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Abstract 21 

The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil 22 

underpin the risk assessment of contaminated land with these contaminants. Despite a 23 

significant volume of research conducted in the past few decades, comprehensive 24 

understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive 25 

soil parameters to explain variations in PAH bioavailability and bioaccessibility are still 26 

lacking. This review focuses on the role of source materials on bioavailability and 27 

bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors 28 

including contaminant concentration and mixture, soil composition and properties, as well 29 

as environmental factors. It also takes into consideration the implications of different types 30 

of risk assessment (ecological and human health) on bioavailability and bioaccessibility of 31 

PAHs in soil. We recommend that future research should (1) account for the effects of 32 

source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive 33 

methods to analyse soil components controlling PAH sequestration; (3) integrate both 34 

natural organic matter (NOM) and xenobiotic organic matter (XOM) in evaluation of the 35 

influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the 36 

dissimilar desorption scenarios in ecological risk assessment and human health risk 37 

assessment while assessing PAH bioavailability and bioaccessibility. 38 

 39 
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1. Introduction 42 

Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic 43 

contaminants (HOCs) that are ubiquitous in soils, persistent and impact on human and 44 

environmental health (Sims and Overcash, 1983; Mersch-Sundermann et al., 1992; Juhasz 45 

and Naidu, 2000; Semple et al., 2003; Duan et al., 2015b). They can be released to soils from 46 

a range of anthropogenic activities such as combustion of fossil fuels and biomass, coking, 47 

oil refining, wood preservation, and manufactured gas production (Ruby et al., 2016). Due 48 

to the widespread occurrences of both point and diffusive sources (Nam et al., 2008; Nam et 49 

al., 2009), large quantities of soils are contaminated by PAHs.  50 

The remediation of PAH-contaminated land starts with robust and quantitative risk 51 

assessments. Risk assessment nowadays has moved towards a bioavailability-based practice 52 

to account for the sequestration of organic contaminants in soils over time (i.e. ageing) 53 

which reduces their bioavailability and associated risks (Alexander, 2000; Semple et al., 2007; 54 

Duan et al., 2014; Duan et al., 2015b; Naidu et al., 2015). It is widely accepted that 55 

bioavailability and bioaccessibility of organic contaminants are determined by their sorption 56 

and desorption in soils which are controlled by abiotic factors including soil characteristics, 57 

physio-chemical properties of the contaminants, as well as environmental factors (Fig. 1) 58 

(Nam et al., 1998; Chung and Alexander, 2002; Ehlers and Loibner, 2006; Ruby et al., 2016). 59 

With increasing number of aromatic rings, PAHs demonstrate increasing hydrophobicity and 60 

lipophilicity. Toxicity of different PAH congeners also varies. In a majority of studies, 61 

representative PAHs such as phenanthrene, pyrene, and benzo(a)pyrene are targeted (Table 62 

2, 3) due to their abundance in PAH-contaminated soils or carcinogenicity. Behaviour or 63 

levels of PAHs could also be reported as a total of 16 US EPA listed PAHs or carcinogenic 64 

PAHs (Table 2, 3) Unlike organic contaminants such as pesticides and polychlorinated 65 



biphenyls (PCBs), which are intentionally produced and applied in the form of ‘pure’ 66 

chemicals, PAHs are generated unintentionally and are released to soil in a range of source 67 

materials (Duan et al., 2015b; Ruby et al., 2016). This results in significant challenges to the 68 

application of existing knowledge of bioavailability and bioaccessibility to PAH-contaminated 69 

soils, as source materials could significantly influence the behaviour of PAHs (Fig. 1) (Roberts 70 

et al., 2016; Ruby et al., 2016; Xia et al., 2016). 71 

To achieve reliable risk assessment of contaminated land with PAHs, the effects of 72 

source materials on their bioavailability and bioaccessibility must be accounted for (Fig. 1). 73 

Therefore, this review has a particular focus on the effects of PAH source materials, along 74 

with the influences of other abiotic factors, on bioavailability and bioaccessibility of soil 75 

PAHs. It aims to: (1) provide a summary of the interactions between PAHs and different 76 

types of source materials and (2) the influences of PAH concentration as well as co-77 

contaminants present in these materials on PAH behaviour; (3) evaluate current knowledge 78 

of the effects of soil composition/properties on PAH bioavailability and bioaccessibility; and 79 

(4) consider the implications of different types of risk assessment (ecological and human 80 

health) on current knowledge of factors controlling bioavailability and bioaccessibility. 81 

Based on this, the gaps in current knowledge are identified and the future direction of 82 

research is suggested. However, this article does not serve the purpose of a literature 83 

review that describes chemistry and processes of PAH-soil interactions in details, as such 84 

knowledge has been well documented in published papers. Instead, we emphasise on the 85 

discussion of aspects that are not well understood, such as effects of PAH source materials, 86 

and the evaluation of existing knowledge, such as the methodologies used to assess effects 87 

of soil composition and properties. Those readers interested in a review of chemistry of 88 



PAH-soil interactions are directed to (Luthy et al., 1997; Reid et al., 2000; Semple et al., 2003; 89 

Cornelissen et al., 2005; Naidu et al., 2008a; Wilson and Naidu, 2008; Duan et al., 2015b). 90 

 91 

 92 

Fig. 1. Abiotic factors controlling sorption and desorption of organic contaminants in soil and their 93 

bioavailability and bioaccessibility. For contaminants like PAHs, the effects of their source materials 94 

should be accounted for. All these abiotic factors assert their influences as a result of interactions 95 

rather than individually.  96 

2. A brief summary of approaches to identification and analysis of controlling factors 97 

Several variables can be manipulated to identify and evaluate the effects of 98 

particular factors on the bioavailability and bioaccessibility of organic contaminants in soil. 99 

To study the influences of soil properties, bulk soils with varying characteristics, soil 100 

fractions (e.g. humic fractions and particle size fractions), amended or modified soils, as well 101 

as model solids, could be selected (Fig. 2). To investigate the effects of concentration, 102 

contaminant mixture, and source materials, the selected soils or model solids could be 103 

spiked with a single or multiple contaminants delivered in volatile solvents or in certain 104 

source materials at a range of concentrations. In addition, samples of field-contaminated 105 

soils could also be used (Fig. 2). To investigate the effects of environmental factors, wet-dry 106 

and freeze-thaw cycles as well as different ageing time could be applied to ageing processes, 107 



while varying temperatures, pH, and soil-water ratios may be applied during desorption 108 

experiments (Fig. 2). 109 

Three streams of methods could be used to analyse contaminated soils or solids: 110 

equilibrium assays, kinetics assays, and bioavailability or bioaccessibility assays (Fig. 2). 111 

Equilibrium assays usually investigate sorption isotherms of organic contaminants in soils or 112 

solids that are often described by the Freundlich model, given by 113 

CS = KF × CW
n          (1) 114 

where KF is the Freundlich constant indicating affinity of the sorbent to solute, and n is a 115 

measure of sorption linearity (Schwarzenbach et al., 2005). Kinetic assays investigate the 116 

time-course changes in contaminant distribution between soil and aqueous phases during 117 

sorption or desorption. Many studies have employed two- or three-compartmental first-118 

order models to describe desorption of HOCs from soil or sediment: 119 

St/S0 = Frap × exp (-krap × t) + Fslow × exp (-kslow × t)          (2) 120 

St/S0 = Frap × exp (-krap × t) + Fslow × exp (-kslow × t) + Fvery slow × exp (-kvery slow × t)          (3) 121 

