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Abstract: Wearable electronics are gaining widespread use as enabling technologies, 

monitoring human physical activity and behavior as part of connected health infrastructures. 

Attention to human factors and comfort of these devices can greatly positively influence user 
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experience, with a subsequently higher likelihood of user acceptance and lower levels of 

device rejection. Here, we employ a human factors and comfort assessment methodology 

grounded in the principles of human-centered design to influence and enhance the design of 

an instrumented insole. A use case was developed and interrogated by stakeholders, experts, 

and end users, capturing the context of use and user characteristics for the instrumented 

insole. This use case informed all stages of the design process through two full design cycles, 

leading to the development of an initial version 1 and a later version 2 prototype. Each 

version of the prototype was subjected to an expert human factors inspection and controlled 

comfort assessment using human volunteers. Structured feedback from the first cycle of 

testing was the driver of design changes implemented in the version 2 prototype. This 

prototype was found to have significantly improved human factors and comfort 

characteristics over the first version of the prototype. Expert inspection found that many of 

the original problems in the first prototype had been resolved in the second prototype. 

Furthermore, a comfort assessment of this prototype with a group of young healthy adults 

showed it to be indistinguishable from their normal footwear. This study demonstrates the 

power and effectiveness of human factors and comfort assessment methodologies in 

influencing and improving the design of wearable devices. 

Keywords: instrumented insole; gait analysis; comfort; human factors; human centered 

design; mHealth; eHealth; connected health; wearable electronics; older adult 

 

1. Introduction 

Instrumented footwear can refer to any custom-made insole or foot-wear which incorporates 

electronic circuitry used to capture measurements such as physical activity, push-off, and contact forces, 

gait data, or health metrics [1,2]. An important consideration in the design of any kind of wearable device 

such as an instrumented insole is its comfort and human factors. Devices and systems used in healthcare 

settings, particularly those used in an unsupervised context, require high standards of comfort and human 

factors to facilitate technology acceptance, reduce gadget intolerance, and enhance the user experience, 

as well as to ensure the safety and comfort of the user. Recently, both the Food and Drug Administration 

(FDA) and the Agency for Healthcare Research and Quality have called for human factors evaluation of 

medical devices and systems during the design process [3,4] while knowledge of the user and their 

capabilities and characteristics has been highlighted as an important consideration within the design 

process [5]. 

It has been previously established that any improvement in subjective user scores on aspects of user 

experience of a device including ease of use, comfort, and cosmetic appearance, saw a proportional 

increase in the frequency of use of the prescribed device [6,7]. From these findings we can infer that 

comfort and human factors are key elements influencing the usability of prescribed footwear and that 

accurate comfort assessment is a critical activity within the design and testing process. Additionally, it 

has been established that the specific design, materials utilized and construction of footwear devices 

greatly influence their comfort [8]. 
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Previous studies have sought to find objective and reliable measures of comfort for footwear and 

insoles, highlighting the subjective nature of comfort rating [9–11]. Recognizing these difficulties, we 

propose a systematic comfort and human factors assessment approach grounded in the principles of 

human-centered design [12] to influence the design of an instrumented insole. Our approach seeks to 

involve stakeholders, experts, and human users. This approach allows the application of simple, yet 

robust, comfort testing techniques within a cyclical process to mitigate possible problems before the 

device is exposed to potentially high-risk user groups, such as older adults with chronic conditions. 

The WIISEL System 

The Wireless Insole for Independent and Safe Elderly Living (WIISEL) system, developed as part of 

an FP7 project, is designed to continuously assess fall risk by measuring various gait and balance 

parameters associated with fall risk. The system is also designed to detect falls. The system consists of 

a pair of instrumented insoles and an associated smartphone which are both worn by the user. The insoles 

are inserted into the user’s shoes and worn on a continuous basis throughout the day. Data collected by 

embedded sensors in the insoles are sent to the smartphone, where they are then uploaded to a server in 

a clinic for processing and analysis. At this point the data can be presented in various ways to a specialist 

via a web app and desktop-based gait analysis tool. The overall architecture of the system is illustrated 

in Figure 1. 

 

Figure 1. The WIISEL system architecture. 

The system was designed to be worn by a user throughout their waking hours in order to identify 

specific gait patterns that may be contributing to a user’s fall risk. The system was targeted at older 

adults who represent a high-risk group for falls. 
  



