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Abstract 
This paper presents a qualitative analysis of the uncertainty laws for the modal 

parameters identified in a Bayesian approach using ambient vibration data, based on the 

theory developed in the companion paper. The uncertainty laws are also appraised using 

field test data. The paper intends to provide insights for planning ambient vibration tests 

and managing the uncertainties of the identified modal parameters. Some typical 

questions that shall be addressed are: To estimate the damping ratio to within 30% of 

posterior coefficient of variation (c.o.v), what is the minimum data duration? Will 

deploying an additional accelerometer significantly improve the accuracy in damping (or 

frequency)? Answers to these questions based on this work can be found in the 

Conclusions. As the Bayesian approach allows full use of information in the data for 

given modeling assumptions, the uncertainty laws obtained in this work represent the 

lower limit of uncertainty (estimation error) that can be achieved by any method 

(Bayesian or non-Bayesian).   
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1. Introduction 
Uncertainty in the identified modal parameters is an important aspect to manage in 

planning an ambient vibration test. Channel noise, sampling rate and bandwidth of data 

can be well-controlled these days, thanks to advances in modern sensing and data 

acquisition technology. The attributes that often need to be decided on a case-by-case 

basis include, among others, the number of sensors, the location of sensors and the data 

duration. Mechanical concepts, together with experience with sensing and data 

acquisition hardware, can help configure these attributes. The number of sensors is 

constrained by availability and budget. The location of sensors depends on the mode 

shapes expected to be found. Logistics and accessibility constraints are critical factors, 

although progress in theoretical development cannot be overlooked [1][2][3][4]. The 

duration of data is often decided by rule of thumb, e.g., 1000 natural periods of the lowest 

mode of interest. It can be constrained by the available time, e.g., on a construction site. 

In principle, increasing the data length is expected to improve accuracy by virtue of 

increasing the amount of information. Identifying parameters using an extended data 

length, however, can increase modeling error risk [5]. For example, assuming a time-

invariant model, the damping ratio identified based on a long period of data where the 

response amplitude has changed significantly can at best represent the average value of 

the actual amplitude-dependent damping [6][7][8][9]. The damping ratio is an important 

parameter in applications as it directly affects the magnitude of dynamic response. 

However, there is no commonly accepted method for reliable prediction at the design 

stage. It is also difficult to estimate from measured data, due to, e.g., measurement error, 

modeling error and amplitude-dependence. Methods that rely on statistical proxies (e.g., 

averaging) are vulnerable to bias [10][11][12][13]. It is necessary to quantify the 

uncertainty associated with damping estimates so that the results can be interpreted in the 

right context.     

 

A Bayesian FFT approach allows full extraction of information contained in the data for 

modal identification [14]. The raw FFTs instead of their averaged counterparts are used 

for statistical inference, therefore eliminating possible distortion due to averaging or other 

signal processing artifacts. Based on the same data and modeling assumptions, no non-
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Bayesian method can be more informative about the modal parameters than the Bayesian 

method. The uncertainty laws therefore represent the lower limit of estimation error that 

can be achieved any method (Bayesian or non-Bayesian) for given data and modeling 

assumptions.    

 

An asymptotic analysis of the ‘posterior uncertainty’ (i.e., given data) of modal 

parameters in a Bayesian context has been performed in the companion paper. Assuming 

well-separated modes, small damping and sufficient amount of data, asymptotic 

expressions for the posterior covariance matrix of modal parameters have been derived. 

The results are remarkably simple. This paper presents a qualitative analysis of the 

uncertainty laws to yield insights for planning ambient vibration tests and managing the 

uncertainties of the identified modal properties. The uncertainty laws are also verified 

using field test data. 

 

2. Qualitative analysis 
We first recall the main results derived in the companion paper. To the leading order, the 

(squared) posterior coefficient of variation (c.o.v.=standard deviation/most probable 

value) of the natural frequency f , damping ratio ζ , PSD (power spectral density) of 

modal force S , and PSD of prediction error eS , are given by 
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where n  is the number of measured degrees-of-freeom (dofs); TTN dc /=  ( =dT data 

duration; =T natural period) is the data length as a multiple of the natural period; 
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are ‘data length factors’ that depend only on κ .  
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The bandwidth factor κ  is a dimensionless parameter that depends on the frequency band 

selected by the user, which must trade off between modeling error and the information 

included for modal identification. Theoretically, the wider the selected band (hence larger 

κ ) the more information for identification. However, widening the band makes the 

identification model more vulnerable to modeling error regarding single mode and 

constant PSD of modal force/prediction error within the band. 

 

The posterior covariance matrix of the mode shape nR∈Φ  (with normalization 

1|||| 2 == ΦΦΦ T ) is given by 
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where SSe /=n  is the ‘noise-to-environment (n/e) ratio’; and  

κκ 1tan)( −
Φ =B          (4) 

is the data length factor for the mode shape. The expected Modal Assurance Criterion 

(MAC) that quantifies the overall uncertainty of the mode shape [15] is given by 
2/12 )1( −

Φ+= δρ          (5) 

where 2
Φδ  is the sum of principle variances of ΦC  given by 
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2.1. Governing scales 
The posterior uncertainties in (1) and (3) depend on the following (dimensionless) scales: 

ζ , n , κ , cN  or fN . The damping ratio ζ  is a property of the structure. The n/e ratio n  

represents a modal noise-to-signal ratio excluding the effect of dynamic amplification. 

