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Abstract—Despite the concern of privacy, the method
of Floating Car Data (FCD) is clearly one of the cheapest
methods to provide real-time or near real-time traffic in-
formation. The method has become more affordable with
the proliferation of smart-phones and with the existing
infrastructure of the wireless network. In conjunction
with the virtual trip lines (VTL), the FCD method can
mimic the traditional traffic monitoring method on the
basis of loop detectors. In addition, the use of VTL also
helps the FCD method in preventing the potential of
tracking the probe vehicle, which is used to gather and
report the traffic information. Although vast publications
regarding the FCD method are available, the issues of
the optimal length of the VTL, the timeliness of the
data, and the accuracy of the geo-location data have
not been discussed. This article focuses and addresses
these issues empirically using data collected by a probe
vehicle traveling along Jakarta Inner Road Highway in
Jakarta, Indonesia. Those data are collected using ten
smart-phones of the same type. As the result, the optimal
trip line length can be established as a function of the level
of accuracy of the geo-location data. In the case where the
level of accuracy is 32 m, we determine a VTL length of
26 m should provide 95% chance that the probe vehicle
will cross the line. In addition, the currently developed
system can also provide about 80% of the traffic data
in less than 1 min, and the remaining 20% data within
1–5 min interval. Finally, by applying a simple moving
average filter, the prediction of the traffic velocity can be
increased significantly, and the geo-location data error
can be reduced up to 20%.

Keywords—Floating Car Data, Advanced Trav-
eler Information System, Global Positioning Sys-
tem, Intelligent Transportation Systems.

I. INTRODUCTION

Providing real-time traffic information is of interest
of many parties. The information can help travelers for
a better route choice [1] by avoiding traffic congestion.

The use of traffic information can also increase the
efficiency of the transport network.

Traditionally, traffic data are collected using loop
detectors implanted beneath road surface (see Fig. 1).
However, the use of loop detectors is limited in term of
coverage area and is prone to errors and malfunction.
In California, about 30% of 25,000 loop detectors do
not work properly in the daily basis [2].

Data Recorder

Loop Detector

Fig. 1. Traffic measurement using a loop detector.

Another method, so called Floating Car Data (FCD)
method, has shown having great potential to acquire
the traffic information at lower cost. The method uses
probe vehicles enriched with an equipment to measure
the vehicle velocity and position, and to transmit those
data via a wireless network.

Nowadays, many cities collect traffic information
using both methods: the traditional method using loop
detectors and CCTV, and the FCD method. For exam-
ple, the city of Seoul uses taxis as the probe vehicles
with GPS positioning and wireless communication
beside loop detectors and CCTVs [3].

For the reason, many previous publications were
directed to discuss various issues related to FCD.
Ref. [4] was one of the earliest publications prior the
smartphones era. Ref. [5] discussed the use of transit
vehicles, proposed the Kalman filter to estimate the
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vehicle position and velocity, compared the estimated
velocity to those measured by a speed-trap, and de-
veloped a graphical application to display the data in
real-time. Ref. [6] studied the use of FCD using a
microsimulation model, and evaluated the technique
performance in terms of accuracy, reliability, timeli-
ness, and coverage. Finally, they concluded that the
number of probe vehicles was critical for coverage
and accuracy, and recommended a penetration rate of
3% for freeways and 5% for surface roads to provide
a reasonably accurate data. The penetration rate was
defined as the number of probe vehicles during an
averaging time interval (ta) on a traffic link having
a flow rate Q.

In addition, Ref. [7] presented a large scale im-
plementation of a traffic management system, which
was called OCTOTelematics FCD system. At that
time, the system received traffic data from 600 000
private vehicles. The paper also proposed the artificial
neural network and pattern matching algorithms to
predict the short-term travel speed. They evaluated
their algorithms using the traffic on the Rome Ring
Road in Rome, Italy, having a length of 68.2 km with
2.4% penetration rate, 33 entries/exists, and 15 000
floating cars in workdays. Ref. [8] proposed a method
to use transit buses enriched with GPS sensor as probe
vehicles. The buses were used to measure the travel
time data, and a procedure was proposed to estimate
the associated road travel time. Ref. [9] evaluated the
reliability of using a taxi dispatch system for real-
time traffic information. They found that the taxi,
among commercial vehicle operations, was the most
appropriate for the purpose; however, the taxi suffered
a number of issues. Their findings were: the taxi
provided good traffic data on high demand links, the
dispatch system could not be a single source of real-
time data, the data from the vacant taxis needed careful
consideration, GPS location errors had little impact
on traffic monitoring, and finally, the system provided
good data for a long road segment. Ref. [10] developed
an integrated smartphone-based platform to acquire,
transfer, process, and display traffic and vehicle related
data.

