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A B S T R A C T

In plants, sterols are found in free form (free sterols, FSs) and conjugated as steryl esters (SEs), steryl glycosides
(SGs) and acyl steryl glycosides (ASGs). Conjugated sterols are ubiquitously found in plants but their relative
contents highly differ among species and their profile may change in response to developmental and environ-
mental cues. SEs play a central role in membrane sterol homeostasis and also represent a storage pool of sterols
in particular plant tissues. SGs and ASGs are main components of the plant plasma membrane (PM) that spe-
cifically accumulate in lipid rafts, PM microdomains known to mediate many relevant cellular processes. There
are increasing evidences supporting the involvement of conjugated sterols in plant stress responses. In spite of
this, very little is known about their metabolism. At present, only a limited number of genes encoding enzymes
participating in conjugated sterol metabolism have been cloned and characterized in plants. The aim of this
review is to update the current knowledge about the tissue and cellular distribution of conjugated sterols in
plants and the enzymes involved in their biosynthesis. We also discuss novel aspects on the role of conjugated
sterols in plant development and stress responses recently unveiled using forward- and reverse-genetic ap-
proaches.

1. Introduction

Sterols are essential components of eukaryotic cell membranes that
determine their physicochemical properties and, consequently, their
biological function [1]. However, important new roles for sterols have
been discovered in recent years. For instance, sterols interact with
sphingolipids in the plasma membrane (PM) to form liquid-ordered
microdomains (lipid rafts) that are involved in different biological
processes [2,3]. Sterols also serve as precursors for the biosynthesis of
brassinosteroids, a group of hormones that are essential for the reg-
ulation of plant development and morphogenesis [4]. Besides these
functions, sterols are also involved in plant growth and development
[5–13] as well as in plant responses to biotic and abiotic stresses
[14–22].

The common structure of sterols is based on the cyclopentane-per-
hydrophenanthrene ring system (formed by four rigid rings) with a
hydroxyl group at position C3 and a lateral chain of variable length
(8–10 carbons) attached to carbon 17 (Fig. 1). In contrast to animals
and fungi, plants produce a complex mixture of sterols that mainly
differ in the nature of the side chain at position C17 and the number

and position of double bonds in the rings or the lateral chain. β-Sitos-
terol, stigmasterol and campesterol (Fig. 1) are the most abundant
sterols found in plants. Whereas β-sitosterol and stigmasterol have a
major role in maintaining the structure and function of cell membranes,
campesterol acts as the precursor of brassinosteroids [6,7]. Aspects
related with the chemistry and biosynthesis of plant sterols have ex-
tensively been reviewed in recent years [23–26].

In plants, sterols are present not only as free sterols (FS) but also
conjugated in form of steryl esters (SEs), steryl glycosides (SGs) and
acyl steryl glycosides (ASGs) (Fig. 2). In SEs the hydroxyl group at C3
position is esterified with a fatty acid. SGs are characterized by having a
sugar linked to the C3 hydroxyl group of the sterol moiety through a β-
glycosidic bond. ASGs are derivatives of SGs in which the hydroxyl
group of the C6 position of the sugar moiety is esterified with a fatty
acid. The structural diversity of SEs, SGs and ASGs has extensively been
reviewed [23,27–29]. In a restricted number of plants (mainly cereals)
sterols are also found conjugated in form of steryl ferulates [30,31].
Ferulic acid is a hydroxylated derivative of cinnamic acid, a metabolic
intermediate in the phenylpropanoid pathway. Because steryl ferulates
seem to be present only in a limited number of plant species, studies
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related with this type of conjugated sterols are very scarce.
In contrast to the increasing evidences supporting a relevant role of

SEs, SGs and ASGs in a variety of cellular and biological processes in
plants very little is known about their metabolism. This review provides
an overview of the tissue and cellular distribution of these conjugated
sterols and summarizes the knowledge about the genes and the corre-
sponding enzyme activities currently identified in plants for the bio-
synthesis of SEs and SGs. New information about the function of con-
jugated sterols derived from functional genomic studies targeting sterol
acyltransferases and sterol glycosyltransferases is also discussed.

2. Steryl esters

2.1. Tissue and cellular distribution of plant steryl esters

SEs are found in all plant tissues. However, their relative content
usually differ among organs and tissues and may change in response to
developmental and environmental factors. The sterol moiety of SEs
usually corresponds to the same sterols present in the FS fraction, but in
some tissues they may contain unusual sterols as well as sterol bio-
synthetic intermediates. The fatty acids found in SEs cover a wide range
of lengths (from C12 to C22), being palmitic, stearic, oleic, linoleic and
linolenic acids the most common species [28]. The high structural di-
versity of the SEs present in plants highlights the relevance of the sterol
esterification process regarding their specialized function in different
plant tissues.

SEs are remarkably abundant in particular plant tissues such as the
tapetal cells of anthers, pollen grains, seeds, and senescent leaves
[28,32,33]. High levels of SEs have also been reported in mutant and
transgenic plants overproducing sterols [34,35]. It has recently been
reported that SEs are also present at relatively high levels in the phloem
sap, being cholesterol the most abundant phytosterol in this fraction
[36].

