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Abstract 

This paper presents a comparison of the performance of three machine learning techniques in 

estimating the fuel consumption of trucks using telematic data and road geometry 

information. A large amount of data is collected from sensors installed on trucks according to 

standard SAE J1939. They are used to constantly monitor the performance of the vehicles by 

fleet managers and inform their decisions regarding training of drivers and truck 

maintenance. The data used here describe the performance of 1,110 articulated trucks driving 

during one week, on two motorways in England. From the analysis of the Pearson’s 



2 

 

correlation coefficients, p-values, adjusted-R2, and Lasso, the key variables influencing fuel 

consumption were identified. From this, four models have been generated and their 

performance compared. These are a multiple linear regression, and three machine learning 

models; a Support Vector Machine (SVM), a Random Forest (RF), and an Artificial Neural 

Network (ANN). The paper shows how machine learning techniques can significantly 

improve the accuracy of predictions compared to the linear regression model, reducing 

variance in the final estimates. Finally, a parametric analysis was performed to estimate the 

impact of each of the selected variables on the fuel consumption of the fleet of trucks 

considered. 

 

Keywords: fuel consumption, big data, machine learning, truck fleet management, road asset 

management, telematic data 

1. Introduction 

In 2015, the transport sector, consisting of road transport, railways, aviation, and shipping, 

was responsible for close to a quarter of greenhouse gas (GHG) emissions in the UK [1]. Of 

this, road transport was the most significant source of emissions. Although since the early 

2000s the emissions per vehicle have generally decreased, the overall fuel consumption has 

increased, due to increased vehicle kilometers traveled [1]. A better understanding of the 

impact on fuel consumption of factors external to the road vehicles, such as road geometry, 

may be important in developing strategies to reduce GHG emissions. 

Following international regulations, standard tests are performed to measure GHG emissions 

and fuel consumption of road vehicles (e.g. the European NEDC, the American FTP-75, the 

Japanese JC08, or the internationally harmonized WLTP, WHDC, etc.). However, these 

measure test vehicles only under standard drive cycles, which may not reflect what happens 

in reality. For this reason, many experts (e.g. [2–7]) criticize the regulations, arguing that the 
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unrealistic test speeds, lack of hill climbing included in the test cycle etc. may not properly 

represent the conditions of real drive cycles. 

Based on these measurements a variety of fuel consumption models are available in the 

literature (e.g. [8–13]), however, most of these models are calibrated for light vehicles or 

offer only simplified mathematical or physical-mechanistic expressions to compute the 

instantaneous fuel consumption of the vehicles considered, making assumptions about the 

driving mode and without considering the whole performance of each vehicle or the 

characteristics of the road. Therefore, the results of these models may also not be 

representative of what happens in real driving conditions. 

A new fuel consumption model based on real data from the actual road network can help 

engineers in addressing those factors affecting fuel consumption and related GHG emissions 

from the road transport industry. For example, this may be useful for highway asset managers 

in their decision making process regarding the geometric design of new roads or, for truck 

fleet managers in making decisions about the routing of their vehicles. Nowadays, GPS 

systems select routes based on the duration of travel, traffic, presence of accidents or road 

works, length of the route and highway tolls, among other factors (Fawcett & Robinson 

2000). Considering fuel economy and in particular, the impact of road geometry on fuel 

consumption, may help fleet managers in reducing fuel costs and GHG emissions. 

Fuel consumption of road vehicles is a complex problem determined by a number of 

variables e.g. the type of vehicle, the type of engine, the gross vehicle weight, the road 

gradient, the wind speed and its direction, etc. [14,15]. From a physical point of view, energy 

losses can be attributed to four factors 1) aerodynamics, caused by the friction generated by 

the surrounding air on the vehicle surface, 2) the rolling resistance, depending mainly on the 

vehicle speed, the tire pressure and the road surface conditions, 3) the gradient of the road, 

and 4) the internal friction, due to the inertia of the vehicle, the rotating masses in the 
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powertrain and the brakes (Guzzella & Sciarretta 2015). Therefore, using a physical based 

approach, fuel consumption has been modelled by using Equation (1): 

 𝑚
𝑑

𝑑𝑡
𝑣(𝑡) = 𝐹𝑡(𝑡) − (𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) + 𝐹𝑔(𝑡) + 𝐹𝑑(𝑡)) (1) 

where m is the mass of the vehicle, 
𝑑

𝑑𝑡
𝑣(𝑡) is the partial derivative of the vehicle speed with 

respect to time t, Ft is the traction force, Fr is the rolling resistance, Fg the gravitational force, 

and Fd a ‘disturbance force’ summarizing all other effects not specified. However, due to the 

complexity of the system and the dependence of the considered variables on v and t, Eq. (1) is 

usually applied to the analysis of standard drive cycles performed under well-known 

conditions and by considering very short time windows, to make the partial derivative of v 

constant in respect to t. This requires the collection of high frequency data, high 

computational power and calculation time and suffers from limitations in the number of cases 

that can be considered and  the validity of the results obtained due to the assumptions made in 

the model (e.g. constant speed, acceleration, road gradient, a short time window, on a short 

road segment, etc.). Therefore, results obtained by applying this approach may be far from 

what happens in real driving conditions and the model must be recalibrated, and new 

experiments performed, each time a new vehicle is developed. Examples of models that use 

this approach to estimate the fuel consumption of road vehicles are the HDM-4, Highway 

Development and Maintenance model [16], used worldwide in road asset management for the 

estimation of the impact of  the road infrastructure conditions on vehicle fuel economy and 

vehicle operating costs, and PERE, the Physical Emission Rate Estimator [17], used 

internationally to estimate the emission rates of conventional and advanced technology 

vehicles. 