J. Pers. Med. 2015, 5 490 

 

 

2. Methodology 

Our methodology was designed using the principles of human-centered design with direct 

contributions from experts, stakeholders, and human volunteers. The process was designed to be iterative 

and consisted of three phases. 

2.1. Process Phases 

2.1.1. Phase 1: Establish Context of Use and User Characteristics 

In this phase a Use Case was constructed with input from all stakeholders. Constructing a use case is 

a commonly used method to capture user requirements and user preferences [13–15]. It normally consists 

of simple Universal Modeling Language (UML) diagrams. Our use case was an interactive, scenario and 

task-driven, descriptive document which provided a common platform for project stakeholders to 

communicate their vision for the insole’s role within the overall WIISEL system and the interactions it 

would have with the various system actors. The use case was used as a point of reference throughout 

this study and the wider WIISEL project to provide all stakeholders and analysts with the device’s 

context of use, and user characteristics. 

2.1.2. Phase 2: Expert Human Factors and Comfort Inspection of Prototype 

Human factors inspection involves a multi-disciplinary expert group inspecting the device and 

attempting to identify human factors problems [16,17]. Human factors inspection is commonly used as 

a precursor to user testing. By identifying problems during the inspection process, it acts as a means to 

avoid subjecting users to testing devices which may be unsafe even for short periods of testing [18,19]. 

Our human factors inspection process consisted of individual experts inspecting the latest device 

prototype in a structured manner, attempting to identify potential comfort problems, using the use case 

as a reference. 

2.1.3. Phase 3: Human Volunteer Testing 

Human testing involves monitoring volunteers while they wear the device and recording and 

documenting any problems the volunteer encounters [20,21]. Our human volunteer testing was informed by 

the recommendations from the experts during the inspections carried out in Phase 2. The full 

methodology utilized is illustrated in Figure 2. The methodology was designed to be cyclical, where 

decisions are made at different gating points of the process on whether to continue to the next phase of 

the process or to iterate the current phase. Most critically, expert consensus is used at the end of Phase 2 

to decide whether or not a prototype is suitable to continue for human volunteer testing. If it is deemed 

not suitable for human volunteer testing, then suggestions are offered on how to improve the prototype 

to better meet comfort and human factors requirements. For human volunteer testing we sought to 

establish whether there was a statistically significance difference between a “normal” control footwear 

condition (the user wearing their typical footwear without the WIISEL insole) and the condition where 

the user was wearing the insole. 
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Figure 2. Iterative human factors and comfort assessment methodology. 

2.2. Use Case Development 

The use case is a document designed to provide the context of use for the proposed device and to 

build a profile of a typical end user. The developed use case described in detail the scenarios in which 

the insole is prescribed and then used by an older adult in their daily life. The document was presented 

in a storyboard format and included illustrations, images, and functional information about how the user 

interacts with the insole (Figure 3). The use case was directly informed by contributions from the 

different stakeholders and was developed using an iterative process. In response to the completed and 

agreed use case, the first prototype insoles were built. 

Criteria Required to Proceed to Prototype Construction 

All project stakeholders must agree that: 

(a) The use case represented the correct context of use for the proposed the device/system. 

(b) The use case presented an appropriate description of the target users of the system. 
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(a) 
 

(b) 

(c) 
 

(d) 

Figure 3. Screenshots of the WIISEL insole use case describing: (a) the different actors who would be interacting with the system; (b) the 

possible physical limitations of the target users; (c) how the user might interact with the insole in an outdoor setting; and (d) how the user might 

interact with the insole throughout the day.  
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2.3. Prototype Construction and Electrical and Environmental Test 

The WIISEL insoles consisted of a number of electronic components, which were encapsulated in the 

insole. Components included 14 pressure sensors, two inertial sensors, a microcontroller, a battery, an 

antenna and a charging coil. For the first prototype, the pressure sensors, integrated in a Kapton layer, 

were encapsulated by 1 mm of polyurethane (Figure 4a). This encapsulated Kapton layer was then 

connected to the PCB layer (Figure 4b) and these combined layers were then covered by a top leather 

layer and a bottom EVA foam layer (Figure 4c). 

  

(a) (b) 

(c) 

Figure 4. (a) 1mm polyurethane sensor layer; (b) PCB layer; and (c) top layer (black 

artificial leather) and bottom layer (Brown EVA Foam). 

