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Abstract

Deposit insurances were blamed for encouraging the excessive risk taking be-
havior during the 2008 financial crisis. The main reason for this destructive
behavior was “moral hazard risk”, usually caused by inappropriate insurance
policies. While this concept is known and well-studied for ordinary insurance
contracts, yet needs to be further studied for insurances on financial positions.
In this paper, we set up a simple theoretical framework for a bank that buys
an insurance policy to protect its position against market losses. The main
objective is to find the optimal insurance contract that does not produce the
risk of moral hazard, while keeping the bank’s position solvent. In a general
setup we observe that an optimal policy is a multi-layer policy. In particular,
we obtain a close form solution for the optimal insurance contracts when a
bank measures its risk by either Value at Risk or Conditional Value at Risk.
We show the optimal solutions for these two cases are two-layer policies.

Key words: Deposit insurance, solvency, risk measure and premium, Black-Scholes
model, moral hazard

1 Introduction

An important lesson from the 2008 financial crisis is that an underestimated moral
hazard risk can be destructive. Whilst this fact was widely known in insurance, it
is rather new for insurances in the banking industry. A moral hazard is a situation
when some agents take excessive risk because the costs of taking risk is not felt by
them. In other words, a moral hazard occurs since some agents know the potential
costs of taking further risk will be borne by other agents and/or the government.
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Kenneth Arrow (e.g.,Arrow (1971)) was among the first who discussed the risk of
moral hazard as an inevitable risk caused by altering a policyholder’s incentives (
see also Heimer (1989)).

An extensive use of the deposit insurances in the financial sector caused excessive
risk taking behavior. In the years prior to the 2008 financial crisis, financial institu-
tions, like banks and in particular hedge funds, bought deposit insurances in order
to protect their investments. As a result, financial institutions could venture riskier
investments, by transferring the big losses to the insurance companies; see Collins
(1988), Kaufman (1988), Dowd (1996) and Freixas and Rochet (2008). This was a
reason for the huge risk taking behavior which caused big losses in 2008.

In a banking system, moral hazard is a result of the absence of enough prudential
policies. While, the minimum capital requirement is aimed to partly prevent the
excessive risk taking behavior by putting banks’ equity at risk, it can also encourage
further risk taking behavior; see Hellmann et al. (2000). After 2008, it is proven that
neither these measures nor any other prudential regulatory law can prevent another
crisis unless the excessive risk taking behavior is controlled; see Dowd (2009).1

In order to prevent the risk of moral hazard, regulator needs to insist on the
correct regulations. The key is that the financial system must not be used for reckless
gambling financial practices, inspired by excessive risk taking behavior. In general,
there are two ways to reduce the excessive risk taking behavior. First, introducing
ex-ante policies which enforce banks to bear part of any loss they impose to the
system, and second, introducing ex-post policies which penalizes the excessive risky
behaviors (see similar discussion for market discipline in Freixas and Rochet (2008)).

In this paper, we have chosen to set an ex-ante policy. In this approach, the
risk of moral hazard is reduced by setting contracts that both parties, the insurer
and the insuree, feel the losses. We consider a bank that seeks an optimal insurance
contract that does not produce any risk of moral hazard, while also keeping the
bank’s position solvent. To remove the risk of moral hazard we assume the contract
is a non-decreasing function of losses. By adopting a complete market model as in
Merton (1977), where the author treated a deposit contract as an option, we will
characterize the optimal contracts. Ultimately, we use α-percent Value at Risk and
Conditional Value at Risk for the minimum capital requirement2, and we see that
the optimal policies are two-layer polices whose upper and lower retention levels are

1It is worth mentioning that moral hazard have been extensively studied in the literature of game
theory in particular the principal agent problem, and also recently has received some attention in
venture investment studies, which are unrelated to the risk management discussions of the present
paper.

