superspectral
VENuS and Sentinel-2 sensors, simulated by a field spectrometer, have been evaluated by
Herrmann et al. (2011) in estimating Leaf Area Index (LAI) of wheat and potato crops. Both
sensors were found promising in performing as well as a hyperspectral sensor, whereas the
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calculated Red-Edge Inflection Point (REIP) index, using their four red-edge bands, was
proven more consistent than the Normalized Difference Vegetation Index (NDVI).
Multispectral data with large extent coverage and high revisit time have been preferred
in crop area characterization. Different methodologies employing Landsat TM/ETM+ and
MODIS data have been evaluated in cropping intensity mapping in smallholder farms, in
different spatial scales (Jain et al. 2013). Thresholding Landsat-derived NDVI values outper-
formed three MODIS based methodologies in almost all scales for both winter and summer
periods, with hierarchical training method being the best among the MODIS ones. Zhong
et al. (2014) showed that phenological metrics extracted by TM/ETM+ time series can map
corn and soybean more accurately than spectral features in cross-year classifications, i.e.
when the training and test features correspond to different cropping years. Mapping of aban-
doned agriculture has also been feasible by MODIS time series (Alcantara et al. 2012).

3.3.2 Forestry monitoring

Structure-based indicators have been suggested as core elements for sustainable forest man-
agement (Lindenmayer et al. 2000). Active sensors, including mainly LiDAR, have been
proven the most effective sources of forest structure information (Lindberg and Hollaus
2012; Hyyppd et al. 2012; Koch 2010). Besides the usually employed first pulse and statisti-
cal point height metrics, last pulse and individual tree-based features have shown increased
accuracy in approximating tree height, density at breast height, and stem volume in a boreal
managed forest (Hyyppd et al. 2012). However, although the omission errors in tree detec-
tion are reduced, the commission errors are increased; therefore, a synergy of first and last
pulse data might combine the benefits of the former in detecting non-overlapping trees and
of the latter in overlapping ones. Besides satellite LIDAR data (Duncanson et al. 2010; Wang
et al. 2014), the synergy of TanDEM-X and TerraSAR-X, as the first source of spaceborne
single-pass polarimetric SAR interferometry (PolInSAR) data, has been proven particularly
promising for future height estimation applications. Kugler et al. (2014) evaluated single
polarization data with ancillary DTM and reached correlations with LiDAR derived height
up to R? = 0.98, while using solely dual polarization data resulted in R> = 0.86. In general,
as rule of thumb, 25-30 m SAR spatial resolution or 25 m LiDAR footprint diameter are
required to capture vegetation structure for biodiversity application (Bergen et al. 2009).
Other promising alternatives to active sensor data have included multispectral or hyperspec-
tral data, mainly using neighbourhood statistics, spectral indices, or texture features (Wolter
et al. 2009; Kayitakire et al. 2006; Cho et al. 2009; White et al. 2010; Petrou et al. 2012).
Although LiDAR data are effective in vertical forest structure characterization, their
repeated applicability is limited by high costs (Wolter et al. 2009), technical challenges (Na-
gendra et al. 2013), and restricted understanding on interactions between LiDAR beams and
vegetation (Koch 2010). High costs are mainly related to the need for airborne campaigns,
since satellite LIDAR data are limited. Upcoming missions, such as the Ice Cloud and land
Elevation Satellite IT (ICESat II) and Deformation, Ecosystem Structure and Dynamics of
Ice (DESDynl) missions (Popescu et al. 2011), are expected to provide lower cost coverage
with similar performance to aerial surveys. Further training of ecologists and site managers
on the use of LiDAR data, and further research on beam properties and interactions with,
especially multi-layer, vegetation are expected to favour wider applicability. Furthermore,
SAR data in vegetation structure studies have been mainly restricted by temporal decor-
relation limitations, especially in high biomass forests (Koch 2010). Missions such as the
Tandem-X and TerraSAR-X platforms, in synergy forming a single-pass polarimetric inter-
ferometer, are expected to counteract temporal decorrelation; in addition, new missions, e.g.
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Sentinel-1, started to provide free high resolution data for further applications. Synergies of
LiDAR/SAR data remain a promising field for future research (Bergen et al. 2009).