The ‘normalized’ data length cN  is related to the maximum amount of information 

available in the data for inferring the mode of interest. On the other hand, κ  and 

cf NN κζ2=  are related to the amount of information that can be actually utilized. As 

mentioned before, the bandwidth factor κ  depends on the frequency band selected by the 
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user, which must trade off between modeling error and the information included for 

modal identification. For example, one can have a long time history of data so that cN  is 

large. However, in the neighborhood of the natural frequency other unknown colored 

noise are contributing, such that only a small bandwidth can be used for identification 

without significant modeling error, which limits κ  and fN . 

 

2.2. Data length effect 
The posterior c.o.v.s fδ , ζδ  and Φδ  are inversely proportional to 2/1

cN , while Sδ  and 

eSδ  are inversely proportional to 2/1
fN . This inverse square root law is common in 

statistical estimation. Two different scales of data length are relevant here because f , ζ  

and Φ  are related to signals with a particular period, while S  and eS  are related to the 

background environment. For the former, the amount of information is proportional to the 

number of natural periods in the data. For the latter, it is simply proportional to the 

number of frequency ordinates in the selected bandwidth without discrimination. 

 

2.3. Usable bandwidth 
The posterior uncertainties in (1) and (3) have been written in a form that isolates the 

effect of the bandwidth factor κ  into the data length factor. The corresponding data 

length factor is an increasing function of κ  from zero to one (see Figure 1 later). The 

remaining part in the formula represents the lower limit of the posterior uncertainty when 

the full bandwidth can be utilized for identification. For example, for the natural 

frequency, cf Nπζδ 2/2 ≥ . In reality one is not able to make use of the full bandwidth 

(from DC to Nyquist) for identification, rendering κ  to be finite. The term )(κfcBN  thus 

represents the effective data length (as a multiple of natural periods) that can be utilized 

for identifying the mode when the effect of κ  is taken into account.  

 

Figure 1 shows the variation of the data length factors with κ . Note that 

ζBBBB Sf >>>Φ ; ζB  and SB  almost overlap because the term )1/(tan 21 ++− κκκ  in 
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(2) converges quickly to 2/π  for moderate values of κ  (say, 2>κ ). For bandwidths 

that can be typically utilized in practice, say, 6=κ , the bandwidth factor is about 80% 

for the natural frequency and 90% for the mode shape. The value for ζ  and S  is a bit 

lower, about 60%. The figure suggests that the accuracy in the mode shape or frequency 

is typically less sensitive to the bandwidth than ζ  or S . This can be explained based on 

common intuitions. A small neighborhood around the resonance peak is sufficient to pin 

down the natural frequency because here the location in the spectrum matters most. The 

spectral amplitude ratios at the resonance peak among different dofs can already give a 

good estimation of the mode shape. The damping ratio is related to the decay of the 

response PSD around the resonance peak, and so it requires a larger frequency 

neighborhood for proper estimation. The PSD of modal force is related to the ratio of the 

response PSD to the dynamic amplification factor. Widening the band directly increases 

the number of points for estimation. Note that these are just for intuitive reasoning and 

should not be confused with the Bayesian theory that yields the posterior uncertainty in a 

fundamental manner based on modeling assumptions and probability logic.   

 

2.4. Measured dofs 
The measured dofs dictate the mode shape T

n ],...,[ 1 ΦΦ=Φ . This directly affects the 

structure of the posterior covariance matrix of the mode shape, ΦC , in (3). More 

importantly but less trivially, the measured dofs affect the n/e ratio SSe /=n  and the 

modal s/n (signal-to-noise) ratio 24/ ζγ eSS=  (see Section 2.5) through the PSD of 

modal force S . The n/e ratio is a multiplier in the expression of ΦC  in (3) and so it 

directly affects the uncertainty of the mode shape. The modal s/n ratio affects the 

uncertainty of modal parameters in a characteristic way, as will be discussed in Section 

2.5. 

 

The dependence of S  on Φ  arises from the relationship between the physical and modal 

response, and the scaling of the mode shape. It can be reasoned that if Φ  is scaled down 

(i.e., divided) by a factor then S  should be scaled up (i.e., multiplied) by the square of 
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that factor. Together with the unit norm constraint on Φ , this implies that S  is an 

increasing function of n . 