In 2010, Ref. [2] demonstrated the use of FCD
method in conjunction with smart-phone to provide
real-time traffic information, and performed the first
field experiment that capable to maintain 2–5% pene-
tration rate involving 100 vehicles to cover a 10–16 km
long freeway. Proliferation of smart-phones brings the
cost to develop the FCD infrastructure to very low
level [11].

However, the use of the low cost smart-phone suffers
a number of issues. The first issue is that the geo-
location data collected by the device usually has low
accuracy (see Fig. 2). To avoid this issue, the col-
lected data usually required some sort of map-matching

scheme to project the data to a correct road. However,
this process requires a significant computation resource
and is often executed in the server side.

Fig. 2. Reported off-road geo-locations due to GPS error. The actual
vehicle trajectory is depicted by a continuous red line.

The second issue is related with the privacy of
those parties who contribute to provide the traffic
data. When a probe vehicle continuously submits its
location, there is potential that the vehicle position can
be traced. To minimize this issue, Ref. [2] proposed the
use of the virtual trip line (VTL), which is a virtual
line connecting two pre-defined geo-coordinates (see
Fig. 3). The use VTL has many benefits; a few are: it
mimics the traditional system on the basis of the loop
detector, it can be located where the traffic velocity
data are important and can be measured accurately,
and privacy can better be protected.

Probe vehicles

Undetected Trajectory

Detected Trajectory

Virtual Trip Line

Fig. 3. Undetected and detected probe vehicle recorded trajectories
around a virtual trip line.

II. DESCRIPTION OF FLOATING CAR DATA SYSTEM

The present infrastructure for the floating car data
system is depicted in Fig. 4. The system has three main
components, namely, a probe client, a web server, and
a web client.

Probe Vehicle

Cellphone

Web Database
Web Client

Internet

Fig. 4. Framework of traffic monitoring using the floating car data
method.

Currently, the probe client utilizes a smartphone,
which is a hand-held device that integrates the func-
tionality of a mobile phone with other features but
mainly with geo-location functionality. The probe



client is attached to a probe vehicle and is used
to measure the probe vehicle position, velocity, and
heading. Finally, those data and related timestamps will
be transmitted to a server via a wireless network.

In the current development, the probe client is an
Android application installed in a mobile phone, and
the phone will be attached to a probe vehicle. The
Android application is designed according to the soft-
ware architecture depicted in Fig. 5. The application

Android System

GPS 3G

Probe Client Application

Android API

Hardware

Fig. 5. The software architecture of the probe client application.

uses Android API and its underlying system to access
the built-in GPS receiver unit. The GPS unit provides
data related to the phone position, velocity, bearing,
accuracy and timestamps. Those data are then prepro-
cessed and finally are transmitted to the web server via
the 3G network.

Meanwhile, the software architecture of the server
side applications for FCD traffic monitoring is shown
in Fig. 6. The server side consists of web server, client,

Web Application
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MySQLApache

HTML Page with Javascript

Client (Web Browser)

Web Server

Google 
Maps API

Probe Client

Web Service

Probe

3rd Party
Web Services

Fig. 6. The software architecture of the server side application.

3rd party web services, and probe subsystems. The web
server is the core system that collect, process, store,
and provide traffic information. The system has two
features: web service and web application. The web
service communicates with probe clients to receive
updates of the traffic data. The other feature, web
application, is accessible from client web browser to
retrieve traffic information. The client web browser is
the only component accessible by end users. The web

application will instruct a client web browser to load
map provided by Google Maps API, and will overly
traffic information on the map.