Additional parameters assessing forest sustainability have been measured by RS stud-
ies. Nichol and Sarker (2011) recently presented a study where texture feature ratios ex-
tracted from AVNIR-2 and HRG data were successfully employed in modelling biomass
with R% up to 0.939. LiDAR, SAR, and even Landsat data have been also employed in
biomass estimation studies (Kronseder et al. 2012; Banskota et al. 2011; Vastaranta et al.
2014; Langner et al. 2012; Sandberg et al. 2011). Stem volume and basal area have been
estimated through a synergy of ALS with airborne colour infrared (CIR) and AVNIR-2 data
(Hou et al. 2011). Ozdemir and Karnieli (2011) have used WorldView-2 data and texture
analysis to approximate a number of additional parameters, including Standard Deviation of
Diameters at Breast Heights (SDDBH), Gini Coefficient (GC), and Diameter Differentiation
Index (DDI). ETM+ data have outperformed the higher spatial resolution but lower spectral
information IKONOS and SPOT-4 High-Resolution Visible and Infrared sensor (HRVIR) in
LAIT estimation (Soudani et al. 2006), with ALS data being reported as alternatives (Zhao
and Popescu 2009). Finally, managed forest disturbances, due to logging activities, have
been monitored with Landsat time series (Kuemmerle et al. 2009), whereas RapidEye VHR
imagery has been used in logging trail detection (Franke et al. 2012).

3.4 CBD 5: Trends in pressures from habitat conversion, pollution, invasive species, and
climate change

Habitat mapping and conversion from one category to another has been extensively studied
and pressures may be inferred from methods discussed in Section 3.1. Furthermore, numer-
ous studies on species invasion detection and respective pressures have successfully em-
ployed RS data (Section 3.2). This paragraph focuses on the potential detection of pressures
from climate change and pollution. Table A4 lists recent state-of-the-art methodologies, re-
lated to the monitoring mainly of Aichi targets 4, 5, 8, 9, and 10 (Table 1).

Climate change severely affects biodiversity at different scales and may influence species
phenology, physiology, or range (Bellard et al. 2012). RS data offer high potential in mon-
itoring species range, extent, and distribution, as mentioned in previous sections, whereas
the task of assessing physiological changes and adaptivity to new conditions seems more
challenging. SPOT-4 and SPOT-5 VEGETATION data time series have been effective in de-
tecting variations in leaf phenology of deciduous broadleaved forest in different elevations,
extracting a five year perpendicular vegetation index (PVI) and using a temporal unmixing
method (Guyon et al. 2011). A number of indices from MODIS or Landsat data, including
Enhanced Vegetation Index (EVI), NDVI, Excess Green Index (ExGy), and Normalized
Difference Water Index (NDWI), were evaluated in several studies (Hmimina et al. 2013;
Hufkens et al. 2012; White et al. 2014). The optimized soil-adjusted vegetation index (OS-
AVI), calculated from MODIS data, was more consistent than NDVI and EVI in character-
izing Gross Primary Productivity (GPP) end in evergreen needleleaved forests, encouraging
its broader use (Wu et al. 2014). In general, phenology monitoring in deciduous broadleaved
forests seems more feasible than needleleaved forests or savannas. Correlation of RS esti-
mates with systematic field observations of phenology of multi-layer canopy is expected to
further improve relevant RS derived land surface models (Ryu et al. 2014).