Another approach for estimating the fuel consumption of road vehicles and addressing its 

causes is the use of regression techniques. In the past, multiple methods have been used, but 

what characterizes this approach is its speed, and several applications have demonstrated the 
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ability to handle large quantities of data, giving relatively precise estimates in a short time. 

For this reason, multiple models can be derived for different situations and they can include 

non-standard conditions. Examples of studies that used regression techniques to analyse fuel 

consumption are the works of Clark et al. [9], Lee et al. [18] and Zeng et al. [19], however, 

none of these models have yet found wide application in practice at international level. 

Machine learning regression algorithms are commonly applied to find trends, predict future 

performance and identify relationships in a range of subjects including computer vision (e.g. 

[20]), health data monitoring (e.g. [21]), bank fraud detection (e.g. [22]), etc. Regarding the 

prediction of vehicle fuel consumption these advanced algorithms have been applied to 

aircraft using artificial neural networks (ANNs) [23,24] and, more recently, to HGVs and 

buses using support vector machine (SVM), random forests (RFs), and ANNs [8,18,25,26]. 

However, all the studies used a limited number of vehicles tested under carefully controlled 

conditions on a few selected road segments with known geometry. Consequently, the 

applicability of machine learning to data gathered under real driving conditions, including 

aspects such as weather conditions, or interactions with other traffic, is yet to be evaluated. 

This paper aims to analyse a large dataset of fuel consumption records for conditions 

representative of vehicles driving on motorways in the UK. The data used is collected using 

on board sensors fitted as standard [27] and transmitted telematically. A total of 14,281 

records from 1,110 articulated trucks driving at relatively constant speed on 300km of 

motorway have been considered. Four regression models have been developed and their 

performance compared. These are a multiple linear regression, a Support Vector Machine 

(SVM), a Random Forest (RF), and an Artificial Neural Network (ANN). The generated 

models estimate the fuel consumption of the considered fleet of trucks expressed as litres per 

100km (l/100km). The three main stages of the analysis are: 
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i. selection of the most significant variables is performed by comparing the results of 

multiple statistics including the p-values, the adjusted-R2, and the Lasso regression; 

ii. the four models, linear regression, SVM, RF, and ANN are generated; ten-fold cross-

validation was performed to validate the machine learning models; 

iii. a parametric analysis is performed to evaluate the impact of each of the variables 

included in the model on the fuel consumption of the considered fleet of trucks. 

The objectives of the study can be summarised as follows: 

- define a new methodology for the estimation of fuel consumption based on vehicle 

telematic data and road geometry information; 

- compare the performance of multiple linear regression with machine learning methods, 

SVM, RF, and ANN, in predicting fuel consumption of a large fleet of trucks; 

- test the capability of machine learning methods to address and estimate the impact of 

each variable included in the generated model by performing a parametric analysis; 

- improve knowledge about the estimation of fuel consumption by analysing real data 

from an actual road network. 

The generated models are useful for truck fleet managers for re-routing of vehicles, by 

predicting the possible difference in fuel consumption on alternative roads, and for road asset 

managers who can use the models to estimate possible savings and reduction of GHG 

emissions for new roads by changing the geometry of the infrastructure (i.e. road gradient and 

curvature). 
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2. Data 

2.1 Truck telematic data 

Modern trucks are equipped with sensors according to standard SAE J1939 [27]. These 

continuously measure multiple parameters helping fleet managers in monitoring the 

performance of their trucks and in taking decisions regarding vehicle maintenance and driver 

training. For this study, anonymised data were provided by Microlise Ltd. No information 

about the driver, the maker, or the company owning the vehicles is included in the analysed 

data. The vehicle speed, the percent torque, the revolutions per minute (rpm) of the engine, 

the use of cruise control, the use of brakes and acceleration pedal, the traveled distance and 

the fuel used are available, among many other parameters. An estimate of gross vehicle 

weight is also reported, as calculated by an algorithm based on speed and engine data, such as 

torque and rpm. Cumulative fuel consumption is recorded, for the selected trucks to the 

nearest 0.001 litres. The data are georeferenced with the geographical position of all vehicles 

constantly monitored through GPS. This information is collected as default each 1 minute or 

1 mile (approximately 1.6 km) travelled or when triggered by other events, such as change in 

gear etc., and is downloaded telematically. Each vehicle can be identified only by an ID 

number in reference to the electronic control unit (ECU) installed on the vehicle, the wheel 

configuration, and the type of engine. Date and time, the geographical position of the vehicle 

when the event is triggered, and an unambiguous ID number identifies each of the recorded 

events. This information allows the whole journey of each vehicle to be retraced.  

