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SUMMARY
Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct,
clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-
prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global
DNAmethylation state that is distinct fromD3-UM. Poor-prognosisM3-UMdivide into subsets with divergent
genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2
mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number
alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermedi-
ate-risk clinical mutation subtypes.
Significance

Using sequence assembly approaches, we identified complex alterations in BAP1 in multiple UM that were not revealed by
applying standard SNP/indel algorithms to next-generation sequencing data, suggesting that many BAP1 alterations are
undetected using current techniques. We show that poor-prognosis UM initially develop monosomy 3 (M3), followed by
BAP1 alterations that are associated with a unique global DNA methylation profile. Despite this shared methylation state,
poor-prognosis M3-UM separated into two subsets by copy number alterations, RNA (mRNA/lncRNA/miRNA) expression,
and cellular pathway activity profiles. Our integrated analysis reveals that the somatic copy number and associated gene
expression subtypes correlate with differential clinical outcomes. Our findings reveal four distinct molecular and clinical
UM profiles, emphasizing the need for stratified UM patient management.
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INTRODUCTION

Uveal melanoma (UM), which arises from melanocytes resident

in the uveal tract, is the second most common melanoma sub-

type after cutaneous melanoma (CM) (Singh et al., 2011; Virgili

et al., 2007). Although both UM and CM tend to occur in people

with light iris color and fair skin (Weis et al., 2006), their clin-

ical and molecular characteristics are very different (Coupland

et al., 2013; Woodman, 2012). While primary UM is treated

with either surgery or radiation and has a low local recurrence

rate, up to 50% of UM patients develop distant metastatic

disease, often to the liver, after treatment of the primary tumor.

At present there are no effective therapies for metastatic UM,

and most patients survive less than 12 months after diagnosis

of metastases (Blum et al., 2016; Chattopadhyay et al., 2016).

UM displays chromosome aberrations and gene mutations

that correlate strongly with clinical outcome and are not present

in CM. Loss of one copy of chromosome 3 (monosomy 3, M3)

in UM is associated with an increased risk of metastasis and a

poor prognosis (Damato et al., 2010; Shields et al., 2010).

Loss-of-function mutations in BAP1, which is located on 3p21,

have been identified in M3-UM (Harbour et al., 2010), and

decreased BAP1 mRNA and protein expression, indicating

BAP1 aberrancy, are highly correlated with the development of

UM metastases (Kalirai et al., 2014; Koopmans et al., 2014).

Currently either disomy 3 (D3) versus M3 status or a 12-gene

microarray-based gene expression panel is used to determine

whether a patient is in a low- or a high-risk prognostic group

(Harbour, 2014; Tschentscher et al., 2003). Recent analysis of

a large D3-UM cohort showed SF3B1mutation to be associated

with an intermediate risk of developing later-onset metastatic

UM (Yavuzyigitoglu et al., 2016).

Despite prognosis being clearly correlated with the expression

of a small panel of marker genes, with M3, and with BAP1 aber-

rancy orSF3B1mutation, themolecular pathways involved in the

development of metastatic disease have not been elucidated. In
this Rare Tumor Project of The Cancer GenomeAtlas (TCGA), we

performed a global and integrated molecular characterization

of 80 primary UM, seeking to generate insights into biological

processes that underlie UM tumors that have distinctly different

prognoses.

RESULTS

Sample and Data Collection
Eighty primary UM tumors were available for multiplatform

analysis (Table S1). Cancer cell contents were high based on

ABSOLUTE (median purity = 0.95, Figure S1A), DNA methyl-

ation-derived leukocyte fraction, and histopathological assess-

ment.All caseswereRT2 (seventheditionof theAJCCTNM-stag-

ing system). As in Diener-West et al. (2005), �10% of patients

developed another primary malignancy.

Chromosome Copy Number Aberrations
In primary UM, recurrent chromosome aberrations include los-

ses in 1p, 6q, 8p, and 16q; gains in 6p and 8q; andM3 (Coupland

et al., 2013). We used the ABSOLUTE and FACETS algorithms to

estimate clonal and subclonal somatic copy number alterations

(SCNA) from SNP microarray and whole-exome sequencing

(WES) data. Unsupervised SCNA clustering defined four sub-

types that had diverse aneuploid events and divided D3-UM

and M3-UM into two subgroups each (Figure 1A). In D3-UM,

cluster 1 showed the least aneuploidy and was enriched for

partial or total 6p gain, with no other significant chromosome

aberrations; cluster 2 showed 6p gain and partial 8q arm gains.

In M3-UM, both clusters 3 and 4 showed 8q whole-arm gain

in nearly all samples, with median 8q copy numbers 3 versus 5

(i.e., 1 versus 3 extra copies) respectively. Evidence for 8q

isochromosome (i.e., chromosome 8 with two q arms) was

seen in all 20 samples in cluster 4, but in only 4 of 22 samples

in cluster 3 (Table S1). Thus, while both M3 and 8q gain co-

occurred in clusters 3 and 4, the 8q copy number burden and
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Figure 1. Genomic Landscape of Primary UM

(A) Unsupervised clustering of somatic copy number alterations (SCNAs) separated 80 primary UM into four clusters: 1 (n = 15), 2 (n = 23), 3 (n = 22), and 4 (n = 20),

ordered by increasing chromosomal instability. The upper covariate tracks show SCNA clusters (1–4), chromosome 3 and 8q copy number, and ploidy level. The

heatmap shows somatic copy number ratio (diploid = 0, white). Lower covariate tracks show (i) clinical outcome; (ii) BAP1 mRNA expression; (iii) unsupervised

clusters for DNA methylation, mRNA, lncRNA, and miRNA; (iv) mutations in G-protein-signaling genes, splicing factors, and EIF1AX; (v) BAP1 alterations that

include alternate splicing and rearrangements detected by assembly of DNA-seq and RNA-seq data.

(B) BAP1mRNA expression, grouped by SCNA clusters, withBAP1 alteration status determined by at least onemethod in (A). Dots show all data values. Box plots

show median values, and the 25th to 75th percentile range in the data, i.e., the interquartile range (IQR). Whiskers extend 1.5 times the IQR.

(C) Cancer cell fractions for chromosome 3 loss, BAP1 alterations, and other somatic mutations on chromosome 3, for tumors with BAP1 alterations detected

either by standard SNP-indel algorithms or by local reassembly of WES data. Lines connect events that occurred in the same tumor.

(D) Schematic depicting a probable sequence of somatic events resulting in those detected in the cluster 3 case V4-A9EO (M3, BAP1 mutation, WGD, then

isochromosome 8q).

See also Figure S1 and Table S1.
type varied between the two clusters. Finally, one tumor in clus-

ter 2 and four in cluster 3 showed higher ploidy values, and were

predicted to have undergone whole-genome doubling (WGD).

Gene Mutations Identified by Standard Algorithms
In WES data for matched tumor-blood pairs, the median somatic

mutation density of 1.1 per Mb was markedly lower than in CM

(CancerGenomeAtlasResearchNetwork, 2015), othermelanoma

subtypes, or other common solid tumors (Tetzlaff et al., 2015). As

in (Johansson et al., 2016), we observed no evidence of the UV ra-

diationmutational signatureseen in�80%ofCM(CancerGenome

Atlas ResearchNetwork, 2015); rather, therewere varying propor-

tions of three non-UV-associated signatures (Figure S1B).
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Nine significantly mutated genes (SMGs) were detected using

MutSig2CV or CoMet: GNAQ, GNA11, SF3B1, EIF1AX, BAP1,

CYSLTR2, SRFF2, MAPKAPK5, and PLCB4 (Figures S1B and

S1C).Noneof thesehavebeen identifiedasSMGs inCM(Johnson

et al., 2016).We foundmutually exclusive somaticmutations in the

G-protein pathway-associated GNAQ and/or GNA11 (92.5%),

CYSLTR2 (4%), and PLCB4 (2.5%) genes, consistent with previ-

ous findings (Johansson et al., 2016; Moore et al., 2016; Van

Raamsdonk et al., 2009, 2010) (Figure S1C and Table S1).

EIF1AX and SF3B1 mutations in 27 of the 80 UM (34%) were

nearly mutually exclusive, consistent with Martin et al. (2013).

Nine of ten EIF1AX-mutant cases had their mutations in

the protein N-terminal region (G6–G15), as in papillary thyroid



carcinomas (Cancer Genome Atlas Research Network, 2014c)

(Table S1). EIF1AX mutations were present only in UM with

neither M3 nor 8q gain, and were exclusively in SCNA cluster 1

(Figure 1A). SF3B1 mutations resulted in R625C/H amino acid

alterations in 14 of 18 samples, while in four UM, mutations re-

sulted in H662R (n = 2), K666T, or T663P, which are frequently-

altered sites in other malignancies (Alsafadi et al., 2016). Only

one UM harbored both an EIF1AX and a SF3B1 mutation; the

latter was an atypical T663P. As was the case for EIF1AX muta-

tions, the majority (78%) of UM with SF3B1mutations were pre-

sent in D3-UM, consistent with Johnson et al. (2017). However,

unlike EIF1AXmutations, SF3B1mutations in D3-UMwere asso-

ciated with SCNA cluster 2, most with partial 8q gains. Thus,

EIF1AX- and SF3B1-mutant D3-UM were each associated with

nearly mutually exclusive SCNA profiles.

We identifiedSRSF2asanSMGthatharbored in-frameY92de-

letions (Y92del) in two UM and an S174del in a third. Tumors with

SRSF2mutations had neither SF3B1 nor EIF1AXmutations, and

were found in both D3-UMandM3-UMwith 8q gains, suggesting

functional similarities between SRSF2- and SF3B1-mutant UM.

Mutant Gene-Specific Splicing Events
Missense mutations at K666 and R625 in splicing factor SF3B1

are associated with alternative branchpoint usage (Alsafadi

et al., 2016), and missense mutations at P95 in splicing factor

SRSF2 are associated with exon exclusion in myelodysplastic

syndrome/acute myeloid leukemia (Kim et al., 2015; Zhang

et al., 2015). Using rMATS to compare RNA sequencing (RNA-

seq) data for UM with mutations in either gene versus UM

with wild-type SF3B1 and SRSF2 suggested that such muta-

tions may alter translation initiation in a large subset of UM.

For example, when SF3B1 has a K666/R625 mutation, the initia-

tion factor EIF4A2 used a neo-acceptor that resulted in a frame-

shift in the open reading frame (Figure S1D), and when SRSF2

had a Y92del, EIF4A2 had a skipped exon. In SRSF2 Y92del

UM, Src kinase FYN had a skipped exon and a larger ratio of

FYN-T versus FYN-B isoforms (Figures S1E and S1F). Finally,

an exon in the C-terminal domain of EIF2S3 had among the

largest fold changes in expression in all SF3B1-mutant UM,

but was absent in all UM with wild-type SF3B1/SRSF2.

BAP1 Alterations Identified by DNA-Seq and RNA-Seq
Assembly
Bothgermline andsomaticBAP1alterationshavebeendescribed

in UM (Abdel-Rahman et al., 2011; Harbour et al., 2010). While

Sanger sequencing initially identified truncating and non-trun-

cating BAP1 mutations in 81.5% of M3-UM (Harbour et al.,

2010), in our cohort standard SNP/indel analysis of WES data

identified only 40.5% (17/42) of M3-UM as having BAP1 muta-

tions. To recover alterations that were inaccessible to our SNP/

indel-calling methods, we applied MuTect2 local reassembly to

exome capture DNA sequencing (DNA-seq) data, and Trans-

ABySS global de novo assembly to RNA-seq data. Combining

results from bothmethods and data types identified an additional

18 UM with BAP1 alterations, often long or complex, raising the

percentage of samples with BAP1 alterations to 83.3% (Fig-

ure S1G). The additional BAP1 genetic alterations were present

only in M3-UM that displayed low levels of BAP1 mRNA expres-

sion, consistent with BAP1 loss of heterozygosity.
BAP1 mRNA expression was significantly (p = 5.3 3 10�16)

higher in SCNA clusters 1 and 2 (D3) than in SCNA clusters 3

and 4 (M3). However, we found no significant difference in

BAP1 mRNA expression in M3-UM with versus without BAP1

aberrancy, indicating that our approach may not have detected

some BAP1 alterations, or that BAP1 regulation may involve

additional epigenetic mechanisms (Figure 1B).

We used ABSOLUTE to determine the relative timing of chro-

mosome 3 loss and of BAP1 alterations (Figure 1C). Most BAP1

alterations were predicted to be either subclonal or clonally ho-

mozygous. Three of the four UM with WGD in SCNA cluster 4

had homozygous BAP1 alterations with multiplicity 2, indicating

that both M3 and BAP1 alterations occurred before WGD. Addi-

tionally, with one exception in which M3 was clearly subclonal,

the cancer cell fractions of M3 were close to 1 (mean = 0.97),

suggesting that M3 was an early event that propagated through

nearly all clones within each tumor. Cancer cell fractions ofBAP1

alterations were lower (mean = 0.88) and fractions of other puta-

tive passenger mutations on chromosome 3 were even lower

(mean = 0.60). From these results, we infer that M3 occurs prior

to BAP1 alterations, and that both events occur prior to other

mutations on the remaining chromosome 3, followed by WGD

in some cases (Figure 1D).

BAP1-Aberrant UM Correlates with a Global DNA
Methylation Profile
Unsupervised consensus clustering on the most variable 1% of

CpG probes yielded a four-cluster solution (Figure 2). EIF1AX-

mutant tumors were only present in DNA methylation cluster 1,

while UM in DNA methylation clusters 2 and 3 were highly

enriched (12 of 16 tumors) with SF3B1/SRFR2 mutations.

Thus, D3-UM with EIF1AX versus SF3B1/SRFR2 mutations

possessed distinct DNA methylation patterns. M3/BAP1-aber-

rant UM tumors showed a single global DNA methylation profile.

