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Abstract

The reciprocally convex combination lemma (RCCL) is an important technique to develop stability criteria for the systems with
a time-varying delay. This note develops an extended reciprocally convex matrix inequality, which reduces the estimation gap
of the RCCL-based matrix inequality and reduces the number of decision variables of the recently proposed delay-dependent
RCCL. A stability criterion of a linear time-delay system is established through the proposed matrix inequality. Finally, a
numerical example is given to demonstrate the advantage of the proposed method.
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1 Introduction

Since time-varying delays arising in communication net-
works may result in instability phenomenon, the stabili-
ty analysis of time-delay systems has become a hot top-
ic in the past few decades [1]. The main attention is
paid to determine the admissible delay region, for which
the systems remain stable, by developing effective delay-
dependent stability criteria via the Lyapunov-Krasovskii
stability theory [2]. The difficulty relies on the han-
dling of the integral terms arising in the derivative of
the Lyapunov-Krasovskii functinals (LKFs) [3]. The de-
velopment of new methods for this problem has always
been an important consideration.
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The model transformations [4] and the free-weighting-
matrix approach [5] were applied to handle the integral
terms in the early literature. In recent years, estimating
integral terms directly via integral inequalities gradual-
ly becomes more popular [6]. Various integral inequali-
ties have been developed, such as Jensen inequality [7],
Wirtinger-based inequality [3], auxiliary function based
inequalities [8–10], Bessel-Legendre inequality [11], and
free-matrix-based inequalities [12,13]. For a system with
constant delay, the Bessel-Legendre inequality has po-
tential to provide the analytical solution.

During analyzing the systems with a time-varying de-
lay via those inequalities, an additional technique is
needed to deal with the time-varying delay arising in
the estimated terms [14]. The simplest treatment (re-
placing time-varying delay with its bounds [15–17])
inevitably leads to the conservatism. The free-matrix-
based inequality can lead to convex conditions, which
can be treated by the convex combination technique
[18], by adding many slack matrices. Furthermore, the
reciprocally convex combination lemma (RCCL) can
directly handle the time-varying delay just introducing
a few slack matrices [19]. Thus, the RCCL, combined
with integral inequalities, has become the most popular
method to estimate the integral terms with time-varying
delays. Two steps, bounding the terms by integral in-

Preprint submitted to 7 October 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/131169745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


equalities and handling the time-varying delays, are
required for this estimation task [24]. For the first step,
the Bessel-Legendre inequality provides a unified way
to reduce the estimation gap [11]. There seems no much
room for further improvement. For the second step, the
time-varying delays in the denominators is commonly
treated through the RCCL [19]. The delay-dependent
RCCL has improved the RCCL in the first time [22]
and there still exists room to further improvement. This
motivates the current research.

This note develops an extended reciprocally convex ma-
trix inequality inspired by the work of [24,25]. Firstly,
the theoretical analysis shows that the proposed inequal-
ity can not only directly lead to the inequalities report-
ed in [24,25] but also reduce the estimation gap of the
RCCL-based matrix inequality and the number of deci-
sion variables of the recently proposed delay-dependent
RCCL. Then, the proposed inequality is applied to de-
rive a new stability criterion of a linear time-delay sys-
tem. Finally, the advantage of the proposed method is
demonstrated through a numerical example.

Notations: Throughout this note, the superscripts T
and −1 mean the transpose and the inverse of a ma-
trix, respectively; Rn denotes the n-dimensional Eu-
clidean space; ∥ · ∥ refers to the Euclidean vector norm;
col{x1, · · · , xn} = [xT

1 , · · · , xT
n ]

T ; P > 0 (≥ 0) means P
is a real symmetric and positive-definite (semi-positive-
definite) matrix; I and 0 stand for the identity and the
zero matrices, respectively; diag{·} denotes the block-
diagonal matrix; and the symmetric term in the sym-
metric matrix is denoted by ∗.

2 Problem Formulation

Consider a linear system with a time-varying delay:{
ẋ(t) = Ax(t) +Adx(t− d(t)), t ≥ 0

x(t) = ϕ(t), t ∈ [−h2, 0]
(1)

where x(t) ∈ Rn is the system state, A and Ad are the
system matrices, the initial condition ϕ(t) is a continu-
ously function, and the delay d(t) satisfying

h1 ≤ d(t) ≤ h2 (2)

where h1 and h2 are constant. Let h12 = h2 − h1.

The following lemmas will be applied in this note.