It is widely accepted that SEs perform a primary role in cell mem-
brane sterol homeostasis [6]. However, in some plant tissues SEs also

represent a storage pool of sterols that can be used during growth and
development. For instance, seeds store high amounts of SEs that, to-
gether with triacylglycerols, are mobilized during germination to sup-
port seedling growth during the early stages of development [37]. This
is in agreement with the increase of SE content during seed develop-
ment [38–40], which in developing tobacco and rape seeds occurs in
parallel with the synthesis of triacylglycerols [40].

Early cell fractionation studies in different plant tissues indicated
that SEs were mainly enriched in mitochondrial, nuclear and micro-
somal fractions [28]. However, more recent reports have shown that,
like in other eukaryotic organisms, plants accumulate SEs in cyto-
plasmic particles known as lipid droplets (LDs) [41]. LDs (also known in
plants as oleosomes, lipid bodies and oil bodies) are evolutionary
conserved organelles present in almost all organisms and cell types
[42]. Like in yeast and mammals, plant LDs consist of a neutral lipid
core surrounded by a membrane monolayer derived from the en-
doplasmic reticulum (ER) and are stabilized by proteins bound to the
LD surface [41]. Evidences available so far support the view that LDs
are generated at specific subdomains of the ER in which triacylglycerols
and possibly SEs are actively synthesized [41,43]. The induction of LD
formation in mutant and transgenic plants overproducing sterols [6]
supports the role of SEs in promoting LD biogenesis.

The proteomic analysis of LDs from mammals and yeast has led to
the identification of proteins involved in a variety of cellular processes,
indicating that these subcellular structures may have multiple functions
in addition to their role as storage of lipids [44]. In contrast, only a few
LD associated proteins have been identified in plants [45]. The best
characterized ones are oleosins, caleosins and steroleosins, which cor-
respond to the most abundant proteins present in LDs isolated from
seeds [41]. Despite the widespread occurrence of LDs in plants their
associated proteins in vegetative tissues remain largely unknown. Re-
cently, a new class of LD associated proteins (LDAPs) required for the
regulation of neutral lipid compartmentation has been identified in
non-seed cell types [46,47].

The observation that many LD proteins are related with lipid and

Fig. 1. Chemical structure of the major plant free sterols.

Fig. 2. Chemical structure of conjugated sterols.
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sterol metabolism in mammals and yeast has reinforced the view that
LDs may also have a relevant function in neutral lipid metabolism and
membrane lipid homeostasis in plants [41,48]. In contrast, only two LD
associated proteins related with sterol metabolism have been identified
in plants: steroleosins, which have hydroxysteroid dehydrogenase ac-
tivity and are likely involved in brassinosteroid metabolism [49,50] and
the sterol biosynthetic enzyme Δ7-sterol-C5-desaturase, which is tar-
geted to leaf lipid particles in addition to the ER [51].

SEs have been identified as a main structural component of the
pollen coat of some Brassica species and are synthesized in the elaio-
plasts present in the tapetal cells of the anthers [32,33,52]. Never-
theless, a significant amount of SEs is also found in the intracellular
domain of the pollen grain [32], suggesting that this SE pool could
provide sterols for the synthesis of new membranes or to maintain
sterol homeostasis during the active growth of the pollen tube. It has
recently been reported that pollen from a variety of plant species show
great differences in the composition of the SE fraction [53]. Moreover,
the sterol composition of the SE fractions differs from that of the cor-
responding FS fraction. Thus, whereas Δ5-sterols (sterol end products)
are predominant in the FS fraction, SEs are usually enriched in 9β,19-
cyclopropyl sterol precursors [53]. The biological significance of the SE
diversity found in pollen is currently unknown but has been related
with specific plant-insect interactions or the optimization of the contact
between the pollen grain and the stigma to promote germination
[53,54].

In senescing tissues SEs have been proposed to participate in the
cellular recycling and transport of sterols when FSs are released from
the degenerating cell membranes [28,55]. In agreement with this to-
bacco leaves show a clear increase in SE levels which parallels a de-
crease in the FSs and ASGs levels during senescence [56]. The role of
SEs in leaf senescence is also supported by the characterization of
Arabidopsis mutant plants defective in SE biosynthesis [57].

2.2. Biosynthesis of steryl esters

Sterol acyltransferase activity (Fig. 3) has been detected in a variety
of plant tissues and early studies suggested that the plant enzyme(s)
were using acyl donors different from those previously described in
mammals and yeast. In mammals, cellular cholesterol is esterified by
the action of acyl CoA cholesterol acyltransferase (ACAT), that uses
acyl-CoA as fatty acid donor [58], but blood cholesterol is esterified by
a lecithin cholesterol acyltransferase (LCAT), which uses lecithin as acyl
donor [59]. In S. cerevisiae, ergosterol is esterified by two isoforms of
ACAT, ARE1 and ARE2 [60]. ACAT and LCAT are completely different
proteins and their amino acid sequences have no significant similarity.