Four Transcription-Based UM Subsets
We used RNA-seq data to profile the expression of 20,531

mRNAs and of 8,167 long non-coding RNAs (lncRNAs) and

processed transcripts, and identified four-cluster consensus

solutions for both mRNA and lncRNA (Figure 3). D3-UM divided

into transcription-based clusters 1 and 2, M3-UM into clusters 3

and 4, and the 12-gene panel’s two prognostic groups were

each further separated into two groups. Specific mRNAs and

lncRNAs were differentially and highly expressed in each sub-

set (Figure S2). We noted that lncRNAs LINC00152 (CYTOR)

and BANCR, well-established cancer-associated lncRNAs, had

higher abundance in poor-prognosis clusters 3 and 4 compared

with good-prognosis clusters 1 and 2 (Figure S2A). Other func-

tionally characterized lncRNAs such as NEAT1 and MALAT1

were differentially expressed between poor-prognosis clusters

3 and 4. We identified mRNAs and lncRNAs whose expression

was associated with recurrent SCNAs and/or DNA methylation

(Table S2 and Figures S2B–S2E). For example, the expression

of PVT1 (8q24.21) was highly correlated with SCNA 8q (rho =

0.65, false discovery rate [FDR] = 6 3 10�8) and this lncRNA

was among the most differentially expressed transcripts in

poor-prognosis lncRNA clusters 3 and 4 versus clusters 1

and 2. Both LINC00152 and PVT1 were among a small set of

differentially expressed M3-associated lncRNAs that were
Cancer Cell 32, 204–220, August 14, 2017 207



Figure 2. DNA Methylation Landscape in

Primary UM

Unsupervised clustering of DNA methylation data,

with the heatmap showing beta values ordered

by DNA methylation clusters. CpG locus types

(island, shore, and shelf) are indicated at the left

border. Covariate tracks show unsupervised clus-

ters for four other genomic data types, clinical

outcomes, chromosome 3 and 8q copy number

status, specific gene alterations, and gender.

SF3B1 and EIF1AX mutations were statistically

associated with the clusters (*p < 0.01, Fisher’s

exact test). LOH, loss of heterozygosity.
significantly influenced by DNA methylation (Table S2 and Fig-

ure S2E). Increased LINC00152 expression has been reported

in solid tumors and is correlated with cell migration, invasion,

and proliferation (Pang et al., 2014). PVT1 has been shown to

be oncogenic through multiple mechanisms, including stabiliza-

tion of MYC protein levels (Colombo et al., 2015).

CYSLTR2, which is recurrently mutated in �3% of primary

UM, showed markedly low expression in mRNA cluster 1 versus

all other clusters (Figure S2F), suggesting possible roles for

both CYSLTR2 expression and mutation. Transcripts with the

highest fold changes in mRNA cluster 4 included immune genes

and genes localized to 8q (Figure S2F). LncRNAs and mRNAs
208 Cancer Cell 32, 204–220, August 14, 2017
that were differentially abundant between

SCNA- and transcription-based subtypes

are shown in Figures S2A, S2F–S2H.

The miRNA Expression Landscape
Is Concordant with Transcriptional
UM Subsets
MicroRNA sequencing (miRNA-seq) data

identified four consensus clusters, with a

two-sample outlier group in which can-

cer-associatedmiRNAswere differentially

abundant (e.g., miR-9, -21, -182/3, -375;

Figure S3A). The fourmainmiRNAclusters

were clearly associated with M3 and its

DNA methylation state, and were less

concordant with the mRNA and lncRNA

subtypes than these were with each other

(Figures S3B and S3C). Consistent with

Worley et al. (2008), miR-199a-3p/5p,

miR-199b-3p, and let-7b-5p were more

highly expressed in the M3-enriched

miRNA cluster 3 (Figure S3D). In addition,

miR-486-5pandmiR-451awereabundant

in miRNA cluster 3, while cluster-4 tumors

showed higher expression of miR-142,

-150, -21, -29b, -146b, and -155. While

miRNAs localized to Xq27.3 were abun-

dant in subtype 1, the association be-

tween gender and subtypes was not sig-

nificant (p = 0.77, Fisher’s exact test).

Many cancer-associated miRNAs

(Schoenfield, 2014) were differentially ex-

pressed between clusters. For example,
expression of the oncomiR miR-21-5p was �4-fold greater in

miRNA cluster 4 (Figure S3D), consistent withMIR21 DNA hypo-

methylation (Figure S3E). Expression of 39 other miRNAs was

influenced by DNA methylation (Table S2). Expression of certain

miRNAs was influenced by SCNA; miR-30d and miR-151a

expression was correlated with 8q SCNA (Figures S3E–S3G),

and M3-UM had lower expression of a number of chromosome

3 miRNAs, including let-7g, miR-28, and miR-191. Differential

miRNA-mRNA targeting relationships were inferred between

miRNA clusters 3 and 4 (Figures S3H–S3I).

miRNA cluster 4 corresponded toM3-UMwith immune infiltra-

tion (Figure S3A), suggesting that expression of a number of



Figure 3. Gene Expression Patterns in UM

The upper heatmap shows unsupervised consensus clustering for RNA-seq data of mRNA (left) or lncRNA (right) expression. Covariate annotation tracks

show selected genomic and clinical features. The lower heatmap displays the expression profiles of 12 genes used in a prognostic test for the risk of

developing metastasis (Harbour, 2014), with blue text highlighting genes that are on chromosome 3. High-risk primary tumors show low expression of eight of

these genes and high expression of four genes (yellow versus green panels at the left). BAP1 structural alterations that include alternative splicing and re-

arrangements were detected by assembly of RNA-seq and DNA-seq data. Leukocyte fraction was estimated from DNA methylation data. LOH, loss of

heterozygosity. *, **, *** p value < 0.1, 0.01, 10�10, Fisher’s Exact or Chi-square test.

See also Figures S2 and S3; Table S2.
miRNAs may be associated with the promotion of an immune

environment that plays a significant role in aggressive UM.

Characteristics of Immune-Infiltrated UM
By both DNA methylation and RNA-seq analyses we inferred

that a CD8 T cell infiltrate was present in �30% of M3-UM
while nearly absent in D3-UM, and found that genes

involved in interferon-g signaling (IFNG, IFNGR1, and

IRF1), T cell invasion (CXCL9 and CXCL13), cytotoxicity

(PRF1 and GZMA), and immunosuppression (IDO1, TIGIT,

IL6, IL10, and FOXP3) were coexpressed with CD8A

(Figure 4A).
Cancer Cell 32, 204–220, August 14, 2017 209



Figure 4. Immune Gene Expression in

M3- versus D3-UM

Heatmap for 80 primary UM, highlighting mRNA

expression levels of key immunological genes that

represent the interferon-g pathway, T cell cytolytic

enzymes, chemokine factors, immunosuppressive

factors, and macrophage markers, as well as in-

dividual immune checkpoint blockade genes

(CD274, PDCD1LG2, PDCD1, CTLA4, IDO1, and

TIGIT). Samples were separated by D3 versus M3

status, and sorted from lowest (left) to highest

(right) CD8A expression level. Covariate tracks

show mRNA, lncRNA, miRNA, PARADIGM, DNA

methylation, and SCNA clusters. Leukocyte frac-

tion was estimated from DNA methylation data.

See also Figure S4.
Consistent with human leukocyte antigen (HLA) gene expres-

sion correlating with the presence of an inflammatory infiltrate

(Maat et al., 2008), we found that HLA expression was higher in

M3-UM and correlated with CD8A expression (Figure S4A).

Furthermore, in 50UMwith low-passwhole-genome sequencing

data we identified 11 structural variations in HLA genes (Fig-

ure S4B) in which differential HLA expression was observed in

D3-UM versus M3-UM (p = 0.015, Fisher’s exact test).

Pathways and Regulators Are Differentially Active
between UM Subsets
We analyzed RNA (PARADIGM and MARINa algorithms) and

protein (reverse-phase protein array [RPPA]) expression to

identify activated signaling pathways and regulators in the UM

subsets. PARADIGM-inferred pathway levels resolved four

major groups of samples, with a smaller (n = 7) more heteroge-

neous group (Figure 5A). In PARADIGM cluster-4 cases, 95%

of which were also transcription-based cluster 4, DNA damage

repair/response (DDR) was active, as was MYC signaling and

HIF1a, consistent with an upregulated hypoxia response. Multi-

ple immune-related transcription factors were relatively active,

including JAK2-STAT1/3 and JUN-FOS, consistent with the

elevated levels of immune-related genes in these poor-prog-

nosis M3 tumors. PARADIGM cluster-3 cases, 93% of which

were transcription-based cluster 3, showed higher activities of

key transcription factors FOXA1 and FOXM1, as well as elevated

levels of MAPK and AKT, indicating high cellular cycling and cell

proliferation. Thus, although the two subsets of poor-prognosis

M3/BAP1-aberrant UM shared the same global DNAmethylation

profile, they had markedly distinct cellular signaling profiles.
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Noting that SCNA-based and transcrip-

tion-based and clusters were largely but

incompletely concordant (Figures 1, 3,

and 5), we compared differential PARA-

DIGM signaling and MARINa regulator

activities between clusters (Figures S5A–

S5C). For both transcription- and SCNA-

based clusters, DDR, HIF1a, and MYC

signaling were more active in cluster 4

than in cluster 3. However, the mediators

of immune signaling observed in transcrip-

tion cluster 4 were not identified for SCNA
clusters (FiguresS2F–S2GandS5D), suggestingabiologicalbasis

for the incomplete concordance between transcription- and

SCNA-based clustering.

Given the strong correlation between M3 and 8q gain (Fig-

ure 1A), the oncogenic transcription factor MYC (8q24.21) has

been postulated to play a role in UM progression (McCarthy

et al., 2016; van den Bosch et al., 2012). MYC can either activate

or repress its gene targets, depending on its complexes (e.g.,

with MAX and/or MIZ1) (Kress et al., 2015). PARADIGM showed

highly differential activation of MYC/MAX targets across the

cohort (Figure 5A). Unexpectedly, both PARADIGM clusters 1

(mostly D3/8q-normal tumors) and 4 (all poor-prognosis M3/8q-

gain tumors) displayed high MYC/MAX complex activity levels,

despite differing most in 8q levels. In contrast, MYC/MAX/MIZ

complex targets were most represented in PARADIGM clusters

4 and 5 (88% M3/8q-gain tumors). Thus, activities for MYC/

MAX/MIZ, but not MYC/MAX, corresponded with M3/8q-gain

status.

Sufficient tissue material was available from 11 UM sam-

ples, five M3/BAP1-aberrant versus six D3/SF3B1-mutant, to

generate RPPA data. As expected, BAP1 protein levels were

lower in M3/BAP1-aberrant cases. M3/BAP1-aberrant UM had

a higher (p = 0.017) DDR pathway score than D3/SF3B1 R625-

mutant UM (Figure 5B and Table S3). This is consistent with

PARADIGM pathway results; with in vitro data indicating a role

for BAP1 in homologous recombination DDR (Eletr et al., 2013;

Yu et al., 2014); and with each of the M3/BAP1-aberrant UM

evaluated in the RPPA analysis having evidence of isochromo-

some 8q gain, which can be mediated through inefficient repair

of homologous recombination.
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Figure 5. Integrative Pathway Analysis of UM

(A) Heatmap of hierarchically clustered PARADIGM inferred pathway levels (IPLs) for 80 primary UMs. Samples are clustered into five groups (top horizontal

track). Below this are cluster memberships for other platforms, and for chromosome 3 and 8q copy number, then IPL profiles for the MYC/MAX and MYC/MAX/

MIZ1 complexes. Themain heatmap shows PARADIGM features or nodes that have at least ten downstream regulatory targets and are differentially active in one-

cluster-versus-other comparisons; the annotation panel to the left indicates the cluster(s) in which a node satisfies these conditions. The vertical colored bars on

the right highlight sets of pathway nodes that belong to common biological processes: MAPK/PI3K-AKT (purple), hypoxia (magenta), DNA damage repair/

response (green), and immune response (blue). LOH, loss of heterozygosity.

(B) Distributions of DDR pathway score and abundance for selected proteins, fromRPPA data for M3/BAP1-aberrant versus D3/SF3B1-mutant UM (n = 11). PKC-

a_pS657 denotes PKC-a phosphorylated at S657. Box plots showmedian values and the 25th to 75th percentile range in the data, i.e., the IQR.Whiskers extend

1.5 times the IQR. Circles show all data values.

See also Figure S5 and Table S3.
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All of the samples tested by RPPA harbored an activating

GNAQ/11 mutation, and protein kinase C (PKC) isoforms are

downstream effectors of activated mutant GNAQ/11 (Wu et al.,

2012). Protein levels for both total PKC-a, activated phospho-

PKC-a (S657), and phospho-PKC-d (S664) weremarkedly higher

in M3/BAP1-aberrant UM compared with D3/SF3B1 R625 UM,

indicating that activated mutant GNAQ/11 signaling may be

enhanced in M3/BAP1-aberrant UM.

Because the roles of lncRNAs (Hon et al., 2017; Nguyen

and Carninci, 2016) in UM largely remain to be clarified, we

compared correlations of lncRNA abundance with PARADIGM

pathway activities and MARINa regulator activities in the M3/

BAP1-abberant lncRNA transcriptional clusters 3 and 4 (Figure 6

and Table S4). In cluster 3, LINC00403, RMRP, and SNHG11,

and uncharacterized lncRNAs such as RP11-14N7.2 and CTB-

193M12.5, were correlated with activated transcriptional

regulators of proliferation (e.g., FOXM1, FOXA1, E2F1), low

MYC/MAX complex pathway activation, diminished HIF1A/

ARNT complex activity, and low DDR pathway activity. In cluster

4, LINC00152, BANCR, MAGI2-AS3, and CD27-AS1 were posi-

tively correlated with immune-associated pathway nodes and

regulators of JAK-STAT and cytokine mediators, as well as me-

diators of DDR, MYC/MAX, and HIF1a activity.