Criteria Required to Proceed to Human Factors and Comfort Inspection 

Before being made available for human factors and usability testing, the prototypes were subject to 

numerous electrical and environmental assessments such as water ingress, electrical leakage/safety, 

sensor sensitivity and durability. Prototypes were only made available for usability and human factors 

analysis after designers were satisfied with their functional integrity. 

2.4. Human Factors and Comfort Inspection of Prototype 

A cognitive walkthrough protocol is a popular approach to human factors inspection and involves  

the inspectors carrying out an analysis of the device in the context of how the user would interact with 

it [22,23]. The inspection methodology was split into three parts: 
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(a) Establishing device characteristics, user profile, context of use through an analysis of the use 

case document 

(b) Inspection of the device and problem identification 

(c) Problem severity score and final recommendation 

Six experts were recruited to carry out the inspection and all followed our defined methodology; their 

occupation and specialties are listed in Table 1. 

Table 1. Description of each of the experts who were recruited to carry out human factors 

and comfort inspection of the insole. 

Expert Occupation Relevant Expertise 

1 Physiotherapist Physiotherapist and clinical rehabilitation specialist at a primary care clinic 

2 Professor of Podiatry 
Professor of Podiatry and Head of the Discipline of Podiatry. This Expert has a 

specialist research interest in tissue viability and diabetic foot disease 

3 Podiatry Researcher Expert in Fall Risk and Diabetes in the Older Adult population 

4 Clinical Podiatrist 
Vast experience with biomechanical issues, orthotic prescription and insole 

design 

5 
Occupational 

Therapist 

Experience working with community dwelling older adults and research interests 

in Fall Risk 

6 Podiatry Researcher Specialist in Foot Biomechanics and Arthritis 

Human factors and comfort inspection sessions were carried out using a one-to-one format with the 

researcher. The expert was presented with the latest version of the WIISEL insole use case. Having 

established in what context the device would be used and who would be using it from the use case, the 

expert was formally asked whether they understood (a) the context in which the device would be used 

(context of use) and (b) the nature of the target end user (user characteristics). At this point the expert 

could ask for further clarification on the context of use or on the user characteristics, at which point the 

researcher who had an intimate knowledge of the system and the potential users would provide the 

required information. 

The insoles were then shown to the experts and a cognitive walkthrough methodology [24] was 

employed to evaluate the quality, safety and ergonomics of the insoles. The expert studied the insoles in 

relation to the context of use described in the use case and was encouraged to think aloud and to explicitly 

identify problems as they examined the device [16]. Experts were made aware of how the insole was 

constructed and what materials were used. If any problems were identified by the expert, these were 

described in the expert’s own words. The full list of problems were then listed and read back to the expert 

by the researcher. The expert had an opportunity to then combine related problems into single problem 

statements or remove problems that they felt in retrospect were not critical enough to be listed. The 

expert then applied a severity score to each problem based on Nielsen ratings [21,24]. Severity scores 

ran on a scale of 0–4. Table 2 lists what each score means in usability terms and its potential implications 

for users. 
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Table 2. Severity Scores. 

Score Classified as Implications for Future Design 

0 
Not a Usability 

Problem 
Something to consider for future design iterations but will not affect general use 

1 Cosmetic Problem 
Need only be fixed if time, resources available. Problem should not affect the 

majority of users 

2 Minor Problem Low priority fix, problem will affect some users 

3 Major Problem 
Important to fix, high priority, fix as soon as possible, problem will affect 

majority of users 

4 Catastrophic Problem 
Must be fixed before product is tested with end users, problem will affect all 

users 

All problems identified during the inspections were rank ordered in terms of how many experts 

identified the problem and the corresponding severity score. These two metrics were used to apply a 

severity rating to each problem identified. These, and other similar weighting systems, are commonly 

used to prioritize which problems are most important to fix [25]. The severity rating is defined as the 

number of times a problem was identified multiplied by the mean severity score. The maximum possible 

severity rating in this study for a particular identified problem was 24 (all experts identifying a problem 

and assigning it a severity score of 4). With this number, the problems could be prioritized and the 

priorities are defined in Table 3. 

Table 3. Showing how total severity ratings are used to categorize problems based on priority. 

Total Rating Usability Implications 

1–6 
Cosmetic Problem; Should be fixed only if resources time are available, these problems should not 

affect the majority of users. 

7–12 
Low Priority Fix; Will cause problems for some users and should be addressed as soon as resources 

are available. 

13–18 
High Priority Fix; Will affect many users and lead to severe reduction in user acceptance, should be 

fixed as soon as possible. 