Early studies in plants showed that phosphatidylcholine and phos-
phatidylethanolamine were efficiently used as acyl donors in enzyme
assays using microsomal preparations obtained from spinach leaves
[61]. However, it was subsequently found that these phospholipids
were rapidly hydrolyzed under the assay conditions and that 1,2-dia-
cylglcerol was the true acyl donor in the reaction [62]. Sterol acyl-
transferase activity was also measured in tobacco leaf microsomal
fractions using dipalmitoylglycerol as acyl donor [63]. Enzyme assays
using cell-free extracts prepared from white mustard (Sinapis alba) roots
showed that triacylglycerols were used as a source of fatty acids for
sterol esterification [64,65]. Sterol acyltransferase activity using both
triacylglycerols and diacylglycerols as acyl donors was also measured in
Zea mays root extracts [66]. An alternative mechanism for the synthesis
of SEs has been described in cell-free extracts of white mustard roots
where a reversible trans-esterification process involving wax esters and
FSs has been described in addition to the reported synthesis of SEs using
triacylglycerols as acyl donors [67] (Fig. 4).

In contrast with all these biochemical data, the sterol acyl-
transferases currently characterized in plants after the cloning of the
corresponding genes in Arabidopsis are a phospholipid:sterol acyl-
transferase (PSAT) and an acyl CoA:sterol acyltransferase (ASAT)

(Fig. 4).
In Arabidopsis PSAT is encoded by the gene PSAT1 (At1g04010) and

was first characterized using microsomal fractions obtained from leaves
of transgenic Arabidopsis plants constitutively overexpressing the
PSAT1 transcript [68]. The highest level of PSAT activity was found
when phosphatidylethanolamine was used as acyl donor. The enzyme
showed high preference for sn-2 fatty acids (both saturated and un-
saturated) and was able to acylate several sterols and sterol inter-
mediates. The observation that PSAT1 did not use neutral lipids as acyl
donor suggested that the polar head of phospholipids is a relevant
factor in substrate recognition [68]. Although sterol intermediates were
poor substrates for PSAT1, they were preferentially used when sterol
end products (mainly sitosterol) were present in the enzyme reaction.
This observation led to suggest the allosteric regulation of PSAT activity
by sterol end products. Thus PSAT activity could modulate the level of
FSs in the membrane through a mechanism involving the sequestration
of biosynthetic intermediates in form of SEs. This is in agreement with
the high enrichment of sterol precursors (mainly cycloartenol) in the SE
fraction of mutant and transgenic plants overaccumulating sterols
[34,35]. PSAT1 fused to GFP localizes in spherical structures of un-
known identity that do not seem to correspond to LDs [69].

The Arabidopsis gene encoding ASAT (At3g51970) was cloned by
Chen et al. [70] and the corresponding enzyme was characterized by
expression of the ASAT1 transcript in a S. cerevisiae mutant strain in
which the two endogenous genes encoding ASAT (ARE1 and ARE2)
were disrupted. The characterization of the enzyme activity in cell ex-
tracts of the transformed yeast cells indicated that cycloartenol was the
preferred acyl acceptor. Seeds from transgenic Arabidopsis over-
expressing ASAT under the control of a seed-specific promoter showed
an increase in total sterol content associated to an increase in the SE
levels and a small reduction of FSs. Cycloartenol esters were highly
increased at expenses of a significant decrease of campesterol and si-
tosterol esters. The SE fraction extracted from the transgenic seeds was
enriched in saturated and long-chain fatty acids [70].

2.3. Genetic analysis of steryl ester function

The biological significance of the occurrence of two alternative
enzymatic systems for the synthesis of SEs in plants has been in-
vestigated by Bouvier-Navé et al. [57] using Arabidopsis T-DNA inser-
tion mutants defective in the expression of PSAT1 and ASAT1 genes. It
was found that SE levels were strongly reduced (5- to 10-fold) in seeds
of the psat1-1 and psat1-2 mutants but not in the asat1-1 mutant, thus
suggesting a major role of PSAT1 in the synthesis of SEs in seeds.
However, psat1-1, psat1-2 and asat1-1 mutant showed a decrease in the
level of SEs in leaves. In contrast, the SE levels in the flowers of all
mutant lines were similar to those of wild type plants. These results
point towards the existence of at least another sterol acyltransferase
that remains to be identified in Arabidopsis. One possibility could be an
enzyme phylogenetically related with PSAT or ASAT. The PSAT1 gene
is a member of the Arabidopsis PDAT/LCAT-like gene family composed
by six genes (At1g04010, At5g13640, At3g03310, At4g19860,
At3g44830 and At1g27480) encoding proteins with similarity to human
LCAT and lysosomal phospholipase A2 [71]. The genes At5g13640,
At3g03310 and At4g19860 encode a phospholipid:diacylglycerol acyl-
transferase (PDAT) [71], a phospholipase A1 [72] and a phospholipase
A2 [73], respectively. The protein encoded by At3g44830 shows high
similarity with PDAT and therefore it is unlikely to encode an enzyme
with sterol acyltransferase activity. The remaining member of the
PDAT/LCAT-like gene family corresponds to At1g27480, which encodes
a protein showing high similarity to human LCAT. Surprisingly, no
function for this protein could be determined after its expression in
yeast [72].