Correlation of Distinct Biological Subsets with Clinical
Prognosis in UM
As expected, M3-UM patients had a significantly worse prog-

nosis than D3-UM (Figures 7A and S6A). While limited by the

duration of follow-up, we observed that features known to be

prognostic (i.e., histological type, closed connective tissue

loops, and tumor-associated macrophage infiltration) were

also prognostic in our cohort (Figure S6B).

As all M3-UM shared the same global DNA methylation profile

(Figure 2), M3 and DNA methylation cluster 4 had identical

Kaplan-Meier curves (Figure 7A). SCNA clusters 3 and 4, wholly

comprising M3-UM cases, had different UM metastasis (i.e.,

the time interval from primary UM diagnosis to development of

distant UM metastasis) (p = 0.002). Consistent with mRNA and

lncRNA clusters 3 and 4 largely overlapping SCNA clusters 3

and 4 (Figures 1 and 3), differences in UM metastasis for tran-

scriptional clusters trended similarly.

We then sought to identify genes whose expression was

associated with differential time to UM metastasis (Figure S7).

We identified 111 mRNAs and 23 lncRNAs in our TCGA cohort

that were both differentially abundant in M3 SCNA clusters 3

versus 4 (jfold changej > 2 and 1.5, respectively; FDR < 0.05),

and associated with UM metastasis in M3 cases (95% confi-

dence interval [CI] on the hazard ratio [HR] either less than or

greater than 1.0) (Figures S2H, and S7; Tables S5 and S6).

For mRNAs and lncRNAs in the TCGA that were more abundant

in SCNA cluster 4, most HR were above 1.0 (Figures S7A–S7C).

Thirty-five of the differentially abundant mRNAs and three

lncRNAs were also associated with UM metastasis in an
Figure 6. Pathway and Regulators that were Differentially Active in Tra

Correlation network for lncRNA clusters 3 (top) and 4 (bottom), showing PARADIG

blue lines indicate Spearman correlations (jrhoj > 0.5) between the expression of

PARADIGM orMARINa feature. The color of each node reflects differential expres

overexpressed/active, blue for underexpressed/inactive). See also Table S4.
independent cohort (Laurent et al., 2011) (Figures S7C–S7E,

Table S6). Eighteen (69%) of the 26 genes with HR 95% CI >

1.0 in both cohorts (i.e., with higher gene expression associated

with shorter UM metastasis) were on 8q (Figure S7C). Despite

localizing to 8q, the expression of ENPP2 (8q24.12) was associ-

ated with a low HR in both cohorts (0.30 and 0.36, respectively),

consistent with our unbiased analysis that showed ENPP2 DNA

methylation to be anti-correlated with its transcript expression

(Spearman r = �0.81) (Table S2). Four of the 12 genes with HR

95% CI < 1.0 were associated with recurrent SCNA losses in 3p

(PPARG, SYN2), 6q (NEDD9), and 8p (SLC7A2).

DISCUSSION

Our integrated, multidimensional molecular and computational

investigation into UM provides insights that have mechanistic,

prognostic, and therapeutic implications. The analysis divided

primary UM tumors into four molecular groups, subdividing

poor-prognosis M3-UM and better-prognosis D3-UM into two

subgroups each (Figure 7B). We show that poor-prognosis

M3-UM is associated with a distinct global DNA methylation

pattern that differs from the pattern observed in D3-UM, sug-

gesting that BAP1 aberrancy may result in metastasis-prone

DNAmethylation state. M3-UM cases, despite sharing a charac-

teristic global DNA methylation profile, were divided by SCNA-

based and transcription-based analyses into two subgroups

that have different biological pathway profiles and clinical

outcomes.

Prior studies have shown poorer clinical outcomes to be asso-

ciated with higher chromosome 8q copy number (Caines et al.,

2015; Cassoux et al., 2014; Versluis et al., 2015). Given the pro-

posed role of BAP1 in DNA damage repair/response (DDR) (Is-

mail et al., 2014; Yu et al., 2014), and the upregulated DDR

pathway activity by both transcription- and protein-based

pathway analyses, these data suggest that loss of BAP1 function

may result in inefficient DDR, and may play a role in isochromo-

some 8q formation observed in all SCNA cluster 4 and one-fourth

of SCNA cluster 3 M3-UM samples; however, studies to confirm

this hypothesis are beyond the scope of TCGA.

Although expression of the MYC oncogene on 8q24 has been

implicated in mediating the effect of 8q copy number gain in

UM, our analysis reveals a more complicated scenario in which

MYC/MAX complex targets were highly activated in UM with

(SCNA cluster 4) or without (SCNA cluster 1) 8q gain. In contrast,

the MYC/MAX/MIZ1 complex targets were most prominently

activated only in samples with 8q gain, suggesting that other

processes, in addition to copy number gain, e.g., post-transcrip-

tional alterations, may also be relevant to MYC signaling in these

UM subtypes.

The lncRNA PVT1 locus is adjacent to the MYC locus and is

coamplified with MYC in UM with elevated 8q copy number.

Our data indicate convergent genomic (copy number) and epige-

netic (DNA methylation) mechanisms of PVT1 regulation in UM.
nscriptional Subtypes 3 and 4

M pathway features, (hierarchical) MARINa regulators, and lncRNAs. Red and

a differentially expressed lncRNA and inferred activity of a differentially active

sion for a lncRNA, and relative activity for a PARADIGM/MARINa feature (red for
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Figure 7. Good-Prognosis D3-UM and Poor-Prognosis M3-UM Separate into Distinct Biological Subsets

(A) Kaplan-Meier plots and log-rank p values for the clinical event of UM metastasis for M3- versus D3-UM, then for unsupervised clusters for DNA methylation,

SCNA, lncRNA, and mRNA. The number of cases and events in a cluster are shown on the plots. Median event times for clusters 3 and 4 were 10.8 versus

42.6 months for SCNA (p = 0.002, p = 0.01 with a Bonferroni correction [BC]); 13.0 versus >30 months for lncRNA (p = 0.19, p = 1.0 with BC); and 13.5 versus

30.0 months for mRNA (p = 0.43, p = 1.0 with BC).

(B) Schematic of D3-UMandM3-UMmolecular prognosis subtypes. D3-UM tumorswith EIF1AX versusSF3B1mutations, which are known to be associatedwith

low and intermediate risk of developing UMmetastasis, respectively, correlated with distinct DNAmethylation and SCNA profiles. D3-UM tumors also separated

into two groups by transcription (mRNA, lncRNA, andmiRNA) profile analysis. Loss of chromosome 3, followed by BAP1 alteration, results in bilallelic BAP1 loss.

M3/BAP1 aberrancy is associated with a global DNA methylation profile that is not observed in D3-UM. Despite all M3/BAP1-aberrant UM sharing this common

DNA methylation pattern, these tumors divide into two groups by SCNA and transcription profiles, with distinct pathway features indicative of hypoxia, DDR,

MYC/MAX signaling, and proliferation.

See also Figures S6 and S7; Tables S5 and S6.
Overall, our observations for PVT1 in M3-UM are consistent with

it being highly regulated by DNA methylation in renal cell carci-

noma (Posa et al., 2016), acting as an independent oncogene

and enhancing MYC protein levels/activity (Tseng et al., 2014).

In addition, we identified other coding and non-coding genes

that are associated with recurrent SCNA in UM and are candi-

dates for further functional studies.

Not observed in our cohort, due to relatively short follow-up

times, was the association between D3-UM with an EIF1AX

versus SF3B1 mutation and low versus intermediate risk of

developing metastatic disease compared with M3-UM (Yavuzyi-

gitoglu et al., 2016). The distinct SCNA andDNAmethylation pro-

files we observe in EIF1AX- versus SF3B1-mutant D3-UM may
214 Cancer Cell 32, 204–220, August 14, 2017
contribute to the different prognoses associated with these

mutually exclusive mutations.

We ultimately identified BAP1 alterations in �85% of M3-UM,

consistentwith the initial reportusingSangersequencing (Harbour

etal., 2010).Whilenext-generationsequencing (NGS)hasbecome

the standard for detecting germline and somatic BAP1 altera-

tions in both research and clinical settings, more than half of the

BAP1 alterations were initially missed by NGSmutation detection

algorithms used in our study, and the identification of additional

BAP1 alterations required assembly-based methods. These re-

sults suggest that longer and more complex gene alterations in

BAP1, and other genes, may be detectable only by methods

that include sequence assembly.



Almost all of our UM harbored mutually exclusive hotspot mu-

tations in GNAQ, GNA11, CYSLTR2, or PLCB4, suggesting that

constitutively activated G-protein signaling plays a central role

in early UM development. Furthermore, neither CYSLTR2 nor

PLCB4 mutations preferentially localized to a specific subset of

UM, consistent with mutations in these genes functioning like

GNAQ/11 mutations to drive tumorigenesis without initiating

metastasis. Mutant-activated GNAQ/11 signal through PKC-a,

and we show that M3/BAP1-aberrant tumors had elevated total

and activated PKC-a (and -d) protein levels. Thus, BAP1 aber-

rancy may enhance the effector function of PKC downstream

of mutant-activated GNAQ/11. These data suggest both an as-

sociation between early and later genetic events in metastasis-

prone UM, and that inhibiting activated PKC isoforms may

require targeting downstream effects of BAP1 aberrancy.

We identified the splicing factor gene SRSF2 as an SMG in 4%

of our UM cohort, expanding the landscape of functional spli-

ceosome alterations in UM. We showed that UM with SRSF2

or SF3B1mutations have mutation-specific mis-splicing that af-

fects elongation initiation factors and signaling gene transcripts

that are known to play a role in tumorigenesis. Previous genetic

studies had identified nearly mutually exclusive mutations in

SF3B1 and EIF1AX in UM (Alsafadi et al., 2016; Harbour et al.,

2013; Martin et al., 2013). In our cohort, UM with SF3B1 muta-

tions were enriched in SCNA clusters 2 and 3, while virtually ab-

sent in UMwith the lowest and highest levels of aneuploidy (clus-

ters 1 and 4 respectively). UM with SRSF2 mutations harbored

neither EIF1AX nor SF3B1 mutations, and, like all but one

SF3B1-mutated case, were observed only in SCNA clusters 2

and 3.

In many cancers an immune infiltrate within the tumor is typi-

cally associated with a better prognosis and with response to

immunotherapy (Lee et al., 2016). In primary UM, in contrast,

marker-specific immunohistochemistry has demonstrated that

a dense infiltrate of leukocytes (Bronkhorst et al., 2012; Ksander

et al., 1998) or macrophages (Bronkhorst et al., 2011; Maat et al.,

2008) is associated with M3 and a poor prognosis. In our cohort,

immune infiltrates were highly correlated with upregulation of

chemotactic signals (e.g., CXCL9 and CXCL13) and of stimula-

tors and targets (e.g., IFNG and HLA) that are essential in

T cell-mediated immune therapies. Also in contrast with other

cancers, an increased HLA class I expression has been associ-

ated with a worse prognosis in UM (de Lange et al., 2015), and is

considered a tumor-escape mechanism from natural killer cell-

mediated cytotoxicity in blood (Jager et al., 2002). The increased

HLA class I expression in poor-prognosis UM is likely induced by

infiltrating cytotoxic T cells (van Essen et al., 2016); however, the

molecular immune profile of these tumors is consistent with a

chronically inflamedmilieu in which either T cells aremore immu-

nosuppressive (regulatory T cells) and/or cytotoxic T cells have

been rendered dysfunctional (Bronkhorst et al., 2012). Notably,

the immune checkpoint inhibitors IDO1 and TIGIT, which can

limit the efficacy of T cell killing of cancer cells, were among

the most highly expressed mRNAs in CD8-enriched M3-UM.

These findings may, in part, explain the clinical observations

suggesting that single-agent anti-CTLA-4 or anti-PD1 immune

checkpoint inhibitors have low efficacy in patients with metasta-

tic UM (Kelderman et al., 2013), and that agents targeting IDO1

and/or TIGIT, which are currently in clinical trials, may help over-
come immune suppression in UM (Dougall et al., 2017; Manieri

et al., 2017).

Pathway profiling showed that relative activity of cellular

processes such as DDR, hypoxia, MYC signaling, and MAPK/

AKT programs differentiated subgroups within both M3-UM

and D3-UM. These results suggest that different UM subsets

may require specific targeted strategies to achieve efficacy.

DDR-modulating agents, anti-hypoxia drugs, direct or indirect

anti-MYC therapeutics, and compounds that target these

pathways are currently being investigated in human clinical

trials.

This retrospective study suggests that probe-based or NGS-

based copy number data should support a DNA-based clinical

assay that assigns a high-risk M3-UM sample to one of two

groups (SCNA subtypes 3 versus 4), which have different median

times to UM metastasis. Such an approach would have the

advantage of also identifying isodisomy 3 tumors, which are

not detected by fluorescence in situ hybridization or array

comparative genomic hybridization, and which have a similar

prognosis to M3-UM tumors. In addition, we identified coding

and non-coding genes that were differentially expressed be-

tween M3-UM SCNA subtypes 3 versus 4 and associated with

UM metastasis. We showed that a number of these transcripts,

particularly certain 8q transcripts, are associated with M3-UM

metastasis in an independent cohort.

Developing a clinically relevant classifier will require prospec-

tive evaluation of copy number and/or gene expression data in

tumors with similar clinical-pathological features to identify

patients with higher- versus lower-risk M3-UM, and to validate

the differential UM metastasis intervals observed in this study.