19–24 
Usability Catastrophe; Will affect all users and may cause danger, development should be halted until 

problem is fixed. 

Finally the expert made a recommendation based on their inspection using a simple questionnaire, 

summarized in Table 4. 

Table 4. Simple questionnaire for experts to provide recommendations for the user testing phase. 

This device is 

suitable for user 

testing with the 

following user 

groups >> 

Young Healthy Users 
And can 

be worn 

for a 

period of 

Please specify the maximum period of 

exposure you would recommend this 

device could be worn safely by each of 

the user groups: 

Healthy Older Adults with no Fall Risk 

Older Adults with Fall Risk 

No User Groups  

Criteria Required to Proceed to Human Volunteer Testing 

Proceed to human volunteer testing if: 
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(a) There are no problems identified which receive a severity rating corresponding to a human factors 

catastrophe (See Table 3), or 

(b) The majority of experts reached a consensus on whether older adults should be tested with the 

insoles or not. If the majority of experts (>3) selected, “No User Group” then it was deemed that 

the device must re-designed prior to human testing. 

2.5. Human Volunteer Testing 

In comfort assessment, it is considered best practice, to have a control condition or baseline 

measurement such that all experimental conditions assessed can be compared to the baseline 

measurement [10]. To provide a controlled observation of comfort of the prototype insoles, 10 participants 

were recruited for four sessions of comfort assessment over four consecutive days. The participants 

provided written informed consent and presented themselves at the Human Performance and 

Locomotion Laboratory in NUI Galway. Ethical approval for testing was granted by the NUI Galway 

Research Ethics Committee. Participants were screened to ensure exact fit with the insole and were 

excluded if they had a previous lower limb surgery, currently had an injury, or used an orthotic device. 

The itinerary for the four days of testing is outlined in Table 5. Before testing, participants were instructed 

to attend the lab in their most comfortable “typical daily walking” footwear (sandals, flip-flops, clogs, boots, 

heeled shoes, or open shoes were excluded) and to wear these for all four days of testing. 

Table 5. Outline of activities carried out by users during user testing. 

Day and Condition Activity Activity Time (h) 

Day 1 (Normal Footwear without instrumented insoles) 
Outdoor Walking 1 

Treadmill 2 

Day 2 (Normal Footwear with instrumented insoles) Outdoor Walking 1 

Day 3 (Normal Footwear with instrumented insoles) 
Outdoor Walking 1 

Treadmill 1 

Day 4 (Normal Footwear with instrumented insoles) 
Outdoor Walking 1 

Treadmill 2 

Outdoor walking consisted of walking on paved roads around the city of Galway and around the NUI 

Galway campus. All participants walked the same route. Participants filled out visual analogue scales 

(VAS) at certain points during the testing. This is illustrated in Figure 5. 

 

Figure 5. Procedure for testing insole comfort with young healthy volunteers. 
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VAS has been shown to be a reliable method for capturing personal comfort levels. Studies comparing 

the use of different types of VAS have shown that the sensitivity and reliability of VAS are somewhat 

influenced by the words used to anchor the endpoints, by the length of the VAS, and by other factors. 

Those VAS scores that most clearly delineate extremes (e.g., the best condition imaginable, the worst 

condition) and are 100–150 mm in length have been shown to have the greatest sensitivity and are the 

least vulnerable to distortions or biases in ratings [26]. Participants were all given the same written and 

verbal instructions about how to fill out an anchored continuous 100 mm visual analogue scale (VAS) 

with the left end labeled “Very Uncomfortable” and the right-side labeled “Very Comfortable” [10,11]. 

The questionnaire to be filled out at each stage of testing contained eight separate VAS querying the 

overall comfort of each foot as well as the comfort of specific part of each foot: the heel, midfoot, and 

forefoot areas of each insole. An example of the scales presented to participants is shown in Figure 6. 

After each activity, the participants, as well as providing the VAS scores, also provided qualitative 

feedback on what aspects of the insoles they found comfortable or uncomfortable. 

Criteria Required to Pass Human Factors and Comfort Assessment 

Comparison of mean VAS scores for all users between the baseline condition (normal footwear with 

no WIISEL insoles) and the insole condition (wearing the WIISEL insole in normal footwear) should 

show no statistically significant difference when comparing similar time periods of wear for each 

condition, if the insole is not affecting comfort. Statistical significance was demonstrated using paired t-

tests (α = 0.05) [11]. 