 

The above can be reasoned as follows. Assuming a single mode, the response at the i -th 

measured dof is theoretically given by ηiix Φ=  where η  is the modal response. If iΦ  is 

scaled down by c  (say) then )(tη  must be scaled up by c  so that the physical response 

ix  remains unchanged, i.e., ))(/()( ηcctx ii Φ= . To give the modal response ηc  the 

modal excitation must be scaled up by c , and so its PSD (which is associated with 

second order statistics) must be scaled up by 2c . On the other hand, as the measured 

mode shape is normalized with its sum of squares equal to 1, the mode shape value of a 

particular dof must decrease when the mode shape vector is extended to include the 

additional measured dof. As a result, the mode shape must be scaled down when n  

increases and hence S  must increase (scaled up).  

 

The rate at which S  increases with n  depends on the mode shape value of the dof 

incrementally added to the measured set. As an example, if all measured dofs have the 

same mode shape value then ni /1=Φ  for all ni ,...,1=  (so that 1|||| =Φ ) and nS ∝ . 

On the other hand, when the additional dof has a mode shape value of zero, S  does not 

change. 

 

More specifically, it can be shown that the PSD of modal force is proportional to the sum 

of squares of the mode shape values at the measured dofs. Based on the standard 

structural dynamics equation, the PSD of modal force is given by 

2)( Mξξ
ξSξ

T
F

T

pS =          (7) 

where M  is the mass matrix, FS  is the PSD matrix of the forces applied to the structure 

and ξ  is the ‘full’ mode shape containing all (possibly an infinite number of) dofs. For a 

constructed structure, pS  in (7) can hardly be calculated because the quantities involved 

are rarely accessible or difficult to identify. In reality, only the partial mode shape Φ  
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rather than the full mode shape ξ  is identified. The corresponding identified PSD of 

modal force S  (consistent with the scaling of Φ ) is a scaled version of pS .  

 

We next investigate the scaling between S  and pS . Let T
n ,...],...,,[ 21 ξξξ=ξ . Without 

loss of generality, suppose the first n  dofs of ξ  correspond to the measured dofs. Then   
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Replacing ξ  in (7) by 'ξ , the PSD of modal force S  that can be identified from data and 

that is compatible with the scaling of Φ  is given by 
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This equation shows that S  is proportional to the sum of squares of the mode shape 

values at the measured dofs. Note that the equation only provides a conceptual 

understanding. It is not useful for computing S  because pS  and ξ  are not available in 

reality. Rather, S  is directly identified from measured data. The effect of the measured 

dofs on the modal s/n ratio shall be illustrated in Section 2.5 with synthetic data and in 

Section 4.3 with field data. 

 

2.5. Signal-to-noise effect 
The s/n ratio that is fundamental to the identification of a well-separated mode is given 

by the ratio of the PSD of ambient response to the PSD of prediction error at the 

resonance peak [16]: 

24 ζ
γ

eS
S

=           (10) 

This ‘modal s/n ratio’ is not a unique property of the data channel. It depends critically on 

ζ  through dynamic amplification. The prediction error PSD eS  comes from the 
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measurement noise in the data channel and modeling error within the selected band, e.g., 

due to un-modeled contribution from other modes. The PSD of modal force S  reflects 

the intensity of the ambient excitation near the natural frequency. As explained in Section 

2.4 it also depends on the mode shape and always decreases with the number of measured 

dofs n .  

 

The asymptotic posterior c.o.v.s of f , ζ , S  and eS  do not depend on the noise-to-

environment (n/e) ratio SSe /=n  and so they do not depend on the modal s/n ratio, 

which can be written as 24/1 nζγ = . Of course, this statement is only correct up to the 

leading order and it assumes that ζ  is small so that the modal s/n ratio is high. This 

observation, somewhat counter-intuitive at first glance, suggests that when the modal s/n 

ratio is sufficiently large, further increasing it (e.g., by reducing eS  using better quality 

equipment or increasing the number of measured dofs n ) has insignificant effect on 

improving the quality of frequency or damping estimates. This happens because the 

posterior uncertainty does not come only from the prediction error; it also comes from the 

unknown modal excitation for which a stochastic model has been assumed. Uncertainty 

in the latter cannot be eliminated by improving the quality of equipment. The only modal 

parameter whose posterior uncertainty depends on the modal s/n ratio is the mode shape, 

which shall be discussed in Section 2.6.  

 

Illustrative example (synthetic data) 

Here we present an example with synthetic data to illustrate the effect of the measured 

dofs on the modal s/n ratio and identification uncertainty. Field data examples shall be 

given in Section 4.3. Consider the horizontal vibration of a ten-storied shear building 

with uniform floor mass of 100 tons, interstory stiffness of 177kN/mm and damping ratio 

of 1% in all modes. The natural frequency of the first three modes are 1Hz, 2.98Hz and 

4.89Hz. The mode shape of the first mode increases from the bottom to the top of the 

building. The structure is subjected to i.i.d. (independent and identically distributed) 

white noise excitation at all floors, each with a PSD of 4.81 HzN /2 . Synthetic 

acceleration data is generated at a sampling rate of 100Hz for a duration of 600sec. The 
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data is contaminated by i.i.d. channel noise with a PSD of Hzg /)(100 2µ  ( 6101 −=µ , 
2/81.9 smg = ). Consider identifying the first mode with an increasing number of 

measured dofs (each with a uniaxial accelerometer) from =n 2 to 10. Three cases of 

sensor layout sequence are considered. In Case 1, the increasing number of sensors are 

placed from the top to the bottom, i.e., at the roof and 9/F for 2=n ; at the roof, 9/F and 