2.2 Road geometry and condition data 

Every year Highways England and its partners update the information available regarding the 

strategic road network in England. This includes, for example, construction details, condition 

of the road pavement, etc. and is stored in the Highways Agency Pavement Management 
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System (HAPMS). These data are collected mostly for quality control and for strategic 

decision making regarding maintenance and rehabilitation (M&R) of the infrastructure. The 

data are collected automatically using laser sensors installed on a monitoring vehicle. For 

instance, the vehicle measures the road gradient, crossfall, wheelpath rutting, presence of 

potholes, the roughness of the pavement at different wavelengths, the surface macrotexture 

and the radius of curvature, etc. These are georeferenced (through GPS) and usually reported 

each 10m and stored for each 100m average. Each record refers to a specific road section and 

direction of travel. 

2.3 Data mining 

In this case study, in order to simplify the data analysis and reduce the effect of nonlinearity 

on the fuel consumption of the considered fleet of trucks, only journeys performed by a single 

type of truck at a constant speed (+/- 2.5km/h) along the selected road segments have been 

considered. Therefore, from the 594,690 records initially available, during a week in October 

2016 along two segments of motorway M1 and the entire M18, only 14,281 records from 

1,110 Euro 6 articulated trucks are considered in the study. These trucks were selected for the 

reporting precision of their fuel measurement devices (earlier trucks typically report only to 

the nearest 0.1l). The total length of the considered road segments is 300km. The selected 

records are for 1 minute or 1 mile of travel (whichever is the shorter) and records triggered by 

other events were discarded. Table 1 reports all the available measurements with a brief 

qualitative description and their resolution. Each record includes measurements of the 

instantaneous vehicle speed, date and time, and distance travelled by the vehicle. Each record 

is considered to be performed at a constant speed and selected for analysis, if the absolute 

difference between the instantaneous speed measured in consecutive records does not differ 

by more than 2.50km/h, and, the absolute difference between the average of the speeds at the 

initial and final records do not differ by more than 2.50km/h. 
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Table 1 - Summary of all the measurements available in the database and their resolution. 

Variable name Description Resolution 

Vehicle.ID Vehicle identification code - 

EventID.Start ID code assigned to the initial event - 

EventID.End ID code assigned to the final event - 

Wheel.Plan Nr. of wheels on the tractor + trailer - 

Euro.Type Type of engine - 

Date.Start Date/time of initial location ‘dd/MM/yyyy hh:mm:ss’ 

Date.End Date/time of final location ‘dd/MM/yyyy hh:mm:ss’ 

Lat.Start Latitude of the initial location 0.0001º 

Long.Start Longitude of the initial location 0.0001º 

Lat.End Latitude of the final location 0.0001º 

Long.End Longitude of the final location 0.0001º 

Direction.Start Heading of the vehicle from the North 1.00º 

Direction.End Heading of the vehicle from the North 1.00º 

Altitude.Start Altitude at initial location 1.00 m 

Altitude.End Altitude  at final location 1.00 m 

Travelled.Dist Distance between two considered locations 0.01 m 

Travelled.Time Time between two considered locations 0.1 s 

Road.ID ID code of the considered road - 

Gross.Weight_kg Estimated gross vehicle weight (GVW) 400 kg 

Speed.Start Instantaneous speed at the initial location 0.01 km/h 

Speed.End Instantaneous speed at the final location 0.01 km/h 

Acceleration Average acceleration 0.01 m/s2 

Speed.AVG Average speed 0.01 km/h 

Travel.Direction Average direction of travel 1.00º 

Gear.Start Gear used at the initial location - 

Gear.End Gear used at the final location - 

CruiseControl.Start 1/0 message for cc activation, initial location - 

CruiseControl.End 1/0 message for cc activation, final location - 

Torque.Start Torque %, initial location 1.00 % 

Torque.End Torqe %, final location 1.00 % 

Torque.AVG Mean of Torque.Start and Torque.End 1.00 % 

Revs.Start Instantaneous rpm at the initial location 1.00 rpm 

Revs.End Instantaneous rpm at the final location 1.00 rpm 

Revs.AVG Mean of Revs.Start and Revs.End 1.00 rpm 

Used.Fuel Quantity of fuel used in the journey 0.001 l 

Fuel.Consumption 
The ratio between the Used.Fuel and 

Travelled.Distance in l/100km 
0.01 l/100km 

Const.Speed 1/0 message if speed is constant - 

Geom. Radius 
Calculated as the mean of the absolute value of 

radius of curvature 
1.00 m 

Geom. Radius_sd The standard deviation of Geom. Radius - 

Geom.Gradient Calculated as the mean of the road gradient 0.01 % 

Geom.Gradient_sd The standard deviation of Geom.Gradient - 

Geom.Crossfall Calculated as the mean of the crossfall 0.01 % 

Geom.Crossfall_sd The standard deviation of Geom.Crossfall - 
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Also, in order to exclude from the analysis data from vehicles with technical issues and short 

time intervals, journeys shorter than 150m have been excluded. Fuel consumption lower than 

3.90 l/100km or higher than 60 l/100km are very rare in the remaining data (< 0.5% of the 

data) and are excluded as outliers caused by unrecorded events or technical problems in the 

engine or in the data collection system. After applying these filters to the data, 14,281 records 

are available in total. Road geometry records were combined with truck data records by 

comparing their geographical position. 

3. Methodology 

The software used for analysing the data is R v. 3.4.1 (CRAN 2017). The major packages 

used to perform the analysis are the ‘glmnet’ [28] and the ‘caret’ [29] used to perform the 

Lasso regression and the ten-fold cross-validation of the generated models respectively, the 

‘e1070’ [30] used to build the SVM model, the ‘randomForest’ [31] used to build the RF 

model, and the ‘neuralnet’ [32] used to build the ANN model. 

