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The exploration and full development of nanostructured drug 

delivery systems (DDS) is expected to increase the chemical 

stability of the payload therapeutics upon systemic 

administration and to expand circulation time. By enlarging the 

size of the whole drug conjugate  over ~5- 8 nm, but still within 

the submicron scale (up to ~500 nm), renal clearance and 

accumulation in lung are avoided while cell penetrability is 

preserved and often enhanced [1]. The need of nanoconjugates 

for drug delivery is especially well illustrated in the case of 

cancer therapies, in which the prescribed drugs are intrinsically 

cytotoxic. 

In non-targeted antitumoral drug delivery loaded nanoparticles 

tend to escape the blood stream because of the leaky 

angiogenic endothelium and the aberrant lymphatic drainage in 

tumoral tissues. This enhanced permeability and retention effect

(EPR) [2] is exploited as a way to promote the so-called ‘passive’

drug targeting in solid tumors. However, cancer chemotherapy 

has a low therapeutic index and promotes toxic effects that 

severely compromise patients’ life quality [3].  In this context, 

innovative cancer chemotherapies pursue cell-targeted drug 

delivery to enhance the effective drug concentration in tumor 

and metastatic foci while reducing drug doses, undesired side 

effects and fabrication costs. Targeted therapy could be 

achieved by functionalization of DDS, taking advantage of the 

overexpression of specific cell surface receptors in many cancer 

cells associated to the oncogenic process. In this context, the 

large surface/volume ratio of particulate nanomaterials offers 

opportunities for multiple chemical functionalization (Figure 1 A),

aimed to recruit appropriate and sufficient agents to overcome 

the relevant barriers encountered before reaching the target 
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tissue [4], among which the most important is the cell 

membrane itself.

Cell penetrating peptides, especially those activated by features 

of cancer cells’ environment, antibodies against cell-surface 

markers or tumor homing peptides (non-antibody ligands of the 

cell surface markers) are usually sufficient to reach good 

targeting and desired biodistribution of nanoconjugates. 

Endosomal escape and nuclear migration are additional 

functions that might be incorporated to DDS to enhance the 

therapeutic potential. Reporter agents such as quantum dots, 

fluorescent dyes or radioactive components confer additional 

values regarding theragnostic applications. The recruitment of 

these and additional functions in the drug complex is achieved 

upon chemical activation of the nanoparticle surface and its 

sequential functionalization [5] (Figure 1, i, ii, iii). The 

antitumoral drug is finally incorporated to the whole 

nanoconjugate (Figure 1, iv).  

4



Figure 1. Conceptual design and fabrication pipeline of 
DDS. Step-based production of conventional cell targeted DDSs 
(A) versus one-step production of protein-based nanoparticles 
for protein drug delivery upon complex upstream genetic design 
(B). i. Nanoparticles (blue spheres) can be fabricated with 
different suitable materials including metals, dendrimers, natural
and artificial polymers, carbon nanotubes, silica and others. ii. 
Before functionalization, chemical activation is performed by the
inclusion of reactive groups (green stars) to further anchor the 
bioactive molecules. Pegylation (brown layer) often minimizes 
unspecific protein adsorption of the material in complex media 
and reduces the formation of protein corona [5], which is able to 
abort the activity of surface-attached cell targeting agents [6]. 
iii. Cell surface targeting is usually achieved by the addition of 
protein ligands (red symbols), namely antibodies, antibody 
fragments, non-antibody protein ligands or other specific bio-
reactive molecules such as carbohydrates and aptamers. Other 
functional agents can be added here such as reporter molecules,
including fluorescent chemicals, radiolabels and MRI labels 
(yellow spheres) that might be useful in preclinical studies for 
theragnosis. Importantly, the chemistry of conjugation should 
desirably control the positioning of the targeting ligands to 
maximize their reactivity with cell surface receptors [5]. Nuclear 
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localization signals (NLS, dark green entities) would ensure the 
active drug being delivered into the nucleus when it is required 
for therapeutic impact. iv. The drug itself (blue ring) is generally 
incorporated in a last step, although in some cases (eg 
liposomal constructs), it would be present already during 
nanoparticle formation for encapsulation. v. Since all the 
functions described in previous steps (cell surface recognition, 
penetration, endosomal escape, nuclear migration, fluorescence 
emission and cytotoxicity) can be reached by proteins, protein-
based nanoparticles can be designed by conventional genetic 
engineering by recruiting functional domains from different 
origins (colored segments) at the upstream level. Self-
assembling domains can be also added to a single chain 
polypeptide that upon biological production, results in fully 
functional nanoparticles in which the building blocks contain the 
drug themselves. 

An alternative to the complex pipeline of heterogeneous DDS 

fabrication (Figure 1 A) is based on the protein nature of most of 

the functional agents used for cell targeting and intracellular 

trafficking, and also of many reporter fluorescent agents [7]. In 

addition, the drug itself might be a protein, since a wide set of 

cytotoxic peptides and proteins have been identified as active in

antitumoral therapies, including pro-apoptotic factors, 

disintegrins and protease or protein kinase inhibitors [3]. Many 

of them are toxins from pathogenic microorganisms or 

components of animal or plant venoms [8-10]. Protein fusion 

technologies allow combining targeting agents with cytotoxic 

moieties in single chain polypeptides, in a pharmacological trend

that is rapidly increasing [11].  A paradigm of such a drug (FDA-

approved) is denileukin diftitox (ONTAK®), in which interleukin-2

(IL-2) is fused to a Corynebacterium diphtheria toxin and 

targeted to IL-2 receptors displayed on the surface of leukemia 

and lymphoma cell types. This modular concept allows a single-

step production of the conjugate in recombinant microorganisms
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(Figure 1 B), taking advantage of the versatility, scalability and 

cost-effectiveness of biofabrication [12]. Although the 

recombinant production of proteins excludes those composed by

unnatural amino acids, the modular approach is offering 

intriguing roads in cancer nanomedicine by the generation of 

DDS based on single chain modular polypeptides. 

Over the mere production of plain polypepides, the incorporation

of self-assembling protein domains allow the generation of nano 

or micro-structured materials in which pre-defined structure and 

biological activities merge [13;14]. In this context, the 

fluorescent proteins IRFP and GFP have been recently 

engineered for a controlled self-assembly by either the addition 

of conveniently located cationic domains [15] or by the 

repositioning of inner barrel strands [16]. This approach 

generates protein-only recombinant nanoparticles with 

regulatable morphometric properties that if also containing cell-

targeting peptides, achieve all the expectations of DDS 

regarding biodistribution and targeting [17]. The generation of 

multifunctional protein-only nanoparticles not only mimic the 

recognition patterns and in vivo behaviour of natural infectious 

viruses [18] but it also provides opportunities for an ‘a la carte’ 

functional recruitment of selected peptides and protein domains 

in tailored, chemically homogenous DDS. 

The appropriate functional combination and refinement of self-

assembling, cell-targeting and cytotoxicity in protein-only 

nanoparticles should result in a new category of antitumoral 

drugs suitable to be easily designed and produced by simple, 

one step recombinant technologies (Figure 1, v). Protein-only 

DDS are then an appealing alternative to conventional drug 

nanoconjugates not only regarding they intrinsically higher 
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biocompatibility but also in the context of avoiding sequential, 

biologically unfriendly and chemically complex functionalization 

processes. 
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