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By analysis of the far-field cross-correlation function (CCF) of partially coherent optical beams, we demonstrate an
implicit rule that the number of ring dislocations (dark zones) of the far-field CCF is equal to the original topological
charge of an optical vortex rendered partially coherent. This novel link between an optical vortex and its correlation
singularity may offer an efficient method for measuring the orbital angular momentum of partially coherent optical
vortices in fields such as astrophysics and astronomy, as well as atmospheric laser communication. © 2012Optical
Society of America
OCIS codes: 030.0030, 050.4865.

It is well known that an optical vortex with a phase dis-
tribution of the form exp�imϕ� may carry orbital angular
momentum (OAM) of mℏ per photon, where m is an
integer number and denotes the topological charge
(azimuthal index) of the field [1]. In the past two decades,
OAM has found numerous applications, including optical
manipulation [2,3], quantum information processing, and
quantum cryptography [4–6]. More recently, OAM has
seen increasing applications in free-space information
transfer and communications [7,8]. On the other hand,
the interest for OAM of light in astronomy and astrophy-
sics has grown [9,10]. Optical vortices generated from
starlight beams have been observed at the Asiago 122 cm
telescope [9], and the properties of optical vortices have
found interesting applications in astronomical corono-
graphy [10]. The measurement of the azimuthal index
m associated with a given vortex field is crucial for all
these fields and may yield interesting new studies in as-
trophysics [11].
Determining the azimuthal indexm of a vortex remains

an intriguing problem in both the quantum and the clas-
sical domains [12]. For classical light fields, an array of
various diffractive apertures have been used in recent
years: in 2008, Berkhout and Beijersbergen [11] probed
the OAM of optical vortices by analyzing the far-field
diffraction intensity patterns after a vortex propagates
through a multipoint interferometer. Other methods have
also been introduced to measure the OAM of optical
vortices based on the diffraction phenomena [12–14].
More recently, it has been shown that a triangular aper-
ture illuminated with a vortex beam creates a truncated
lattice diffraction pattern and that the resultant diffrac-
tion pattern can be used to measure the OAM of light
beams [15–17]. Other methods for measuring the topo-
logical charge of an optical vortex have included the
diffraction intensity pattern after an axicon [18] or an an-
nular triangle aperture [19]. Very recent studies have
shown the use of multivariate statistical analysis for the
diffraction pattern from any arbitrary aperture and
shown that by training the system one may deduce the
index m of the vortex from the diffraction pattern of

any aperture [20]. While some of above methods may
deal with vortices generated with temporally incoherent
light, it is noteworthy that all of these methods have as-
sumed that the optical field is fully spatially coherent.
However, typically the field may be partially spatially co-
herent under usual circumstances, and the aforemen-
tioned methods are not necessarily readily amenable
for the case of a partially coherent incident vortex field.

The last few years have seen some interesting studies
based upon the spatial correlation functions of a partially
coherent light field. These may possess phase correlation
singularities denoting nulls of the cross-spectral density
function. The singularity in such a function thus shows
regions where the phase is ill-defined. While some
studies have been performed showing the use of such
correlation vortices [21–23], no study has yet made a de-
finitive linkage between the azimuthal index of an optical
vortex and the vortices present in the cross-correlation
function (CCF) and exploited this relationship.

In this Letter, we explore the azimuthal mode index
of partially coherent optical vortices. In particular, we
determine the CCF of such light fields. Investigating
the relationship between an optical vortex and its CCF
reveals a method by which we may infer the azimuthal
index for a spatially incoherent incident light field where
the spatial coherence dimension of the field is compar-
able to the beam-waist size.

Consider a partially coherent beam whose mutual
coherence function (MCF) at the source plane z � 0 can
be written as [21]
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where E0 is a constant, m is topological charge of the
vortex, Lc is the transverse coherence length, w0 denotes
the waist width, and ρ⃗1, ρ⃗2 and ϕ1, ϕ2 are the transversal
position vector and azimuthal coordinates in the cylind-
rical coordinate system.
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In the far field, the MCF is given by [21]
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where λ is the wavelength.
From Eq. (2), we may determine the far-field CCF