3.1 Variables selection 

In order to avoid overfitting, among all the parameters available in the database only the most 

significant variables have been selected and included in the regression analysis. Five different 

statistics were used to make the selection: 1) the Pearson’s correlation coefficient (r), 2) the 

p-values, 3) the adjusted-R2, 4) a Lasso regression and 5) Random Forests. In particular: 

1) An initial cut-off of the variables was performed by excluding all the variables that 

have a poor correlation (lower than 0.10) with fuel consumption; 

2) At this point, p-values for all remaining variables were computed to test the 

significance of each. Only variables with a p-value < 0.05 are considered to be 

statistically significant and therefore included in the regression analysis; 
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3) Then, the adjusted-R2 was computed for each possible model (with different 

combinations of variables) and the one showing the highest adjusted-R2 was selected; 

4) In order to test the significance of the selected parameters (avoiding overfitting), a 

Lasso regression [33] was applied to the variables. 

‘Lasso’ stands for Least Absolute Shrinkage and Selection Operator. It is a shrinkage 

method that is generally used for regression but that can also be used for variable 

selection. It is similar to a linear regression in which parameters are estimated with 

the least square method, however, in the case of Lasso, the regression coefficients are 

not computed by minimizing only the residual sum of squares (RSS) but the quantity: 

 𝑅𝑆𝑆 +  𝜆 ∑ |𝛽𝑗|
𝑝

𝑗=1
 (2) 

where, βj is the regression coefficient associated with the variable i, and λ is a tuning 

parameter. The Lasso differs from the least square method because of the term λ ∑j 

|βj|. This is called the ‘shrinkage penalty’ and its effect is to reduce the estimates of 

the βj parameters towards zero. This term helps in reducing variance significantly, 

aiming to improve the overall fit of the regression by excluding overfitting variables 

[34]. It is possible to select the best value for λ by introducing multiple values for the 

tuning parameter and selecting the one that reduces the mean square error of the Lasso 

to a minimum. Only the variables with coefficients that are not reduced to zero by the 

Lasso are adopted in the regression analysis. Due to its properties, Lasso can be used 

to perform variable selection [34] with the possibility of also detecting nonlinear 

correlations between the variables (e.g. [35]). Therefore, Lasso can also be used to 

test the significance of Boolean variables such as the activation of the cruise control in 

this study. 
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5) At this point, the Random Forest algorithm is used to check the findings obtained by 

looking at the p-values, adjusted-R2, and the Lasso. Random Forests can detect 

nonlinear relationships and deal with discrete variables being able to identify complex 

but significant correlations [36]. In particular the algorithm calculates the ‘increase in 

node purity’ that each variable brings to the model. Higher ‘increase in node purity’ 

means that including that variable helps in reducing the variance that the model is not 

able to explain [36]. Further details about how this algorithm works is given later in 

its dedicated sub-chapter. 

3.2 Linear regression 

As a first step, a linear regression of the selected variables was fitted to the data and used to 

analyze the fuel consumption of the considered fleet of trucks. Linear regression has 

previously been used to make predictions of fuel consumption of road vehicles based on drive 

cycle properties (e.g. [9,10,12]). For this reason, this study uses the generated linear 

regression model as a reference for judging the performance of the applied machine learning 

regression techniques. 

3.3 Machine learning 

The main reason to apply machine learning to this specific case study is the ability of these 

techniques to learn from data, recognising specific patterns and complex relationships, 

making predictions based on them. The user does not have to specify the type of relation 

between the variables which is determined by the algorithm. Also, thanks to their capability 

of dealing with large quantities of data, machine learning techniques are applied nowadays to 

a number of different areas in academia and in industry being considered as the most 

advanced tools for solving any sort of classification and regression. 
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In order to use machine learning regression techniques, one has first to train the model on 

existing data and then test it in a new situation using new data. In practice, the available 

dataset is usually split in two and 75% of data is used for training and the remaining 25% is 

used to test the generated model. The split of data must be made randomly in order to reduce 

bias in the final estimates.  

3.3.1 Support Vector Machine 

Support Vector Machine (SVM) [37,38] is a machine learning discriminative classifier 

algorithm characterized by the ability to control the decision function by defining a kernel 

function that identifies one or multiple separating hyperplanes. Nowadays, although the 

mathematics behind SVM is complex [39,38], this method is widely used in practical 

applications (e.g. [40,41]). In the past, to solve similar problems concerning fuel consumption 

of road vehicles, the radial basis function (RBF) has been selected as the kernel function for 

regression and has been selected in this study to develop the SVM model. This is because the 

RBF maps samples into a higher dimensional space and can handle the case when the relation 

between class labels and attributes is nonlinear. The grid-search method has been used to 

determine the optimal parameters to use in the model. For this study, the SVM model has 

been developed using the e1071 R package [30]. This provides an interface to the libsvm 

C++ library [42] and is a powerful toolkit for SVM application. 

3.3.2 Random Forest 

RF is based on the theory of decision trees [43] usually used for classification (e.g. Lee et al. 

2014) but that has also been demonstrated to be suitable for regression problems (e.g. 