Detection of various pollution sources is feasible, up to one degree, by RS methods.
Oil spills have been widely monitored, although RS data seem to only complement rather
than fully replace airborne observations, due to the particularities of oil spills (Leifer et al.
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2012). SAR data are mainly used to detect oil spills in oceans, because of their all weather
and illumination condition monitoring, wide coverage, and the ability to separate oil from
surrounding water area, under low or moderate wind (Fingas and Brown 2014), where oil
surface appears significantly smoother. Mera et al. (2012) used ENVISAT Advanced SAR
(ASAR) data with an Adaptive thresholding algorithm to almost perfectly label oil spill
pixels in Iberian Peninsula. Other studies employed C-band RADARSAT-1 (Garcia-Pineda
et al. 2009) and European Remote Sensing Satellite 2 (ERS-2) SAR data (Topouzelis and
Psyllos 2012), as well as airborne hyperspectral Airborne Visible / Infrared Imaging Spec-
trometer (AVIRIS) data (Kokaly et al. 2013). In addition, studies have been conducted to
detect non-point source pollution, identified as a core arising issue in water environmental
protection (Shen et al. 2012), such as total nitrogen, total phosphorous, ammonia nitrogen
(NH4-N) and chemical oxygen demand (CODcr) with multispectral HJ-1A and HJ-1B data
(Wang et al. 2012). Furthermore, ozone injury to coniferous forest (Kefauver et al. 2013) and
urban ground-level nitrogen dioxide (NO,) (Bechle et al. 2013) have been assessed using
Ozone Monitoring Instrument (OMI) and airborne hyperspectral data, respectively.

3.5 CBD 6: Trends in distribution, condition, and sustainability of ecosystem services for
equitable human well-being

Ecosystem services declined significantly during the last years (Costanza et al. 2014), and
the need for sustainable management is prominent. The usual categorizations of ecosystem
services include the Millennium Ecosystem Assessment (MA), The Economics of Ecosys-
tem and Biodiversity (TEEB), and the Common International Classification of Ecosystem
Services (CICES) classifications (Maes et al. 2013). MA identifies four categories: pro-
visioning (e.g. food, raw materials, water), regulating (e.g. carbon storage, pest control),
cultural (e.g. tourism), and supporting services (e.g. soil formation). The latter was con-
sidered a subset of ecological processes by TEEB and replaced by habitat services (e.g.
maintenance of genetic diversity), whereas CICES is based on MA and TEEB classifica-
tions, focusing more on ecosystem (capital) accounts and following a hierarchical structure
(Maes et al. 2013). Habitat services, as discussed in previous sections, are assessed mainly
through their presence and condition, whereas cultural services are relatively more chal-
lenging to be monitored by RS data. Provisioning and regulating services, the focus of this
section, have attracted wide interest by the research community (Ayanu et al. 2012), their as-
sessment with RS data being promising yet challenging. The discussed methods are mainly
relevant with the Aichi targets 14 and 15 (Table 1), on monitoring ecosystem services and
resilience, respectively. Table A5 provides further details on the methods.

3.5.1 Provisioning services

Studies on food, raw material, and water provisioning services use a variety of data. Through
data assimilation, the MODIS LAI product and extracted vegetation indices of NDVI and
EVI forecast crop yield, using only a partial year of data, with relative deviations from
reference data less than 3.5% (Fang et al. 2011). Passive MODIS, AVHRR, and Medium
Resolution Imaging Spectrometer (MERIS), and active ASAR data, have been used to es-
timate wheat or maize yield with relative differences less than 11% (Moriondo et al. 2007;
Ren et al. 2008; Yan et al. 2009; Dente et al. 2008). Furthermore, LiDAR data, either air-
borne (Jaskierniak et al. 2011; Tonolli et al. 2011; Latifi et al. 2010) or spaceborne (Nelson
et al. 2009), have been the primary sources to estimate timber volume. Jaskierniak et al.
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(2011) used mixture models with distributions based on GAM for Location, Scale and Shape
(GAMLSS) with airborne LiDAR data, to correlate observed stand volume and basal area
values in a eucalyptus native forest with R* = 0.88 and R? = 0.89, respectively.