 122 

where S0 and St are the amount of sorbed contaminant at the start of desorption and at 123 

time t, while Frap, Fslow, Fvery slow are the rapidly, slowly and very slowly desorbing fractions, 124 

respectively. Rate constants are designated as krap, kslow, and kvery slow in accordance to Frap, 125 

Fslow, and Fvery slow. By comparing or correlating model parameters from equilibrium or kinetic 126 

assays (e.g. in equations 1, 2, and 3), or results from chemical or biological assays, the 127 

factors controlling PAH bioavailability and bioaccessibility can be analysed (Fig. 2). 128 



 129 

Fig. 2. A schematic of approaches to identification and analysis of the factors controlling sorption-130 

desorption processes and the bioavailability/bioaccessibility of organic contaminants in soils. 131 

3. Effects of PAH source materials 132 

As already noted, the effects of source materials should not be overlooked when 133 

considering the factors controlling bioavailability and bioaccessibility of PAHs in soil. Source 134 

materials are those carrying PAHs when they are released to the environment, which are 135 

products of either pyrogenic or petrogenic processes (Ruby et al., 2016). Most of these 136 

materials are either non-aqueous phase liquids (NAPLs), such as tar and oil, or solids, such as 137 

soot and char. A semi-solid state also exists as NAPLs age and solidify in soils, often 138 

designated as pitch in many studies (Table 1). Source materials contain a range of 139 

contaminants both organic and inorganic (Table 1), and are considered both as sorbents 140 

(Boyd and Sun, 1990; Luthy et al., 1993; Luthy et al., 1997) and as sources of PAHs 141 

(Benhabib et al., 2006; Roberts et al., 2016; Xia et al., 2016). As carbonaceous materials, 142 



these NAPLs, solids, and semi-solids all have high affinity to PAHs. For example, PAHs were 143 

found associated predominantly with source materials including coal tar pitch, coke, and 144 

coal in manufactured gas plant (MGP) impacted sediments (Khalil et al., 2006) and with 145 

NAPL phases in petroleum and creosote contaminated soils (Zemanek et al., 1997). Even at 146 

low levels these materials could dominate the sorption of PAHs (Jonker and Koelmans, 147 

2002b; Cornelissen et al., 2005; Khalil et al., 2006), while at ‘hot spots’ of PAH 148 

contamination (e.g. manufactured gas plants) high levels of source NAPLs present as 149 

xenobiotic organic matter (XOM) could make up the most of SOM (Bayard et al., 2000).  150 

Solid source materials 151 

Sorption of PAHs to solid source materials was suggested to be exceptionally strong 152 

(Cornelissen et al., 2005; Rhodes et al., 2008; Semple et al., 2013). Solid-liquid partition 153 

coefficient (Kd) values for soot and charcoal samples range from 104 to 109, which is up to 154 

1000 times higher than natural organic matter (NOM) in soils (Jonker and Koelmans, 2002b). 155 

The Freundlich isotherms of PAH sorption to soot and charcoal also demonstrated high 156 

sorptive capacity (Log KF = 5.5 – 5.6) (Bucheli and Gustafsson, 2000; Karapanagioti et al., 157 

2000; Kleineidam et al., 2002) and non-linearity (n < 1) (Cornelissen and Gustafsson, 2005). 158 

This indicates a site-specific adsorption mechanism involved in PAH association with these 159 

solids. After being produced in incomplete combustion, PAHs could strongly adsorb to 160 

surfaces or micropores of these source materials (Xing et al., 1996; Luthy et al., 1997; Xing 161 

and Pignatello, 1997; Ghosh et al., 2000; Jonker and Koelmans, 2002a). The forces involved 162 

in such strong sorption include dipole-dipole interactions, π-π interactions, hydrogen 163 

bonding, and steric hindrance (Zhu et al., 2004). With the strong sorption, the release of 164 

PAHs from solid source materials is highly inhibited, leading to significantly reduced 165 

bioavailability (Rust et al., 2004; Thorsen et al., 2004; Jonker et al., 2005). However, when 166 



adsorption sites on these materials are saturated, the release of PAHs can be enhanced 167 

(Hong et al., 2003; Cornelissen and Gustafsson, 2004; Cornelissen et al., 2005). 168 

Consequently, competitive desorption of PAHs by other contaminants and NOM could lead 169 

to increased desorption of PAHs and bioavailability/bioaccessibility (Wang et al., 2006; Singh 170 

and Kookana, 2009). The sorptive capacity of materials like soot and char is determined by 171 

the properties and abundance of sorption sites, which is influenced by the feedstock of 172 

these materials and combustion conditions (Semple et al., 2013). It is also noteworthy that 173 

interactions between solid source materials of PAHs and soil could lead to decreased 174 

sorptive capacity. Artificial ageing induced on biochar, a material which shares similarities 175 

with soot and char, led to reduced KF values of Freundlich isotherms (Hale et al., 2011). Such 176 

ageing effects should be examined on solid source materials of PAHs as after ageing the 177 

release of PAHs could be enhanced.178 



Table 1. PAH source materials: type, production, and compositions. 179 

Material type PAH source 
material 

Process/activity a Composition Reference 

NAPL coal tar, oil tar MGPb, coking, 
aluminium production, 
asphalt sealing 

PAHs, BTEXc, TPHsd, substituted- and heterocyclic-PAHs, 
heavy metals, cyanides 

(USEPA, 1988; Zimmerman, 
1997; MacLeod et al., 2001; 
ATSDR, 2002; Brown et al., 
2006; Roberts et al., 2016) 

creosote oil wood preservation, 
foundry 

PAHs, substituted-PAHs, phenols, biphenyls, carbazole, 
acridine 

fuel oil, crude 
oil, diesel 

oil refinery, foundry TPHs, PAHs 

semi-solid pitch MGP, aluminium 
production, foundry, 
skeet shooting 

PAHs, BTEX, TPHs, substituted- and heterocyclic-PAHs, 
heavy metals, cyanides 

solid coal MGP, coking 

PAHs, dioxins and furans, Ni, Zn, Cu, Co, Cr 

(Wornat et al., 1987; Mastral 
and Callen, 2000; Hajaligol et 
al., 2001; Jonker and 
Koelmans, 2002b, a; Koppolu 
et al., 2003; Freddo et al., 
2012; Semple et al., 2013)  

char MGP, landfill, biomass 
combustion 

soot MGP, coking, foundry, 
oil refinery, landfill, 
biomass and fuel 
combustion 

coke Coking 
a Adapted from (Ruby et al., 2016); b MGP = manufactured gas plant; c BTEX = benzene, toluene, ethylbenzene, xylene; d TPHs = total petroleum 180 



Non-aqueous phase liquids (NAPLs) and semi-solid source materials 181 

NAPLs and semi-solids also demonstrate high affinity for PAH.  Partition coefficient 182 

(Kd) values of PAHs in coal tar pitch ranged from 104 up to 108 (Khalil et al., 2006; Ghosh and 183 

Hawthorne, 2010; Xia et al., 2016), while Kd values of PAHs in coal tar could be 6 times 184 

higher than those in NOM (Bayard et al., 2000). Fuel oil-water partition coefficients for PAHs 185 

were reported to be 105 to 109, which was even higher than soot (Jonker et al., 2003; Jonker 186 

and Barendregt, 2006; Xia et al., 2016). Such large sorptive capacity often leads to slow 187 

release kinetics of PAHs from these NAPLs and semi-solids (Yeom et al., 1996; Williamson et 188 

al., 1998; Stroo et al., 2000; Eberhardt and Grathwohl, 2002; Benhabib et al., 2006). 189 