Arabidopsis ASAT1 belongs to the superfamily of membrane-bound
O-acyltransferases (MBOATs) [74]. When the fifteen members of the
Arabidopsis MBOAT gene family were tested for complementation of a
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Fig. 3. Schematic representation of the biosynthesis of con-
jugated sterols showing the enzymatic activities involved. Free
sterols derive from isopentenyl diphosphate (IPP) and dimethy-
lallyl diphosphate (DMAPP) produced by the mevalonic acid
(MVA) pathway [26]. The dashed arrow indicates multiple steps.

Fig. 4. Schematic overview of conjugated sterol metabolism in
plants. Those enzymes for which the corresponding genes have
been cloned are indicated in bold: ASAT, acyl-CoA:sterol acyl-
transferase; PSAT, phospholipid:sterol acyltransferase; SGT,
UDP-glucose:sterol glycosyltransferase; SGAT, steryl glycoside
acyltransferase; GCS, glucosylceramide synthase. Dashed arrows
indicate enzymatic conversions not confirmed at experimental
level.
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yeast strain defective in SE biosynthesis only the expression of the
protein encoded by At3g51970 (ASAT1) was able to restore SE bio-
synthesis [70]. These results indicate that ASAT1 is the only member of
the Arabidopsis MBOAT gene family having ASAT activity.

As mentioned above, several reports have shown sterol acyl-
transferases activity in plants using triacylglycerols and diacylglycerols
as acyl donors. However, neither ASAT1 nor PSAT1 can efficiently use
these compounds as fatty acid donors [68,70]. Therefore it is likely that
plants could contain other genes encoding at least one sterol acyl-
transferase different from PSAT and ASAT.

The involvement of PSAT1 and ASAT1 in sterol homeostasis has
been evaluated in the Arabidopsis psat1-1, psat1-2 and asat1-1 mutant
lines. Feeding experiments using mevalonolactone and squalene (me-
tabolic precursors known to enhance the metabolic flux towards sterols)
revealed that psat1-1 and psat1-2 plants were highly sensitive to these
compounds, whereas only minor effects were observed in the asat1-1
plants [57]. This was explained by a limitation of the PSAT1 defective
lines to transform the overproduced sterols into SEs. These results are in
agreement with a major contribution of PSAT1 in maintaining FS
homeostasis in plant cell membranes [57]. Furthermore, the observa-
tion that PSAT1 is activated by sterol end products [68] has led to
suggest that this enzyme could also act as a cellular sensor for FS levels
in the membrane [57].

The only visible phenotype associated with reduced levels of SEs
was observed in the PSAT1 defective mutants, which showed early leaf
senescence [57]. Whereas SE levels increased about three-fold in de-
tached leaves of wild type plants only minor changes were observed in
the leaves of psat1-1 and psat1-2 plants. This is in accordance with the
increase of PSAT1 transcript levels detected in the detached leaves of
wild type plants. However, no changes were observed in the level of the
HMGR1 and ASAT1 transcripts. The lack of induction of the HMGR1
gene (which encodes HMG-CoA reductase, a key regulatory enzyme in
sterol biosynthesis [75]) during the aging period suggests that the in-
crease of SE levels in the senescent leaves derives from the endogenous
recycling of membrane sterols.

Taken together, current data derived from the characterization of
sterol acyltransferase defective mutants in Arabidopsis highlight a
major involvement of PSAT1 in the synthesis of SEs and FS homeostasis
and raise the question about the real contribution of ASAT1 in SE
metabolism.

3. Glycosylated sterols

3.1. Tissue and cellular distribution of steryl glycosides and acyl steryl
glycosides

As described above for SEs, glycosylated sterols (SGs and ASGs) are
also widely distributed in plants and their relative levels differ among
tissues and may change in response to developmental and environ-
mental cues. SGs and ASGs usually have a sterol composition similar to
that of the corresponding FS fraction [27]. Glucose is the predominant
monosaccharide found in plant glycosylated sterols, but conjugation
with other monosaccharides such as galactose, xylose and mannose
have also been described [27,29,76]. Unusual SGs containing up to four
sugar residues have been reported [77]. ASGs usually contain saturated
and unsaturated C16 and C18 fatty acids, but some plants accumulate
ASGs with atypical fatty acid chains [27].

SGs and ASGs are usually minor components of the total sterol
fraction present in most plant species [27,78]. However, a remarkable
exception is provided by plants of the genus Solanum, which show a
very high content of glycosylated sterols [78,79]. Thus, whereas in most
plant tissues the amount of SGs and ASGs is relatively low (usually less
than 20% of total sterols), the SG + ASG fraction of tomato fruit may
account for more than 85% of total sterols [80]. Although the evolu-
tionary and biological significance of the high content of glycosylated
sterols in a restricted number of plant species is not know with

certainty, such a high content of glycosylated sterols in Solanum species
has been suggested to play a role in protecting cell membrane integrity
against the disruptive effect of the high levels of steroidal glycoalk-
aloids present in these plant species [81–83].