The web service and web application is a single sys-
tem build on top of CodeIgniter framework, which uses
PHP programming language. The use of CodeIgniter
framework is preferred since it offers numerous techni-
cal advantages and organizational advantages, such as
faster development and cleaner application structure, in
comparison to developing native PHP application [12].
PHP is installed as a module on Apache web server and
also integrated with MySQL database server.

III. METHOD

This work is intended to address the three following
issues: how to determine the optimal length of the
VTL, how to improve the accuracy of the vehicle
location and velocity recorded by a smart-phone, and
the extent of the delay time.

The first two issues were addressed by the follow-
ing approach. The optimal length of the virtual trip
line was determined empirically on the basis of data
recorded using ten units of smart-phones of similar
type. In the current experiment, we utilized Samsung
Galaxy Fame S6810. Those phones were installed with
a custom-made application (see Fig. 7), which was
designed to track the movement of a probe vehicle.

Fig. 7. The GUI of the client-side application for traffic monitoring
using floating-car data system.

The application was designed to record the vehicle
position, longitude and latitude, and also the vehicle
instantaneous velocity, and transmitted those data to
a designated server. Those data were established by
a Global Navigation Satellite System (GNSS). In the
current investigation, the application also transmitted
the capture time of the data.



The data were recorded on January 3, 2014 where
the probe vehicle was driven along Jakarta Inner Ring
Road, which has three vehicular lanes on each direction
for the majority of the road segments. During the test,
the probe vehicle was maintained to move along the
central vehicular lane of the road. In total, 16,363 GPS
location data were obtained during the test.

The GPS location data were projected to the road
GIS line using the algorithm explained in the follow-
ing. Finally, the projection length was used to establish
the optimal length of the virtual trip line.

For a given GIS line, and two GIS points, x1
r and

x2
r , we can establish the direction of the line segment

by (see Fig. 8):

r̂ =
x2
r − x1

r

‖x2
r − x1

r‖
,

where ‖�‖ denotes the Euclidian norm. We project the
GPS point x onto the line by the vector d, which is:

d =
(
x− x1

r

)
−
[(
x− x1

r

)
· r̂
]
r̂.

The projection length is simply ‖d‖, and this algorithm
was applied to those 16,363 data, and the statistical
distribution of the deviation ‖d‖ was established from
which an optimal length of the VTL was determined.

d

GIS Line

GPS Point
x x

r

x
r

1

2

Fig. 8. Projection of a GPS point to a GIS line.

The improvement of the vehicle position was studied
by applying the moving average (MA) filter with
weight, which was set to inversely proportional with
the recorded level of accuracy. We should note that
the GNSS system also provides the level of accuracy
data for each reported location data. The length of the
filter was varied and its effect to the vehicle position
improvement was studied.

The improvement of the vehicle velocity was em-
pirically studied based on the data recorded in the
experiment performed by Ref. [13] and by applying
the ergodicity principle [14].

IV. RESULTS AND ANALYSIS

A. Optimal Length of the Virtual Trip Line

By applying the algorithm developed earlier, we can
now analyze characteristics of the GPS data error. This
error is clearly seen in Fig. 9, where a small segment
of the observed road is shown in addition to the GPS
recorded geo-location data. The figure also shows the

projection lines connecting the GPS points to the points
on the GIS line.
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Fig. 9. An example of the recorded GPS points and their projection
to the GIS line, which represent the centerline of the road where the
probe vehicle traveled.

The GPS recorded data also contain the GPS level
of accuracy for each reported geo-location data. Thus,
the statistical analysis of the GPS error data must be
performed on each level of accuracy.

Furthermore, in order to determine the confidence
interval, associated with the length of VTL, we should
establish the statistical distribution of the GPS error
data. We assume the data are normally distributed, and
the data are numerically and visually inspected for the
distribution. The following criteria are used to evaluate
the normality of the GPS error data:

• Skewness and kurtosis z-values should be some-
where in the span of −1.96 to +1.96,

• The Shapiro-Wilk test p-value should be above
0.05, and

• Histogram and normal Q-Q plots should indicate
normality.

Evaluation on these criteria—skewness and kurtosis
in Table I, Shapiro-Wilk test in Table II, histograms
in Fig. 10, and Q-Q plots in Fig. 11—leads us to
conclusion that the GPS error data are approximately
normally distributed with skewness of 0.199 (SE =
0.403), −0.496 (SE = 0.403), 0.406 (SE = 0.394), and
0.394 (SE = 0.403) for accuracy level of 4 m, 6 m,
8 m, and 32 m, respectively.