Lemma 1 [11] For a symmetric matrixR > 0, scalars a
and b with a < b, and vector x such that the integrations
concerned are well defined, the following inequality holds

(b− a)

∫ b

a

ẋT (s)Rẋ(s)ds ≥
N∑
i=1

(2i− 1)χT
i Rχi (3)

where χ1 = x(b)−x(a), χ2 = x(b)+x(a)− 2
b−a

∫ b

a
x(s)ds,

χ3 = x(b)−x(a)+ 6
b−a

∫ b

a
x(s)ds− 12

(b−a)2

∫ b

a

∫ b

s
x(u)duds.

(Since only N= 2, 3 will be used in this note, χi, i ≥ 4
that can be found from [11] are omitted in this note.)

Lemma 2 [21] For a symmetric matrixR > 0, scalars a
and b with a < b, and vector x such that the integrations
concerned are well defined, the following inequality holds

(b− a)2

2

∫ b

a

∫ b

θ

xT (s)Rx(s)dsdθ (4)

≥
(∫ b

a

∫ b

θ

x(s)dsdθ
)T

R
(∫ b

a

∫ b

θ

x(s)dsdθ
)

Lemma 3 (Delay-dependent RCCL [22]) For a real s-
calar α ∈ (0, 1), symmetric matricesX1 > 0 andX2 > 0,
and any matrices S1, S2, U1, and U2, if the following in-
equality holds[

X1 0

0 X2

]
− α

[
U2 S2

∗ 0

]
− (1− α)

[
0 S1

∗ U1

]
≥ 0 (5)

then the following matrix inequality holds[
X1

α 0

0 X2

1−α

]
≥

[
X1 0

0 X2

]
+ (1− α)

[
U2 S1

∗ 0

]
+ α

[
0 S2

∗ U1

]
(6)

3 An extended matrix inequality

Lemma 4 For a real scalar α ∈ (0, 1), symmetric ma-
trices X1 > 0 and X2 > 0, and any matrices S1 and S2,
the following matrix inequality holds[

1
αX1 0

0 1
1−αX2

]
≥

[
X1+(1−α)T1 (1−α)S1+αS2

∗ X2+αT2

]
(7)

where T1 = X1 − S2X
−1
2 ST

2 and T2 = X2 − ST
1 X

−1
1 S1.

Proof: It follows Xi≥0, i = 1, 2 and Schur complement
that

Λ1=
[
X1 S1

∗ ST
1 X

−1
1 S1

]
≥0,Λ2=

[
S2X

−1
2 ST

2 S2

∗ X2

]
≥0 (8)

Let ξa and ξb be two any vectors of Rm, set g1 =√
(1− α)/α, g2 = −

√
α/(1− α), and define

Θ1(α) =

[
ξa

ξb

]T [
1
αX1 0

0 1
1−αX2

][
ξa

ξb

]

Θ2(α) =

[
ξa

ξb

]T [
X1 (1−α)S1+αS2

∗ X2

][
ξa

ξb

]
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Θ3(α) =

[
ξa
ξb

]T [
(1− α)T1 0

0 αT2

][
ξa
ξb

]

Carrying out simple calculations and using (8) yields

Θ1(α)−Θ2(α)−Θ3(α)

=

[
ξa

ξb

]T{[
X1

α 0

0 X2

1−α

]
−

[
X1+(1−α)T1 (1−α)S1+αS2

∗ X2+αT2

]}[
ξa

ξb

]

=

[
g1ξa
g2ξb

]T [
X1 − αT1 (1−α)S1+αS2

∗ X2 − (1− α)T2

][
g1ξa
g2ξb

]

=

[
g1ξa
g2ξb

]T

[(1− α)Λ1 + αΛ2]

[
g1ξa
g2ξb

]
≥ 0

The above inequality holds for all vectors ξa and ξb,
which implies (7). This completes the proof. �

Remark 5 Compared with the inequalities developed in
[24,25], the matrix inequality (7) has two advantages.