8/F for 3=n  and so on. In Case 2, the sequence is reversed, i.e., at 1/F and 2/F for 2=n ; 

at 1/F, 2/F and 3/F for 3=n  and so on. In Case 3, all sensors are placed at the roof, i.e., 

two sensors at the roof for 2=n ; three sensors at the roof for 3=n  and so on. Note that 

even if the sensors are all placed on the roof their data are not identical, because of 

channel noise. Modal identification is based on FFT data on the frequency band [0.94, 

1.06] Hz, corresponding to a bandwidth factor of 6=κ .   

 

Figure 2(a) shows the modal s/n ratio 24/ ζγ eSS=  (see (10)) calculated using the MPVs 

identified from data in each case. As expected, γ  increases with n  in all cases. In Case 1 

(dots), the rate (slope) decreases with n  because the mode shape value of the additional 

dofs (lower floors) is decreasing. An analogous argument explains the increasing rate of 

γ  in Case 2 (circles). In Case 3, γ  increases almost linearly with n  (deviation due to 

fluctuations in MPVs), because in this case the mode shape value at all the measured dofs 

(at the roof) are all the same. 

 

Figure 2(b) shows the corresponding (exact) posterior c.o.v. of the damping ratio ζδ  

[16][17]. The posterior c.o.v.s of other modal parameters (which are less critical) are 

omitted here to simplify discussion. The dashed line in the figure shows the value 

predicted by the uncertainty law in (1) calculated using the exact parameter values 

( %1=ζ , 600=cN , 6=κ ). The counterpart values calculated using the MPVs 

identified from data are close to the dashed line; they are not shown to avoid 

complication in the figure. For Case 2 (circles), ζδ  decreases with diminishing rate as n  

increases. In particular, ζδ  reduces by 30% as n  increases from 2 to 3; and by 10% as n  

increases from 3 to 4. This diminishing rate of uncertainty reduction with n  is intimately 
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related to the insensitivity of ζδ  to γ  when γ  is large. In fact, for Case 1 (dots) and Case 

3 (square), ζδ  is insensitive to n  right from the beginning because γ  is already 50 when 

2=n  (see Figure 2(a)). This is further explained in Figure 3, which plots the value of ζδ  

versus γ  in all cases. As expected, ζδ  converges to the uncertainty law (dashed line) as 

γ  increases. All points lie almost on the same curve, indicating that the non-trivial 

influence of the measured dofs on ζδ  can be explained essentially by the relationship 

between ζδ  and γ .  

 

2.6. Mode shape uncertainty 
Since the posterior covariance matrix of the mode shape is not a diagonal matrix, the 

mode shape values at different measured dofs are correlated with each other. This 

correlation arises from the norm constraint. The uncertain mode shape has a deviation 

that is a linear combination of vectors orthogonal to the most probable mode shape. 

 

In an overall sense the uncertainty in the mode shape as reflected by Φδ  in (6) depends on 

all governing scales. Smaller ζ  gives smaller Φδ  as a result of higher dynamic 

amplification. Increasing cN  (normalized data length) or κ  (bandwidth factor) decreases 

Φδ , since more information is used for identification. Reducing n  decreases Φδ , which is 

also intuitive. The effect of n  on Φδ  is less systematic and requires more explanation. As 

discussed before, S  is an increasing function of n  and so SSe /=n  is a decreasing 

function of n . The overall effect of n  on Φδ  will be decided by the term n)1( −n , which 

depends on the additional dof added to the existing measured set. For example, when the 

mode shape value at all measured dofs are identical, then nj /1=Φ , nS ∝  and 

nn /11)1(2 −=−∝Φ nδ , a slowly increasing function for moderate n . In this case 

including the additional dof will not increase the overall mode shape uncertainty 

significantly. On the other hand, if the additional dof has zero mode shape value, S  and 

hence n  does not change and so nδ )1(2 −∝Φ n  increases linearly. In general, adding dofs 
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with a smaller (bigger) mode shape value than the existing ones will tend to increase 

(decrease) the overall mode shape uncertainty. 

 

3. Practical implications 
In this section we discuss some implications of the uncertainty laws with regard to 

performing ambient vibration tests. We shall focus on the following issues: the governing 

uncertainty, the required data duration, the required modal s/n ratio and the measured 

dofs. 

 

3.1. Governing uncertainty 
The dependence of the posterior c.o.v. of a modal parameter on ζ  has important 

implications on how difficult it can be estimated in practice. In particular, 2
fδ  and 2

Φδ  are 

proportional to ζ , while on the contrary 2
ζδ  is inversely proportional to ζ . For small ζ  

encountered in applications, say, 0.5%~5%, this means that the posterior uncertainty in 

the damping ratio is much larger than that in the natural frequency or mode shape, and so 

its accuracy requirement is likely to govern planning decisions, e.g., the required data 

length.  