Along with phospholipids and sphingolipids, sterols represent a
main component of the lipids present in the PM (20–50% of total li-
pids). In contrast to mammals and yeasts, the plant PM contains SGs
and ASGs in addition to FSs. The analysis of the sterol composition of
PM fractions from different plant tissues and growth conditions has
revealed striking differences in the relative amount of free and glyco-
sylated sterols [84]. Thus, while FSs represent the most abundant sterol
in the PM of most plant species (with values higher than 90% in some
cases), in oat and some Solanum species, the major sterols found in the
PM correspond to ASGs (up to 78% in potato leaves) [84].

It is known that the presence of a sugar moiety attached to the sterol
backbone alters its physicochemical properties. Because of this, the
presence of SGs and ASGs in plant cell membranes raises the question
about how are they organized in the lipid bilayer and the way in which
they interact with other membrane lipids to modulate membrane
function. SGs are likely oriented with the sterol moiety buried in the
hydrophobic core of the lipid bilayer and the sugar located in the plane
of the polar head groups of the membrane. In the case of ASGs, both the
sterol moiety and the fatty acid chain are probably embedded in the
hydrophobic phase of the membrane with the sugar oriented to the
hydrophilic surface [84].

The classical model of PM organization suggests that sphingolipids
associate among them through interactions between the polar heads
and their long and saturated acyl chains, whereas sterols fill voids be-
tween the fatty acid chains of phospholipids and sphingolipids. Studies
on the effect of plant sterols in modulating membrane properties have
shown that β-sitosterol and stigmasterol, which only differ by a double
bond at position C22 in stigmasterol (Fig. 1), behave in a very different
way [85]. Thus it is likely that changes in the level and relative ratios of
FSs, together with the presence of glycosylated sterols, may have a
strong influence on the physicochemical properties and function of the
cell membranes. Recent studies have shown that glycosylated sterols,
alone and in synergy with FSs, have a major role in modulating plant
PM organization [86]. Taken together, these observations suggest that
specific changes in the relative level and profile of free and glycosylated
sterols in the PM may be relevant in the adaptive responses of plants to
environmental changes.

Over the last decades the classical view of cell membrane organi-
zation, in which the inserted proteins and lipids could diffuse freely
(fluid mosaic model), has changed to a model based on a dynamic
segregation of membrane components (lipids and proteins) to form
microdomains which exhibit a composition, structure and biological
function different from the surrounding membrane [2,87]. These
membrane microdomains (also known as membrane or lipid rafts) have
been involved in a variety of biological processes such as cell-to-cell
interactions, membrane transport, protein trafficking, signal transduc-
tion, stress responses and polarized growth [2,3].

Lipid rafts are mainly composed by sphingolipids, sterols and pro-
teins and their formation relies on the physicochemical properties of
sphingolipids and sterols that allow the formation of liquid-ordered
domains that promote the clustering of specific proteins at defined re-
gions of the cell membrane [3]. PM microdomains have been char-
acterized at biochemical level because of their insolubility in non-ionic
detergents at cold temperatures. This feature allows the isolation of
membrane fractions called detergent-insoluble membranes (DIMs) or
detergent-resistant membranes (DRMs). Plant DIMS are enriched in
sterols and sphingolipids. The sterol composition of PM and DIM sam-
ples isolated from different tissues of a variety of plant species has re-
vealed a general enrichment of free and glycosylated sterols [88,89],
thus highlighting the contribution of SGs and ASGs in the organization
of plant PM microdomains.

In addition to lipids, DIMs also contain proteins. The proteomic
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analysis of plant DIMs has shown that their protein profiles are different
from that of the whole PM. The DIM associated proteins identified so far
suggest their involvement in a variety of cellular processes
[3,87,90,91]. It has also been reported that the DIM proteome of some
plants dynamically respond to external stimuli [90]. Thus, it is likely
that the enrichment of free and glycosylated sterols in DIMs represents
an important factor in the recruitment of specific proteins into parti-
cular membrane microdomains during plant development and in re-
sponse to environmental challenges.

Like in animal cells, the lipids of the plant PM also show an asym-
metrical distribution between the cytoplasmic and the apoplastic leaf-
lets [84]. The asymmetric distribution of lipids in the membrane bilayer
affects the biophysical properties of cell membranes and influence nu-
merous cell functions [84]. Free and glycosylated sterols are among the
membrane lipids having an asymmetrical distribution in the plant PM
[92,93]. Labeling studies using filipin (a fluorophore that specifically
reacts with sterols) has revealed an enrichment of sterols (about 3-fold)
in the apoplastic leaflet of the PM [92]. However, the relative dis-
tribution of FSs, SGs and ASGs between the cytoplasmic and the apo-
plastic leaflets has not yet been established. The mechanisms under-
lying the asymmetrical distribution of free and glycosylated sterols in
the PM is not clear but could be associated to the interconnection of SG
and glucosylceramide metabolism in the membrane [94] (Fig. 4).

In addition to their relevance in cell membranes, glycosylated
sterols have been described in other plant tissues and cell compartments
playing different roles. Glycosylated sterols are present in the pollen
grain of Arabidopsis and have shown to be critical for pollen fitness by
supporting pollen coat maturation [95].