Such a classifier could influence the frequency of metastatic sur-

veillance, prioritize high-risk patients for more aggressive/earlier

adjuvant clinical trials, provide more precise UMmetastasis data

for the design of clinical trials and use of historical controls, and

offer information to patients that may assist them in medical and

personal choices. As no effective adjuvant therapy has yet been

developed for UM, a prospective analysis of characterizing these

two molecular subtypes relative to UM metastasis is especially

timely and important.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD Anderson

Cancer Center; Gonzalez-Angulo

et al., 2011

https://www.mdanderson.org/research/research-

resources/core-facilities/functional-proteomics-

rppa-core.html

See Table S3.

Biological Samples

Primary tumour samples Multiple tissue source sites,

processed through the Biospecimen

Core Resource

See Methods: Experimental Model and

Subject Details

Critical Commercial Assays

Genome-Wide Human SNP Array 6.0 ThermoFisher Scientific Cat: 901153

Infinium HumanMethylation450 BeadChip Kit Illumina Cat: WG-314-1002

EZ-96 DNA Methylation Kit Zymo Research Cat: D5004

Illumina Barcoded Paired-End Library

Preparation Kit

Illumina https://www.illumina.com/techniques/sequencing/

ngs-library-prep.html

TruSeq RNA Library Prep Kit Illumina Cat: RS-122-2001

TruSeq PE Cluster Generation Kit Illumina Cat: PE-401-3001

Phusion High-Fidelity PCR Master Mix

with HF Buffer

New England Biolabs Cat: M0531L

VECTASTAIN Elite ABC HRP Kit

(Peroxidase, Standard)

Vector Lab Catalog: PK-6100

Deposited Data

Raw and processed clinical, array and

sequence data.

Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive

Digital pathology images Genomic Data Commons

Cancer Digital Slide Archive

https://gdc-portal.nci.nih.gov/legacy-archive/

http://cancer.digitalslidearchive.net/

Software and Algorithms

ABSOLUTE Carter et al., 2012 http://archive.broadinstitute.org/cancer/cga/

absolute

ABySS Simpson et al., 2009 http://www.bcgsc.ca/platform/bioinfo/software/

abyss/

Array-Pro Analyzer Media Cybernetics, Washington DC

Atlas-SNP, Atlas2 Suite Challis et al., 2012 https://sourceforge.net/p/atlas2

BioBloomTools (BBT) Chu et al., 2013 http://www.bcgsc.ca/platform/bioinfo/software/

biobloomtools/

Birdseed Korn et al., 2008 http://archive.broadinstitute.org/mpg/birdsuite/

birdseed.html

BreakDancer Chen et al., 2009 http://breakdancer.sourceforge.net/

BWA, BWA-backtrack Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

Circular Binary Segmentation Olshen et al., 2004

ClaNC Dabney, 2006 http://www.stat.tamu.edu/�adabney/clanc/

CoMEt Leiserson et al., 2015 http://compbio.cs.brown.edu/projects/comet/

ConsensusClusterPlus Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

ContEst Cibulskis et al., 2011 http://archive.broadinstitute.org/cancer/cga/

contest

Cufflinks Trapnell et al., 2013 https://cole-trapnell-lab.github.io/cufflinks/

Cytoscape http://www.cytoscape.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DEXSeq Anders et al., 2012 http://www.bioconductor.org/packages/release/

bioc/html/DEXSeq.html

deFuse McPherson et al., 2011 http://compbio.bccrc.ca/software/defuse/

EGC.tools (v1.4.11) NA https://github.com/uscepigenomecenter/EGC.tools

FACETS Shen and Seshan, 2016 https://github.com/mskcc/facets

DNA methylation background correction Triche et al., 2013

Genome Analysis Toolkit Van der Auwera et al., 2013 https://software.broadinstitute.org/gatk/

GISTIC, GISTIC2 Mermel et al., 2011 http://archive.broadinstitute.org/cancer/cga/gistic

GMAP Wu and Watanabe, 2005 http://research-pub.gene.com/gmap/

Heatmap.plus NA https://CRAN.R-project.org/package=heatmap.plus

ImageMagick www.imagemagick.org

In Silico Admixture Removal (ISAR) Zack et al., 2013

Integrative Genomics Viewer (IGV) Thorvaldsdottir et al., 2013 http://software.broadinstitute.org/software/igv/

Maftools Mayakonda and Koeffler, 2016 https://bioconductor.org/packages/release/bioc/

html/maftools.html

MapSplice Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/MapSplice/

MARINa (MAster Regulator INference

Algorithm), ssMARINa

Lefebvre et al., 2010

Aytes et al., 2014

http://califano.c2b2.columbia.edu/marina

MatrixEQTL Shabalin, 2012 https://cran.r-project.org/web/packages/MatrixEQTL

Meerkat Yang et al., 2013 http://compbio.med.harvard.edu/Meerkat/

methylumi (v2.10.0) NA https://www.bioconductor.org/packages/release/

bioc/html/methylumi.html

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/cga/mutect

MuTect2 Van der Auwera et al., 2013 https://software.broadinstitute.org/gatk/

documentation/tooldocs/current/org_broadinstitute_

gatk_tools_walkers_cancer_m2_MuTect2.php

Mutex Babur et al., 2015

MutSig2CV Lawrence et al., 2014 http://archive.broadinstitute.org/cancer/cga/mutsig

NMF Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/NMF/

NovoAlign NA http://www.novocraft.com/

PARADIGM Sedgewick et al., 2013 http://sbenz.github.io/Paradigm/

Picard https://broadinstitute.github.io/picard/

RADIA Radenbaugh et al., 2014 https://github.com/aradenbaugh/radia/

Strelka Saunders et al., 2012 https://sites.google.com/site/

strelkasomaticvariantcaller/

SnpEff Cingolani et al., 2012 http://snpeff.sourceforge.net/

PRADA Torres-Garcia et al., 2014 https://sourceforge.net/projects/prada/

pheatmap NA https://cran.r-project.org/web/packages/pheatmap/

rMATS Shen et al., 2014 http://rnaseq-mats.sourceforge.net/

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

Samr Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/samr

Samtools Li et al., 2009 http://samtools.sourceforge.net/

SigClust Huang et al., 2015 https://cran.r-project.org/web/packages/sigclust

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

SuperCurve Ju et al., 2015, Zhang et al., 2009 http://bioinformatics.mdanderson.org/Software/

supercurve/

Tran-ABySS Robertson et al., 2010 http://www.bcgsc.ca/platform/bioinfo/software/

trans-abyss

VIPER Alvarez et al., 2016 http://califano.c2b2.columbia.edu/viper

Ziggurat Deconstruction Mermel et al., 2011

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

ChEA database Lachmann et al., 2010

Firehose, FireBrowse The Broad Institute, Cambridge MA https://gdac.broadinstitute.org/

http://firebrowse.org/

Laurent microarray expression data,

GEO: GSE22138

Laurent et al., 2011 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE22138

Literome Poon et al., 2014

Multinet Khurana et al., 2013

PhosphositePlus Hornbeck et al., 2014 http://www.phosphosite.org

Regulome Explorer Institute for Systems Biology,

Seattle WA

http://explorer.cancerregulome.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Scott E.

Woodman (swoodman@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor and whole blood samples were obtained from patients at contributing centers, with informed consent from their local Insti-

tutional Review Boards (IRBs, see below). Biospecimens were processed centrally, and DNA and RNA were distributed to TCGA

analysis centers. In total, 80 evaluable primary tumors with associated clinicopathologic data were assayed on at least one molec-

ular-profiling platform.

TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with

45-CFR-46 (the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB

approval has been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
METHOD DETAILS

BAP1 Terminology
In our cohort, BAP1 mRNA levels were lower in M3 tumors than in D3 tumors. We used the terms ‘‘BAP1-aberrant’’ and ‘‘BAP1 aber-

rancy’’ to refer to cases in which we detect BAP1 sequence alterations (i.e. DNA-seq or RNA-seq variants, which may be short, long,

or complex), and/or decreased mRNA expression. We say ‘‘and/or’’ because, while BAP1 alterations in the setting of M3 typically

result in decreased BAP1 mRNA expression, we detected no BAP1 alterations in 7 of 42 M3 tumors in our cohort. It is possible

that BAP1 alterations were present in these cases, but our approaches failed to detect them; alternatively, BAP1 with unaltered

sequence may be epigenetically modulated in these cases.

Biospecimen and Clinical Data Processing
Patient and Sample Characteristics

Eight academic medical centers provided primary UM tumor samples, matched blood for germline DNA, and clinicopathologic data

from 121 enucleated UM patients under IRB-approved protocols. 80 primary UM from six centers passed all quality-control mea-

sures and had data from all molecular analytic platforms except reverse phase protein array (RPPA), for which data were derived

from 12 primary UM. Eleven of these 12 cases had BAP1, SF3B1 or EIF1AX mutations; V4-A9EH did not, and was removed from

further analysis (Table S1). Patients who had been treated prior to tissue procurement with systemic chemotherapy or
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focal radiotherapy were excluded. Enrollment criteria required tumors to consist of at least 200 mg of fresh frozen tissue, and DNA-

matched normal (blood) controls to be available. A top-slide of the frozen tumor was cut to confirm the pathology characteristics,

including adequate cellularity and percentage of necrosis. The presence of adequate amounts and quality of DNA and RNA isolated

from the specimens was confirmed, resulting in 80 patients enrolled. The clinical data collected included patient age, sex, race,

ethnicity, height, weight, tumor anatomic location (choroid, ciliary body, iris), iris color, tumor clinical dimensions, tumor pathology

dimensions, clinical and pathologic AJCC staging, history of prior and synchronousmalignancies, newmalignancies including devel-

opment of local and systemicmetastases, date of UM treatment, date of diagnosis withmetastasis, date of death, cause of death and

date of last contact.

Histologic Evaluation of Uveal Melanoma

A panel of five histopathologists with expertise in ocular pathology and melanoma evaluated digital slides via Biopathology Center’s

Virtual Imaging for Pathology, Education & Research application (VIPER) for the 80 UM. Slides consisted of hematoxylin- and eosin-

stained sections from the formalin-fixed paraffin embedded tumors scanned at 200x or 400x magnification. Histomorphologic fea-

tures evaluated included tumor extent (ciliary body involvement and extrascleral extension), cytologic features including cell

morphology (percent spindle and percent epithelioid cells) and degree of pigmentation, and the presence of associated inflammatory

components for both tumor-infiltrating lymphocytes and tumor-infiltratingmacrophages. Inflammationwas characterized as focal vs.

diffuse or mild vs. moderate vs. heavy, according to the distribution and density of inflammatory infiltrate within the tumor. The num-

ber of mitoses was determined within a 2 mm2 area, with the mitotic index grouped as low (0-5 mitoses), intermediate (6-10 mitoses),

and high (>10 mitoses). Group discussions and slide reviews resulted in consensus determinations for the above features.

Clinical Outcome Analysis

All clinical outcome events were calculated using the time interval in days from the date of the pathologic diagnosis of primary tumor

to either the date of documented metastatic disease (UM metastasis), death (UM survival), or last follow-up, censored to 5 years.

Kaplan-Meier (KM) analysis for UM-specific death (n=77), UM-specific metastasis (n=70), and UM-specific metastasis or death

(n=77) was performed using the survival R package, and log-rank testing was used to compare curves. For genes, sample groups

with low vs. high expression were generated by thresholding at the median expression level.

Whole Exome Sequencing (WES)
Library Construction

Libraries were constructed using the protocol described in (Fisher et al., 2011) with several modifications. First, initial genomic DNA

input into shearing was reduced from 3 mg to 100 ng in 50 mL of solution. Second, for adapter ligation, Illumina paired end adapters

were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. These index

sequences enable pooling of libraries prior to sequencing. Third, custom sample preparation kits from Kapa Biosciences were

used for all enzymatic steps of the library construction process.

Following sample preparation, libraries were quantified using PicoGreen, normalized to equal concentration, and pooled by equal

volume. Library pools were then quantified using a SYBRGreen-based qPCR assay, using PCR primers complementary to the P5/P7

ends of the adapters (kit from Kapa Biosciences). After qPCR quantification, library pools were normalized to 2 nM, denatured using

0.2 N NaOH, and diluted to 20 pM, the working concentration for cluster amplification and sequencing. Denatured library pools were

spread across the number of sequencing lanes required to achieve target coverage for all samples.

Sequencing

Cluster amplification and sequencing of denatured templates were performed according to Illumina protocols using HiSeq 2000 v3

cluster amplification kits, v3 flow cells, v3 Sequencing-by-Synthesis kits, Multiplexing Sequencing Primer kits, and the latest version

of Illumina’s RTA software. 76bp paired end reads, with additional cycles added to readmolecular index sequences, were performed

on Illumina HiSeq 2000 sequencers.

Alignment and QC

Reads were aligned using BWA-backtrack (Li and Durbin, 2010) to assembly hg19/GRCh37; alignments were processed through the

Picard pipeline, which finds and excludes PCR and optical duplicate reads, identifies sites likely harboring strand-specific 8-oxogua-

nine lesions (Costello et al., 2013), and provides overall library QC metrics to identify problematic samples (none were excluded).

Sample contamination levels were estimated using ContEst (Cibulskis et al., 2011), which estimates cross-sample contamination

by looking at the distribution of common germline SNP sites. No samples exceeded the maximum contamination threshold of 4%.

Somatic Mutation Calling and Filtering

At the Broad Institute, somatic single nucleotide variants (sSNVs) were identified from tumor-normal paired alignments usingMuTect

(Cibulskis et al., 2013), which identifies variants unique to the tumor sample by contrasting alignment pileups at each genomic po-

sition. Somatic insertions or deletions (sINDELs) were identified using Indelocator, which similarly uses pileups to identify tumor-spe-

cific variants. In addition, regions hypothesized to harbor longer sINDEL events (on the order of 50-100 bases, as inBAP1) were called

using MuTect2 (Van der Auwera et al., 2013). This performs local reassembly according to haplotype structure to better call events

that are not trivially associated with pileups, and dramatically reduces the number of false positives due to alignment errors. This

resulted in 2,699 sSNV calls and 2,636 sINDEL calls, for 5,335 total calls.