However, the bioavailability of PAHs in these materials could still be high. The 190 

benzo[a]pyrene (BaP) oral bioavailability in soils contaminated with fuel oil was found to be 191 

higher than soil spiked with pure BaP (Roberts et al., 2016), although the soil organic 192 

carbon-water partitioning coefficient (KOC) for BaP in fuel oil-amended soil was higher than 193 

the original soil (Xia et al., 2016). PAHs associated with coal tar pitch were also found to be 194 

more bioavailable than those sorbed to charcoal (Ghosh et al., 2003). Clearly, the 195 

association of PAHs with source materials in the forms of NAPLs and semi-solids may not be 196 

as strong and irreversible as that with solid source materials.  197 

Interaction between NAPLs/semi-solids and PAHs has been suggested to be a 198 

partitioning process (Luthy et al., 1997).  In general, three steps are involved in the release 199 

process: diffusion within the source material, dissolution at the material-water interfaces, 200 

and diffusion to the bulk aqueous phase (Lee et al., 1998). In some studies PAH source 201 

materials such as coal tar and coal tar pitch were considered as ideal solutions and the 202 

dissolution of PAHs from these source materials is governed by Raoult’s law, which assumes 203 

the equilibrium concentration of a constituent chemical is a function of its water solubility 204 



and mole fraction in the source material (Ramaswami and Luthy, 1997). In this case, 205 

diffusion of PAHs into aqueous phase is the rate-limiting step. Models incorporating Raoult’s 206 

law have provided good prediction of PAH release from coal tar and coal tar pitch to the 207 

aqueous phase   (Lee et al., 1992; Eberhardt and Grathwohl, 2002; Khalil et al., 2006).  208 

Other studies demonstrated non-ideal dissolution characteristics of PAHs from coal 209 

tar in terms of changing surface characteristics and internal diffusion of solutes. Accelerated 210 

naphthalene biodegradation was observed in coal tar dispersed in porous silica particles 211 

(~250 μm diameter) compared to bulk coal tar due to increased surface area (Ghoshal et al., 212 

1996). Film formation at coal tar-water interfaces after ageing was observed and suggested 213 

to be responsible for the significant deviation of PAH dissolution from ideal behaviour (Luthy 214 

et al., 1993; Mahjoub et al., 2000). In these cases the dissolution of PAHs at the water-NAPL 215 

interface is the rate-limiting step. Dissimilar release rates of different PAHs from NAPLs due 216 

to their water solubility and diffusivity within NAPLs was suggested to cause compositional 217 

changes in NAPLs and affect the subsequent release of remaining PAHs (Lee et al., 1998). It 218 

was observed that the release of naphthalene, phenanthrene, and pyrene from NAPLs 219 

created depleted zones in viscous NAPLs and resulted in longer diffusion paths in the NAPLs 220 

that led to limited release of remaining PAHs (Ortiz et al., 1999). Condensation of high 221 

molecular weight PAHs was also observed after abiotic oxidation of coal tar (Hanser et al., 222 

2015). Depletion of PAHs in coal tar-based skeet was reported to lead to an exponential 223 

increase in the distribution coefficient of PAHs between water and the source material-224 

amended soil (Xia et al., 2016). The promotion of PAH diffusion in aged coal tar by 225 

surfactants was reported to enhance PAH release to soil (Yeom et al., 1996; Adrion et al., 226 

2016). These observations suggested that internal diffusion of PAHs in NAPLs can also be a 227 

rate-limiting step. 228 



It is important to point out that tar and pitch as source materials of PAHs are not 229 

only comprised of liquid but also solid phase. Quinoline insoluble (QI) particles that strongly 230 

influence the properties of these materials were found in many tar and pitch samples 231 

showed soot-like morphology in scanning electron microscope (SEM) examination (Khalil et 232 

al., 2006). Apparently partitioning is not the only mechanism governing the sorption of PAHs 233 

to tar and pitch, as site-specific adsorption can play a role in the presence of soot-like QI 234 

materials. This was confirmed by Wehrer et al. (2013) who identified steric hindrance and 235 

retarded surface diffusion as the rate-limiting factors in PAH release from aged coal tar 236 

using various desorption models (Wehrer et al., 2013). Elucidation of the mechanisms 237 

involved in PAH release from NAPLs and semi-solids could be a challenging task given the 238 

reports of both ideal and non-ideal behaviour and dual-mode sorption mechanism of PAHs 239 

in these materials. Investigations on the time-dependent changes in NAPL properties and 240 

corresponding changes in PAH release could be a viable approach. Adopting such an 241 

approach could also identify the roles played by internal diffusivity, interface properties, as 242 

well as QI materials during PAH desorption. Moreover, the properties of both NAPLs and soil 243 

matrices could be significantly changed after NAPLs are released to soil and lead to different 244 

behaviours of PAHs than in pure NAPLs or in natural soils (Lee et al., 1998). Further 245 

investigations are needed to elucidate how the entrapment of NAPLs in soil matrices affects 246 

the ageing of NAPLs and the release of PAHs. 247 

In many circumstances source materials in the forms of NAPLs, semi-solids, and 248 

solids are all present in PAH-contaminated soils (Khalil et al., 2006) and have implications for 249 

bioavailability and bioaccessibility of PAHs (Ghosh et al., 2003; Roberts et al., 2016; Xia et al., 250 

2016). The importance of non-specific partitioning and site-specific adsorption mechanisms 251 



under such circumstances was proposed to be determined by their relative abundance 252 

(Hong et al., 2003; Hong and Luthy, 2007).  253 

4. Effects of PAH concentrations and co-contaminants 254 

 After PAHs are released from source materials to soil, their sorption and desorption, 255 

and thus bioavailability and bioaccessibility, can be influenced by their concentrations and 256 

the presence of other contaminants that may be released from source materials.  257 

If large quantities of PAHs are released to soil, the sorption and desorption processes 258 

will take place at higher rates due to increased diffusivity in soil caused by steeper 259 

concentration gradients (Huang and Weber, 1998; Braida et al., 2001; Braida et al., 2002; Li 260 

et al., 2013) (Table 2). Importantly, high concentrations of PAHs may induce ‘conditioning 261 

effects’ on soil matrices (Braida et al., 2002). During sorption large quantities of incoming 262 

PAH molecules forced the sorbent matrix to soften and swell, leading to increased pore 263 

volumes or pore collapse that traps more organic molecules (Lu and Pignatello, 2002; Braida 264 

et al., 2003). Such conditioning effects were demonstrated both in macroscale batch 265 

sorption assays and at molecular level using 1H wide line and two-dimensional wide line 266 

separation (2D WISE) nuclear magnetic resonance (NMR) (Lu and Pignatello, 2002; Braida et 267 

al., 2003; Sander and Pignatello, 2007; Cao et al., 2016).  268 

In contaminated sites PAHs co-exist with many other contaminants, both organic and 269 

inorganic (Sandrin and Maier, 2003; Lin et al., 2008). Organic co-contaminants may displace 270 

PAHs from limited adsorption sites and lead to increased PAH desorption and 271 

bioavailability/bioaccessibility (White et al., 1999a; White et al., 1999b; White and 272 

Pignatello, 1999; van den Heuvel and van Noort, 2003; Stroud et al., 2009; Wang et al., 2014) 273 