 

Some intuitive explanations for the dependence on ζ  are in order. Small ζ  implies that 

resonance oscillations decay slower and stay longer in the data. In the frequency domain, 

the resonance peak is more pronounced and sharper, giving better accuracy in the natural 

frequency. Correspondingly, the quality of mode shape also improves because the 

resonance oscillations dominate the measured vibration signal. On the other hand, a small 

damping means that the structure dissipates a small amount of energy and so in the 

diminishing limit it becomes impossible to identify the damping to the same relative 

accuracy, in the presence of uncertainty arising from the unknown loading that confuses 

energy balance. Note that the absolute uncertainty of ζ  does reduce as ζ  decreases, as 

evidence from its posterior standard deviation, being ζπζ BNc2/ . It is just that 
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reduction rate is slower than its magnitude ζ , and so on a relative basis the uncertainty 

increases. 

 

3.2. Data length requirement 
As mentioned before, in practice the required data duration is likely to be governed by the 

posterior uncertainty in the damping ratio. The required data length as a multiple of the 

natural period to achieve a given posterior c.o.v. ζδ  is given by  

12 ])(2[ −= ζζ δκπζBNc          (11) 

To give a rule-of-thumb, assume a damping ratio of 1% and a bandwidth factor of 6=κ  

i.e., %60~ζB . The required data length is then 2/5.27 ζδ≈cN , say, 

2/30 ζδ≈cN   ( 6%,1 == κζ )      (12) 

This means that 300 natural periods are required to achieve a moderate posterior c.o.v. of 

%30=ζδ ; 750 periods for %20=ζδ ; and 3,000 periods for %10=ζδ . The 

corresponding c.o.v.s of the natural frequency are 0.67%, 0.27% and 0.067%, which are 

negligible. Smaller damping or bandwidth requires longer data length. 

 

The value suggested in (12) is the minimum data length based on accuracy requirement. 

In practice it will need to be traded off with other practical constraints. When little is 

known about the existence of a mode in a frequency band one may increase (e.g., double) 

the data duration to get a clearer picture of the spectrum for deciding the number of 

modes in the band. On the other hand, there are situations that limit the data duration and 

hence the identification accuracy. For example, super-tall buildings (height >300m) have 

a natural period in excess of 5 seconds. Assuming 1% damping, it requires over 4 hours 

to achieve %10=ζδ . This duration is too long that significantly weakens the stationarity 

assumption in the stochastic modal excitation and the time invariance assumption of 

modal properties, giving rise to modeling errors that may invalidate the formulation. 

Wind loads during typhoons can change by orders of magnitude in a matter of an hour. 

Correspondingly, the damping ratio can change significantly over such period, due to 

amplitude dependence.  In view of this, for super-tall buildings a c.o.v. of %30=ζδ  
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would be a reasonable accuracy to aim at, requiring about half an hour data [8][9]. This 

may put a practical limit on the precision of field evidence for wind effects on structures. 

 

3.3. Signal-to-noise requirement 
Excluding the mode shapes, the uncertainties of the modal parameters are insensitive to 

the modal s/n ratio, provided that it is sufficiently large. There is a limit to which 

improving the quality of data channel can improve the accuracy of modal parameters. 

The measurement noise just needs to be small enough, at which point further reducing it 

has little or no improvement on accuracy of the identified modal parameters.  

 

From experience with field data, even for a small number of dofs, say, 2=n , it is 

common to have a PSD of modal force S  greater than Hzg /)(100 2µ  for the first few 

fundamental modes under normal wind condition for civil engineering structures (e.g., 

buildings, bridges, floor slabs). With properly controlled data channels a prediction error 

PSD of HzgSe /)(100~ 2µ  (or lower) can be readily achieved. This gives a n/e ratio of 

1~n  and a modal s/n ratio of 25~γ  for 1% damping. This value can be higher with 

more measured dofs, stronger environmental excitation, or smaller damping. The mode 

shape uncertainty in this case is, for 2=n , about 12 %1~ −
Φ cNδ .  This indicates that the 

mode shape uncertainty can be easily reduced to an acceptable level in a cost-effective 

manner with a reasonable data length. 

 

3.4. Measured dofs 
The primary requirement of the measured dofs is to capture the modes of interest so that 

they are identifiable with desired details in the measured mode shapes. In terms of 

identification uncertainty of well-separated modes, the influence of the measured dofs is 

essentially captured in the modal s/n ratio (γ  in (10)), as discussed in Section 2.4 and 2.5. 