2as recommended in the Basel II accord and Solvency II
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completely determined.
Our work is important from two perspectives: first, we introduce a mathematical

framework to design deposit insurances that cannot impose the risk of moral hazard
to the financial system. Second, this work uses techniques from actuarial mathe-
matics that is rather new in the problems related to finance and banking that can
be further studied in future. This work is in the same line as Assa (2015b), where
risk management under prudential policies is discussed. From technical point of view
we use the Marginal Indemnification Function (MIF) technique developed in Assa
(2015a). The problem of insurance and re-insurance design with no risk of moral
hazard is very well studied in the literature of actuarial science, for instance one can
see , Cai et al. (2008), Bernard and Tian (2009) , Cheung (2010), Chi and Tan (2013)
, Cheung et al. (2014) and more recently Assa (2015a).

The rest of the paper is organized as follows: Section 2 introduces some math-
ematical notions and introduces a set-up for a bank balance sheet. In Section 3,
general optimal solutions are discussed. In Section 4, we will present the solution to
the risk management problem for particular cases.

2 Problem Statement

Let (Ω,P,F) be a complete probability space, where Ω is the set of all scenarios, P is
the physical probability measure and F is a σ- field of measurable subsets of Ω. We
denote the set of all random variables by L0 (Ω,F) = L0. Furthermore, E denotes
the mathematical expectation with respect to P.

In this paper, we assume contracts (policies) are issued at t = 0, the beginning of
a year, and liabilities are settled at t = T , the end of the year. Every random variable
represents losses for different scenarios at time T . For any X ∈ L0, the cumulative
distribution function associated with X is denoted by FX . We also denote the market
risk free interest rate by a constant number r ≥ 0.

Let us consider a bank with an initial capital3 e−rT b, and a non-negative loss
variable L ≥ 0 at time T . By buying an optimal insurance contract, the bank wants
to hedge its global position by transferring part of its losses to an insurance company.
If we denote the insurance policy by a non-negative random variable I at time T , it
has to satisfy 0 ≤ I ≤ L. The value of the insurance policy is given by a premium
function π : D → R at time 0, where D ⊆ L0 is the domain of π. Therefore, the
bank’s global loss position is composed of four parts: the initial capital at time 0 i.e.,

3For technical reasons we assume the value of b at time T and discount it to make it comparable
to today’s value.
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e−rT b ; the global loss i.e., L; the insurance policy i.e., −I; and the premium payed
for the insurance policies at time 0, i.e., π (I) (i.e., erTπ (I) at time T ). Therefore, a
simplified balance sheet of the bank’s position at time T is given as follows

Equity Liability Total Balance Total Loss

b+ I − erTπ (I) −L b+ I − erTπ (I)− L erTπ (I) + L − b− I

Table 1: The bank’s balance sheet at time T .

The bank is solvent if its global position is solvent. To measure the solvency
we use a risk measure; for instance, Value at Risk (VaR) or Conditional Value at
Risk (CVaR). Recalling that VaR is what is recommended in the Basel II4 accord for
the banking system, and also in the Solvency II5 for the insurance industry. In this
paper, % denotes the risk measure recommended by regulator. The bank is solvent if
its capital b is adequate for the solvency i.e., %

(
erTπ (I) + L − b− I

)
≤ 0. In other

words, the position erTπ (I) + L − b − I does not produces any risk. Therefore, an
optimal decision for the bank is to buy the cheapest insurance contract i.e.,

minπ(I),

%(erTπ (I) + L − b− I) ≤ 0,

0 ≤ I ≤ L.
(1)

After setting up the problem, we move one step forward to use a more specific
model for the bank’s asset. Our paper follows an approach similar to Merton (1977),
by considering a risk-free asset and the bank’s asset that follows a geometric Brownian
motion. This choice is very crucial, since one can use the risk neutral valuation
in order to find the “market (consistent) value” of an insurance contract which is
requested by Solvency II. If the asset price dynamics at time t ∈ [0, T ] is denoted by
St then we assume that it follows the following stochastic differential equation:{

dSt = µStdt+ σStdWt,

S0 > 0,

4Basel II accord can be found in the webpage of Bank of International Settlement at: http:

//www.bis.org/publ/bcbs128.pdf
5Solvency II documents can be found in the webpage of European Commission at: http://ec.

europa.eu/finance/insurance/solvency/solvency2/index_en.htm
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where Wt, µ and σ are respectively a standard Wiener process, drift, and volatility
(constant numbers).