 

Figure 6. Example of the visual analogue scales used during user testing. Participants 

marked with an X or a vertical line along the scale where they perceived their current level 

of comfort. 
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3. Results of First Prototype (V1 Prototype) Test Cycle 

The results of the human factors and comfort inspection and the subsequent human volunteer testing 

for the V1 prototype of the insoles are presented in this section. 

3.1. Human Factors and Comfort Inspection 

From reading the use case, all experts agreed that they understood the context of use and the user 

characteristics, which the device was designed for. The problems in order of priority based on the 

problem severity rating are presented in Table 6 and visual descriptions of selected problems are shown 

in Figure 7. The explicit description was based on the general consensus of the experts. 

Table 6. Problems ordered in terms of a weighted aggregate of frequency reported and 

severity rating).  

Problem 

Number 
Problem Identified 

Number of Experts 

Who Reported  

Same Problem 

(Range 1–6) 

Severity  

Score Mean  

(Range 0–4) 

Problem  

Severity Rating 

(Range 0–24) 

1 

The medial-longitudinal arch is too firm (the 

firmness of the insole in general was cited as a 

problem but the medio-longitudinal arch was cited 

as the most critical) 

6 2.85 17 

2 
Lack of flexibility in the midfoot to rear foot 

region 
4 3 12 

3 Sensors are not flush with the surface of the insole 2 3.5 7 

4 Length and thickness for manipulation and fitting 3 2.3 7 

5 
Pinch ridge around the outside of the insole 

causing problems for lateral movement and fit 
3 2 6 

6 Lack of a proper heel cup 2 2.5 5 

7 Forefoot rigidity 1 3 3 

8 Slippery surface 2 1.5 3 
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(a) (b) 

 

(c) (d) 

Figure 7. An expert (a) demonstrating how the firmness of the medio-longitudinal arch could cause discomfort for a user; (b) demonstrating the 

lack of flexibility in the heel-mid-foot region; (c) pointing to the protruding sensors at the heel of the insole; and (d) explaining how fitting 

problems might occur and where he would consider a normal cut-off for more universal fit insoles. 
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3.2. Expert Recommendations 

All experts agreed that the insoles could be tested on young healthy users. Only half of the experts 

agreed that they could be tested on older adult users. One expert suggested that they could be tested on 

older adults with a high fall risk. These recommendations are summarized in Table 7. 

Table 7. Expert recommendations for what groups can be exposed to user testing. 

 
Young Healthy 

User (under 60) 
Healthy Older Adult 

User (over 60) 
Older Adult User 

with High Fall Risk 

Percentage of Experts who 
Approved Use with this 

Group 
100% 50% 16% 

All experts also agreed that the manner of exposure to the insoles should be extremely controlled with 

close observation. A common suggestion was to allow the user to wear the insole for one hour on the 

first day, and then add an hour of use for every day after until eventually the insole could be worn on a 

continuous basis after a period of 1–2 weeks. These points are reflected in a range of comments made 

by experts during the human factors and comfort inspection sessions:  

“For any kind of device (referring to customized orthotic insoles) we would introduce to the 

shoe in the clinic, we would ask the patient to wear for 10 min to assess the comfort and then 

build up to full-time wear within two weeks. Typically, clinicians allow patients a  

break-in period of about two weeks during or after which orthotics/devices may be modified 

or withdrawn altogether.” 

“When somebody puts something into their shoe, it’s going to take time to get used to it, so 

usually you break into it, maybe for an hour a day. There has to be a lead-in period where 

wear is built up. If a user suffers pain when they first introduce something to their shoe they 

are unlikely to continue wearing it.” 

3.3. Human Volunteer Testing 

Ten participants (seven male, three female) carried out the full protocol (mean age = 23 ± 4.2 years, 

mean body mass = 72 ± 7.3 kg, mean height 179 ± 9.3 cm). VAS scores were collected, collated, and 

compared between the Control Condition (Day 1, 3 h of walking with no insole fitted) and the Insole 

Condition (Day 4, 3 h of walking with insole fitted). In clinical terms, a difference in VAS scores of 

greater than or equal to 9.6 mm for the two conditions indicates a clinically-meaningful change in 

comfort level [11]. Table 8 shows the change in VAS score. The VAS scores obtained for the left and 

right insoles were averaged. In addition, paired t-tests were carried out to test for statistical significance 

between the VAS scores for overall foot, the heel, the mid-foot and the forefoot comfort (α = 0.05).  
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Table 8. Comparison of mean (x̄) and standard deviation (σ) VAS scores for the control 

condition and the insole condition. Paired t-tests were used to test for statistical significance 

between the same time points for each condition. 