When the modal s/n ratio is small, increasing the number of measured dofs may help 

reduce identification uncertainty by virtue of increasing the modal s/n ratio through the 

PSD of modal force. The rate at which the modal s/n ratio can be increased depends on 
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the mode shape value of the additional measured dof. Equation (9) shows that the PSD of 

modal force is proportional to the sum of squares of the mode shape values at the 

measured dofs. The latter can be taken as one simple objective for determining sensor 

location when the modal s/n ratio is small, trading off with other constraints. When the 

existing dofs can already capture the mode with a good modal s/n ratio, the posterior 

uncertainty in the modal parameters is insensitive to the measured dofs (number and 

location). In this case deploying additional sensors is not a cost-effective strategy to 

improve the accuracy in the natural frequency or damping ratio. Of course, quite often the 

number of measured dofs is increased simply to produce a detailed mode shape covering 

more locations of the structure.  

 

4. Verification with field data 
In this section we verify the uncertainty laws using ambient vibration data obtained from 

field tests. Three structures are considered. The first structure is a segment of the 

footbridge situated at the entrance of the City University of Hong Kong (see Figure 4(a)). 

Ten accelerometers were deployed for measuring the vertical acceleration at ten locations, 

as shown in Figure 4(b). The channel noise floor was about 1 Hzg /µ . The data was 

originally acquired at 2048Hz and then later decimated to 128Hz for analysis. It was 

obtained at midnight where human activity on the bridge was minimal.  

 

Figure 5(a) shows the singular value spectrum (square-root of eigenvalues of the spectral 

density matrix) based on 5 minutes of ambient vibration data. The horizontal bars show 

the band that can normally be selected without incurring much modeling error. It should 

be noted that the singular value spectrum (which is smoothed by averaging) is referred 

here only for visualizing the spectral peaks. It is not involved in the Bayesian formulation 

nor modal identification calculations. Rather, the raw (complex-valued) FFT of ambient 

vibration data within the selected frequency band is directly involved in the Bayesian 

modal identification process. 
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Figure 5(b) shows three vertical modes identified using the FFT data within the 

respective bands. These give a basic idea (nominal case) of the modes that we shall focus 

on when verifying the uncertainty laws. Our discussion shall center around three aspects, 

namely the accuracy of the uncertainty laws; the variation of posterior uncertainty with 

data length; and the variation of posterior uncertainty with the bandwidth utilized for 

identification. In all cases, the value of the posterior c.o.v. according to the uncertainty 

laws is calculated by replacing the parameters in the formula with the MPVs (most 

probable value) identified from the data under question. 

 

4.1. Effect of data length 
We first examine the variation of posterior c.o.v. with data length. For this purpose we 

determine the most probable value (MPV) and posterior c.o.v. of the modal parameters 

using different data durations, being 0.5, 1, 2, 4, 8, 12, 15 minutes. In each case the 

bandwidth used for each mode is set as )1( 00 κζ±f , where 6=κ ; 0f  and 0ζ  are MPV of 

the natural frequency and damping in the nominal case.  

 

Figure 6 shows the variation of the c.o.v. of modal parameters with the data length in 

terms of either cN  or fN , whichever is relevant. In each plot, the markers show the 

‘exact’ values of posterior c.o.v. computed using the fast Bayesian FFT algorithm [16], 

with circle, square and diamond corresponding to the first, second and third mode. The 

lines show the results of the uncertainty laws, with solid line, dashed line and center line 

corresponding to the first, second and third mode. The same notation will be used for 

other plots later. 

 

Figure 6(a) shows a decreasing trend of posterior c.o.v. with the data length, as expected. 

Ideally, according to the uncertainty laws, for each mode the results should form a 

straight line with a slope of -1/2. The observed deviation from a straight line is due to the 

fluctuation in the MPV of modal parameters as different data duration is used. The c.o.v. 

of the natural frequency and damping ratio are of different order of magnitude. The c.o.v. 

of f  increases with the mode number, while a reversed trend is observed in ζ . This is 
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simply because for this bridge the damping ratio decreases with the mode number. In 

Figure 6(b), the c.o.v. of S  and eS  are plotted with fN  instead of cN  because their 

uncertainty laws depend directly on fN  rather than cN . For both S  and eS  the results 

for different modes gather together around a line. This is expected because their 

uncertainty laws do not depend on either f  or ζ .   

 

Figure 6(c) shows the variation of the principal variances of the posterior covariance 

matrix of the mode shape, nnR ×
Φ ∈C . Since 10=n  in this example, for each mode there 

are 9 non-zero principle variances. According to the uncertainty law these principle 

variances are identical and are inversely proportional to cN . This is reflected by the three 

straight lines for the three modes, which display a slope of -1 on the log-log plot. The 

exact values of the principal variances for each mode, on the other hand, are very close to 

each other, as evidence from the markers of each mode overlapping each other. The 

difference in the principal variances for the three modes is due to the difference in the 

damping ratio and the n/e ratio.   

 

Figure 6(d) shows the variation of the overall mode shape uncertainty with cN , in terms 

of the complement of expected MAC, i.e., )1( ρ− . For each mode, the results display 

approximately a straight line on the log-log plot with a slope of -1. This can be expected 

from (5) and (6), since 2/1~ 2
Φ−δρ  for small 2

Φδ  and 12 −
Φ ∝ cNδ , giving 11 −∝− cNρ . 