At the Baylor College of Medicine (BCM), mutations in BAM files were detected as follows: Atlas-SNP (Shen et al., 2010) of the

Atlas2 Suite (Challis et al., 2012) was run to list all sSNVs. This list was further filtered by removing variant alleles observed in fewer

than 4 reads, or present at a variant allele fraction (VAF) of less than 4%. The VAF in the normal had to be less than 1%of the VAF in the
e4 Cancer Cell 32, 204–220.e1–e15, August 14, 2017



tumor. At least one read had to have a mapping quality of Q20 or better, and the variant had to lie in the central portion of the read. In

addition, reads had to support the variant allele in both forward and reverse orientations. COSMIC variants were exempted from the

above filters. sINDELs were discovered by similar processing except that the initial list was generated by Atlas-Indel of the Atlas2

Suite (https://sourceforge.net/p/atlas2), and indels must have been observed in at least 10 reads, with a VAF of 15% or more. All

variants were compared to a panel of normal genomes and matching variants removed because they were likely germline alleles

or recurrent artifacts. Further filtering was done by removing variants with fewer than 2 reads in the normal, tumor VAF 5% or

less, or genes with greater than 2 variants for the same sample.

At the University of California Santa Cruz (UCSC), sSNVs were identified by RADIA (RNA AND DNA Integrated Analysis), a method

that combines the patient matched normal and tumor DNA whole exome sequencing (WES) data with the tumor RNA-seq data for

somatic mutation detection (Radenbaugh et al., 2014). The inclusion of the RNA-seq data in RADIA increases the power to detect

somatic mutations, especially at low DNA allelic frequencies. RADIA classifies somatic mutations into 3 categories depending on

the read support from the DNA andRNA: 1) DNA calls - mutations with high support in the DNA, 2) RNAConfirmation calls - mutations

with high support in both the DNA and RNA, 3) RNA Rescue calls - mutations with high support in the RNA but weak support in the

DNA. In the UM cohort, RADIA made 1,955 DNA calls, 399 RNA Confirmation calls, and 59 RNA Rescue calls.

At the BCCancer Agency’s Genome Sciences Centre (BCGSC), Strelka (v1.0.6) (Saunders et al., 2012) was used to identify sSNVs

and sINDELs (up to�22 bp long) from the exome sequencing data for tumors and blood normals. All parameters were set to defaults,

with the exception of ‘‘isSkipDepthFilters’’, which was set to 1 in order to skip depth filtration, given the higher coverage in exome

datasets. The variants were subsequently annotated using SnpEff (Cingolani et al., 2012), and the COSMIC (v61) (Forbes et al.,

2010) and dbSNP (v137) (Smigielski et al., 2000) databases.

Calls generated at the Broad Institute were merged with the calls from BCM, UCSC, and BCGSC. Calls were included in a

consensus set if they were called by either the Broad or by two or more of the four participating centers. This resulted in an additional

215 variants not called by the Broad. Consensus calls were filtered through a panel-of-normals, which encodes the distribution of

allelic coverage at each genomic position across thousands of normal exomes. This filters out both recurrent sequencing/alignment

artifacts and rare germline variants missed during paired tumor-normal calling. By filtering sites exhibiting recurrently high nonrefer-

ence read counts, we dramatically reduced the number of calls to 2,699,mostly by reducing sINDELs called by Indelocator, which are

often false positives due to recurrent alignment artifacts.

Significantly Mutated Genes

This filtered set of calls was analyzed for significantly mutated genes using the MutSig2CV suite (Lawrence et al., 2014). This uses

three tests to infer significantly mutated genes: abundance, which classifies whether a gene’s observed mutation rate is significantly

elevated relative to its expected background mutation rate; clustering, which looks for genes harboring recurrently mutated loci; and

conservation, which looks for genes whose mutations are significantly enriched in evolutionarily conserved sites. Each of these tests

returns a p-value for every gene, which are Fisher-combined and false discovery rate (FDR)-corrected via Benjamini-Hochberg.

Genes were considered ‘‘significant’’ if their FDR value was below 0.1.

Validation Analysis

Calls in significantly mutated genes were subject to Fluidigm validation. Samples were initially aligned with BWA-backtrack, but an

inability to properly align reads spanning long deletions led to realigning all samples with NovoAlign (www.novocraft.com), which

properly gapped these reads. Mutations were validated by comparing allelic fractions in thewhole exome alignments with allelic frac-

tions in the validation alignments; mutations that fell outside of the expected beta-binomial distribution of deviation were rejected. In

addition, recurrent sites found in the deep coverage validation data but not present in the lower coverage exomes were added to the

final set of calls.

Mutual Exclusivity and Concurrence of Mutations

To generate the alteration matrix, we first ranked all genes based on their MutSig p-value (M), GISTIC p-value (G) and expression

verification p-value of copy number changes (E). We aggregated these scores using Gene score = Min(M, Max(G, E)), which uses

either a mutation frequency score or a copy number alteration score, whichever is more significant, and tempers G with E when

the latter is less significant.

The top 500 genes on this ranked list were selected in an alteration matrix for the Mutex algorithm (Babur et al., 2015), after filtering

out genes that had only a single alteration in the cohort. We used gene copy number alterations only if they were also verified with

gene expression change compared to other samples. As Mutex parameters, we used 10,000 iterations for first-level randomized

runs, and 5 as the maximum exclusive set size. We selected result groups with scores smaller than 0.05. This identified the groups

CYSLTR2, GNAQ, and GNA11; ABR, GNAQ, and GNA11; SF3B1, BAP1, and EIF1AX; and several genes amplified at 8q: E2F5,

MYLB1, GGH, LYN, LRRCC1, UBE2V2, CEBPD, and CSPP1.

Limiting Mutex to the recurrent Q209 hotspots in GNAQ and GNA11 led to the detection of new groups PLCB4, GNAQ, GNA11,

and CYSLTR2; DEPDC5, GNAQ, GNA11, and CYSLTR2; UTRN, GNAQ, GNA11, and CYSLTR2; ABR, GNAQ, GNA11, and PLCB4;

and the same prior group of genes amplified at 8q. PLCB4 and DEPDC5 were recovered here because they were co-occurrent with

the rarer GNAQ/GNA11 hotspot at position 183 in 1 and 2 samples respectively.

The CoMEt algorithm (Leiserson et al., 2015) was used to detected groups of mutually exclusively mutated genes, by running it on

the UM mutation list using arguments -t4 -k4 -N1000000 -np 100.
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Identifying Mutation Signatures

Using maftools 0.99.34 (Mayakonda and Koeffler, 2016) and NMF 0.20.6, somatic nucleotide substitutions across the cohort

and their trinucleotide sequence contexts, were decomposed into three distinct mutation signatures, that each correlate to three

validated signatures (15, 19 and 1A) (Alexandrov et al., 2013). Correlations to the validated signatures were weak (r = 0.61, 0.57,

and 0.76), and none of these three signatures is described as UV-mediated.

SNP-based Copy Number Analysis
DNA from each of the 80 tumor and 80 normal samples were hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome

Analysis Platform of the Broad Institute, as previously described (McCarroll et al., 2008). Briefly, from raw CEL files, Birdseed was

used to infer a preliminary copy number at each probe locus (Korn et al., 2008). For each tumor, genome-wide copy number esti-

mates were refined using tangent normalization, in which tumor signal intensities are divided by signal intensities from the linear com-

bination of all normal samples that are most similar to the tumor. This linear combination of normal samples tends to match the noise

profile of the tumor better than any set of individual normal samples, thereby reducing the contribution of noise to the final copy num-

ber profile. Individual copy number estimates then were segmented using Circular Binary Segmentation (Olshen et al., 2004). As part

of this process of copy number assessment and segmentation, regions corresponding to germline copy number alterations were

removed by applying filters generated from either the 80 UMblood normals, or the larger cohort of blood normals in the TCGA ovarian

cancer analysis. Segmented copy number profiles for tumor and matched control DNAs were analyzed using Ziggurat Deconstruc-

tion, an algorithm that parsimoniously assigns a length and amplitude to the set of inferred copy number changes underlying each

segmented copy number profile (Mermel et al., 2011). Allelic copy number, whole genome doubling, subclonality, and purity and

ploidy estimates were calculated using the ABSOLUTE and FACET algorithms (Carter et al., 2012; Shen and Seshan, 2016). For sam-

ples with ABSOLUTE-corrected copy number, CBS-derived segmented copy number values were re-centered using the In Silico

Admixture Removal (ISAR) procedure (Zack et al., 2013). Significant focal copy number alterations were identified from ISAR-cor-

rected segmented data using GISTIC 2.0.225. For copy number based clustering, tumors were clustered based on thresholded

copy number at reoccurring alteration peaks from GISTIC analysis (all_lesions.conf_99.txt file). Clustering was done in R based

on Manhattan distance using Ward’s method. Isochromosome status (e.g. for isochromosome 8q) was inferred from allelic copy

number profiles from the ABSOLUTE algorithm. Specifically, for any metacentric chromosome, a potential isochromosome was re-

ported if the modal integer copy number of the major allele for one arm (e.g. q, or long arm) was at least two greater than the modal

integer copy number of the minor allele of the opposite arm (e.g. p, or short arm).

RNA Sequencing
RNA Library Construction, Sequencing, and Analysis

One mg of total RNA was converted to mRNA libraries using the lllumina mRNA TruSeq kit (RS-122-2001 or RS-122-2002) following

the manufacturer’s directions. Libraries were sequenced 48x7x48bp on the Illumina HiSeq 2000 as previously described (Cancer

Genome Atlas Research Network, 2012). FASTQ files were generated by CASAVA. RNA reads were aligned to the hg19 genome as-

sembly using MapSplice 0.7.4 (Wang et al., 2010). Gene expression was quantified for the transcript models corresponding to the

TCGA GAF 2.1, using RSEM (Li and Dewey, 2011), and were normalized within each sample to a fixed upper quartile. For further de-

tails on this processing, refer to Description file at the NCI GDC data portal under the V2_MapSpliceRSEM workflow (https://

gdc-portal.nci.nih.gov/). Quantification of genes, transcripts, exons and junctions can also be found at the GDC Data Portal.

Unsupervised Clustering

For clustering, a set of 1,981 genes that were both highly expressed and had highly variable expression values were identified. The

0.75 quantile of mean(RSEM) values was used as a threshold for highly expressed genes, while the 0.9 quantile of variance(RSEM)

values was used as a threshold to identify genes with highly variable expression values. After median centering the log10(RSEM+1)

values by gene, consensus clustering was applied using the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010) with

partitioning around medoids (PAM), a Spearman correlation-based distance, and 10,000 subsamples with a 0.85 random gene frac-

tion. Output from ConsensusClusterPlus along with gene expression heatmaps, principal component analysis, and silhouette plots

suggested four expression subtypes: cluster 1 (n = 22), cluster 2 (n = 21), cluster 3 (n = 15), and cluster 4 (n = 22) (Figure 3A). ClaNC

(Dabney, 2006) was used to identify genes whose expression patterns characterized the subtypes. The statistical significance of the

differences in gene expression patterns present in the subtypes was assessed with the SigClust R package (Huang et al., 2015) using

1,000 permutations, the default covariance estimation method, and the 1,981 clustering genes.

Differential Expression Analysis

The samr R package (Li and Tibshirani, 2013) was used to identify genes that were differentially expressed in the RNA subtypes using

1,000 permutations and a q-value threshold of 0.05. We then used the DAVID annotation database (Huang da et al., 2009) to identify

pathways that were enriched for differentially expressed genes.

Structural Rearrangements, Emphasizing BAP1
To identify structural rearrangements, including longer indels, we assembled the 48-bp paired-end read RNA-seq data for each sam-

ple using the de novo assembler ABySS v.1.3.4 (Simpson et al., 2009), and analyzed the resulting assembly with Tran-ABySS v.1.4.8

(Robertson et al., 2010). To address how variations in transcript abundance influence assembly, for each library we generated sets of

assemblies using every second k-mer length between 24 and 48 bp, then generated aworking contig set bymerging the contigs from

all of the library’s k-mer assemblies. Each merged assembly was used as input into Trans-ABySS, which identifies indels and
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alternative splicing events by usingGMAP (Wu andWatanabe, 2005) to compare the de novo contigs to the human reference genome

and to multiple sets of transcript models. Structural contig variant events that do not match the reference but fulfill specific alignment

and filtering criteria are reported in the analysis results. Events identified in BAP1 were manually reviewed in RNA-seq data in the

Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013) and were compared in IGV with the sample’s exome data to help

verify Trans-ABySS rearrangement calls. M3 samples that did not have BAP1 rearrangements called by the above RNA-seq analysis

were individually reviewed in IGV to identify potential events. In VD-AA8O, when a homozygous deletion within BAP1 was reported

fromDNAdata but not by our analysis of RNA-seq data, we used deFuse (McPherson et al., 2011) on the RNA-seq data to confirm the

deletion.