It is also known that the solution to this SDE is the geometric Brownian motion
given by

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
.

We assume that the bank’s loss is a non-negative and non-increasing function of its
assets value. In mathematical terms, L = L (ST ), where L : R → R+ ∪ {0} is a
non-increasing function. A natural example is losses due to negative returns

Ln(x) =

{
erTS0 − x, if x ≤ erTS0,

0, if x > erTS0.
(2)

It is clear that Ln is equal to max
{
erTS0 − x, 0

}
= −min

{
x, erTS0

}
+ erTS0.

Let us introduce generalized left and right inverses of a general loss function L as
L−1 (y) = inf {x ∈ R|L (x) ≤ y} and L−1 (y) = max {x ≥ 0|L (x) ≥ y}, respectively.
It is clear that L (x) ≤ y if and only if x ≥ L−1 (y). Also note that (Ln)−1 (y) =
Ln (y) = −min

{
y, erTS0

}
+ erTS0.

Remark 1. The Black-Scholes model used in Merton (1977) has been criticized in
the finance literature. Indeed, the Black-Scholes model which we used to model the
asset value process in our paper uses the GBM process along with few other standard
assumptions including the market completeness and liquidity. It has been proven that
these assumptions cannot always hold in a real market, however, this model is still
being used extensively by practitioners, because of simplicity and that the option
prices always have a closed-form solution. Furthermore, this model can provide
almost accurate results that is good enough for real applications. The popularity of
this model among practitioners have motivated us to use this model, however, any
other extension of our framework to a different model (e.g., using jump diffusion
processes) can be the subject of a new study. Furthermore, by using this model we
can make a fair comparison of our results with the existing Merton (1977) model.

Remark 2. In Merton (1977), a deposit insurance is considered as a put option over
the firm’s assets, and it is evaluated according to the no-arbitrage option pricing
model. In Table 1, which represents the balance sheet of the bank businesses, the
optimal insurance design problem reduces to the regular Merton model only if I = L.
In the Merton model there is no uncovered risk regardless of the choice of the risk
measure whereas, in our model part of the risk is tolerated (i.e., I ≤ L) by the bank,
and the risk of shortfall is measured by risk measure ρ.
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Indeed, this uncovered part of the risk plays the main role in removing the moral
hazard risk. This shows that Merton’s approach towards deposit insurances gives a
sub-optimal (and not optimal) solution in the presence of the moral hazard risk.

Now we introduce a risk measure for bank’s solvency that is chosen by regulator.
For instance, in Basel II or Solvency II, Value at Risk is recommended to value the
minimum capital requirement. The Expected Shortfall (or the Conditional Value
at Risk) is another risk measure that is recently considered in industry. But these
risk measures are members of a larger family of risk measures called distortion risk
measures, introduced below.

Let Π : [0, 1] → [0, 1] be a non-decreasing and cádlág function such that Π(0) =
1−Π(1) = 0. This function induces a probability measure on [0, 1] whose values on
the intervals are given by mΠ [a, b) = Π (b) − Π (a) and mΠ (1) = 1 − lima↑1 Π (a).
Introduce the set DΠ as follows

DΠ =

{
X ∈ L0 |

ˆ 1

0

VaRt(X)dΠ(t) ∈ R
}
, (3)

where the integral above is the Lebesgue-Stieltjes integral and

VaRα(X) = inf {x ∈ R|P (X > x) ≤ 1− α} , α ∈ [0, 1].

Remark 3. Note that VaRα (X) is the left inverse of the survival function SX (x) =
P (X > x) at 1 − α. If FX is continuous and strictly increasing, thenVaRα (X) =
F−1
X (α), where F−1

X (α) is the inverse of the strictly increasing function, FX .