χc�ρ⃗� � Γ�ρ⃗;−ρ⃗� and the intensity (the autocorrelation
function) χa�ρ⃗� � Γ�ρ⃗; ρ⃗�, and this is shown in Fig. 1, for
the case of topological charge m � 3. From Fig. 1(a)
we can see that for the high coherence case (Lc � 3w0)
there is a dark vortex core with a minimum intensity.
Figures 1(a)–1(c) show that the dark vortex core of in-
tensity fills with diffuse light as the coherence decreases,
a feature well established in the literature. However,
interestingly bright and dark rings appear in the CCF,
and the central region of the CCF increases in intensity
as the spatial coherence is decreased, as shown in
Figs. 1(d)–1(f). Moreover, it is noted that the number of
the dark rings present is three, the very value of the ori-
ginal topological charge of the field.
To see the effect of spatial coherence on the far-field

CCF more clearly, we can assume m � 1, and the
far-field CCF can be written in closed form:
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From Eq. (3) we can determine the one-dimensional CCF
and the influence of the spatial coherence, and this is
shown in Fig. 2. From Fig. 2 we can see that for the
low coherence case, the center CCF is maximum, and
there is a dark zone. Moreover, the radius of the dark
zone decreases gradually with the increasing coherence,
and the CCF has an in-axis null when the coherence is
bigger a certain value, as shown in Fig. 1(a).

To determine the analytical form of the far-field CCF
for higher-order vortices, we decompose the integral
into a part that depends on x1 and x2 multiplied by one
that depends on y1 and y2. For each of these parts, we
expand the vortex parts into a higher-order polynomial
and treat each individual component using the following
definition:

Pij �
ZZ

dx1dx2xi1x
j
2

× exp�b1x21 � c1x1 � b2x22 � c2x2 � ax1x2�: (6)

The zeroth-order integral can be readily determined as
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where the coefficients �a; b1; c1; b2; c2� are chosen such
that the integral converges. Higher-order terms can be
deduced by using the following recurrence relationships:

Pij �
∂i∂jP00

�∂c1�i�∂c2�j
; (8)

where each partial derivative with respect to c1 and c2
corresponds to the multiplication with x1 and x2, respec-
tively, in Eq. (6).

The far-field CCF with different topological charges
for the partial and low-coherence cases is shown in Fig. 3.
From these results and from further simulations not
shown here, we can see the same phenomena, i.e., the
number of dark-ring dislocations in the far-field CCF is
equal to the topological charge of the partially coherent
optical vortex. Therefore, one can measure the topologi-
cal charge of partially coherent optical vortex through its

Fig. 1. Far-field intensity (a)–(c) and cross-correlation func-
tions (CCFs) (d)–(f) for m � 3 for coherence lengths Lc.

Fig. 2. One-dimensional far-field CCFs influenced by coher-
ence lengths Lc, where m � 1.
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far-field CCF using, for example, an experimental system
similar to that demonstrated elsewhere [21].
To understand how the topological charge (azimuthal

index) of the vortex beam becomes mapped onto the
number of rings in the far-field CCF, we can visualise the
different transformations involved in its definition. In-
deed, the integral corresponds to the cross-correlation
between the fields diametrically opposed with respect
to the vortex line position. This cross correlation involves
only two points in the case of perfectly coherent beams.
Partially coherent beams deliver a cross correlation over
larger regions, depicted by the yellow circles in the asso-
ciated video. In fact, we find that the size of the region is
inversely proportional to the coherence length. It is ac-
tually this coherence length that determines the length
scale over which the CCF integrates the product between
the fields on either sides of the vortex. As the distance
between the two diametrically opposed regions is in-
creased, we observe a number of constructive and de-
structive interference features in the CCF. These are due
to the variation of the number of 2π phase changes within
the yellow region. As the size of the region is constant,
this number varies from 2mπ to 0 as the region moves
from the center of the beam to the outside of the beam.
This variation delivers altogetherm ring dislocations and
one central spot. We remark that our approach is not
restricted to the case of Laguerre–Gaussian modes but
should have wider applicability for the case of nested
vortices in other light fields. This is the topic of further
study.
In conclusion, the general relationship between the

topological charge and the CCF of partially coherent
optical vortices is numerically studied. The numerical
simulation reveals that the number of ring dislocations
of the far-field CCF of partially coherent optical vortices
is just equal to the value of topological charge. Therefore,

this shows we may measure the OAM content of a par-
tially spatially coherent vortex field by observing its
CCF. This phenomenon is generic and may occur not
only in the optical domain but also in any partially coher-
ent vortex wave.
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Fig. 3. Cross-correlation functions (CCFs) in the far-field
plane for different topological charges, where Lc � w0.
(a) m � 1, (b) m � 2, (c) m � 4, (d) m � 5.
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