Mainly passive sensors are employed to assess water quality, clarity, and turbidity in
related studies, including Landsat (Olmanson et al. 2008; Zhao et al. 2011; Kabbara et al.
2008), Earth Observing 1 (EO-1) Advanced Land Imager (ALI) (Chen et al. 2009), and
SeaWiFS (Chen et al. 2007). As a characteristic example, a 20-year archive of Landsat data
was effective in providing correlations with field-measured Secchi Disk Depths (SDD) up
to R2 = 0.96, to characterize water clarity in Minnesota lakes, USA (Olmanson et al. 2008).

3.5.2 Regulating services

Hyperspectral Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data have been
used for the derivation of NDVI, Photochemical Reflectance Index (PRI), and water content
indices, and the extraction of carbon and water flux maps in a semi-arid area (Fuentes et al.
2006). Regression analysis resulted in adjusted R? values up to 0.96 and 0.94 for net carbon
and water fluxes, respectively. Airborne LiDAR (Garcia et al. 2010) and QuickBird and
ASTER spectral, texture, and transformation features (Fuchs et al. 2009) have also been
used to assess carbon stocks. Regarding pest control, several studies detected defoliation
and other effects and may be used to infer the resistance of a study area to pest attack.
Multispectral or hyperspectral data have mainly been employed to detect affected areas.
Time series of VHR multispectral or panchromatic data have been successful in evaluating
pine beetle red attack over time (Wulder et al. 2008); QuickBird time series and extracted
red-to-green band ratios lead to true positive accuracies of §9-93% for three studied years.
Spectral properties of MODIS, AVIRIS, and Landsat data, together with regression analysis,
have assessed gypsy moth defoliation (Debeurs and Townsend 2008), decline in emerald
ash borer-infested areas (Pontius et al. 2008), and mortality of lodgepole pine to bark beetle
attack (Coops et al. 2009).

3.6 CBD 11: Trends in coverage, condition, representativeness, and effectiveness of
protected areas and other area-based approaches

Around 133,000 protected areas exist worldwide, increased by 400% since the 1970’s and
covering approximately 13.9% and 3.2% of the terrestrial and marine environment, respec-
tively (Kachelriess et al. 2014; Nagendra et al. 2013; Butchart et al. 2010). Although delin-
eation of protected areas indicates the conservation status, these statistics per se can poorly
describe the condition within the protected areas and the effectiveness of the conservation
management practices (Nagendra et al. 2013). RS data can assist monitoring of both the pro-
tected sites and their surrounding areas, since the condition, changes, and pressures of the
latter closely or equally affect the former (Laurance et al. 2012). Different parameters may
well be assessed by RS methods discussed in previous sections, e.g. LC or habitat extent,
fragmentation, and degradation (Section 3.1), species invasion or distribution and abundance
(Section 3.2), or pressures from unsustainable forestry (Section 3.3), with the additional po-
tential requirement of higher temporal coverage for timely monitoring. This section focuses
on methods for conservation assessment guidelines, as indicative examples on how RS can
address needs of the related CBD headline indicator. Methods reported in this and previous
sections, are linked mainly to the related Aichi targets 11, 14, and 15, as noted in Table 1.
Method details can be found in Table A6.
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ASTER vegetation indices in synergy with species richness and topographic and cli-
matic variables characterized vegetation structure and model the spatial variation in woody
species richness in a protected temperate forest in Chile (Altamirano et al. 2010). Developed
models predicted future tree species richness, identified gaps in current conservation strate-
gies, and suggested the creation of new protected areas. Using Multiple Endmember Spectral
Mixture Analysis (MESMA) in Airborne Hyperspectral line-Scanner radiometer (AHS-160)
data, Delalieux et al. (2012) delineated three heather age classes in a Natura 2000 site with
OA around 86%, assisting conservation management of natural heathlands. Airborne mul-
tispectral CASI and LiDAR data have mapped protected cork oak forests and characterized
habitat condition as high, medium, and low (Simonson et al. 2013). SAR data have also
shown potential in conservation planning. TerraSAR-X time series identified swath events
in protected semi-natural grasslands within 11-day intervals (Schuster et al. 2011), whereas
changes in PALSAR backscatter data mapped coastline retreat and health degradation in a
large mangrove forest (Cornforth et al. 2013).