Glycosylated sterols also represent the major sterol fraction found in
the phloem sap, being cholesterol the dominant sterol form [36]. The
biological significance of the sterols present in the phloem sap remains
to be elucidated but may be relevant in physiological and ecological
aspects related with phloem-feeding insects.

SGs have since long been proposed to act as primers for the synth-
esis of cellulose [96]. However the participation of SGs in cellulose
biosynthesis is still a controversial matter [97].

3.2. Biosynthesis of glycosylated sterols

The synthesis of SGs is catalyzed by sterol glycosyltransferases
(Fig. 3). In this reaction a sugar, mostly glucose, is transferred to the C3-
hydroxyl group of the sterol backbone [76,98]. Sterol glycosyl-
transferase activity has been determined in different plant species and
found to be associated to cell membranes [99–103]. However, cytosolic
sterol glycosyltransferases have been identified in Withania somnifera
[104] and cotton [105]. Biochemical studies using partially purified
enzyme preparations revealed that sterol glycosyltransferase activity
was enhanced by negatively charged phospholipids [100,103,106].
Although the mechanism underlying this activation was not elucidated
this observation suggests that sterol glycosyltransferase activity could
be modulated in vivo by changes in the lipid environment of the cell
membrane. It has been proposed that plants can also synthesize SGs by
the action of the enzyme UDP-glucose-dependent glucosylceramide
synthase [107] (Fig. 4).

The first plant sterol glycosyltransferase cDNAs were cloned in oat
and Arabidopsis by Warnecke et al. [108]. In recent years, other sterol
glycosyltransferase cDNAs have been cloned in Withania somnifera
[109,110], Gymnema sylvestre [111] and cotton [105]. Functional stu-
dies using the recombinant enzymes expressed in E. coli demonstrated
that a general feature of the plant sterol glycosyltransferases char-
acterized so far is the highest preference for UDP-glucose as a sugar
donor and the capacity to use a wide spectrum of sterols as sugar ac-
ceptors [76,105,108–111].

Two genes encoding sterol glycosyltransferases (At3g07020 and
At1g43620) have been identified in Arabidopsis. They encode sterol 3-
β-glycosyltransferases UGT80A2 and UGT80B1 respectively (http://

www.p450.kvl.dk/At_ugts/family.shtml) and have been designated as
UGT80A2 and UGT80B1 [112]. A recent report has shown that the
related protein encoded by the gene UGT713B (At5g24750) does not
have sterol glycosyltransferase activity [113]. UGT80A2 and UGT80B1
are differentially expressed in distinct plant organs and tissues [112]
and their transcript levels are coordinately down-regulated short after
seed imbibition [113].

Concerning ASG biosynthesis, steryl glycoside acyltransferase ac-
tivity (Fig. 3) has been measured in cell free extracts from a variety of
plant tissues [114–122]. In addition, partially purified enzyme pre-
parations were obtained and characterized from carrot roots [123] and
eggplant leaves [124]. These studies unveiled a complex scenario
concerning the properties of the enzymes involved in ASG biosynthesis
as well as the nature of the acyl-donors used by these enzymes. At
present, no genes encoding steryl glycoside acyltransferases have yet
been identified in any organism producing ASG, including animals,
algae, fungi and bacteria. Therefore, the understanding of plant ASG
biosynthesis has to wait until the identification and cloning of the genes
encoding the corresponding enzymes.

3.3. Genetic analysis of steryl glycoside function

The characterization of Arabidopsis T-DNA insertion mutants de-
fective in the UGT80A2 and UGT80B1 genes has provided interesting
clues about the role of steryl glycosides in plants. Arabidopsis mutants
ugt80A2, ugt80B1 and the ugt80A2,B1 double mutant are viable and
fertile [112,113]. However, the ugt80B1 mutant displays an array of
phenotypes that are particularly pronounced in the embryo and seed
[112]. The most remarkable feature of UGT80B1 defective plants is the
transparent testa phenotype and the reduction of seed size. Actually,
the mutation ugt80B1 was shown to be allelic to transparent testa 15
(tt15) [112]. In the ugt80A2,B1 double mutant background, the UG-
T80B1 deficiency is also associated to other seed related defects such as
small embryo size, defects in flavonoid deposition and loss of sub-
erization [112]. In contrast, UGT80A2 defective plants show a small
reduction of seed size but not the transparent testa phenotype. At the
seedling stage, ugt80A2 and ugt80B1 mutants show a reduced elonga-
tion of the root, a phenotype that is clearly enhanced in the ugt80A2,B1
double mutant [112]. The ugt80A2,B1 double mutant is also affected in
pollen coat maturation [95]. Neither the single ugt80A2 and ugt80B1
mutants nor the ugt80A2,B1 double mutant show differences with re-
spect to wild type plants in cold acclimation experiments [112].