Gene Fusion Detection

RNA-seq data supports detecting structural variants, including alternate splicing, intra-chromosomal fusions, and inter-chromo-

somal fusions. We used two algorithms to identify gene fusions: MapSplice (Wang et al., 2010) and PRADA (Torres-Garcia et al.,

2014). PRADA uses BWA (Li and Durbin, 2010) to extract all best alignments per read from a dual (genome and transcriptome) refer-

ence file. After this initial mapping, the alignment coordinates of reads that mapped to the transcriptome are transformed into coor-

dinates on the genome. Mapped reads whose best alignments have multiple genomic coordinates are removed. Quality scores are

recalibrated using the GenomeAnalysis Toolkit (Van der Auwera et al., 2013). Index files are generated using Samtools (Li et al., 2009)

and duplicate reads are flagged using Picard. The PRADA fusion module detects fusion transcripts by identifying discordant read

pairs and junction-spanning reads. Discordant read pairs are paired read ends that map uniquely to different protein-coding genes

with orientations consistent with formation of a sense–sense chimera. Junction-spanning reads are detected by constructing a

sequence database that holds all possible exon-exon junctions that match the 30 end of one gene fused to 50 end of a second

gene. Unmapped reads aligned to the database of all hypothetical exon junctions created by using the Ensembl transcriptome refer-

ence. Only reads for which the mate pair maps to either of the two fusion partner genes are considered as fusion transcripts. In this

study, we extracted fusionswith (1) at least two discordant read pairs, (2) at least one junction spanning read and (3) without high gene

homology between each fusion gene partner (BLAST E-value > 0.001). Next, we applied the concept of mutation allele fraction to

RNA sequencing data, and calculated the ratio of junction-spanning reads to the total number of reads crossing over the junction

point in the reference transcript. We used the transcript allele fraction (TAF) to exclude artifacts that depend on highly expressed

transcripts. We included fusion transcripts showing TAF > 0.01 of both genes in our fusion list. In addition, we filtered out fusions

that are found in normal TCGA samples.

Briefly,MapSplice_2_0_beta_7_21 identifies fusion candidates as any two segments of a read alignment that were (1) separated by

a gap longer than 200,000 nt, or (2) were on different chromosomes, or (3) were on different strands, or (4) mapped to discordant

locations (i.e. the apparent direction of transcription changes between the segments). To decrease false positives, these candidates

were further filtered by manual review and visually examining predicted fusion events of special interest utilizing a novel realignment

and visualization utility. For each predicted fusion, this visualization tool generates a contiguous synthetic genomic reference

sequence across the fusion junction. This region includes the sequence from both the donor and acceptor sides of a putative fused

transcript, plus flanking genome sequence immediately adjacent to the predicted genomic fusion loci. An attempt is thenmade to (re)

align all reads from the RNA-seq experiment that predicted the fusion, to the synthetic fusion reference sequences. All the reads that

map to one of the synthetic fusion loci (including flanking regions) are collected into one BAM file, those reads that support the fusion

are also copied into a second more exclusive BAM file. This second file contains only reads directly supporting the fusion junction,

either by spanning it or comprising a mate pair that bridges the junction even though neither read spans it. These BAM files together

with the synthetic fusion sequences can be loaded into IGV (Thorvaldsdottir et al., 2013) for the purposes of visualizing the predicted

fusion events as well as its read alignments. Visualizing predicted fusions in this way provides an opportunity for the application of

human pattern recognition skills to the task of filtering fusions through direct qualitative inspection of the predicted variant and its

bridging and spanning supporting reads, within the context of its surrounding genomic sequence and transcript models.

Splicing Factor Mutants

All tumor RNA-seq data was realigned using STAR 2.4.1d (Dobin et al., 2013) in multi-sample two-pass mode, removing splice junc-

tions covered by less than 10 unique reads across all samples. After realignment, splice junctions for which neither splice site was

present in Gencode v19 and those connecting two genes were removed. Differentially-used splice junctions were identified with

DEXSeq 1.17.6 (Anders et al., 2012) using all samples.

Splicing defects associated withmutations in splicing factors SRSF2 or SF3B1were identified with rMATS 3.0.9 (Shen et al., 2014).

Two samples with in-frame deletions in the SRSF2 linker sequence between the functional RRM and RS domains were compared

with five randomly chosen control samples that had no somatic mutations in spliceosomal genes. Eighteen samples with SF3B1

missense mutations in HEAT domains were compared to 20 control samples. To increase sensitivity to novel splice junctions in

the SF3B1 comparison, a custom annotation was created frommutant and control samples with Cufflinks 2.2.1 using default param-

eters (Trapnell et al., 2013).

We used Sashimi plots (Katz et al., 2015) to visualize splicing changes in RNA-seq data, across sets of samples that had, or lacked,

particular mutations.

Effect of Immune Marker Genes on mRNA Consensus Clustering

Weused a subtraction approach to determine the effect of immunemarker genes on themRNA four-cluster solution.We removed the

expression data from 513 genes that define different immune cell types (Newman et al., 2015) from the RSEM data and repeated the

clustering analysis using the same parameters that were applied in the original analysis. Manual review of PCA plots, gene expression
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heatmaps, and silhouette plots strongly suggested a stable four-class solution that was highly concordant with the original four-class

solution. Only one sample had different class labels after subtraction, and the sample that changed clusters was a strongly atypical

cluster member in its initial cluster, based on silhouette widths calculated from the consensus memberships.

Non-Coding RNA Sequencing
RNA-seq Read Mapping for lncRNAs

RNA-seq reads were aligned to the human reference genome (GRCh38/hg38) and transcriptome (Ensembl v82) using STAR

2.4.2a (Dobin et al., 2013). STAR was run with the following parameters: minimum / maximum intron sizes were set to 30 and

500,000, respectively; noncanonical, unannotated junctions were removed; maximum tolerated mismatches was set to 10; and

the outSAMstrandField intron motif option was enabled. The Cuffquant command included with Cufflinks 2.2.1 (Trapnell et al.,

2013) was used to quantify the read abundances per sample, with fragment bias correction and multiread correction enabled,

and all other options set to default. To calculate normalized abundance as fragments per kilobase of exon per million fragments

mapped (FPKM), the Cuffnorm command was used with default parameters. From the FPKM matrix for the 80 tumor samples,

we extracted 8,167 genes with ‘‘lincRNA’’ and ‘‘processed_transcript’’ Ensembl biotypes.

miRNA Sequencing

We generated miRNA sequencing data using methods described previously (Chu et al., 2016), except that 1ug of total RNA (at

250ng/uL) was used as input instead of messenger RNA-depleted RNA. Briefly, we aligned reads to the GRCh37/hg19 reference hu-

man genome, assigned read count abundances to miRBase v16 stem-loops andmature strands, and assigned miRBase v20 5p and

3p mature strand names to MIMAT accession IDs. While we used only reads with exact-match alignments in calculating miRNA

abundances, BAM files available from the Genomics Data Commons (https://gdc.cancer.gov/) include all sequence reads.

Unsupervised Clustering

We extracted 356 lncRNAs that were robustly expressed (mean FPKM R 1) and highly variable across the n = 80 tumor cohort

(R 95th FPKM variance percentile) from the matrix of 8,167 lncRNAs (above). Groups of samples with similar abundance profiles

were identified by unsupervised consensus clustering with ConsensusClusterPlus (CCP) 1.20.0. Calculations were performed using

Spearman correlations, partitioning around medoids (PAM) and 10,000 iterations. From solutions with 2, 3, 4 and 5 clusters we

selected a four-cluster solution after assessing consensus membership heatmaps and dendrograms, CCP clustering metrics, KM

plots, and clustering results from other platforms. To visualize typical vs. atypical cluster members, we used the R cluster package

to calculate a profile of silhouette widths (Wcm) from the consensus membership matrix. To generate a heatmap we used a SAM (Li

and Tibshirani, 2013) (samr v2.0) multiclass analysis with an FPKM input matrix and an FDR threshold of 0.05 to identify lncRNAs

whose abundance varied across the clusters. For lncRNAs with larger SAM scores, a q-value of % 0.01, and a mean FPKM R 5,

we set the columns of the FPKM data matrix to the heatmap order, transformed each row of the matrix by log10(FPKM + 1), then

used the pheatmap R package (v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and Ward clustering.

For miRNA sequencing data we used unsupervised non-negative matrix factorization (NMF) consensus clustering (v0.20.5) in

R 3.1.2, with default settings (Gaujoux and Seoighe, 2010). The input was a reads-per-million (RPM) data matrix for the 303 (25%

of 1212 miRBase v16) most-variant 5p or 3p mature strands. After running a rank survey for between 2 and 15 clusters with 50 iter-

ations per solution, we identified a clustering solution for more detailed work by assessing profiles of the cophenetic correlation co-

efficient and the average Wcm (see below), KM plots, and clinical covariate associations, then performed a 500-iteration run to

generate the final clustering result. To visualize typical vs. atypical cluster members, we used the R cluster package to calculate a

Wcm from the final NMF consensus membership matrix. To generate a clustering heatmap we used a SAM (Li and Tibshirani,

2013) (samr v2.0) multiclass analysis with an RPM input matrix and an FDR threshold of 0.05 to identify mature strands whose abun-

dance varied across the clusters. For mature strands with larger SAM scores and a mean RPMR 25, we set the columns of the RPM

datamatrix to the heatmap order, transformed each row of thematrix by log10(RPKM+ 1), then used the pheatmap R package (v0.7.7

or v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and Ward clustering. The RPM filtering acknowledged

that more abundant miRNAs are more likely to be influential (Mullokandov et al., 2012).

Differentially Abundant mRNAs, lncRNAs and miRNAs

We identified mRNAs, lncRNAs and miRNAs that were differentially abundant unsupervised clusters using unpaired two-class SAM

analyses (samr v2.0), with an RSEM, FPKM and RPM input matrix and an FDR threshold of 0.05. For miRNA figures we retained

miRNAs with a mean RPM > 50 in at least one of the two groups being compared. Unfiltered results are available in supplemental

files (https://tcga-data.nci.nih.gov/docs/publications/uvm_2016).

LncRNAs/miRNAs Influenced by Copy Number

To determine lncRNAs whose abundance was influenced by somatic copy number alterations (SCNA), we used MatrixEQTL v2.1.1

(Shabalin, 2012) to calculate Spearman correlations (FDR < 0.05) between a) FPKM for the 713 noncoding genes that had an FPKMof

at least 1.0 in at least 10 of the tumor samples and b) Gencode v20-based GISTIC2 real-valued (i.e. unthresholded) ‘all_data_by_

gene’ SCNA. We used IGV v2.3.60 with ‘seg’ data to generate a global heatmap of SCNA with samples ordered by the four-cluster

unsupervised clustering solution, and to generate whole-chromosome graphics of SCNA at a gene, sorting the heatmap by copy

number amplification at the gene.

Similarly, for miRNAs, we used MatrixEQTL v2.1.1 to calculate FDR-thresholded Spearman correlations between a) normalized

(RPM) abundance for the subset of pre-miRNAs (i.e. stem-loops) that had an RPM of at least 1.0 in at least 10 of the tumor samples,

and b) GISTIC2 ‘all_data_by_gene’ SCNA data.
e8 Cancer Cell 32, 204–220.e1–e15, August 14, 2017

https://gdc.cancer.gov/
https://tcga-data.nci.nih.gov/docs/publications/uvm_2016


Covariates Associated with Unsupervised Clusters

We compared unsupervised clusters to clinical and molecular covariates by calculating contingency table association p-values

using R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

Differential miRNA Targeting

To identify potential differential miRNA-mRNA targeting effects between miRNA clusters 3 and 4, we used SAM 2-class unpaired

analyses (Li and Tibshirani, 2013) to identify gene-level mRNAs andmiRNAs that were differentially abundant between these clusters

(FDR < 0.05). From these, we then identified miRNA-mRNA pairs that were inversely differential between the clusters and had func-

tional validation publications (using evidence types like luciferase reporter, qPCR, and Western blots) that indicated direct miRNA

targeting, as reported by miRTarBase v6.0 (Chou et al., 2016). We displayed the resulting network with Cytoscape 3.4.0, coloring

nodes to reflect positive and negative fold changes between the two miRNA-based clusters. Boxplots were generated in R using

default settings. Each box spans the 25th to 75th percentile range in the data, i.e. the interquartile range (IQR), and shows a line

at the median value. Whiskers extend 1.5 times the IQR from the box extent.

Testing the Influence of Gender on miRNA Subtyping

Given the strong differential expression of Xq27.3 miRNAs between miRNA subtypes, we assessed whether gender may have influ-

enced the miRNA subtypes. Patient gender was statistically unassociated with subtypes on all molecular platforms. While some of

the �300 miRNAs used for unsupervised clustering were differentially abundant between genders in our cohort, most of the 20 that

had the largest gender-based fold changes localized to non-sex chromosomes, and none were in Xq27.3.

DNA Methylation
Sample Preparation and Hybridization

The Illumina Infinium HM450 array (Bibikova et al., 2011) was used with standard protocols. Briefly, genomic DNA (1,000 ng) for each

sample was treated with sodium bisulfite, recovered using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA) according

to the manufacturer’s specifications and eluted in 18 ul volume. After passing quality control, bisulfite-converted DNA samples were

whole-genome amplified followed by enzymatic fragmentation and hybridized overnight to BeadChips followed by a locus-specific

base extension with labeled nucleotides (cy3 and cy5). BeadArrays are scanned and the raw data are imported into custom R pro-

grams for pre-processing and calculation of DNA methylation beta value for each probe and sample. Quality control and probe ex-

clusions were done using standard protocols, as previously described (Cancer Genome Atlas Research Network, 2014b).

Analytical Methods

We carried out unsupervised consensus clustering on the most variable 1% of CpG probes (3,859 of 385,857 probes), using the

ConsensusClusterPlus (Wilkerson and Hayes, 2010) R package, with Euclidean distance and PAM. Solutions with between 2 and

7 clusters were evaluated for cluster stability, and for associations with clinical and molecular covariates.

To identify epigenetically silenced genes, we applied a method previously described (Cancer Genome Atlas Research Network,

2014c). Specifically, we first identified promoter CpG sites that meet several criteria: (a) at least 90% of normal samples should

be clearly unmethylated (b % 0.1) at that site, (b) at least 5% of tumor samples should be clearly methylated (b R 0.3) and (c) a

t-test comparing expression levels in methylated (b R 0.3) and unmethylated tumor samples (b < 0.1) should be significant at an

FDR < 0.01. A gene was defined as epigenetically silenced if at least 25% of the promotor CpG sites met all of these criteria. A total

of 120 adjacent normal tissue samples were used for this analysis, including 10 drawn at random from each of the 12 TCGA projects

that include such normal samples: lung adenocarcinoma, breast invasive carcinoma, colon adenocarcinoma, endometrial carci-

noma, and others (https://tcga-data.nci.nih.gov/docs/publications/).