[44,45]). A forest is a combination of tree predictors such that each tree depends on a vector 

of independently and randomly sampled values, or features, with the same distribution for all 

trees in the forest [36]. The error for the forest tends to converge as the number of trees 
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becomes large and depends on the strength of the individual trees and the correlation between 

them. Because of the random processes behind it, this method has been demonstrated to be 

robust with respect to outliers [36]. In the past, Herrera el al. [46] used RF to forecast hourly 

urban water demand in a city in south-eastern Spain. Chen et al. [47] used RF to forecast 

droughts and demonstrated that in this application RF outperformed other regression 

techniques. Recent studies also demonstrated the use of RF for making predictions of the fuel 

consumption of road vehicles based on on-board data [26]. Many software implemented the 

method and libraries like the randomForest R package [31] allow the user to apply RF by 

defining only a few parameters such as the number of trees in the forest (ntree) and the 

number of variables to consider and sample into each tree (mtry). The fact that each tree in 

the forest makes decisions based on a different subset of variables enables the forest to 

compare the error of trees containing only certain variables to the error of the complete model 

with all variables intact. This way the forest is able to rank each of the considered variables 

because of their importance in estimating the quantity of interest [36]. A higher number of 

trees usually implies higher precision and higher stability of the results, but at a higher 

computational cost. A rule of thumb is to set this value to the square-root of the total number 

of variables considered. Optimization of these parameters can improve the overall 

performance of the algorithm both in terms of reliability and calculation time. 

3.3.3 Artificial Neural Networks 

The third considered approach uses Artificial Neural Networks (ANN) [48,49]. ANN is a 

machine learning algorithm inspired by how the human brain processes information and is 

mostly used to estimate or approximate complex functions including nonlinear relationships 

that depend on a large number of variables [50]. Thanks to the possibility of parallel 

processing and the ability of ANN for adaptive learning, self-organization, and fault tolerance 

[50,34] the algorithm has been demonstrated to be a very powerful tool. Examples include the 
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use of ANN to predict medical outcomes (e.g. [51,52]), financial analysis for modelling stock 

performance (e.g. [53]), structural analysis (e.g. [54]) and transportation [55]. In the past, this 

technique has been applied for the estimation of the fuel consumption of aircraft [23,24], and 

more recently, of road vehicles [19,26] and to predict specific fuel consumption of diesel 

engines [56]. The main advantages of ANN are that it requires less formal statistical training 

than other machine learning methods and that it is able to implicitly detect complex nonlinear 

relationships between explanatory variables and the response [52]. There are many types of 

ANN, which use different types of neurons and activation functions. For this study, the 

adopted algorithm is the resilient propagation algorithm without backtracking (rprop-) [57] 

with logistic activation function. This has been chosen because it reduced the required 

calculation time and it requires fewer parameters to tune, compared to others. In the study, 

the rprop- neural network implemented in the neuralnet R package (Fritsch et al. 2016) 

was used. 

3.4 Cross-Validation 

In order to define more reliable models, which make predictions completely independent 

from how the available data are subset into training test datasets, ten-fold cross validation has 

been used in this study. The randomized splitting process has been repeated ten times and ten 

different models have been generated for each of the methods (SVM, RF, and ANN). The 

average performance (e.g. measurements of the accuracy of the generated models) is used for 

comparison purposes. Obtaining similar performance for each split of the data indicates that 

the available information is not affected by how the data is split. On the other hand, variations 

between data splits indicate lack of reliability in the model. 

Some 96 ± 2.5% of data are used to apply ten-fold cross validation and generate the ten 

models. In particular, 75% of all data is used for training the model and 21% for validation. 

The remaining 4 ± 2.5% is then used in a second phase of the data analysis to test the 
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performance of the generated models. The two sets of data are randomly split with one 

condition; the cross validation set (96%) must not contain data from trucks in the testing set 

(4%). This way the testing set results contain completely new cases for the model and this 

checks the ability of the model to cope with completely new situations. 

3.5 Test 

Following the cross validation phase, the generated models need to be tested by analysing 

new data. Therefore, fuel consumption is computed for the 4% of data taken from the first 

phase of the analysis. This tests the reliability of the generated models and demonstrates the 

independence of the final estimates from the training data set. 

3.6 Comparison of performance 

Root mean square error (RMSE) and mean absolute error (MAE) are used to compare the 

performance and measure the accuracy of the generated models. 

 𝑅𝑀𝑆𝐸 =  √
∑ (ŷ𝑖 − 𝑦𝑖)

𝑛
𝑖=1

𝑛
 (3) 

 𝑀𝐴𝐸 =  |
∑ (ŷ𝑖 − 𝑦𝑖)

𝑛
𝑖=1

𝑛
| (4) 

 

where ŷi is the i-th measurement of the dependant variable, yi is the i-th prediction of the 

dependant variable, and n is the number of available records. Because the ten-fold cross 

validation technique generates ten models for SVM, RF, and ANN, the average RMSE and 

MAE of the testing phase are used to make a comparison with the performance of the linear 

regression model. Also, due to the fact that SVM, RF, and ANN require training before being 

able to make predictions, the computational time required for the ten-fold cross validation 

and test is compared between the machine learning methods. 
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3.7 Parametric analysis 

Finally, a parametric analysis has been performed to understand how each of the considered 

variables impacts the fuel consumption of the considered fleet of trucks. The analysis consists 

of using the generated models to predict the fuel consumption of trucks for 50 different 

values of each of the variables considered in the model. This shows how each of the 

developed models approximates the relationships between fuel consumption and the 

explanatory variables and tests the sensitivity of each of them. The 50 values were chosen to 

be evenly distributed between the 5th and 95th percentile values of the distribution of the 

considered variable. While the value of one variable changes all others are set to their 

average. 