Comfort 

Type 

Left and Right VAS 

Average Control Condition 
(After 3 h) 

Left and Right VAS 

Average Insole Condition 
(After 3 h) 

Difference

Clinically Meaningful 

Difference According to 

Mills et al.[11] 

p-Value 

x̄ σ x̄ σ 

Overall 

Comfort 
79.5 8.3 60.5 10.9 19 Yes 0.0002 

Heel 

Comfort 
76 9.2 59.5 6.6 16.5 Yes 0.0002 

Midfoot 

Comfort 
83.5 4.5 53.5 5.9 30 Yes 0.0001 

Forefoot 

Comfort 
87.5 4.6 73 6.1 14.5 Yes 0.0002 

4. Changes to the Insoles Based on Results 

Based on these findings, a human factors and comfort report was generated and disseminated to the 

insole designers, to provide them with the opportunity to address each problem the experts had identified 

in addition to the testimony from the experts and the data from the human volunteer testing. The report 

included high definition photographs of the identified problems and suggestions from experts as to how 

to address each identified problem (See Figure 7 for examples). Insole designers attempted to address each 

problem in turn based on priority. The experts who inspected the insoles were aware of the electronic 

circuitry, which was contained in the insoles and therefore took this into account when making 

recommendations, so as not to propose unattainable objectives for designers, who were seeking to not 

affect the durability and integrity of the insole. 

Table 9 summarizes the expert recommendations and the proposed design solutions. The changes 

outlined in Table 9 allowed designers to make the insoles both thinner (by at least 1 mm) and narrower 

(at least 3 mm) allowing them to fit in a wider range of shoes and reduce tightness for the wearer. Figure 

8a shows the new thinner, more flexible sensor layer using the material Kapton, Figure 8b shows the 

bottom layer (EVA) and top layer (EVA) respectively. 

(a) (b) 

Figure 8. (a) The clear polyurethane layer was removed from the sensor layer to improve 

the flexibility of the insoles and (b) the prototype bottom layer (EVA) and top layer  

(EVA) respectively. 



J. Pers. Med. 2015, 5 502 

 

 

Table 9. List of problems identified, recommendations for addressing them and how they 

were ultimately addressed. 

Problem 

Number 
Problem Identified 

Priority 

Category 
Expert Recommendations 

How was the Problem 

Addressed in New Version? 

1 

The medial-

longitudinal arch is 

too firm 

High 

Poron is a spongy shock absorbing material 

often used as a top cover for insoles, 

recommended that this or a similar spongy 

material such as EVA foam be used to 

alleviate the potential discomfort caused by 

the firm arch and by any other inconsistencies 

in the hardware layer of the insole 

Introduction of softer EVA 

top layer which provided 

more cushioning and shock 

absorption than the leather 

2 

Lack of flexibility  

in the midfoot to rear 

foot region 

Low 
Review the materials that make up the middle 

layers and consider more flexible materials 

Removal of the polyurethane 

encapsulation of the pressure 

sensors’ layer 

3 

Sensors are not flush 

with the surface of 

the insole 

Low 

Introduction of a softer top layer may negate 

the effect that protruding sensors have on the 

sole of the foot, Addressing of problem 1 may 

also solve this problem 

Because the EVA layer is 

looser fitting than the leather 

layer, there is less chance of 

the sensors sticking out on 

the surface 

4 

Length and thickness 

of the insole will 

cause problems for 

manipulation and 

fitting 

Low 

The thickness of the insole needs to be 

reviewed as the current thickness was going to 

exclude too many types of shoes. Judging 

from the rigidity of the insoles it is clear that 

there users with dexterity problems will 

experience problems manipulating the insoles 

into certain types of shoes 

Insole was less rigid and >1 

mm thinner therefore 

manipulation into the shoe 

was easier 

5 

Pinch ridge around 

the outside of the 

insole causing 

problems for lateral 

movement and fit 

Cosmetic 

While it is clear that this exists due to nature 

of the encapsulation method being used, every 

effort should be made to reduce this so as to 

allow a better fit for the insole in the shoe. 

This ridge should be pared down to the 

minimum possible without affecting the 

integrity of the encapsulation 

New insole slightly narrower 

with a smaller pinch ridge.  