4 Conclusions and future considerations

The range of methods and data presented demonstrate the potential of remote sensing in bio-
diversity monitoring. These methods are linked to the respective CBD headline indicators,
indicating methodologies that can be adopted for the constant monitoring of the progress
towards the Aichi targets. Such linkage has rarely been attempted in the past and intends
to reduce the gap of information sharing between the RS and the ecology, conservation bi-
ology, site manager, and policy making communities, identified also by previous studies
(Kachelriess et al. 2014; Nagendra et al. 2013; Vanden Borre et al. 2011).

Despite the wide availability of RS data, they have not yet been fully exploited in oper-
ational tasks (Pettorelli et al. 2014), mainly because of the technical challenges in handling
by non-experts. Thus, a more effective two-way know-how exchange between the related
communities is required to fundamentally assist timely and large area biodiversity monitor-
ing. An additional burden to wider data utilization remains the cost of certain RS products,
including mainly airborne or VHR satellite ones. Free provision of RS data (Turner 2013;
Blonda et al. 2013) and more systematic use of already free ones, e.g. Landsat, EO-1 Hype-
rion, and the upcoming Sentinels, is expected to boost the use of data and improve monitor-
ing. Furthermore, the lack of error values evaluating uncertainty of the outcomes in the vast
majority of studies in the literature is a critical issue that often prevents stakeholders to trust
RS data and techniques for conservation assessment. Finally, lack of standardization for each
indicator (Secades et al. 2014) restricts closer connection between user requirements and RS
potential and the adoption of widely adopted robust methodologies for indicator extraction.
The creation of a large scale database of RS data from different bio-geographic regions with
various spatial, spectral, and temporal characteristics, and more importantly, the definition
of criteria for selecting the most useful method(s) for indicator extraction would benefit the
provision of accurate biodiversity indicators in a consistent manner.

Numerous RS methods are assisted by ancillary in-situ information, including field mea-
surements, elevation models, and GIS thematic layers. In many applications, including inva-
sion ecology, phenology, and ecosystem services (He et al. 2011; Ayanu et al. 2012), in-situ
data are indispensable for modelling, calibration, training, or validation of the developed
RS approaches. Lack of high quality in-situ data, or data collected in inconsistent manner
under different sources, periods, or methods, may severely limit the quality of RS products
(Gillespie et al. 2008; Xie et al. 2008). Thus, harmonized collection of in-situ data and the
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expansion of large scale national or international field data collection initiatives, e.g. the
Land Use/Cover Area frame statistical Survey (LUCAS) (Gallego and Bamps 2008), will
be crucial steps for RS and in-situ operational integration.

A large spectrum of algorithms is employed for processing and mapping applications,
including knowledge and data driven classifiers, and regression analyses. The use of hy-
perspectral data, backscatter coefficients, and large number of generated spectral or texture
features, in both pixel- and object-based approaches, has necessitated the use of feature se-
lection and dimensionality reduction algorithms, with the selection on the most appropriate
among those and others depending on the specific application.

As has been recognised, fusion of both active and passive data sources are promising
(Nagendra et al. 2013), but also a great challenge for future research (Koch 2010). Wider
use of existing and upcoming remote sensing data in operational tasks, integration with
high performing algorithms, and broader dissemination of research outcomes will enhance
the robustness of biodiversity monitoring and the assessment of the progress towards the
achievement of the established preservation targets, at a global scale.
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