4. Results 

From the analysis of the Pearson’s correlation coefficients, it is possible to conclude that ten 

out of 44 available measurements are correlated to fuel consumption, having a correlation 

coefficient higher than 0.10 and being independent of each other. These are the gross vehicle 

weight (Gross.Weight), the road gradient (Geom.Gradient), the vehicle speed (Speed.AVG), 

the torque % at the start of the travel (Torque.Start), the torque % at the end of the travel 

(Torque.End), the revolutions (Revs.Start) at the start of the travel, the average acceleration 

(Acceleration), the selected gear (Gear), the cruise control (Cruise.Control) (on/off, 1/0), and 

the radius of curvature of the road (Geom.Abs_Radius). Figure 1 shows their distributions for 

the considered case study. From the figure, it is possible to see that generally, the 

distributions of the continuous variables have shapes typical of normal distributions and can, 

therefore, be used in the linear regression analysis. However, there are exceptions. For 

example, the radius of curvature (Geom.Abs_Radius), has a left skewed distribution, and this 

is because the recording software assigns all road sections with radius of curvature above 
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2000m a value equal to 2000m (because they are considered nearly straight and the value 

therefore, is considered of no interest to the asset manager). It can be seen that the majority of 

road sections are nearly straight, which is typical of motorways. 

 

Fig. 1. Distribution of the variables that show high correlation (Pearson’s coefficient > 0.10) with 

Fuel.Consumption. 

The measurements of torque (both Torque.Start and Torque.End) have a high number of 

values towards zero. These data are possibly due to faulty sensors, however this cannot be 

confirmed and, for this reason, they cannot be excluded from the analysis as outliers. 

Furthermore, due to the fact that only records at a near constant speed are considered, it is 

possible to see that only a limited range of vehicle speeds (Speed.AVG) is considered, from 

around 70 to 95 km/h, which is typical for motorways. Consequently, only a few gears are 



19 

 

used (Gear), mainly gear 12, producing a narrow range of engine revolutions (Revs.Start) 

(from 1000 to 1300 rpm). For the same reasons, a low level of acceleration (Acceleration) 

results. P-values are computed for the remaining 10 variables to test whether or not they are 

significant for predicting the fuel consumption of the fleet of trucks considered, using a linear 

regression model (Table 2). From the analysis of the computed p-values, only eight out of the 

ten variables show a significant correlation with fuel consumption (p-value < 0.05). 

Therefore, it results that the activation of cruise control (Cruise.Control) should be excluded 

from the data analysis. 

Table 2 shows the p-values of correlated variables. 

Name of the variable Computed p-value Significance 

Gross.Weight < 2·10-16 > 99% 

Geom.Gradient < 2·10-16 > 99% 

Speed.AVG < 2·10-16 > 99% 

Torque.Start < 2·10-16 > 99% 

Torque.End < 2·10-16 > 99% 

Revs.Start < 2·10-16 > 99% 

Acceleration < 2·10-16 > 99% 

Gear < 2·10-16 > 99% 

Cruise.Control 0.121 0% 

Geom.Abs_Radius 0.165 0% 

 

Also, the radius of curvature of the road (Geom.Abs_Radius) should be excluded due to the 

fact that its p-value is higher than 0.05 and therefore considered as of low significance for the 

case study. This is reasonable since this study considers generally straight roads and the result 

may also be influenced by the method of recording. However, looking at Figure 2, which 

shows the results of the analysis of the adjusted-R2, it is possible to see that the inclusion of 

both the Cruise.Control and Geom.Abs_Radius actually helps in increasing the adjusted-R2 

meaning that this variable can help in improving the accuracy of the developed regression 

models. The graph shows that all ten (of the initial 44) variables can be considered as playing 

an important role in estimating fuel consumption. 
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Fig. 2. Increase in the adjusted-R2 by including new variables in the model. 

A Lasso regression was performed on the variables to confirm that the correlation between 

them and fuel consumption is significant for the considered case study. 

Table 3 shows the Lasso coefficients of the selected variables. 

Variable  Lasso coefficient 

Gross.Weight  0.143 

Geom.Gradient  0.524 

Speed.AVG  -0.034 

Torque.Start  0.248 

Torque.End  0.275 

Revs.Start  0.042 

Acceleration  -0.143 

Gear  -0.049 

Cruise.Control  0.0049 

Geom.Abs_Radius  0.0057 
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From the analysis of the Lasso coefficients (Table 3), it is possible to see that the algorithm is 

not able to reduce to zero any of the parameters and all the selected variables can be 

considered significant including Cruise.Control and Geom.Abs_Radius. 

Finally, the Random Forest algorithm was used to rank the variables for a final test. As an 

‘increase in node purity’ makes the developed models able to make more accurate estimates 

[36], it is possible to see (Figure 3) that Cruise.Control and Geom.Abs_Radius are confirmed 

to play an important role in the prediction of fuel consumption as more important than other 

variables (i.e. Speed.AVG, Revs.Start, and Gear) that the p-values and adjusted-R2 identified. 

 

Fig. 3. Variable ranked by the Random Forest algorithm by their importance. 