A smaller pinch ridge was 

required because there was 

no need to bond (pinch) the 

leather layer 

6 
Lack of a proper heel 

cup 
Cosmetic 

While this may not be possible given the 

nature of the electronics, this heel should either 

be softened or shaped in some way to 

accommodate the contours of the foot 

Unaddressed as introduction 

of Heel Cup would affect 

sensor output, the 

introduction of softer 

materials will afford more 

comfort for heel 

7 Forefoot Rigidity Cosmetic See Problem 2 recommendations 
Removal of polyurethane 

encapsulation material 

8 Slippery Surface Cosmetic 

The introduction of Poron/EVA will prevent 

slippage. This population is susceptible to 

sores and irritation on the feet and any kind of 

movement of the foot against the insole was 

not recommended 

EVA top layer has more grip 

and did not create a slippery 

interface with the foot 
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Like the first version of the insole, this version was exposed to numerous electrical and environmental 

assessments before being released for human factors analysis, such as waterproofing, electrical 

leakage/safety, sensor sensitivity and durability. This new version of the insole was now exposed to a 

second cycle of testing using the same use case as a guide to the context of use. 

5. Results of Second Prototype (V2 Prototype) Test Cycle 

The results of the human factors and Comfort Inspection and the subsequent human volunteer testing 

for the V2 Prototype of the insoles are presented in this section. 

5.1. Human Factors and Comfort Inspection (V2 Prototype) 

The same six experts used to inspect the V1 prototype also inspected the new V2 prototype of the 

insole using the same methodology. For this inspection, the experts were presented with the new 

prototypes and the list of the problem areas they identified in the V1 prototype. They were not made 

aware that the current devices were updated in response to the problems they identified and the 

recommendations they made. Experts were also not told what severity score they had originally assigned 

to each problem area. They were asked to assign severity scores to each of the original problem areas 

based on their inspection of the new prototype. Table 10 shows how the problems areas identified with 

the V1 prototype were severity rated for the V2 prototype. 

Table 10. Problem severity ratings  

Problem  

Number 
How was the Problem Addressed? 

V1 Prototype 

Severity 

Ratings 

V2 Prototype 

Severity 

Ratings 

1 
Introduction of softer outer material, EVA layer which provides 

more cushioning and shock absorption than the leather 
17 6 

2 Removal of polyurethane layer and to increase flexibility 12 9 

3 
Because the EVA layer was not as tight as the leather layer, the 

sensors protruded less out on the surface 
7 4 

4 Insole was less rigid therefore manipulation into the shoe was easier 7 6 

5 

Insole was slightly thinner with a smaller pinch ridge. A smaller 

pinch ridge was required because there was no requirement to 

bond (pinch) the leather layer to the bottom EVA layer 

6 4 

6 

The issue was not addressed as the introduction of a Heel Cup 

would affect sensor output, however some experts reduced the 

severity score for this problem by virtue of the softer materials 

used which afford more cushioning for the heel 

5 4 

7 
Removal of polyurethane layer and introduction of middle EVA 

layer to increase flexibility 
3 1 

8 
EVA had more grip and does not create a slippery interface  

with the foot 
3 0 

Of the eight problems, one was reduced from high priority to cosmetic, two were reduced from low 

priority to cosmetic and one was eliminated completely as a problem. Four maintained their original 
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classification but received lower severity ratings. Experts were also asked to identify any new problems 

but no new problems were identified. 

5.2. Expert Recommendations 

Experts recommended carrying out the controlled protocol again with younger adults before moving 

onto further limited testing with older adults. 

5.3. Human Volunteer Testing (V2 Prototype) 

Ten participants (six male, four female) carried out the full protocol (mean age = 25 ± 9.3 years, mean 

body mass = 70 ± 7.2 kg, mean height 176 ± 4.6 cm). The same test and data analysis methodology was 

applied to the V2 prototype, comparing VAS scores for the Control Condition to VAS scores for the 

Insole Condition in order to establish if there was any significant comfort differences between the two 

conditions. Again we used Mills et al. [11] to check for clinical significance and paired t-tests to test for 

statistical significance. The results are summarized in Table 11. 

Table 11. Comparison of mean (x̄) and standard deviation (σ) for 3 h VAS scores for Control 

Condition and Insole Condition. Paired t-tests were used to test for statistical significance 

between the same time points for each condition. 