Definition 1. A distortion risk measure %Π (or simply %) is a mapping from DΠ to
R defined as

%Π(X) =

ˆ 1

0

VaRt(X)dΠ(t). (4)

If we let g(x) := 1− Π(1− x) one can prove that

%Π(X) =

0ˆ

−∞

(g(SX(t))− 1) dt+

∞̂

0

g(SX(t))dt. (5)

Note that we can associate % with Π by using the notation Π%. The last representation
above is a Choquet integral representation of the risk measure. In the literature,
g is known as the distortion function. Popular examples are Value at Risk with
ΠVaRα(t) = 1[α,1](t) and Conditional Value at Risk (CVaR), also known as expected
Shortfall when FX is continuous, with ΠCVaRα(t) = t−α

1−α1(α,1](t):

CVaRα(X) =
1

1− α

ˆ 1

α

VaRt(X)dt. (6)
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Remark 4. A distortion risk measure has two important properties. First, it is
positive homogenous of degree one i.e., % (λX) = λ% (X) , for every λ > 0 and X ∈ L0

and second, it is cash invariant i.e., % (X + c) = % (X) + c, for every c ∈ Rand X ∈
L0. This two properties indicate that for any random variable X, % (X) is in terms
of the time T value.

In the literature of actuarial science, the same definition is used for risk premi-
ums. However, since we are using a specific model for the dynamics of assets, and
also since we have to find the market value of an insurance contract, we cannot use
an arbitrary risk premium function. In other words, we have to derive the premium
law. We will show that in our problem, by ruling out the risk of moral hazard, the
premium law has the same representation as a distortion risk premium. So we make
the following assumption:

Assumption 1 . We assume there is no risk of moral hazard; that means, both
bank and insurance fell risk of an adverse event. For that, we assume that both
the bank and insurance loss variables are non-decreasing functions of the global loss
variable. This assumption rules out the risk of moral hazard, as both sides have to
feel any increase in the global loss (see for example Heimer (1989) and Bernard and
Tian (2009)). Therefore we assume that I = f(L) where both f and id − f are
non-decreasing (here id denotes the identity function). It is easy to check that in
that case f and id− f are Lipschitz functions. It is known that every Lipschitz con-
tinuous function f is almost everywhere differentiable and its derivative is essentially
bounded by its Lipschitz constant. Furthermore, f can be written as the integral of
its derivative denoted by h, i.e., f(x) =

´ x
0
h(t)dt. Therefore, we introduce the set C

of the contracts as

C =
{
f : R+ ∪ {0} → R+ ∪ {0}

∣∣∣f and id− f are non-decreasing
}
.

Note that C can also be characterize as follows

C =

{
f : R+ ∪ {0} → R+ ∪ {0}

∣∣∣f(x) =

ˆ x

0

h(t)dt, 0 ≤ h ≤ 1

}
.

For any indemnification function f =
´ x

0
h (t) dt, h is called the marginal indemnifi-

cation function (MIF). The interpretation of the marginal indemnification function
is as follows: if f(x) =

´ x
0
h(t)dt is in C, then at each loss value L = x, a marginal

change δ to the value of the total risk will result in marginal change of the size δh(x)
in the allocation of risk. In what follows, we observe that this marginal change is
either 0 or δ, i.e., h = 0 or 1. This means that for any small change in the total risk,
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there is only one agent (either bank or the insurer) who has to bear the changes in
the risk.

Now we want to introduce the risk premium. An important implication of As-
sumption 1 is that all insurance contracts are in the form of a contingent claim i.e.,
for f ∈ C, f (L) = f (L (ST )) = (f ◦ L) (ST ). To find the market value of a contin-
gent claim we use the no-arbitrage valuation. Using Girsanov theorem, it is known
that if the market is complete, the unique martingale measure Q has the density

ϕm =
dQ
dP

= exp

(
−m
σ
WT −

1

2

(m
σ

)2

T

)
,

where m = µ− r. Therefore, we can introduce the premium as

π (I) = e−rTE (ϕmI) .