Overall, Figure 6(a)-(d) indicate that the uncertainty laws give a good approximation of 

the posterior c.o.v. 

 

4.2. Effect of bandwidth used 
We next investigate the variation of posterior c.o.v. with the bandwidth factor κ . For this 

purpose we fix the data duration to be 5 minutes (same as the nominal case). We then 

identify the modal parameters and determine their posterior c.o.v. by utilizing the FFT 

data confined to the frequency band )1( 00 κζ±f , where κ  shall now be varied from 3 to 

10 at an increment of 0.5. This represents a situation where the total amount of 
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information (data length) is fixed and one improves knowledge regarding the modal 

parameters by utilizing a wider bandwidth, until practically all relevant information are 

exhausted. Of course, in reality one would directly use the widest possible bandwidth 

without increments. Note that the frequency spacing of the FFT data is 
31033.3)605/(1 −×=× Hz throughout. 

 

Figure 7(a)-(f) show the variation of posterior uncertainties with κ  for different modal 

parameters. Although Figure 7(d)-(f) display an intuitive decaying trend with κ , the 

same is not true for Figure 7(a)-(c), which is somewhat counter-intuitive. This is partly 

due to the fact that MPV of modal parameters changes as the bandwidth used increases. 

On the other hand, the calculated value of posterior uncertainty need not decrease with 

the amount of available data because the additional data may not agree with the ones that 

are already used. The fact that the results for eS , principal variances and )1( ρ−  show a 

decreasing trend suggests that these properties are identified quite consistently regardless 

of the bandwidth used. Regardless of the trend, the uncertainty laws generally give a 

good approximation of the exact values.   

 

4.3. Effect of measured dofs 
To investigate the variation of posterior uncertainty with the number of measured dofs n , 

we fix the data duration to be 5 minutes and the bandwidth factor to be 6  (same as the 

nominal case). We then identify the modal properties and determine their posterior c.o.v. 

based on data sets with an increasing number of measured dofs. The number of dofs of 

these data sets ranges from 2 to 10 at an increment of 2, corresponding to different sets of 

measured dofs {1,2}, {1,2,3,4}, {1,2,3,4,5,6},…,{1,…,10}.  

 

Figure 8(a)-(f) show the results for different modal parameters. It is seen from Figure 

8(a)-(c) that there is no dependence of the c.o.v. of f , ζ  or S  on n . The decreasing 

trend of the c.o.v. of eS  in Figure 8(d) is also consistent with its uncertainty law. The 

principal variances in Figure 8(e) and )1( ρ−  in Figure 8(f) do depend on n  in a 

systematic manner. The fluctuation in the overall mode shape uncertainty for small n  in 
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Figure 8(e) is due to the fluctuation in the identified damping ratios (MPV). These results 

indicate that when the modal s/n ratio is sufficiently high increasing the number of 

measured dofs does not significantly improve the identification quality. This is consistent 

with the uncertainty laws. 

 

4.4. Other structures 
The uncertainty laws have also been verified with other structures. Two cases are 

presented here as a supplement to the CityU footbridge. The first one is a super-tall 

building in Hong Kong (310m high, m40m40 ×  in plan) with 1.5 hours of ambient data 

(sampling rate 128Hz) under normal wind conditions. The data was measured at 8 

horizontal dofs covering four corners on the roof of the building. The second structure is 

the UCLA Doris and Louis Factor Health Science Building (66m high, 126m×73m in 

plan). The data was sampled at 100Hz and lasted for 2 hours. It corresponds to the NS 

horizontal dofs located on the 1/F to 16/F on the East Wall of the building. Further details 

of the building can be found in [18]. Figure 9 and Figure 10 show the results for the 

super-tall building; Figure 11 and Figure 12 for the Factor building. They are self-

explanatory. Conclusions similar to the CityU footbridge can be drawn. In general, the 

uncertainty laws give a good approximation of the exact values.  

 

Finally, Table 1 summarizes the scales in the examples (nominal case) for reference, 

which gives an idea of the typical scales that may be encountered in reality. The modal 

s/n ratios reported correspond to using all measured dofs in each example. They are 

generally quite high. When a small number of dofs is used for identification the modal s/n 

ratio may be smaller than that reported in the table. Note that the data were collected 

under normal ambient conditions where the environmental disturbance was not 

particularly intense. Of course, the data channels were all properly controlled to have 

good quality with micro-g resolution sensors. The n/e ratio ranges from 1% to 100. The 

bandwidth factor is roughly about 10.  
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5. Conclusions 
These two companion papers have shown that for well-separated modes, small damping 

ratio and sufficient data, the posterior uncertainties of the modal parameters to the leading 

order take on a remarkably simple form. The uncertainty laws are summarized in (1) and 

(3). They are governed by the following dimensionless parameters: the damping ratio, the 

bandwidth factor, the noise-to-environment ratio, and the data length in terms of either 

the number of natural periods or the number of frequency ordinates in the selected band. 

The modal parameters are asymptotically uncorrelated, with the exception of the 

correlation between the damping ratio and the PSD of modal force.  