The sterol analysis of UGT80A2 and UGT80B1 defective plants has
provided valuable information about the biological significance of the
functional redundancy of plant sterol glycosyltransferases. Leaf, stem
and inflorescence/silique samples show a strong reduction of the
SG + ASG contents in all the defective lines, although the largest effect
is found in the ugt80A2,B1 double mutant [112]. Unexpectedly, the FS
+ SE content was significantly increased in the inflorescence/silique
samples but not in leaves and stems, thus suggesting the operation of a
regulatory network in particular tissues affecting the homeostasis of
free and conjugated sterols. In all cases, sitosterol and campesterol were
the most abundant sterols found in the SG + ASG fraction [112]. Al-
together, these results indicate that UGT80A2 and UGT80B1 have a
similar contribution to the production of glycosylated sterols in vege-
tative and reproductive tissues. However, a more complex scenario was
revealed when sterol profiling was focused on seeds [113]. It was found
that the total SG content was strongly reduced in the seeds of ugt80A2
and ugt80A2,B1 plants but not in ugt80B1 plants, thus suggesting a
major role of UGT80A2 in the synthesis of SGs in seeds. Surprisingly,
ASG levels were not significantly affected in the seeds of ugt80A2 and
ugt80B1 plants but were decreased in the ugt80A2,B1 double mutant.
These results unveil an unexpected combined role of UGT80A2 and
UGT80B1 in the biosynthesis of ASGs, at least in seeds.

A detailed analysis of the sterol composition of SG and ASG fractions
of seeds from ugt80A2 and ugt80B1 mutants, together with the
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biochemical characterization of the recombinant UGT80A2 and
UGT80B1 proteins, uncovered differences in the substrate specificity of
these enzymes towards the major plant sterols [113]. Thus, whereas
UGT80A2 activity seems to account for most of the β-sitosteryl and
stigmasteryl glycoside production in seeds, UGT80B1 preferentially
forms brassicasteryl esters. These differences in substrate specificity
have been related with the fact that UGT80A2 represents the more
ancient UGT80 enzyme in plants, whereas UGT80B1 may have arisen
during the evolution of vascular plants to play a more specialized role
in the synthesis of SGs [113].

It is surprising that the phenotypes observed in the seeds of the
ugt80B1 mutant occur in the absence of significant changes in SG and
ASG levels [113]. Thus it is likely that the seed phenotypes associated
to UGT80B1 deficiency may derive from minor changes affecting the
composition of SG and/or ASG rather than the overall ratios of SG and/
or ASG in the total sterol fraction. Since SG and ASG are components of
lipid rafts it is likely that alterations in the sterol profile of the PM could
modify its function in specific cell types. Alternatively, UGT80B1 could
be implicated in the synthesis of an as yet unidentified sterol glycoside
relevant for seed development.

It is worth noting that the ugt80A2,B1 double mutant has residual
levels of SG and ASG [112,113,125]. This suggests the presence of
additional enzymes involved in the synthesis of glycosylated sterols in
Arabidopsis. Such enzyme activity could be provided, at least in part,
by glucosylceramide synthase, which has been shown to glycosylate
sterols in vitro [107]. The characterization of Arabidopsis mutants de-
fective in At2g19880, the only gene encoding glucosylceramide syn-
thase in Arabidopsis, has revealed an essential role for this enzyme in
cell-type differentiation and organogenesis [126]. The fact that
At2g19880 null mutants show seedling lethality makes difficult to
evaluate the hypothetical contribution of glucosylceramide synthase in
the synthesis of steryl glycosides in vivo. The existence of other enzymes
having sterol glycosyltransferase activity cannot be ruled out.

4. Conjugated sterols and plant stress responses

As indicated in Section 3.1, changes in the relative composition of
sterols in cell membranes affect their biophysical properties and hence
their biological functions. Because of this, it has been assumed that
sterols play a prominent role in plant stress responses. Concerning
conjugated sterols, there are many reports correlating changes in their
profile with specific responses to different types of stress
[69,105,127–141]. However, the biological basis underlying the role of
conjugated sterols in plant stress is just starting to be uncovered.

The biochemical characterization of the Arabidopsis chilling-sensi-
tive mutant chs1 correlated this phenotype to an increase in SE levels
[129]. However, it could not be established whether the increase in SE
levels was a direct consequence of the chs1 mutation or a secondary
response associated to chilling injury. It has recently been reported that
the chs1 mutant is affected in the CHS1 gene (At1g17610), which en-
codes a TIR-NB type protein that induces different defense responses
under chilling stress [142]. It has also recently been described that
impaired SE synthesis in Arabidopsis is associated with the resistance to
Phytophtora infestans [69]. However, the fact that the decrease in the SE
levels, derived from a loss of function of PSAT1, is associated to un-
expected overall changes in glycosylated sterol levels (increase of SGs
and decrease of ASGs) does not allow to conclude whether the re-
sistance phenotype is due to a decrease in SE levels or to changes in the
glycosylated sterol levels.

With regard to glycosylated sterols, different reports have shown the
induction of genes encoding sterol glycosyltransferases in W. somnifera
and cotton in response to high and low temperatures [104,105,110].
The differential expression of sterol glycosyltransferase isoforms in W.
somnifera suggested their specific functional recruitment in response to
particular environmental challenges [110]. Furthermore, the rapid in-
crease in the transcript level of some members of the sterol

glycosyltransferase gene family in response to MeJA or SA treatments
has led to propose their role in both biotic and abiotic stresses [110].