• The inequalities in [24,25] can be directly obtained via
the proposed matrix inequality (7). For example, Lem-
ma 4 of [24] can be obtained by using the Wirtinger-
based integral inequality and (7) with S1 = S2, i.e.,

h

∫ t

t−h

ẋT (s)Rẋ(s)ds≥

[
ξ1(t)

ξ2(t)

]T
 hR̃

d(t) 0

0 hR̃
h−d(t)

[ξ1(t)
ξ2(t)

]

≥

[
ξ1(t)

ξ2(t)

]T[
R̃+ h−d(t)

h T̃1 S

∗ R̃+ d(t)
h T̃2

][
ξ1(t)

ξ2(t)

]

Similarly, Lemma 6 of [24] (or Lemma 4 of [25]) can be
obtained by using (7) with S1 = S2 and inequality (3)
with N = 3 (or Wirtinger-based summation inequali-
ty [26]). Obviously, the development of those inequali-
ties through (7) can avoid the complex proof (defining
auxiliary functions and setting special matrices, etc.)
required in [24,25].

• What is more, matrix inequality (7) can be easily com-
bined with the recently proposed integral/summation
inequalities [10,11,27,28] to develop new inequalities
with less estimation gaps. For example, it is predictable
that the integral inequalities obtained by combining (7)
and inequality (3) with N > 3 are less conservative
than the ones in [24]. Moreover, there is an case that
inequality (7) can deal with while the ones in [24] can-
not do (see Remark 9 for details).

Remark 6 The proposed matrix inequality (7) improves
the popular RCCL-based matrix inequality [20].

• At first, the proposed matrix inequality (7) includes the
following inequality as a special case:[

1
αX1 0

0 1
1−αX2

]
≥

[
X1 + (1− α)T3 S

∗ X2 + αT4

]
(9)

where T3 = X1 − SX−1
2 ST and T4 = X2 − STX−1

1 S.
Obviously, inequality (7) has less conservative than (9)
due to no requirement of S = S1 = S2.

• Secondly, by introducing the T3- and T4-dependent ex-

tra terms and waiving the requirement of
[
X1 S

∗ X2

]
≥

0, inequality (9) can reduce the estimation gap of the
following popular RCCL-based inequity [20][

1
αX1 0

0 1
1−αX2

]
≥

[
X1 S

∗ X2

]
(10)

where
[
X1 S
∗ X2

]
≥ 0 with any matrix S.

Therefore, the proposed inequality (7) can reduce the es-
timation gap of the RCCL-based matrix inequality (10).

Remark 7 Compared with the delay-dependent RCCL
(6), the proposed inequality (7) with less number of deci-
sion variables included can provide the same estimation
gap. Let J1 and J2 be the estimation gap of (6) and (7),
respectively, then the difference of them is given as

J1−J2=

[
(1−α)(X1−S2X

−1
2 ST

2 −U2) 0

0 α(X2−ST
1 X

−1
1 S1−U1)

]

• On the one hand, if the free matrices, U1 and U2, in
(6) are optimally choose to be X2 − ST

1 X
−1
1 S1 and

X1 − S2X
−1
2 ST

2 , then two inequalities have the same
estimation gap (J1 = J2).

• On the other hand, condition (5) can be rewritten as

α

[
X1−U2 − S2

∗ X2

]
+ (1− α)

[
X1 − S1

∗ X2−U1

]
≥ 0 (11)

which requires
[
X1−U2 −S2

∗ X2

]
≥ 0 and

[
X1 −S1

∗ X2−U1

]
≥

0, which implies X1 − U2 − S2X
−1
2 ST

2 ≥ 0 and
X2 − U1 − ST

1 X
−1
1 S1 ≥ 0. Then, J1 − J2 ≥ 0 for all

U1 and U2. That is, no matter how to optimize free
matrices, U1 and U2, in (6), the estimation gap of (6)
will not be less than that of (7).

Therefore, (6) and (7) have the same estimation gap.
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4 A stability criterion

For system (1) with the delay satisfying (2), the following
criterion is obtained via the proposed inequality (7).

Theorem 8 For given scalars h1 and h2, system (1)
with a time-varying delay satisfying (2) is asymptotically
stable if there exist a 3n×3nmatrix P > 0, n×nmatrices
Qi > 0, i = 1, 2, Z > 0, R > 0, and U > 0, and 2n× 2n
matrices S1 and S2, such that

Φ4 =

[
Ψ1,[h1] −Ψ2 −Ψ4 ET

2 S2

∗ −R̃

]
< 0 (12)