However, the activation of cruise control (Cruise.Control) is measured as a Boolean variable 

(0/1) and that does not allow a linear regression to handle it properly. This is probably why 

the associated p-value results being poorly significant while other statistics disagree. Also, 

the linear regression technique is not suitable to analyse the measurement of the radius of 
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curvature of the road since the Geom.Abs_Radius represents all radii over 2,000m as having 

this value. This makes the Geom.Abs_Radius a non-continuous variable and this is why the p-

value associated to this measurement result to be non-significant. Although the Gear is also a 

non-continuous variable its associated p-value results to be significant and all the used 

statistics agree on this. Because the produced evidence does not completely agree on the fact 

that Cruise.Control and Geom.Abs_Radius should be included in the linear regression model, 

in order to avoid overfitting and make the generated models completely comparable, a 

decision was made to exclude these two variables from the following regression analysis. 

Therefore, eight variables are included in the developed models. These are: the Gross.Weight, 

the Geom.Gradient, the Speed.AVG, the Torque.Start, the Torque.End, the Revs.Start, the 

Acceleration, and the Gear. 

From a multiple linear regression of the selected variables the generated model takes the 

form: 

𝐹𝐶 =  20.3 + 1.6 × 10−4 × 𝐺𝑟𝑜𝑠𝑠. 𝑊𝑒𝑖𝑔ℎ𝑡 + 6.04 × 𝐺𝑒𝑜𝑚. 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 0.15 

× 𝑆𝑝𝑒𝑒𝑑. 𝐴𝑉𝐺 + 0.14 ×  𝑇𝑜𝑟𝑞𝑢𝑒. 𝑆𝑡𝑎𝑟𝑡 + 0.16 × 𝑇𝑜𝑟𝑞𝑢𝑒. 𝐸𝑛𝑑 + 6.8

×  10−3 × 𝑅𝑒𝑣𝑠. 𝑆𝑡𝑎𝑟𝑡 +  34.04 × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 0.56 × 𝐺𝑒𝑎𝑟 

(5) 

 

Regarding the SVM, it is difficult to make a pictographic representation of the model due to 

the fact that multiple hyperplanes with very complex expressions are generated by the 

algorithm. For this reason, no equation or graph representing the SVM model is reported. 

For the RF, the generated model takes the form of multiple decision trees (that comprise the 

forest). Example of part of one of the 1,000 trees in the generated models is given in Figure 4. 
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Fig. 4. Structure of part of one of the 1,000 trees used in the Random Forest model. 

The number of trees and the number of variables to be used in each of the trees have been 

selected as the values which optimize RMSE, MAE, and computational time required. 

For the ANN the structure of the generated model takes the form in Figure 5. 

 

Fig. 5. Structure of the generated Artificial Neural Network model. 
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The structure of the ANN model was decided by evaluating the performance of the 

combination of one and two hidden layers with maximum 12 nodes each. Also, in this case, 

the structure showing the lowest RMSE and MAE, and reasonable computational time 

required (< 1 min per training) has been selected. This resulted in using an ANN with a single 

hidden layer and ten nodes. The R2, RMSE, and MAE statistics were calculated for the cross-

validation and testing phase of the regression analyses and compared. The R2 for SVM, RF, 

and ANN is calculated for the testing phase of the regression analysis. RMSE and MAE are 

instead calculated in both the cross-validation and testing phase. This is to test the robustness 

of the generated models. In fact, the constant performances of the model in the cross-

validation and testing phase of the regression analysis, highlights the quality of the models. 

The calculation times (including the time needed for cross-validation of the SVM, RF, and 

ANN models) are also shown. 

Table 4 summarizes the performance of the generated models. 

Model R2 RMSEtest MAEtest RMSEcv MAEcv cv Time 

Linear regression 0.763 - - 6.02 4.42 - 

Support Vector Machine (SVM) 0.821 5.30 3.69 5.20 3.53 ~ 5 mins 

Random Forest (RF) 0.835 5.12 3.58 4.86 3.38 ~ 26 mins 

Artificial Neural Network (ANN) 0.814 5.43 3.91 5.18 3.50 ~ 9 mins 

 

Figure 6 shows how the models are able to predict real measurements. In particular, four 

plots in the figure shows the fit of measured versus predicted values of fuel consumption for 

each of the developed models. A low grade of transparency is given to the datapoints in the 

plot of the fit made by the linear regression in order to make possible identifying higher 

density areas. Three different colours are given in the plots of the fits given by the machine 

learning models: light grey is for the training dataset, grey is for the test set, and dark grey for 

the validation set. For each of the machine learning methods applied only results of one of the 

ten crossvalidated models is shown. The figure shows how machine learning methods are 
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able to reduce variance thanks to their resilience to outliers. From an analysis of Figure 6 and 

Table 4, it is possible to conclude that all machine learning models developed in the study 

perform better than the linear regression. The RF model provides the best predictions of fuel 

consumption showing the highest R2, the lowest RMSE and MAE both in the cross-validation 

and testing phase of the regression analysis, and the lowest variance among all the generated 

models. 