(Table 2). Co-existing inorganic contaminants were found to enhance PAH sorption in soils 274 

as KOC values for PAHs increased by 2% to more than 100% when different heavy metals 275 



were present  (Saison et al., 2004; Gao et al., 2006; Luo et al., 2010; Zhang et al., 2010; 276 

Zhang et al., 2011; Liang et al., 2016) (Table 2). Such enhancement of sorption was proposed 277 

to be caused by (a) reduced dissolved organic matter (DOM), (b) changed chemical 278 

composition and conformation of SOM in the presence of heavy metals (Gao et al., 2006; 279 

Luo et al., 2010), and (c) the cation-π binding sites provided by heavy metals adsorbed to 280 

SOM surfaces (Zhang et al., 2010; Liang et al., 2016). However, the enhancement of PAH 281 

sorption did not necessarily reduce the extractability of PAHs (Saison et al., 2004) and it was 282 

reported to be attenuated after ageing (Luo et al., 2010).283 



Table 2. Selected research on the influences of PAH concentration and contaminant mixture on sorption, desorption, bioavailability and bioaccessibility of PAHs. 284 

PAH profiles Reference Analysis 
methods 

Soil 
types 

Target 
PAH(s) 

Treatment Results Comments/mechanisms 

concentration 

(Huang and 
Weber, 
1998) 

sorption 
equilibrium 

13 a PHE 5 μg/l KOC(t): 3.9 - 65.6 l/g-OC in soils and sediments, 177 - 5094 l/g-OC in 
shales and kerogens; apparent equilibrium in soils and sediments: 
up to 90 d 

accelerated apparent diffusion 
at higher concentrations 

500 μg/l KOC(t): 2.8 - 21.0 l/g-OC in soils and sediments, 37 - 455 l/g-OC in 
shales and kerogens; apparent equilibrium in soils and sediments: a 
few hours 

(Braida et 
al., 2001) 

sorption 
equilibrium  

7 PHE 1.21 μg/l; 363 
- 998 μg/l 

low concentration: 29.9% - 86.0% sorption, apparent equilibrium: 30 
- 180 d; high concentration: 11.9% - 74.5% sorption, apparent 
equilibrium: 17 - 180 d 

accelerated apparent diffusion 
at higher concentrations; 
artefacts brought by 'shrinking 
gradient effects' PYR 1.52 – 4.3 

μg/l; 91.4 – 
92.7 μg/l 

Low concentration: 49.3% - 89.1% sorption, apparent equilibrium: > 
57 - >84 d; high concentration: 29.8% - 73.6% sorption, apparent 
equilibrium: 35 - 84 d 

(Braida et 
al., 2002) 

desorption 
kinetics by 
Tenax 

6 PHE 160 - 980 
μg/g-OC 

resistant fraction 9 - 38%, diffusion rate: 3.8 × 10-4 - 1.8  × 10-3 influences from concentration 
dependent on linearity of 
sorption; conditioning effects 
on soil at higher concentrations 

2000 - 25000 
μg/g-OC 

resistant fraction 1 - 29%, diffusion rate: 4.2 × 10-4 - 4.0  × 10-3 

(Wu and 
Sun, 2010) 

sorption 
equilibrium 

2 b PHE 100, 500 μg/l 100 μg/l:  KOC = 8.81 × 103 - 1.46 × 104 l/kg; 500 μg/l: KOC = 5.08 × 103 
- 1.02 × 104 l/kg 

conditioning effects on soil 
caused by higher 
concentrations led to increased 
irreversible sorption capacity 

successive 
desorption 

1 - 3 mg/l irreversible sorption capacity: 1 mg/l: 10.07 - 20.48 mg/kg; 2 mg/l: 
10.43 - 34.07 mg/kg; 3 mg/l: 11.20 - 36.95 mg/kg 

(Li et al., 
2013) 

desorption 
kinetics by 
XAD2  

1 PHE 20, 100 mg/kg low: Frap = 28.5%, krap = 0.00697 h-1; high: Frap = 13.2%, krap = 1.65 h-1 influences from concentration 
dependent on properties of 
PAHs 

PYR 20, 100 mg/kg low: Frap = 3.2%, krap = 0.00725 h-1; high: Frap = 9.3%, krap = 1.30 h-1 

BaP 10, 50 mg/kg low: Frap = 8.4%, krap = 1.61 h-1; high: Frap = 1.9%, krap = 1.79 h-1 

co-existing 
contaminants 

(White et 
al., 1999a) 

microbial 
degradation 

3 PHE 20 μg/g ANT, 
30 μg/g PYR 

ANT: 2.9 and 4.8% increased mineralisation in 2 soils at 259 and 38 
d; PYR: 5.2% increased mineralisation in 1 soil at 74 d 

dependence of the 
enhancement from co-existing 
PAHs on concentration and 
chemical structure 

ethanol/ 
water 
extraction 

50 - 1000 μg 
ANT, 500 μg 
PYR 

ANT: extractability increased by 2.3% at 50 μg, 12.6% at 1000 μg 
anthracene in 1 soil at 121 d,  by 3.4% and 12.3% at 500 μg in 1 soil 
at 0 and 192 d; PYR: 13.2% increased extractability in 1 soil at 69 d  

(White and 
Pignatello, 
1999) 

sorption 
equilibrium  

2 PHE 4840 μg/g-OC 
PYR 

Log KF decreased 0.03 - 0.04 after 2 d of equilibration, increased 0.07 
-0.08 after 33 d of equilibration; n increased 0.061 - 0.139 towards 1 

existence of other PAHs 
changed the sorption domain of 
target PAHs 

(Wang et 
al., 2014) 

microbial 
degradation 

1  BaP c PYR 250 
mg/kg 

kdeg 0.00412 - 0.00662 d-1 without PYR, 0.00613 - 0.00762 d-1 with 
PYR 

NA 

sequential 
extraction 

desorbing BaP increased from 55.4 - 57.7% to 58.1 - 60.0%; non-
desorbing Bap decreased from 42.3 - 44.6% to 40.0 - 41.9% 



(Stroud et 
al., 2009) 

microbial 
degradation 

1 PHE NAPH, HD d, 
PYR 50 mg/kg 

increased from 8.7% to 22.1, 41.4, 31.6% with NAPH, HD, and PYR 
after 75 d of ageing 

NA 

HPCD 
extraction 

increased from 6.2% to 8.8, 28.3, 14.7% with naphthalene, 
hexadecane, and pyrene after 75 d of ageing 

(van den 
Heuvel and 
van Noort, 
2003) 

desorption 
kinetics by 
Tenax  

2 e FLA, 
BbF, 
BkF, 
BaP f 

fresh PHE  Fslow increased by 30 - 80% for FLA, 17 - 58% for BbF, 29 - 69% for 
BkF, 13 - 67% for BaP; Fvery slow decreased by 21 - 27% for 
fluoranthene, 12 -14% for BbF, 16 - 23% for BkF, 10 - 24% for BaP 

NA 

(Wang et 
al., 2005) 

sorption 
equilibrium  

4 PYR PHE  Log KF decreased by 0.01 - 0.05 with PHE, n increased by 0.19 - 0.55 
towards 1 

changed sorption domain of 
target PAHs 

(Saison et 
al., 2004) 

sorption 
equilibrium  

3 PHE Cu, Cd, Pb, Zn KF increased from 8.55 in single system to 21.48 in mixture with 
metals 

increased PAH sorption in 
presence of metals 

(Gao et al., 
2006) 

sorption 
equilibrium  

3 PHE Pb, Zn, Cu 500 
mg/kg  
amended 
respectively 

Kd and KOC increased by up to 24% in metal-amended soils presence of metals contributed 
to adsorption of DOM to SOM 
and enhanced DOM sorptive 
capacity 