The role of SGs in stress responses has been further established using
forward- and reverse-genetic approaches in different plant species. In
Arabidopsis it has been reported that a T-DNA insertion mutant de-
fective in the UGT80B1 gene shows increased sensitivity to cold and
heat stress [143]. Furthermore, transgenic Arabidopsis plants over-
expressing WsSGTL1, a sterol glycosyltransferase from W. somnifera
[109], show increased salt, heat and cold tolerance [144]. Salt stress
tolerance was also observed in transgenic tobacco plants overexpressing
WsSGTL1 [145], while the overexpression of this gene in W. somnifera
led to enhanced tolerance to cold [146]. In both cases, the plants
overexpressing WsSGTL1 also presented enhanced resistance against
the insect Spodoptera litura [146]. It has also been reported that down-
regulation of sterol glycosyltransferase in W. somnifera results in in-
creased susceptibility to the fungal pathogen Alternaria alternate [147]
and heat stress [148]. However, it is possible that the changes in biotic
stress tolerance reported in W. somnifera could be due not only to
changes in SG and ASG levels but rather to changes in the level of
whitanosides, a type of glycosylated sterol-related secondary metabo-
lite present in this plant species [146,147].

5. Hydrolysis of conjugated sterols

Sterol homeostasis in eukaryotic cells relies on the availability of
enzymatic systems catalyzing the interconversion of free and con-
jugated sterols. This is well documented in S. cerevisiae where sterol
homeostasis is achieved through the operation of a complex regulatory
network involving the sterol acyltransferases ARE1 and ARE2 acting in
concert with the steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p [149].
At present, little is known about SE hydrolases in plants. SE hydrolase
(esterase) activity has been measured in microsomal fractions of to-
bacco plants [63] and the enzyme has been partially purified from roots
of S. alba [150]. However, no genes encoding SE esterases have yet
been identified in plants. Searches of plant genome databases using
yeast SE hydrolases Yeh1p, Yeh2p and Tgl1p as a bait retrieve proteins
with significant similarity to the yeast enzymes, thus suggesting the
existence of genes encoding similar enzymes in plants (Fig. 4).

Glycosidase activities able to hydrolyze SGs have been reported in
plants (Fig. 4). A membrane bound steryl β-glycoside hydrolase was
purified from S. alba seedlings by Kalinowska and Wojciechowski
[151]. This enzyme activity was later shown to be enhanced by zwit-
terionic phospholipids (such as phosphatidyl choline and phosphatidyl
ethanolamine), suggesting that steryl β-D-glycoside hydrolase activity
may be influenced by the membrane lipid environment [152]. Genes
encoding steryl β-glucoside hydrolases have recently been identified in
the yeasts Cryptococcus neoformans and Saccharomyces cerevisiae
[153,154]. However, in contrast to SE hydrolases, no orthologs of the S.
cerevisiae EGH1 gene (encoding ergosteryl-β-glucosidase Egh1) seem to
be present in plant genomes.

To the best of our knowledge no hydrolase activities (either es-
terases or glycosidases) acting on ASGs have yet been reported in plants
(Fig. 4). However, it has been shown that mammalian digestive en-
zymes such as cholesteryl ester hydrolase (also known as lysosomal acid
lipase) and pancreatin (a mixture of pancreatic enzymes) are able to
hydrolyze the fatty acyl moiety of ASGs [155]. No hydrolase activity
acting on SGs was detected in these enzyme preparations. Interestingly,
the gene encoding mammalian cholesteryl ester hydrolase (LIPA) is
conserved in many eukaryotic organisms, including plants. Thus, it is
likely that the plant orthologs of the mammalian LIPA gene could en-
code enzymes involved in ASGs deacylation. The SGs formed from the
deacylation of ASGs could eventually be converted to FSs by the action
of SG glycosidases (Fig. 4).
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6. Conclusions and future directions

Conjugated sterols are ubiquitously present in plants and are known
to be involved in a variety of biological processes. However, the bio-
chemical, molecular and cellular bases underlying the role of con-
jugated sterols in plants have just started to emerge in recent years. The
cloning of genes encoding sterol acyltransferases and sterol glycosyl-
transferases in Arabidopsis has been a major achievement to identify
the nature of the enzymes involved in the biosynthesis of SEs and SGs
and allow their biochemical characterization. Furthermore, forward-
and reverse-genetic approaches targeting these genes in different plant
species has also provided new insights into the role of conjugated
sterols. However, current data support the existence of additional en-
zymes involved in the biosynthesis of SEs and SGs that remain to be
identified. In addition, no genes encoding enzymes participating in ASG
biosynthesis or implicated in the hydrolysis of conjugated sterols in
plants have yet been described. Therefore, the identification of the full
set of genes/enzymes participating in conjugated sterol metabolism in
model plant species represents a major milestone to undertake func-
tional genomics approaches to fully elucidate the role of conjugated
sterols in plants. Another challenging aspect is to define the subcellular
compartments involved in the metabolism of conjugated sterols and the
mechanisms involved in their intracellular trafficking during plant
growth and development and in response to environmental challenges.
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