Comfort Type 

Left and Right VAS Average 

Control Condition (after 3 h) 

Left and Right VAS Average 

Insole Condition (after 3 h) Difference 

Clinically Meaningful 

Difference According 

to Mills et al. [11] 

p-Value 

x̄ σ x̄ σ 

Overall Comfort 81.5 11 77.5 8.4 4 No 0.39 

Heel Comfort 80 10.3 83.5 14.2 3.5 No 0.41 

Midfoot Comfort 82.5 13.33 72 12.7 10.5 Yes 0.14 

Forefoot Comfort 81 8.6 80 17.4 1 No 0.49 

6. Discussion 

Through the use of a human factors and comfort assessment methodology we have guided the design 

of an instrumented insole, which at end of this cycle of development was suitable for testing with the 

target older adult end-user population. By using robust human factors testing techniques within an 

iterative process starting with a use case, we set the parameters, which informed the development of the 

initial V1 prototype. By engaging early in the process with all stakeholders and experts, we defined the 

context of use and user characteristics. The outcome of this process, led to the development of the V1 

prototype, which was subsequently put through a rigorous comfort assessment. The comfort assessment 

revealed significant differences in the mean VAS scores recorded for the Control Condition and the 

Insole Condition. Expert-identified concerns expressed during the human factors and Comfort Inspection 

about the midfoot and heel region of the insoles were validated during the human volunteer testing phase. 

Participants complained about the firmness and rigidity of the insoles. The experts’ concerns presented 

in the human factors report highlighted, for the insole designers, the comfort and human factors problems 

present in the V1 prototype. It was made clear to designers that the current insole design rendered it 

unsuitable for testing with older adults. 
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The V2 Prototype saw the leather top layer change to EVA layer. Furthermore, the insoles overall 

dimensions were reduced due to the removal of a polyurethane layer, which also improved flexibility. 

These changes to design resulted in significantly improved problem severity ratings in the expert 

inspection phase, with all of the problem severity ratings of the originally identified problems being 

reduced and half of the original problems being downgraded to a lower priority problem category.  

The reduction in severity ratings from the V1 prototype to the V2 prototype, during the human factors 

and comfort inspection, corresponded with improved VAS scores in the human volunteer testing of the 

V2 prototype. There was no statistically significant difference observed between VAS scores for the 

Control Condition and the Insole Condition for each area of the insole and as well as overall for the V2 

prototype insole. In Figure 9 we compare VAS scores for the V1 prototype and the V2 prototype, as well 

as their respective controls. 

When we consider the question “Did we Meet or Exceed our Goal?” a commonly asked question 

during a human-centered design process [27], we can be confident based on the data presented in Figure 

9, that the latest version of the insole at a minimum has the same comfort characteristics of the user’s 

normal footwear. We feel that this was a realistic and valid goal to set [28]. However, due to the nature 

of the device and the safety advice received by the expert group, the device was not tested on the ultimate 

end-user for the technology, older adults. We consider this a limitation of the study. 

 

Figure 9. Comparison of VAS means after 3 h exposure to each condition. The first column 

shows the combined mean of both control conditions from the two human testing phases. 

The trade-off between providing a comfortable, wearable and safe insole against creating a functional, 

instrumented device was a challenge for the design team. The nature of the electronic components 

encapsulated within the insole can limit the flexibility, firmness, and dimensions of the insoles, while 

the use of certain materials could affect the sensitivity of the pressure sensors and the vulnerability of 

the electronic components to water damage. The trade-offs required, were made known to all 

stakeholders at an early stage of the project through the use case, thereby limiting the requirements for 

design changes further down the line. The experts who inspected the insole had an important role to play 
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in recommending design changes, based on their assessment of the prototypes. Therefore the choice of 

experts is an important one and can result in either, informed and accurate design recommendations or 

in recommendations that do not guide the appropriate development of the design. 

7. Conclusions 

The human factors and comfort assessment methodology we have designed and implemented based 

on the principles of human-centered design (ISO 9241-210), has resulted in an instrumented insole 

design, which is now deemed suitable for exposure to older adults for clinical evaluation. Following the 

human-centered design process, we established a clear context of use though a use case and adopted the 

use of multi-disciplinary skills and perspectives and followed an iterative evaluation-driven process [29]. 

We have applied appropriate testing techniques given the context of use of the device being assessed [30]. 

This approach resulted in improved human factors and comfort scores for the device prototypes as they 

evolved during the design process and, thus, resulted in a better design. 
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