(Luo et al., 
2010) 

spectral and 
microscopic 
observation, 
sorption 
equilibrium  

2 PHE Cu, Ni, Pb 
1mmol/l  
amended 
respectively 

increased sorption capacity and non-linearity for phenanthrene 
when metals were present 

changes in compositions and 
conformations of DOM, 
condensation of rubbery SOM 
in presence of metals, 
attenuation of these changes 
after ageing 

(Liang et 
al., 2016) 

sorption 
equilibrium, 
quantum 
mechanical 
methods 

2 NAPH, 
PHE, 
PYR 

Cu, Pb, Cr NAPH: KF increased by up to 27.5%, n decreased by up to 20.7%; 
PHE: KF increased by up to 24.8%, n decreased by up to 24.7%; PYR: 
KF increased by up to 107.1%, n decreased by up to 18.2% 

sorption increment correlated 
to electro-negativity and radius 
of metals, π-cation bonding as 
an important contributors to 
enhanced sorption 

a: 7 USEPA reference soils and sediments, 3 shales, and 3 kerogen samples were used; b: 1 soil and 1 sediment were used; c: soil used was contaminated with Cd and BaP; d: 285 

HD = hexadecane; e: 2 sediments were used; f: residual PAHs in field contaminated samples were targeted. Abbreviations of PAHs: NAPH = naphthalene, PHE = 286 

phenanthrene, ANT = anthracene, FLA = fluoranthene, PYR = pyrene, BaP = benzo(a)pyrene,  BbF = benzo(b)fluoranthene, BkF = benzo(k) fluoranthene.287 



5. Effects of soil composition and properties 288 

PAHs released from source materials to soil undergo sequestration in the soil matrix 289 

over time and demonstrate reduced bioavailability and bioaccessibility. This process has 290 

been extensively studied and is accepted to be controlled by soil composition and 291 

properties (Naidu et al., 2008a; Wilson and Naidu, 2008). It is now widely accepted that 292 

SOM is the most important soil component that determines PAH sequestration, provided it 293 

is above trace level (Xing et al., 1996). Total organic carbon (TOC) has been shown to 294 

dominate the bioavailability and bioaccessibility of PAHs to different receptors (Nam et al., 295 

1998; Alexander and Alexander, 2000; Chung and Alexander, 2002; Bogan and Sullivan, 2003; 296 

Pu et al., 2004; Tao et al., 2006; Rhodes et al., 2010) (Table 3). Apart from the quantity of 297 

SOM, the dual-mode sorption mechanism, which is now widely acknowledged, indicates the 298 

quality of SOM is also important (Xing and Pignatello, 1996; Xing et al., 1996; Huang et al., 299 

1997; Xing and Pignatello, 1997). The focus of many researches then became the 300 

identification and quantification of the SOM fractions responsible for non-specific 301 

partitioning, designated as ‘soft’, ‘labile’, or ‘amorphous’ SOM, and for site-specific 302 

adsorption, designated as ‘hard’, ‘recalcitrant’, or ‘condensed’ SOM. Several strategies for 303 

differentiation of SOM, including alkaline extraction (humic substances), chemical or 304 

thermal oxidation (black carbon), soil particle size fractionation (fine particle associated 305 

carbon), and differentiating by its chemical structures, have been adopted in the literature. 306 

Direct quantification of the abundance of adsorption sites (pore volume) was also employed 307 

in many studies. 308 

Distinguishing SOM by humic substances 309 



Fractionation of SOM based on alkaline extraction is a classical method for both soil 310 

and environmental sciences (Lehmann and Kleber, 2015). Based on the solubility in alkaline 311 

and acidic solutions, SOM are fractionated into: 312 

1. fulvic acid (FA), which is dissolved at pH 13 and remains dissolved at pH 2 313 

2. humic acid (HA), which is soluble in alkaline solutions and precipitates at pH < 314 

2; 315 

3. humin (HM), which is insoluble at any pH (Kohl and Rice, 1998). 316 

It was found that 20 – 90% of organic contaminants in soil were associated with the humic 317 

fraction (Xie et al., 1997; Führ et al., 1998; Burauel and Führ, 2000). PAHs could be primarily 318 

associated with FA (Yang et al., 2010), HA (Nieman et al., 1999), or HM (Doick et al., 2005) as 319 

observed in different studies. Several studies demonstrated that HA and HM are the sources 320 

of non-linear, site-specific, and strong sorption of HOCs in soil (Chiou et al., 2000; Kang and 321 

Xing, 2005; Pan et al., 2006; Chen et al., 2007) (Table 3). 322 

Distinguishing SOM by black carbon 323 

The SOM fraction responsible for site-specific adsorption is considered to be inert 324 

and in many papers deemed as a subset of black carbon which is a group of strong sorbents 325 

for organic compounds (Cornelissen et al., 2005; Luo et al., 2012; Semple et al., 2013). Thus, 326 

an approach to distinguishing SOM fractions is through thermal or chemical oxidation that 327 

removes the labile SOM (Cornelissen et al., 2005). For example, using multiple linear 328 

regression analysis, Luo et al. (2012) found that black carbon content in soils, determined by 329 

wet oxidation and thermal oxidation, was the major contributor to decreases in rate 330 

constants of slow desorption (kslow) of PAHs (Luo et al., 2012) (Table 3).  331 

Distinguishing SOM by soil particle size 332 

Soil particle size fractions, in particular the clay and silt fractions, have been found to 333 

play a significant role in the preservation of SOM and retention of organic contaminants.  334 



Aged PAHs in a soil were found to be associated predominantly with fine silt and clay sized 335 

particles with the silt fraction possessing the greatest affinity to PAHs (Amellal et al., 2001; 336 

Doick et al., 2005; Siciliano et al., 2010; Pernot et al., 2013). The high affinity for PAHs led to 337 

reduced bioavailability of these contaminants in these fine particles (Uyttebroek et al., 2006; 338 

Siciliano et al., 2010) (Table 3). In a more recent study, Duan et al. (2014) defined fine 339 

particle associated carbon (FPAC): 340 

FPAC = (silt + clay)/TOC          (4) 341 

The authors demonstrated that FPAC was inversely correlated with oral bioavailability of 342 

BaP in a swine model (r2 = 0.96, p < 0.001) (Duan et al., 2014) (Table 3).   343 

Distinguishing SOM by chemical structure 344 

In essence, SOM fractions demonstrate different sorptive capacity for HOCs because of their 345 

specific chemical structures. Domination of aliphatic and aromatic structures in humic substances 346 

(Xu et al., 2006; Chen et al., 2007), black carbon (Cornelissen et al., 2005; Semple et al., 2013), and 347 

SOM in soil fine particles (Kiem et al., 2002; Krauss and Wilcke, 2002) has been observed. Direct 348 

correlations were found between the quantities of aromatic/aliphatic structures and the KOC of soils 349 

(Xing, 1997; Wang et al., 2007). Aliphaticity has been associated with an increase in the linearity of 350 

PAH sorption while aromaticity increases the sorption non-linearity (Xu et al., 2006; Chen et al., 2007; 351 