Φ5 =

[
Ψ1,[h2] −Ψ2 −Ψ5 ET

3 S
T
1

∗ −R̃− Ũ

]
< 0 (13)

where

Ψ1,[d(t)] =ΠT
1 PΠ2 +ΠT

2 PΠ1 + eT1 Q1e1 + eT2 (Q2−Q1)e2

−eT4 Q2e4 + eTs [h
2
1Z + h2

12(R+ U/2)]es

Ψ2 =ET
1 [diag{Z, 3Z}]E1+2ET

4 UE4+2ET
5 UE5

Ψ4 =

[
E2

E3

]T[
2R̃+Ũ S1

∗ R̃

][
E2

E3

]

Ψ5 =

[
E2

E3

]T[
R̃ S2

∗ 2R̃

][
E2

E3

]
Π1 = col {e1, h1e5, (d(t)−h1)e6+(h2−d(t))e7}
Π2 = col {es, e1 − e2, e2 − e4}
Ei = col {ei − ei+1, ei + ei+1 − 2ei+4} , i = 1, 2, 3

E4 = e2 − e6, E5 = e3 − e7
es = [A, 0, Ad, 0, 0, 0, 0],

ei = [0n×(i−1)n, I, 0n×(7−i)n], i = 1, 2, · · · , 7
R̃= diag{R, 3R}, Ũ = diag{U, 3U}

Proof: Construct the following LKF candidate:

V (xt, ẋt) = ηT (t)Pη(t)

+

∫ t

t−h1

xT (s)Q1x(s)ds+ h1

∫ 0

−h1

∫ t

t+θ

ẋT (s)Zẋ(s)dsdθ

+

∫ t−h1

t−h2

xT (s)Q2x(s)ds+ h12

∫ −h1

−h2

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ

+

∫ −h1

−h2

∫ −h1

s

∫ t

t+θ

ẋT (u)Uẋ(u)dudθds (14)

where P > 0, Qi > 0, Z > 0, R > 0, and U > 0; η(t) =

col
{
x(t),

∫ t

t−h1
x(s)ds,

∫ t−h1

t−h2
x(s)ds,

∫ 0

−h1

∫ t

t+θ
x(s)dsdθ

}
.

It is easily found that the LKF satisfies V (xt, ẋt) ≥
ϵ||x(t)||2 for a sufficient small scalar ε > 0.

Calculating the derivative of V (xt, ẋt) along the solution
of system (1) yields

V̇ (xt, ẋt) = ζT (t)Ψ1,[d(t)]ζ(t)− h1

∫ t

t−h1

ẋT (s)Zẋ(s)ds

− h12

∫ t−h1

t−h2

ẋT (s)Rẋ(s)ds

−
∫ −h1

−d(t)

∫ t−h1

t+θ

ẋT (s)Uẋ(s)dsdθ

−
∫ −d(t)

−h2

∫ t−d(t)

t+θ

ẋT (s)Uẋ(s)dsdθ

−(h2 − d(t))

∫ t−h1

t−d(t)

ẋT (s)Uẋ(s)dsdθ (15)

By using (3) with N = 2 and (4) to estimate the sin-
gle integral and the double integral terms, respectively,
V̇ (xt, ẋt) can be estimated as

V̇1(xt, ẋt)≤ ζT (t)[Ψ1,[d(t)]−Ψ2 + ET
2 ŨE2]ζ(t)

− ζT (t)

[
h12E

T
2 (R̃+Ũ)E2

d(t)−h1
+

h12E
T
3 R̃E3

h2−d(t)

]
ζ(t)

where ζ(t) = col {x(t), x(t−h1), x(t−d(t)), x(t−h2) ,∫ t

t−h1

x(s)
h1

ds, ,
∫ t−h1

t−d(t)
x(s)

d(t)−h1
ds,

∫ t−d(t)

t−h2

x(s)
h2−d(t)ds

}
.

For matrices S1 and S2, it follows (7) that

ζT (t)

[
h12E

T
2 (R̃+ Ũ)E2

d(t)−h1
+

h12E
T
3 R̃E3

h2−d(t)
− ET

2 ŨE2

]
ζ(t)

≥ ζT (t)Ψ̄3,[d(t)]ζ(t) (16)

where

Ψ̄3,[d(t)] =ET
2 (R̃+ Ũ)E2 + ET

3 R̃E3 − ET
2 ŨE2

+
h2−d(t)

h12

[
E2

E3

]T[
R̃+ Ũ−S2R̃

−1ST
2 S1

∗ 0

][
E2

E3

]

+
d(t)−h1

h12

[
E2

E3

]T[
0 S2

∗ R̃−ST
1 (R̃+ Ũ)−1S1

][
E2

E3

]