We estimated leukocyte fraction using an approach described in (Carter et al., 2012). As a source of leukocyte DNA methylation

levels, we used data for peripheral blood mononuclear cells (PBMC) from six healthy donors (Reinius et al., 2012) (GEO: GSE35069).

We identified 36mRNAs, 65 lncRNAs and 94miRNAs that were statistically associated with local DNAmethylation. We required an

‘epigenetically-controlled pattern’, which consisted of a) BH-corrected p-values less than 0.05 for a Spearman correlation of miRNA/

lncRNA abundance to beta for probes in promoter regions associated with the miRNAs (Marsico et al., 2013) and lncRNAs, and b)

BH-corrected p-values less than 0.01 for a t-test of RPM between unmethylated (b < 0.1) and methylated (b > 0.3) samples.

Fisher’s exact test was used to test for associations of DNA methylation clusters with clusters for SCNA, mRNA, lncRNA and

miRNA, as well as with significantly mutation genes.

The analyses described above were done with R, using standard methods and custom scripts.

Low-Pass Whole Genome Sequencing
Library Construction

Approximately 500-700 ng of genomic DNA from fifty randomly selected tumor and matched normal pair samples were individually

sheared into fragments of approximately 300 bp using an E220 Focused-ultrasonicator (Covaris). These fragments were made into

paired-end libraries using KAPA Bios kits in a Sciclone NGS Workstation (Caliper/Perkin Elmer) according to manufacturers’ proto-

cols. Libraries were sequenced using an Illumina HiSeq 2000, one sample per lane, with a paired-end 2 x 51 bp setup. The average

depth of coverage was approximately 4.9X, with a minimum of 1.56X and maximum at 8.17X. The average genome coverage was

89.05%, with a minimum of 71.87% and maximum of 92.12%. Raw data was converted to FASTA format, and the Burrows-Wheeler

Aligner used to generate BAM files.
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Structural Rearrangements Detected using BreakDancer and Meerkat

BreakDancer (Chen et al., 2009) and Meerkat (Yang et al., 2013) algorithms were used to detect structural variations. BreakDancer

configuration files were created for each tumor/normal pair from BAM files using bam2cfg.pl. Insertions, deletions, inversions,

inter and intra chromosomal translocations were predicted on the basis of read pairs with unexpected separation distances or

orientations. The variants between tumor and normal configuration files were filtered to remove germline alterations. Data was

then re-examined using the Meerkat algorithm, which required identifying at least two discordant read pairs, with one read covering

the actual breakpoint junction. Variants from tumor genomes were filtered by those in normal genomes, and germline events were

removed. Alterations found in simple or satellite repeats were also excluded from the output. The final Meerkat calls met one of two

criteria: (i) the read identified to span the breakpoint junction hit the predicted breakpoint region uniquely, according to a BLAT

(BLAST-like alignment tool) search, or (ii) the mate of the read spanning the breakpoint junction was mapped near the predicted

breakpoint. BIC-seq was used to determine copy number alterations in the tumor genomes (Xi et al., 2011).

Exon Expression Graphs

RNA-seq–derived exon expression levels for genes with somatic structural alterations were visualized. The input file ‘‘UVM.

rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__exon_quantification__data.data.txt’’ was obtained from Broad GDAC

Firehose (2016_01_28 stddata Run, https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata). Normal expres-

sion levels were quantified with ‘‘TCGA.hg19.June2011.gaf’’ (https://gdc.cancer.gov/about-data/data-harmonization-and-

generation/gdc-reference-files). A standard Z-score was calculated for each exon of each gene on either side of a fusion by

mean-centering the log2-transformed RPKM (reads per kilobase of transcript per million reads mapped) values and dividing

by the standard deviation, visualizing high (red) and low (blue) relative to the tumor cohort average. Exons that had expression

levels below one RPKM across 70% of the patient samples, were flagged as not expressed (gray). Exon expression graphs were

built stepwise, initially taking the fusion coordinates and the reference genome to create an ‘‘exon/start/stop’’ table that was

used to parse the RNA-seq input file. After verification and error checking, a final file was loaded in to R where the graphs

were assembled. ImageMagick 6.9.1 (www.imagemagick.org) was used to visualize the results.

Reverse Phase Protein Arrays (RPPA)
RPPA Experiments and Data Processing

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2,

1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and

aprotinin 10 ug/mL) from human tumors and RPPA was performed as described previously, using the SuperCurve v1.4.1 R package

(Hu et al., 2007; Ju et al., 2015; Zhang et al., 2009). Lysis buffer was used to lyse frozen tumors by Precellys homogenization. Tumor

lysates were adjusted to 1 mg/mL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor ly-

sates were manually serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA)

printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides were probed with 220 validated primary antibodies

(Table S3) followed by corresponding secondary antibodies. Signal was captured using a DakoCytomation-catalyzed system and

DAB colorimetric reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and quantified using Array-

Pro Analyzer (Media Cybernetics, Washington DC) to generate spot signal intensities (Level 1 data). The software SuperCurveGUI

(Hu et al., 2007), available at http://bioinformatics.mdanderson.org/Software/supercurve, was used to estimate the EC50 values

of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve (‘‘supercurve’’) was plotted with the signal intensities on

the Y-axis and the relative log2 concentration of each protein on the X-axis using the non-parametric, monotone increasing B-spline

model (Tibes et al., 2006). During the process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. A

QC score was calculated for each slide to help determine the quality of the slide: if the score was less than 0.8 on a 0-to-1 scale, the

slide was dropped. In most cases, the staining was repeated to obtain a high quality score. If more than one slide was stained for an

antibody, the slide with the highest QC score was used for analysis (Level 2 data). Protein measurements were corrected for loading

as described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median centering across antibodies (level 3 data, described later).

In total, 220 antibodies and 12 UM samples were processed on the RPPA platform. Final selection of antibodies was also driven by

the availability of high quality antibodies that consistently pass a strict validation process. These antibodies are assessed for spec-

ificity, quantification and sensitivity (dynamic range) in their application for protein extracts from cultured cells or tumor tissue. An-

tibodies are labeled as validated and use with caution based on degree of validation (Gonzalez-Angulo et al., 2011).

RPPAs were quantitated and processed (including normalization and load controlling) as described previously, using ArrayPro

Analyzer software (Media Cybernetics, Washington DC) and SuperCurve v1.3, available at http://bioinformatics.mdanderson.org/

OOMPA. Raw data (level 1), SuperCurve nonparameteric model fitting on a single array (level 2), and loading-corrected data (level 3)

(Ju et al., 2015; Zhang et al., 2009) were deposited at the TCGA Data Coordinating Center (DCC).

Data Normalization

We performed median centering across all the antibodies for each sample to correct for sample loading differences. Those differ-

ences arise because protein concentrations are not uniformly distributed per unit volume. By observing the expression levels across
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many different proteins in a sample, we can estimate differences in the total amount of protein in that sample vs. other samples. Sub-

tracting the median protein expression level forces the median value to become zero, allowing us to compare protein expressions

across samples. Those median-centered ‘‘level 3’’ RPPA data have been uploaded to the TCGA portal.

Antibodies that Were Differentially Abundant between the D3 and M3 Samples

Of the 12 samples that had RPPA data available, 6 were D3/SF3B1 mutants and 5 were M3/BAP1-aberrant in a mutually exclusive

manner. V4-A9EH was a D3 sample with no aberrations in either of the above genes, and was not analyzed further. We identified

antibodies that were differentially abundant between the retained D3 and M3 samples using a Wilcoxon test in R v3.3.3, applying

a Benjamini-Hochberg correction for multiple testing to the p values. Boxplots were generated in R using default settings. Each

box spans the 25th to 75th percentile range in the data, i.e. the interquartile range (IQR), and shows a line at the median value. Whis-

kers extend 1.5 times the IQR from the box extent.

Antibody-Based Pathway Scores

Pathway scores were calculated with the method described in (Akbani et al., 2014).

Microbial Detection
The microbial detection pipeline is based on BioBloomTools (BBT, v1.2.4.b1), which is a Bloom filter-based method for rapidly clas-

sifying RNA-seq or DNA-seq read sequences (Chu et al., 2013). We generated 43 filters from ‘complete’ NCBI genome reference

sequences of bacteria, viruses, fungi and protozoa, using 25-bp k-mers and a false positive rate of 0.02. We ran BBT in paired-

end mode with a sliding window to screen FASTQ files from 80 tumor RNA-seq libraries (48-bp PE reads), 160 whole exome libraries

(80 tumor and 80 blood normal libraries with 76-bp PE reads) and 102 whole genome libraries (51 tumor and 51 blood normal libraries

with 51-bp PE reads). In a single-pass scan for each library, BBT categorized each read pair as matching the human filter, matching

a unique microbial filter, matching more than one filter (multi-match), or matching neither human nor microbe (no-match). For each

filter, we then calculated a RPM abundance metric as:

RPM=
reads mapped to a microbe

reads mapped to human
$106

Given the BBT read screening results, we elected not to test for viral genomic integration, using methods previously described

(Cancer Genome Atlas Research Network, 2014a).

Regulome Explorer
To gain greater insight into the development and progression of UM, we have integrated all of the data types produced by TCGA and

described in this paper into a single ‘‘feature matrix’’. From this single heterogeneous dataset, significant pairwise associations have

been inferred using statistical analysis and can be visually explored in a genomic context using Regulome Explorer, an interactive

web application (http://explorer.cancerregulome.org).

In addition to associations that are inferred directly from the TCGA data, additional sources of information and tools are integrated

into the visualization for more extensive exploration (e.g., NCBI Gene, miRBase, the UCSC Genome Browser, etc).

Feature Matrix Construction

A feature matrix was constructed using all available clinical, sample, and molecular data for 80 unique patient/tumor samples. The

clinical information includes features such as age and gender; while the sample information includes features derived frommolecular

data such as single-platform cluster assignments. The molecular data includes mRNA and miRNA expression levels (Illumina HiSeq

data), protein levels (RPPA data), SCNA (derived from segmented Affymetrix SNP data as well as GISTIC regions of interest and arm-

level values), DNA methylation levels (Illumina Infinium Methylation 450k array), and somatic mutations. For mRNA expression data,

gene level RSEM values from RNA-seq were log2 transformed, and filtered to remove low-variability genes (bottom 25% removed,

based on interdecile range). For miRNA expression data, the summed and normalized miRNA quantification files were log2 trans-

formed, and filtered to remove low-variability miRNAs (bottom 25% removed, based on interdecile range). For methylation data,

probes were filtered to remove the bottom 25% based on interdecile range. For somatic mutations, several binary mutation features

indicating the presence or absence of a mutation in each sample were generated. Mutation types considered were synonymous,

missense, nonsense and frameshift. Protein domains (InterPro) including any of these mutation types were annotated as such,

with nonsense and frameshift annotations being propagated to all subsequent protein domains.

Pairwise Statistical Significance

Statistical association among the diverse data types in this study was evaluated by comparing pairs of features in the feature matrix.

Hypothesis testing was performed by testing against null models for absence of association, yielding a p-value. P-values for the as-

sociation between and among clinical and molecular data types were computed according to the nature of the data levels for each

pair: categorical vs. categorical (Chi-square test or Fisher’s exact test in the case of a 2 x 2 table); categorical vs. continuous (Kruskal-

Wallis test) or continuous vs. continuous (probability of a given Spearman correlation value). Ranked data values were used in each

case. To account for multiple-testing bias, p-values were adjusted using the Bonferroni correction.
Cancer Cell 32, 204–220.e1–e15, August 14, 2017 e11

http://explorer.cancerregulome.org


Exploring Significant Associations Between Features

Regulome Explorer allows the user to interactively explore significant associations between various types of features: associations

between molecular features (e.g. miRNA expression and gene expression), associations between molecular features and derived

numeric features (e.g. purity scores), and associations between molecular features and categorical features such as clinical features

or clusters derived from prior analysis (e.g. mRNA clusters).

cBioPortal Visualization
sSNV, sINDEL, SCNA, and mRNA expression data was imported into cBioPortal at Memorial Sloan Kettering Cancer Center, and

made available for explorative analyses at http://www.cbioportal.org/study?id=uvm_tcga.

PARADIGM Integrated Pathway Analysis
Integrated Pathway Levels (IPLs)

mRNA expression, SCNA, and pathway interaction data for 80 UM samples were integrated using the PARADIGM software (Sedge-

wick et al., 2013). Briefly, this procedure infers integrated pathway levels (IPLs) for genes, complexes, and processes, using pathway

interactions, and genomic and functional genomic data from each patient sample.

Normalized gene-level RSEMRNA-seq expression data and thresholded SCNA data (GISTIC2 all_thresholded.by_genes.txt) were

obtained from Firehose. One was added to all expression values, which were then log2 transformed and median-centered across

samples for each gene. The log2 transformed, median-centered mRNA data were rank-transformed based on the global ranking

across all samples and all genes and discretized (+1 for values with ranks in the highest tertile, -1 for values with ranks in the lowest

tertile, and 0 otherwise) prior to PARADIGM analysis.

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta databases from http://pid.nci.nih.gov

and the Reactome database from http://reactome.org. Gene identifiers were unified by UniProt ID then converted to HumanGenome

Nomenclature Committee’s HUGO symbols using mappings provided by HGNC (http://www.genenames.org). Altogether, 1,524

pathways were obtained. Interactions from all of these sources were then combined into a merged Superimposed Pathway (Super-

Pathway). Genes, complexes, and abstract processes (e.g. ‘‘cell cycle’’ and ‘‘apoptosis’’) were retained and are henceforth referred

to collectively as pathway ‘‘features’’. The resulting pathway structure contained a total of 19,504 features, representing 7,369 pro-

teins, 9,354 complexes, 2,092 families, 82 RNAs, 15 miRNAs and 592 abstract processes.