Wen et al., 2007) (Table 3). For nonpolar contaminants like PAHs, the polarity of SOM also plays a 352 

role in determining sorption and desorption, and therefore bioavailability and bioaccessibility (Liang 353 

et al., 2006; Wang et al., 2007; Wen et al., 2007). 354 

Direct quantification of adsorption site by pore volume  355 

The declining bioavailability and bioaccessibility of HOCs in soil over time was 356 

attributed to the diffusion of contaminants into micro-pores which are inaccessible to 357 

receptors and extractants (Alexander, 2000; Jonker and Koelmans, 2002a; Semple et al., 358 

2013; Duan et al., 2014; Duan et al., 2015a). This was supported by the inverse relationship 359 



between the volumes of pores with diameters < 6 nm (PF6 nm) and rapid desorption of PAHs 360 

(Luo et al., 2012). Recent studies also observed significant negative correlations between 361 

bioavailability and bioaccessibility of PAHs and PF6 nm (Duan et al., 2014; Duan et al., 2015a) 362 

(Table 3). The strong association between pore volume and bioavailability of HOC is further 363 

confirmed in studies that manipulated soil pore volume by using specific amendments.  For 364 

example, amendment with porous carbonaceous materials such as biochar and activated 365 

carbon was found to significantly reduce PAH bioavailability and bioaccessibility due to the 366 

increased pore volumes of the amended soils (Zimmerman et al., 2004; Zimmerman et al., 367 

2005; Yang et al., 2009; Semple et al., 2013; Ogbonnaya et al., 2014).  368 

Evaluation of the effects of soil composition and properties 369 

The alkaline extraction of SOM has been adopted in environmental sicence for a long 370 

time but humic substances have been increasingly cirticised as method-defined, pseudo-371 

materials (Lehmann and Kleber, 2015). Importantly, alkaline extraction induces significant 372 

change in soils (Doick et al., 2005). It is therefore very questionable whether such soil 373 

fractions can account for variations in PAH bioavailability and bioaccessibility. Similar 374 

criticisms were also made concerning the use of thermal and chemical oxidation to quantify 375 

black carbon. The potential charring of labile SOM during heating and loss of small 376 

particulate black carbon during chemcial oxidation could cause both over- and under-377 

estimation (Cornelissen et al., 2005), thus compromising the relevance of the correlation 378 

between obtained black carbon fractions and PAH bioavailability/bioaccessibility. Physical 379 

fractionation of soil based on particle size was suggested to be more appropriate due to less 380 

disturbance being imposed on the soil matrix (Northcott and Jones, 2000; Doick et al., 381 

2005).A couple of studies have provided good correlations between PAH 382 

bioavailability/bioaccessibility and FPAC (Duan et al., 2014; Duan et al., 2015a), but the 383 



effects of FPAC need to be further verified through empirical experiments and mechanistic 384 

studies. Good correlations were also obtained between soil pore volumes (PF6 nm) and PAH 385 

bioavailability and bioaccessibility (Luo et al., 2012; Duan et al., 2014). Although an 386 

argument was made that pore volume is just a reflection of TOC (Nam et al., 1998), recent 387 

research has revealed that aliphatic and aromatic structures are responsible for formation 388 

of pore structures in SOM (Han et al., 2014). It is obvious that all the approaches to 389 

differentiating SOM fractions are related to chemical structures of SOM. Yet quantification 390 

of chemical structures present in soil can be methodologically challenging (Ehlers and 391 

Loibner, 2006). Given the limitations of harsh treatments to quantify SOM responsible for 392 

site-specific adsorption as outlined above, we suggest these treatments should be 393 

abandoned and less-disruptive physical fractionation methods adopted.  394 

Two components in contaminated soil should also be taken into account when 395 

considering the factors controlling PAH bioavailability and bioaccessibility. Firstly, source 396 

materials in PAH-contaminated soils should be identified to avoid confusion between NOM 397 

that retains PAHs and XOM materials with high affinity to PAHs but which are actually 398 

sources of these compounds. Such a distinction could be achieved through density 399 

fractionation of contaminated soil (Khalil et al., 2006). Additionally, the interactions 400 

between xenobiotic source materials and natural soil components need to be considered. It 401 

was suggested that soil texture and water content play key roles in the retention of NAPLs in 402 

the soil matrix as they affect the dispersion of NAPLs on soil particles and their penetration 403 

into soil pores (Wehrer et al., 2011). Secondly, the role of soil minerals should not be 404 

overlooked. The protection of SOM by mineral phases through occlusion and strong surface 405 

association was demonstrated by numerous researchers (Torn et al., 1997; Six et al., 2000; 406 

Lützow et al., 2006; Lalonde et al., 2012). In soil fine particles SOM is preferentially 407 



associated with rough surfaces of organo-mineral clusters which exist as patches on mineral 408 

phases (Ransom et al., 1997; Chenu and Plante, 2006; Vogel et al., 2014; Xiao et al., 2015). 409 

Highly reactive minerals such as allophane and ferrihydrite were suggested to determine the 410 

capacity of such SOM preservation (Xiao et al., 2015). On the other hand, only ‘mature’ SOM 411 

is able to form a strong association with soil minerals (Lehmann and Kleber, 2015). This 412 

fraction of SOM is considered to be residues of soil biota at more advanced degradation 413 

stages and responsible for formation of bound residue of HOCs (Kaestner et al., 2014). Such 414 

findings reflect a shift in viewing SOM: it is increasingly considered as a continuum of soil 415 

biota residues at different stages of organic carbon turnover, which is a kinetic process, 416 

rather than a static integration of labile and recalcitrant SOM (Lehmann and Kleber, 2015). 417 

Moreover, possible association between soil mineral surfaces with xenobiotic PAH source 418 

materials could also provide protection to these materials against degradation. This should 419 

be investigated in future research to integrate PAH source materials in the knowledge 420 

system of abiotic factors controlling PAH bioavailability and bioaccessibility.421 



Table 3. Selected literature that identified the effects of soil properties and environmental factors on bioavailability and bioaccessibility of PAHs in soils. 422 

Reference Target PAH(s) Contaminant 
source 

Soil 
type(s)/fractions 

Analysis method(s) Influencing soil 
property(s) identified 

Correlation/comments 

(Chung and 
Alexander, 
2002) 

phenanthrene spiked 16 biodegradation & BuOH 
extraction 

OC, particle size, CEC a decrease in biodegradation = 1.123[OC] + 
0.131[silt] + 10.35 (r2 = 0.532, p < 0.01) 

decrease in extractability = -4.431log[OC] – 
0.36[clay] + 0.798CEC + 19.94 (r2 = 0.479, p < 
0.15) 

(Nam et al., 
1998) 

phenanthrene spiked 4 soils & 1 sand biodegradation & BuOH 
extraction 

OC, pore volume, SA b NA c 

(Alexander 
and 
Alexander, 
2000) 

BaP spiked 6 microbial genotoxicity & BuOH 
extraction 

SOM when > 0.7% r > 0.90  

(Bogan and 
Sullivan, 
2003) 

phenanthrene, 
pyrene 

spiked 6 biodegradation  OC r2 = 0.41 - 0.90 

coal tar PAHs spiked coal tar 6 BuOH extraction OC NA 
(Carmichael 
et al., 1997) 

phenanthrene, 
chrysene 

spiked 2 biodegradation, desorption 
kinetics 

OC krap lower in soil with higher OC 

(Rhodes et al., 
2010) 

phenanthrene spiked 4 biodegradation, desorption 
kinetics 

Total OC Frap, Fslow and Fvery slow affected by TOC 

(Pu et al., 
2004) 

phenanthrene spiked 4 blood AUC in rats after oral 
dosing, PBET assay 

OC RBA and bioaccessibility dependent on OC 

(Tao et al., 
2006) 

naphthalene, 
acenaphthylene, 
fluorene, 
phenanthrene 

spiked 7 plant root accumulation, 
sequential extraction 

total organic matter 
(TOM) 

accumulation and extractability inversely 
correlated to TOM 

(Duan et al., 
2014) 