 

Fig. 6. Comparison of the predicted and measured data for the generated models. From the top left and going 

clockwise: linear regression, support vector machine (SVM), artificial neural network (ANN), and random 

forest (RF) regressions. 
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However, RF is also the technique that requires the longest calculation time for training the 

model and this may be a disadvantage of the algorithm. Furthermore, it is possible to see 

from Figure 6 that the RF is not so good in predicting extreme values of fuel consumption, 

with both high and particularly lower values tending to the higher confidence limits, while 

the SVM performs better in this respect. Finally, a parametric analysis has been performed to 

see how machine learning addresses the impacts of each of the considered variables on fuel 

consumption and Figure 7 shows the results. Similar trends are shown by the SVM, RF, and 

ANN models. However, in order to make the plot clearer, and for brevity, only the results of 

the linear regression and ANN regression model are presented in this paper. The figure shows 

that the trends plotted by the linear regression and the ANN are different in some respects. 

Unreliable predictions of fuel consumption are made by the linear model for very low values 

of road gradient. Extrapolating the linear model could lead to the conclusion that travelling 

on large downhill gradients can result in negative fuel consumption. This is not possible and 

the asymptotic approximation made by the machine learning algorithms more realistic. It is 

interesting to note that the ANN is able to detect an optimal gear (gear 12) for driving at a 

fairly constant speed (around 90 km/h) on a motorway. Another interesting point is that lower 

fuel consumption is associated with higher speed and acceleration. Although, at first, these 

findings would sound strange, it must be considered that the range of speeds and 

accelerations considered in the study is very narrow and that the effect of road gradient may 

be prevailing. In particular a negative gradient (downhill) could lead to higher speeds and 

positive accelerations yet lower fuel consumption, while positive gradients (uphill) would 

cause instead lower speeds, negative accelerations and higher fuel consumption. This might 

also explain the discontinuity detected by the machine learning algorithms between negative 

and positive accelerations, as the model tries to explain two separate phenomena; however, 

this requires further investigation. 
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Fig. 7. Parametric analysis for the multiple linear regression and ANN generated models. 
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5. Conclusions and Future Work 

This paper investigates the estimation of fuel consumption of a large fleet of trucks based on 

truck sensor telematic data and road geometry. The performances of three machine learning 

regression techniques are compared to a multiple linear regression of the explanatory 

variables. Among the 44 measurements initially available, only eight were included in the 

generated models based on the Pearson’s correlation coefficients, the p-values, the adjusted-

R2, the Lasso regression and the Random Forest algorithm. These are the gross vehicle 

weight, the road gradient, the vehicle speed, the initial and final values of torque percentage, 

the initial revolutions of the engine, the acceleration and the selected gear. Although the 

activation of the cruise control and the radius of curvature of the road may be able to improve 

the performance of the machine learning models (as they have been identified to be 

significant by the Lasso and the Random Forest algorithm), these are not considered in the 

study bacause they cannot be classified as continuous variables and, from the analysis of the 

associated p-values, they have been identified to be poorly significant for the considered case 

study. Excluding them from the regression analysis allows the generated models to include 

the same variables, avoids overfitting of the linear regression and permits a full comparison 

of the performance of the developed models. 

The study shows how, under controlled conditions (e.g. approximately constant speed, only 

one vehicle type considered, etc.), SVM, RF, and ANN perform better than a simple multiple 

linear regression in predicting the fuel consumption of the considered fleet of trucks. 

Therefore, it can be concluded that although the present study only focused on a simplified 

case, the effect of nonlinearity is significant and cannot be considered negligible when 

modelling the fuel consumption of trucks. The R2 values imply that further work is needed to 

include more variables in the developed models and it will be interesting to extend this work 

to include the effect of the activation of cruise control, the radius of curvature of the road 
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(excluded in this study) and analysing a wider range of conditions for different vehicle types. 

When factors such as higher accelerations, braking, wind speed, etc. are introduced into the 

models, further nonlinearity is likely to result, and the use of machine learning techniques in 

estimating fuel consumption will become more important. 

Results of this study showed that, among the considered techniques, RF gives the best values 

of RMSE and MAE for the cross-validation and testing sets. Another possible benefit of 

using RF is the possibility of computing variable importance [36]. In future work, this 

technique could be used instead of p-values to select the explanatory variables to include in 

the regression analysis while accounting for any complex nonlinear relationship. However, 

SVM and ANN also demonstrated a good level of accuracy in making estimations. Another 

benefit of using SVM or ANN instead of the RF algorithm is that the cross-validation process 

of SVM and ANN was about three times faster than for the RF. For these reasons, it is not 

possible to conclude which of the investigated machine learning methods performs better 

overall. It is possible to say that machine learning methods are the better alternative 

compared to linear regression models to estimate fuel consumption. They detect complex 

nonlinear relationships that exist even in relatively simple cases like that analysed in this 

paper. 

The approach described here can be used by manufacturers to estimate the actual GHG 

emissions produced by their vehicles in real driving conditions and by road agencies and 

designers to estimate GHG emissions resulting from the use phase of the road infrastructure 

due to road geometry. Once the fuel consumption estimates are known it is possible to use 

existing tools (e.g. [58]) to estimate the consequent GHG emissions per liter of fuel used or 

the equivalent amount of CO2 released into the atmosphere. For this reason, the methodology 

and models introduced in this paper may have an impact on the decision-making of vehicle 

manufacturers, standards committees, road designers and asset managers. However, although 
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initial results seem to be promising more work is still to be done. Validation of these results 

for a wider range of vehicles, including more variables, e.g. the effect of the air temperature, 

wind speed, or driver behavior [59,60], etc., will improve the applicability of the study. 
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