 

When the modal s/n ratio is sufficiently high, further increasing it has no leading order 

effect on reducing the posterior uncertainties of the natural frequency or damping ratio. 

Increasing the number of measured dofs has no leading order effect, either. The required 

data length is likely to be governed by the accuracy requirement in the damping ratio. A 

rule of thumb has been suggested in (12), which should be traded off with practical 

constraints.  

 

The uncertainty laws have been verified with field test data obtained from field test data. 

They generally give a good approximation. Again, we emphasis that the uncertainty laws 

are intended to give insights and provide guidance for planning ambient vibration tests or 

drafting specifications. After all, given the data the exact value of the posterior 

uncertainties can be calculated quickly using the fast algorithms [16][17][19].  

 

As the Bayesian FFT approach allows full use of information in the selected frequency 

band of the data for given modeling assumptions, the uncertainty laws obtained in this 

work represent the lower limit of uncertainty that can be achieved by any method, 

including Bayesian and non-Bayesian methods. In the latter, uncertainty is interpreted as 

the ensemble variability of the estimates in a frequentist sense when there is no modeling 

error [5]. 
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The reader is cautioned that the uncertainty laws describe only the leading order of the 

remaining uncertainty of the modal parameters for given data and modeling assumptions. 

They do not necessarily describe the variability of the identified values (MPV) from one 

data set to another. Such ensemble variability defined in a ‘frequentist’ manner is 

associated not only with identification uncertainty but also with other factors such as 

modeling error and variability in the structure or environment over different data sets. 

The (Bayesian) posterior uncertainty is for quality control rather than describing 

ensemble variability. The Bayesian and frequentist measure of uncertainty are related and 

their use are complementary [5].  

 

Finally, answers to the questions posed in the abstract are in order, based on the context 

in this work. The reader should note that they can be controversial, especially when the 

context of application differs; the answers are as good as the assumptions. 

 

Question 1. To estimate the damping ratio to within 30% of posterior coefficient of 

variation (c.o.v), what is minimum duration required?  

 

Answer: It depends on the damping ratio ζ . Assuming a good modal s/n ratio, the 

required data length in terms of the number of natural periods is roughly ζ/3≈cN . E.g., 

a mode with a period of 2 seconds and 1% damping requires at least 60001.0/32 =×  

seconds, i.e., 5 minutes.    

 

Question 2. Will deploying an additional accelerometer significantly improve the 

accuracy in damping (or frequency)?  

 

Answer: It depends on the modal s/n ratio. If it is small (say <10) then deploying an 

additional sensor may effectively reduce identification uncertainty by virtue of increasing 

the modal s/n ratio, but the extent depends on the mode shape value of the additional 

sensor location (higher the better). If the modal s/n ratio is already sufficiently large, the 

additional sensor will not significantly improve the accuracy in the damping (or 

frequency).    
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Table 1. Scales in different field examples (nominal case) 

Case Mode 

Modal  
s/n ratio 

γ  
n/e ratio 

n  
Bandwidth factor 

κ  
CityU footbridge 1 13134 0.14 10 
 2 5994 1.0 19 
 3 2081 106 7 
Super-tall building 1 1511 37 22 
 2 1376 10 14 
 3 253 25 11 
Factor building 1 94515 0.0044 12 
 2 17350 0.12 29 
 3 601 0.26 4 
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Figure 2. Modal s/n ratio (a) and posterior c.o.v. of damping ratio (b) versus the measured number of 

dofs,  ten-storied shear building example (synthetic data). Dots – sensor from roof to 1/F; circles – 
sensor from 1/F to roof; squares – all sensors at roof. Dashed line in (b) – uncertainty law 
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Figure 3. Posterior c.o.v. of damping versus modal s/n ratio, ten-storied shear building example 
(synthetic data). Dots – sensor from roof to 1/F; circles – sensor from 1/F to roof; squares – all 

sensors at roof. Dashed line – uncertainty law  
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Figure 5. Analysis of CityU footbridge (nominal case, 5 min. data) 
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Figure 6. Posterior c.o.v. versus data length, CityU footbridge. Marker – exact; line – uncertainty law; 

circle, solid line – Mode 1; square, dashed line – Mode 2; diamond, center line – Mode 3. 
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Figure 7. Posterior c.o.v. versus bandwidth factor, CityU footbridge. Legend same as Figure 6.  
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Figure 8. Posterior c.o.v. versus no. of dofs, CityU footbridge. Legend same as Figure 6. 
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(a) (Root) Singular value spectrum (averaged for viewing modes only) 
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Figure 9. Analysis of super-tall building (nominal case, 30 min. data) 
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Figure 10. Posterior c.o.v. versus data length, super-tall building. Legend same as Figure 6. 
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(a) (Root) Singular value spectrum (averaged for viewing modes only) 
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Figure 11. Analysis of Factor Building (nominal case, 10 min. data) 
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Figure 12. Posterior c.o.v. versus data length, Factor Building. Legend same as Figure 6. 
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