BaP spiked 8 blood AUC in swine after oral 
dosing 

PF < 6 nm r2 = 0.99, p < 0.01 

FPAC (slit + clay)/TOC r2 = 0.96, p < 0.01 
(Duan et al., 
2015a) 

BaP spiked 4 leaching PF < 6 nm r2 = 0.996, p = 0.002 

(Luo et al., 
2012) 

phenanthrene, 
pyrene, BaP 

spiked 7 desorption kinetics PF < 6 nm krap = -0.456[PF6nm] - 0.003[TOC] + 0.436 (r2 = 
0.793, p < 0.05) 

hard OC kslow = -3.3 × 10-4[hard OC] - 4.7 × 10-6[PF6nm] + 
7.1 × 10-5 (r2 = 0.923, p < 0.05) 

(Doick et al., 
2005) 

fluoranthene, 
BaP 

spiked 1 soil and 3 humic 
fractions 

sample oxidation and 14C 
liquid scintillation 

humin NA 

   1 soil and 3 size 
fractions 

sample oxidation and 14C 
liquid scintillation 

fine silt and clay NA 

   1 soil and its SOM 
and mineral phase 

sample oxidation and 14C 
liquid scintillation 

mineral phase 57 - 80% residual PAHs after removal of SOM 



(Chen et al., 
2007) 

naphthalene, 
phenanthrene 

spiked 1 soil and its 
humic acid, 
humin, and 
deashed humin 

sorption equilibrium  humin NA 

(Pan et al., 
2006) 

phenanthrene, 
pyrene 

spiked 4 soil with their 
humic fractions 

sorption equilibrium  humin NA 

(Xing, 2001) naphthalene, 
phenanthrene 

spiked 1 soil at different 
depths and its 
humic fractions 

sorption equilibrium  aromaticity sorption nonlinearity increased proportional to 
aromaticity 

(Xing, 1997) naphthalene spiked 5 sorption equilibrium  aromaticity aromaticity correlated with Kd (r2 = 0.994) 

(Ghosh and 
Keinath, 
1994) 

naphthalene spiked not specified sorption equilibrium and 
kinetics 

expanding clay NA 

(Hwang and 
Cutright, 
2002) 

phenanthrene, 
pyrene 

spiked 1 soil and its SOM 
and mineral phase 

sorption and desorption 
equilibrium 

expanding clay sorption to minerals was more extensive than to 
SOM 

(Hwang and 
Cutright, 
2003) 

pyrene spiked 3 hexane desorption expanding clay total desorption inversely related to amount of 
expanding clay 

(Jones and 
Tiller, 1999) 

phenanthrene spiked kaolinite and illite fluorescence quenching organo-clay complex NA 

(Bonin and 
Simpson, 
2007) 

phenanthrene spiked 4 soils and their 
humic fractions 

sorption equilibrium organo-clay complex NA 

(Ahangar et 
al., 2008) 

phenanthrene spiked agricultural soils 
and their SOM 

sorption equilibrium organo-clay complex correlation with clay content and increasing of 
KOC after mineral removal (r2 = 0.43) 

(Duan and 
Naidu, 2013) 

phenanthrene spiked 32 sorption equilibrium ionic strength and 
index cation 

NA 

(Pernot et al., 
2013) 

16 USEPA PAHs coking plant 
contaminated 
soil 

1 soil and its size 
fractions 

Tenax extraction fine silt NA 

(Amellal et al., 
2001) 

8 PAHs spiked 1 soil and its size 
fractions 

chloroform Soxhlet extraction silt NA 

(Siciliano et 
al., 2010) 

11 PAHs roadside and 
residential soils 

18 SHIME model particles size < 45 um PAHs are 3.7 times higher in fraction with 
particle size < 45 µm and highly resistant to 
SHIME extraction 

a CEC = cation exchange capacity; b SA = surface area; c NA = not applicable 423 



6. Effects of environmental factors 424 

In addition to soil properties, environmental factors such as pH, temperature, as well 425 

as moisture content could all affect the bioavailability and bioaccessibility of soil PAHs 426 

(Ehlers and Loibner, 2006). These factors assert their influences through changing the 427 

properties of SOM and the release of PAHs from soil.  428 

Soil pH may be changed by environmental events like precipitation (McFee et al., 429 

1977) or during desorption facilitated by receptors (Dean and Ma, 2007). Under different pH 430 

conditions, SOM existed in different physical forms (coiled or stretched) and exhibited 431 

differing sorptive capacity for HOCs, which lead to different bioavailability and 432 

bioaccessibility (Murphy et al., 1994; Feng et al., 2005, 2006). This was supported by the 433 

observation of greater KOC values of organo-clay complexes for phenanthrene with 434 

decreasing pH (Feng et al., 2006), and greater BaP oral bioavailability at higher pH  (Duan et 435 

al., 2014). Higher pH also promoted desorption of SOM, and thus that of PAHs, as a result of 436 

their increased solubility in aqueous phases (Yu et al., 2016).  437 

Variation in temperature during ageing and subsequent desorption of soil PAHs was 438 

demonstrated to lead to different bioavailability. KOC values for HOCs in soils are inversely 439 

related to temperature (Schwarzenbach et al., 2005). Desorption of PAHs from soil could be 440 

enhanced by up to 28 times when the temperature rose from 7 °C to 23 °C (Enell et al., 441 

2005). Temperature variations brought about by freeze-thaw cycles was reported to 442 

decrease the stability of soil aggregates and promote the ageing of soil PAHs (Lehrsch et al., 443 

1991; Zhao et al., 2009; Shchegolikhina et al., 2012; Zhao et al., 2013). 444 

The moisture contents of soils change under field conditions and play an important 445 

role in determining bioavailability/bioaccessibility of soil PAHs. Bioavailability and 446 

extractability of PAHs spiked to moist soil was found to be greater than that spiked to dry 447 



soil (Kottler et al., 2001). Phenanthrene bioavailability decreased when wet-dry cycles were 448 

applied during short ageing periods (up to 58 d) (White et al., 1997; White et al., 1998) as 449 

wet-dry cycles promote the ageing of soil PAHs. It was proposed that acceleration of ageing 450 

could be due to structural changes in SOM brought about by swelling of soil pores during 451 

wetting and exposure of  hydrophobic SOM zones to external surfaces during drying 452 

(Schaumann et al., 2005; Wang et al., 2016). Furthermore, the soil moisture content at the 453 

moment of contamination also determines whether water or NAPLs would become the 454 

predominant wetting fluid of the soil matrix, which affects the ability of NAPLs to penetrate 455 

into and remain in soil pores (Wehrer et al., 2011).  456 

7. Risk assessment type: an ‘artificial’ controlling factor? 457 

In addition to the abiotic factors discussed above, our perspectives on the concepts 458 

of bioavailability and bioaccessibility could also influence the results we obtain. In the 459 

context of soil contamination, bioavailability is a method-defined concept depending on the 460 

receptor or toxicological endpoint being investigated (Kelsey et al., 1997; White et al., 1997; 461 