The PARADIGM algorithm infers an IPL for each feature that reflects the log likelihood of the probability that it is activated (vs. in-

activated). PARADIGM IPLs of the 19,504 features within the SuperPathway are available on Synapse (syn4556715). An initial min-

imum variation filter (at least 1 sample with absolute activity > 0.05) was applied, resulting in 15,502 concepts (5,898 proteins, 7,307

complexes, 1,916 families, 12 mRNAs, 15 miRNAs and 354 abstract processes) with relative activities showing distinguishable vari-

ation across tumors (syn4556729) for use in our differential pathway regulator analysis.

Consensus Clustering of Inferred Pathway Activation

Consensus clustering based on the 3,852 most varying features (i.e. IPLs with variance within the highest quartile) was used to iden-

tify UM subtypes implicated from shared patterns of pathway inference. Consensus clustering was implemented with the Consensu-

sClusterPlus package in R (Wilkerson and Hayes, 2010). Specifically, median-centered IPLs were used to compute the squared

Euclidean distance between samples, and this distance matrix was used as the input. Hierarchical clustering using the Ward’s min-

imum variance method (i.e. ward inner linkage option) with 80% subsampling was performed over 1,000 iterations, and the final

consensus matrix was clustered using average linkage. The number of clusters was selected by considering the relative change

in the area under the empirical cumulative distribution function (CDF) curve as well as the average pairwise item-consensus within

consensus clusters. We selected a 5-cluster solution, given that solutions with more clusters provided minimal change and

decreased the within-cluster consensus.

Differential pathway regulators of each PARADIGM clusters were identified by comparing one cluster vs. all others using the t-test

and Wilcoxon Rank sum test with a BH FDR correction. All 15,502 features passing the minimum variation feature were considered

in this analysis; features deemed significant (FDR corrected p < 0.05) by both tests and showing an absolute difference in group

means > 0.05 were selected. Interconnectivity between the selected pathway regulators within the PARADIGM SuperPathway

was assessed, and regulatory hubs withR 10 differentially activated downstream targets were identified and displayed in a heatmap

using the heatmap.plus R package.

Pathway Features Differentiating lncRNA Clusters

Differential pathway regulators of each lncRNA cluster were identified using the t-test and Wilcoxon Rank Sum test with BH

FDR correction in a one cluster vs. all others comparison. Only features deemed significant (FDR p < 0.05) by both tests and

showing an absolute difference in group means > 0.05 were selected. Interconnectivity between these pathway regulators within

the PARADIGM SuperPathway was assessed, and regulatory hubs with R 10 differentially activated downstream targets were

selected. There were a total of 49 PARADIGM differential pathway regulators identified across the four lncRNA clusters. The

mean IPL of the selected regulatory hubswas computed within each cluster and scaled across clusters to amean of 0 and a standard

deviation of 1. The resulting scaled mean IPLs are shown in Figure S5B.
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MARINa/hMARINa Analysis of Regulator Activity
MARINa (MAster Regulator INference Algorithm) (Lefebvre et al., 2010) and Hierarchical MARINa (hMARINa) were used to evaluate

the activity of transcription factors (TFs) and kinases in 80 UM samples.

Creating a Curated Transcription Factor (TF) Regulome

A compendium of TFs and their targets (TF regulons) were created by combining information from four databases:

(i) SuperPathway (Sedgewick et al., 2013): This is the same interaction network used in the PARADIGM analysis (above). Only

links that correspond to regulation at the transcriptional level were retained for MARINa and hMARINa use.

(ii) Literome (Poon et al., 2014): The network was filtered to include only transcription links in which the regulator is a known TF.

(iii) Multinet (Khurana et al., 2013): The network was reduced to links that correspond to regulation on transcriptional level.

(iv) ChEA (Lachmann et al., 2010): Data from the Gene Expression Atlas (Petryszak et al., 2014) was used to filter the inferred links

in the ChEA database. Specifically, the context likelihood of relatedness (CLR) method (Faith et al., 2007) was used to

compute a measure of association between every pair of genes. The top 10% of gene pairs based on the CLR score were

intersected with the ChEA network and the overlapping pairs were added to the final combined network.

The combined network includes 72,915 transcriptional regulatory links between 6,735 regulators and their targets. Only regulators

with at least 15 targets were considered in the final analysis, which resulted in a final network consisting of 419 TFs with 58,363 total

targets (covering a set of 12,754 unique targets).

Creating a Curated Kinase Regulome

Proteins identified as kinases in Manning (Manning et al., 2002) or Uniprot (UniProt Consortium, 2014) were aggregated into a list of

546 kinases. Protein substrates were extracted from PhosphositePlus (Hornbeck et al., 2014) on March 7, 2015. Kinase-substrate

interactions were retained if the kinase appeared in the Manning-Uniprot kinase list and the kinase was identified as a human protein

in the PhosphositePlus database. The final compendium consisted of 5,388 links between 342 kinases and 2,260 unique substrates.

MARINa Estimate of TF Activity

MARINa regulator activity scores predict each TF’s relative activity as a contrast between two cohorts of interest. The activity score is

derived from a combined view of the expression levels of each TF’s transcriptional targets (the TF regulon), based on the

following steps:

(i) The TF regulon is split into positively- and negatively-regulated sets by measuring the Spearman correlation between the

expression of the TF and that of each of its targets.

(ii) A t-statistic derived from the difference in gene expression between the two classes of interest is computed for each gene. All

genes are ranked based on their t-statistics to produce a gene signature.

(iii) Each TF’s activation and inhibition regulons are examined for enrichment in the high or low end of the ranked gene list. The

rankings of the positively- and negatively-regulated genes are then combined and examined simultaneously.

A TF whose two target sets show consistent enrichment (i.e. the activated set is enriched for highly ranked genes and the inhibited

set is enriched for lowly ranked ones, or vice versa) receives the highest/lowest activity scores respectively.

Hierarchical MARINa (hMARINa) Estimate of Kinase Activity

MARINa is well suited for the analysis of TF activity, because TF proteins are directly involved in changes in expression of their tar-

gets. Kinases, on the other hand, regulate their targets post-translationally. Since the expression levels of genes are often poorly

correlated with the activity of the proteins they encode, mRNA represents a poor proxy to protein phosphorylation data. In the

absence of the latter, the differential activity of a kinase can be estimated using a hierarchical approach (see schematic below) in

which activities are computed at two successive levels:

(i) Level 1 activities are inferred for any regulator (TF or kinase) using single-sample MARINa (ssMARINa) (Aytes et al., 2014).

ssMARINa infers these activities based on the expression of the regulator’s targets within individual samples. Note that the

kinase activity score from level 1 analysis is interpreted as an inference about whether kinase targets are ‘‘poised’’ to be regu-

lated, assuming that increased protein levels would often require an increase in mRNA production as a prerequisite.

(ii) Level 2 activities for kinases are inferred by performing aMARINa analysis on the level 1 activities computed in the previous step,

rather than theusual geneexpression levels. For level 2, thekinase regulome isused inplaceof theTF regulome, and the targetsof

each kinase are restricted to those members that are themselves kinases or TFs, i.e. proteins with level 1 imputed activities.
Identifying Pathway Features Differentiating lncRNA Clusters
The lncRNA clusters were dichotomized into one-vs-rest binary comparisons. For each comparison, MARINa was run via the VIPER

R package (http://www.bioconductor.org/packages/release/bioc/html/viper.html) (Alvarez et al., 2016); and hMARINa was per-

formed by extending the functionality of the package. Level 3 mRNA data and the curated TF and kinase regulomes were used

as inputs. Analysis was limited to TFs with at least 15 targets present in the expression data. Because the kinase regulome is

much smaller than the TF regulome, cutoffs for minimum number of kinase substrates were reduced to 10 in the Level 1 analysis

and 5 in the Level 2 one. All other settings were identical to those used for inferring TF activity.
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Background models were computed by generating 1,000 label permutations. Significance was evaluated by computing p-values

against the background distribution and applying a BH FDR correction. The final results provided activity estimates for 393 TFs and

62 kinases in each dichotomy of interest. MARINa features (TFs) with an FDR % 0.10 were retained. Since the kinase regulome is

significantly sparser than the TF one, the FDR cutoff for hMARINa features was relaxed to 0.15. A total of 113MARINa and (h)MARINa

differential pathway regulators were identified across the four lncRNA clusters. The differential activity for each of these regulators in

each lncRNA cluster is shown in Figure S5C.

Statistically significant findings from the PARADIGM and (h)MARINa differential pathway regulator analyses were examined for

consistency. For each cluster, pathway regulators with similar findings across the two methods were identified as ‘‘consistent

pathway features.’’ An expanded definition also included protein complexes or families with components identified by bothmethods,

genes within the same pathway showing complementary inferred activation patterns, as well as abstract processes linked to any of

these consistent findings.

lncRNA Pathway Regulator Correlation Networks
The FPKM expression of every lncRNA was correlated with PARADIGM per-sample IPL levels, and with the TF and kinase activities

produced by (h)MARINa, using per-sample ssMARINa activity scores. For each lncRNA cluster, correlations between differentially

active regulators and lncRNAs were retained if all four of the following criteria were satisfied:

(i) The TF/kinase was identified as a differentially active pathway feature by PARADIGM or (h)MARINa for that cluster, as

described above

(ii) The lncRNA had a mean FPKM R 5

(iii) The lncRNA had a SAM multiclass FDR q-value % 0.05 and the absolute value of its SAM contrast for the cluster was the

largest compared to the absolute contrast values for all other clusters

(iv) The absolute value of the Spearman correlation coefficient between the lncRNA and the regulator in question was R 0.5

The filtered lncRNA-pathway regulator network for lncRNA cluster 3 contains 188 correlations between 10 lncRNAs with 24

PARADIGM features and 21 (h)MARINa features. Similarly, the filtered lncRNA-pathway regulator network for lncRNA cluster 4 con-

tains 709 correlations between 26 lncRNAs, 29 PARADIGM features and 70 (h)MARINa features. Figure 6 shows the correlation net-

works of selected regulators and their associated lncRNAs. For the full list of links, respectively, see (https://tcga-data.nci.nih.gov/

docs/publications/uvm_2016).

The networks in Figure 6 are augmented by protein-protein interaction and transcriptional regulation links extracted from

PhosphositePlus and the SuperPathway (see Curated TF Regulome and Curated Kinase Regulome sections). In addition, regulators

that were identified as consistent pathway features by both methods were displayed using the shape of the method that showed

higher differential activity. Both the lncRNA cluster 3 network and lncRNA cluster 4 network contain network nodes identified as a

MARINa feature, but retain significant correlation links from both lncRNA-MARINa and lncRNA-PARADIGM comparisons.

Relationship of Fold Change between TCGA SCNA Clusters 3 vs. 4, and Association with Time to Metastasis in TCGA
and Laurent Monosomy 3 Cases
We processed Laurent microarray expression data (GEO: GSE22138) (Laurent et al., 2011) to 23,520 expression records, using the

probe with the highest cohort variance when a gene symbol had data for more than one microarray probe (e.g. for CD44, given 13

probes we used 229221_at; for MALAT1, given 12 probes we used 224559_at). We then used Ensembl v82 gene symbols and bio-

types for 20,425 protein-coding genes and 8,167 lncRNAs or processed transcripts (‘lncRNAs’) to identify 17,525 expression records

for coding genes and 1,227 records for lncRNAs in Laurent data.

Of the 63 Laurent cases with clinical data, we retained the 32M3 cases. These included 22withmetastasis and 10without, and had

a median event time of 20.4 months. We identified genes that were variably expressed in these 32 samples, finding 13,142 coding

gene records above a mean abundance of 2.0 and above the 25th percentile in variance, and 736 lncRNA records with a mean abun-

dance above 1.5 and a variance above the 40th percentile.

Similarly, for 33 TCGA cases had metastasis data, thresholding 20,531 RSEM genes on the 40th percentile (50.3) and 50th variance

percentile retained 12,319 variably expressed mRNAs. For 8,167 Ensembl v82 lncRNAs and processed transcripts (‘lncRNA’),

FPKMs for which we calculated from themRNA sequence data, thresholding on the 80th mean FPKM percentile (0.087) and 75th vari-

ance percentile retained 1,634 variably-expressed lncRNAs.

To identify genes that were associated with time to metastasis in M3 cases, we censored time and status at 5 years for the 32 Lau-

rent and 33 TCGA records. Then, for each of the above expressed Laurent and TCGA coding genes and lncRNAs, we used the me-

dian expression to separate cases into high- and low-expressed groups, and used the R survival v2.41-3 to calculate univariate KM

log-rank p-values, and univariate Cox hazard ratios (HRs) with 95% confidence intervals.

We used SAM 2-class unpaired analyses (FDR < 0.05) to identify TCGAmRNAs and lncRNAs that were differentially abundant be-

tween TCGA unsupervised SCNA clusters 3 vs. 4, which were M3 cases.
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We integrated results separately for RSEM/coding genes and lncRNAs, as follows. For TCGA data we merged M3 metastasis-as-

sociation results with differentially abundant genes in SCNA 3 vs. 4, and assessed the relationship of fold change vs. HR. We then

merged these results with Laurent M3 metastasis-association results, and identified genes that had concordant HRs and HR 95%

confidence intervals in both cohorts.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above according to their respective technology and analytic approach.

DATA AND SOFTWARE AVAILABILITY

The data and analysis results are available and can be explored through the Genomic Data Commons (https://gdc.cancer.gov), the

Broad Institute GDAC FireBrowse portal (http://gdac.broadinstitute.org), the Memorial Sloan Kettering Cancer Center cBioPortal

(http://www.cbioportal.org), the Institute for Systems Biology Regulome Explorer (http://explorer.cancerregulome.org), and the

UVM publication page (https://tcga-data.nci.nih.gov/docs/publications). Software tools used in this project are listed in the Key

Resources Table.
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