Therefore, the derivative of V (xt, ẋt) is estimated as

V̇ (xt, ẋt) ≤ ζT (t)
[
Ψ1,[d(t)] −Ψ2 − Ψ̄4,[d(t)]

]
ζ(t) (17)

Based on convex combination technique, Ψ1,[d(t)]−Ψ2−
Ψ̄3,[d(t)] ≤ 0 holds if the following two inequalities hold

Ψ1,[h1] −Ψ2 − Ψ̄3,[h1] < 0 (18)

Ψ1,[h2] −Ψ2 − Ψ̄3,[h2] < 0 (19)
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which are respectively guaranteed by (12) and (13) based
on Schur complement. Thus, if (12) and (13) holds, then,

for a sufficient small scalar ε > 0, V̇ (xt, ẋt) ≤ −ε||x(t)||2
holds, which ensures that system (1) with the delay sat-
isfying (2) is asymptotically stable. �

Remark 9 The single integral terms with the time-
varying delay in (15) are summarized as

h12

∫ t−d(t)

t−h2

ẋT (s)Rẋ(s)ds+ h12

∫ t−h1

t−d(t)

ẋT (s)R̆ẋ(s)dsdθ

where R̆ = R + h2−d(t)
h12

U . Since the integral inequalities

reported in [24] require the same integrand of two integral
terms, they are no longer available to directly estimate
the above terms due to R ̸= R̆. It shows the advantage
of the proposed matrix inequality (7) in comparison with
the integral inequalities in [24].

Remark 10 Although this note only discusses the time
delay satisfying (2), it is predictable that the proposed R-
CCL can be also used to improve the delay-rate-dependent
stability criterion when the delay change rate is avail-
able. Moreover, the proposed RCCL can be combined with
more effective LKFs to further improve the results.

5 A numerical example

A numerical example is used to demonstrate the advan-
tages of the proposed matrix inequality.

Example 1 Consider system (1) with the parameters

A =
[−2 0

0 − 0.9

]
, Ad =

[−1 0

−1 − 1

]
(20)

Themaximal upper bounds of h2 with respect to various
h1 calculated by Theorem 1 and reported in the typical
literature are listed in Table 1, where Th. and Co. respec-
tively indicate Theorem and Corollary, and the number
of decision variables (NoVs) are also given. Compared
with the early results (such as the ones based on free-
weighting-matrix approach [15], and Jensen inequality
[16,17,19,23]), Theorem 8 obviously reduce the conser-
vatism with the reasonable increase of NoVs. Theorem 8
achieves the reduction of both the conservatism and the
NoVs in comparison with the auxiliary-function-based
inequality [8,9]. Moreover, compared with the criterion
obtained by the delay-dependent RCCL [22], Theorem 8
provides the same results but requires less NoVs.

6 Conclusions

This note has developed an extended reciprocally convex
matrix inequality for the systems with a time-varying

Table 1
The maximal upper bounds of h2 for various h1.

Methods h1 NoVs

0 0.4 0.7 1.0

Co.6 [15] 1.345 1.440 1.573 1.742 8.5n2 + 2.5n

Co.2 [16] 1.529 1.619 1.729 1.873 2.5n2 + 2.5n

Co.7 [17] 1.529 1.625 1.743 1.900 17.5n2 + 7.5n

Th.2 [19] 1.868 1.882 1.953 2.066 3.5n2 + 2.5n

Co.2 [23] 1.868 1.89 1.98 2.120 11n2 + 3n

Th.1 [20] 2.113 2.179 2.237 2.318 10.5n2 + 3.5n

Th.2 [9] 2.113 2.180 2.237 2.319 19.5n2 + 4.5n

Th.1 [8] 2.14 2.19 2.24 2.31 21n2 + 6n

Th.1 [22] 2.213 2.256 2.286 2.345 18.5n2 + 5.5n

Th.7 2.213 2.256 2.286 2.345 15n2 + 4n

delay. It has been found theoretically that the proposed
matrix inequality reduces the estimation gap of the pop-
ular RCCL-based matrix inequality and that it provides
the same estimation gap with less decision variables re-
quired in comparison with the recently proposed delay-
dependent RCCL. Thus, the proposed matrix inequality
has potential to improve the original/delay-dependent
RCCL based criteria by combining it with various in-
tegral/summation inequalities. For a continuous linear
system with a time delay, a new stability criterion has
been established via the developed matrix inequality,
and a numerical example has been given to show the ad-
vantage of the proposed method.
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