Semple et al., 2004; Semple et al., 2007; Naidu et al., 2008b). It could be included in two 462 

types of risk assessment based on receptors: ecological risk assessment (ERA) and human 463 

health risk assessment (HHRA).  464 

The receptors concerned in ERA are generally soil-dwelling organisms such as 465 

microorganisms, terrestrial invertebrates and plants. It was proposed that bioavailability is 466 

the quantity of a contaminant that is dissolved in the soil aqueous phase to cross the 467 

membranes of the receptors, while the bioaccessibility is the total amount of a contaminant 468 

that is rapidly desorbing from the soil solid phase to the aqueous phase (Semple et al., 2004; 469 

Ortega-Calvo et al., 2015). The bioavailable fraction may be seen as a subset of the 470 

bioaccessible fraction (Fig. 3). Bioavailability of soil PAHs to ERA receptors could be 471 



measured by toxicity assays on soil organisms, biodegradation assays using PAH-degrading 472 

microbes, and accumulation assays using earthworms and plants (MacLeod et al., 2001; 473 

Semple et al., 2003; Lanno et al., 2004; Peijnenburg et al., 2012; Duan et al., 2015b). 474 

Bioaccessibility can be assessed by chemical methods based on (1) mild organic solvents, (2) 475 

desorption reagents with infinite sinks, and (3) chemical reactivity (Semple et al., 2003; 476 

Semple et al., 2007; Cui et al., 2013; Cachada et al., 2014), among which infinite sinks are 477 

considered better methods (Brand et al., 2009) (Fig. 3).   478 

For HHRA incidental ingestion of contaminated soil is considered the most important 479 

exposure route (Cave et al., 2010; Ruby and Lowney, 2012). In this case the amount of a soil 480 

contaminant dissolved in simulated gastrointestinal (GI) fluid in a given time is defined as 481 

the orally bioaccessible fraction, while the amount of a contaminant that enters the 482 

systemic circulation from GI lumen is defined as the orally bioavailable fraction (Ruby et al., 483 

1999) (Fig.3). Animal surrogates are used to assess oral bioavailability for HHRA. Metabolism 484 

related biomarkers such as urinary metabolites, DNA-adducts, and enzyme induction, as 485 

well as absorption indicators such as blood and faecal concentrations have been used to 486 

estimate PAH oral bioavailability (Duan et al., 2015b; Duan et al., 2016; Ruby et al., 2016) 487 

(Fig. 3). In vitro models mimicking human digestive systems have also been developed to 488 

assess oral bioaccessibility (Lal et al., 2015; Cui et al., 2016; Ruby et al., 2016) (Fig.3). 489 

From a risk-based standpoint the role of desorption in determination of 490 

bioavailability and bioaccessibility should be emphasised (Ortega-Calvo et al., 2015) as 491 

contaminants have to be absorbed by receptors to exert toxic effects, while biological 492 

uptake of organic substances mainly takes place in the dissolved phase (Cerniglia, 1992; 493 

Vasiluk et al., 2007; EFSA, 2009) (Fig. 3). However, the environments in which PAHs are 494 

released from soils can be very different for ERA and HHRA. In ERA scenarios, PAHs desorb 495 



from the soil solid phase to soil pore water, while in oral HHRA PAHs are released from soil 496 

to GI fluid, which has very different chemical composition, pH, and temperature to soil pore 497 

water (Fig. 3). Therefore, the selection of risk assessment scenario (i.e. ERA or HHRA) will 498 

have an ‘artificial’ impact on the bioavailability and bioaccessibility of PAHs finally 499 

determined. Among the literatures discussed in this review, there are ample studies 500 

depicting the mechanisms involved in sorption and desorption of soil HOCs and factors that 501 

influence these processes based on ERA scenarios, while only a few studies were based on 502 

HHRA scenarios. It is necessary to question how relevant our knowledge acquired from ERA-503 

based studies is in the context of HHRA.  504 



 505 

Fig. 3. A schematic of widely used definition and measurement of bioavailability and bioaccessibility of organic contaminants in soil in both ERA and HHRA. 506 

Desorption here is emphasised as a key risk driver. 507 



8. Critique: what is ‘missing’ in our knowledge and how can we fill these gaps? 508 

 A massive body of knowledge about the factors controlling bioavailability and 509 

bioaccessibility of PAHs has been acquired. However, a set of descriptive soil parameters 510 

explaining bioavailability and bioaccessibility variations is still lacking. This is because all the 511 

abiotic factors controlling bioavailability and bioaccessibility of PAHs in soil are still yet to be 512 

understood and integrated in a comprehensive knowledge system – just like the missing 513 

pieces in a bigger picture (Fig. 4).  514 

Firstly, the effects of source materials on the release of PAHs from soil are 515 

overlooked in the majority of the research. It is a routine practice to spike soils with PAHs in 516 

volatile solvents (see Table 2, 3), but such an approach fails to reflect the reality as unlike 517 

many other organic contaminants, PAHs enter the environment in complex contaminant 518 

mixtures carried by source materials. In published studies PAH source materials are often 519 

considered as sorption phases for PAHs due to their high partitioning coefficients. This could 520 

result in the categorisation of source material-associated PAHs under residual fraction and 521 

brings extra uncertainties to risk assessment (Umeh et al., 2017). Future research should 522 

focus on their roles in the release of PAHs as high affinity for PAHs does not necessarily 523 

mean irreversible sorption. Importantly, time-dependent changes of PAH source materials 524 

in soils and their interactions with natural soil components could affect the behaviour and 525 

bioavailability/bioaccessibility of PAHs. This calls for an update of our current knowledge, 526 

much of which was acquired using soils spiked with PAHs in volatile solvents. 527 

 Secondly, the diverse methods adopted to identify and analyse the factors 528 

controlling bioavailability and bioaccessibility of PAHs in soil have made the comparison of 529 

results from different studies impractical, if not impossible (see Table 2, 3). Sorption 530 

equilibrium assays have been criticised for likely observation of ‘pseudo-equilibrium’ 531 



(Pignatello and Xing, 1996). Parameters obtained from these assays could be irrelevant to 532 

bioavailability as reversibility of sorption is not indicated. Future studies should focus more 533 

on desorption kinetics, validated non-exhaustive chemical extraction, and biological assays 534 

which are directly linked to bioavailability and bioaccessibility.  535 

 Thirdly, chemical or thermal treatments to fractionate SOM to analyse key soil 536 

components controlling PAH bioavailability and bioaccessibility should be replaced by non-537 

disruptive physical treatments and measurement of pore volume. It is also important that in 538 

future studies a distinction between natural NOM and PAH source materials (XOM) is made, 539 

to avoid confusion of sorbents and sources of soil PAHs. Our perception of SOM should also 540 

evolve so that the kinetic nature of organic carbon turnover as well as the importance of 541 

organo-mineral complexes are accounted for.  542 

 The effects of environmental factors, PAH concentration, and contaminant mixture 543 

on sorption and desorption of PAHs have been well-documented in the literature. The 544 

challenge now is to expand or extrapolate our knowledge obtained from controlled simple 545 

systems to more complex field systems in which all these factors interplay. 546 

 Last but not least, artificial effects arising from the different types of risk assessment 547 

(HHRA and ERA) on PAH bioavailability and bioaccessibility should not be ignored. 548 

Desorption of PAHs in HHRA scenarios is very different from that in ERA scenarios in terms 549 

of liquid phase content, pH, and temperature, while most of our knowledge about the 550 

controlling factors of PAH bioavailability and bioaccessibility has been obtained in ERA-551 

based systems. Again, this raises the need to update our knowledge. 552 
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