In order to provide a reliable monitoring system,
the VTL length should be determined based on the
GPS error data of the lowest possible measurement
accuracy given by the equipment/smart-phone. For the
present case, the smart-phone can provide the level
of accuracy of 32 m on the worse case scenario.
Therefore, the length is set at 95% confidence interval
with z = (d− µ)/σ, where z = 1.96, µ = 0.956 m,
and σ = 6.21 m (see Table I). Finally, we obtain a VTL
length of d = ±13 m. Therefore, with the total VTL
length of 26 m, a probe vehicle will be detected by the
VTL at 0.95 probability at the worst scenario or the
lowest level of accuracy.
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TABLE I
THE STATISTICAL DESCRIPTION OF THE GPS ERROR DATA.

Statistic df Sig. Statistic df Sig.

4 0.117 34 0.2 0.982 34 0.824

6 0.162 34 0.024 0.951 34 0.133

8 0.18 34 0.007 0.943 34 0.073

32 0.111 34 0.2 0.953 34 0.146

GPS Accuracy (m)

Kolmogorov-Smirnov Shapiro-Wilk

TABLE II
THE RESULTS OF THE NORMALITY TEST OF THE GPS ERROR

DATA.

B. Position Accuracy

Many present smart-phones offer the level of accu-
racy of a few 10-m for their geo-location data. Thus,
the position data are sometimes rather far from the
actual vehicle position as typically shown in Fig. 12.
To use such data, traditionally we need to perform a
map-matching procedure to correct the data error. This
procedure is rather computationally demanding; thus,
it is often performed in the server side of the system.
Many commercial mapping system also limit the use of
the procedure. Thus, it is a great importance, in regards
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Fig. 10. Histogram of the GPS error data.
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Fig. 11. Q-Q plot of the GPS error data.

to the floating car data system, to be able to correct
the geo-location error with the limited computational
resource in the client side.

In the following, we present the level of improve-
ment when a simple weighted moving averaging filter
is applied to the recorded geo-location data. In partic-
ular, Fig. 13 shows the reduction of the largest data
error when the filter length is increased from 3-point
to 31 point. For this particular case, the use of 11-point
MA has reduced the position error by 20%.

The fact that the simple MA filter can quickly reduce
the error of the geo-location data is assuring because
the filter can be applied sequentially and requires very
low computational resource.
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Fig. 12. The actual and corrected position of the probe vehicle and
GIS line.
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Fig. 13. Reduction of the distance of the probe vehicle to the GIS
line as a function of the number of points of the moving average
filter.

C. Delay Time

The delay between the time when the traffic data are
gathered and the time when the data are presented to
the traveler is unavoidable. However, this delay time
should be minimized in order to provide near real-time
traffic information.

We analyze the characteristics of the delay time of
the current system by comparing the time when the
traffic data reach the server and the time when the data
are captured by the client application.

The typical delay time data are shown in a scatter
plot in Fig. 14. Those data were recorded in an exper-
iment where the probe vehicle was set to transmit the
data for each second of the measurement. Those data
are summarized in a histogram in Fig. 14, and conclude
that more than 80% of the data were successfully
transmitted within 1 min interval, and the rest of the
data were transmitted within 1–5 min interval.
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Fig. 14. Typical relation between the client data submission time
and the server data receiving time, and proportion of the delay time
for various delay time intervals.

V. CONCLUSION

To provide real-time traffic information at low cost,
the present Floating Car Data system with virtual trip
line (VTL) that exploits the proliferation of smart-
phones faces a few challenges such as the privacy

protection of the probe vehicle, the optimal length of
the VTL line, and minimizing huge error in the geo-
location and velocity data. This work has addressed
some of those issues by deploying a few simple pre-
diction methods. The work leads us to conclusions: a
VTL length of 26 m can provide 95% chance that the
probe vehicle will cross the line, the delay time can be
maintained below 1 min for 80% of the cases, and the
prediction of the velocity and position can be improved
significantly by applying the weighted moving average
method.
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