We apply following relation between ϕm and the price process of the stock, cf. Nakano
(2004):

ϕm = exp

((
1

2
m2/σ2 −m/2

)
T

)(
exp (−rT )ST

S0

)−m/σ2

. (7)

It is then easily seen that ϕm is a decreasing function of ST .
Now we want to state a very important proposition that can present the premium

as a distortion risk measure. However, in order to prove this we need a version of
Hardy-Littlewood’s theorem which is Theorem A.24 in Föllmer and Schied (2004).

Theorem 1. (Hardy–Littlewood). Let X and Y in L0 be two non-negative random
variables such that |E(XY )| <∞. Then,

ˆ 1

0

VaR1−t (X) VaRt (Y ) dt ≤ E[XY ] ≤
ˆ 1

0

VaRt (X) VaRt (Y ) dt.

Furthermore, if X = f(Y ), the lower (upper) bound is attained if and only if f can
be chosen as a non-increasing (non-decreasing) function.

Let us introduce the following notation

π̄ (I) := E
(
ϕ|m|I

)
.

Proposition 1. The following equality holds

E (ϕmI) = π̄ (I) =

ˆ 1

0

VaRt(I)dΠπ̄(t), (8)
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where

Ππ̄(x) := N

(
N−1(x)− |m|

√
T

σ

)
.

Proof. In order to prove the proposition, we consider two cases:

Case 1: m ≥ 0. First of all, if m = 0, then we have ϕm = 1 and Ππ̄(x) = x,∀x ∈
(0, 1). In this case the left-hand side and the right-hand side of (8) are clearly equal

i.e., E(I) =
´ 1

0
VaRt(I)dt. Now assume that m > 0. In this case ϕm and I are both

decreasing functions of the underlying asset ST . Therefore, by Hardy-Littlewood’s
inequality one can get that

E(ϕmI) =

ˆ 1

0

VaRt(ϕm)VaRt(I)dt =

ˆ 1

0

VaRt(I)dΠπ̄(t),

where Ππ̄(x) =
´ x

0
VaRt(ϕm)dt. On the other hand, for x > 0 we have

P (ϕm ≤ x) = P

(
exp

(
−m
σ
WT −

1

2

(m
σ

)2

T

)
≤ x

)
= P

(
−WT ≤

σ

m

(
log x+

1

2

(m
σ

)2

T

))
= P

(
WT ≥

−σ
m

(
log x+

1

2

(m
σ

)2

T

))
= 1− P

(
WT ≤

−σ
m

(
log x+

1

2

(m
σ

)2

T

))
= 1−N

(
−σ
m
√
T

(
log x+

1

2

(m
σ

)2

T

))
= N

(
σ

m
√
T

(
log x+

1

2

(m
σ

)2

T

))
,

where N denoted the cumulative distribution function of a standard normal distri-
bution, and we also have used the fact that N(−x) = 1 − N(x). Therefore, we
have

VaRt(ϕm) = exp

(
m
√
T

σ
N−1(t)− 1

2

(m
σ

)2

T

)
.

Given this, one can further show that

Ππ̄(x) = N

(
N−1(x)− m

√
T

σ

)
, (9)
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which clearly gives a distortion function associated with a Wang’s premium (indeed,
π̄ is a Wang premium, see Wang (2000)).

Case 2: m < 0. In this case while still I is a decreasing function of ST , ϕm is
an increasing function of ST . Therefore, by Hardy-Littlewood’s inequality one can
get that

E(ϕmI) =

ˆ 1

0

VaR1−t(ϕm)VaRt(I)dt.

Given that N−1 (t) = −N−1 (t), similar to what we have derived above we get

VaR1−t(ϕm) = exp

(
m
√
T

σ
N−1(1− t)− 1

2

(m
σ

)2

T

)

= exp

(
(−m)

√
T

σ
N−1(t)− 1

2

(
(−m)

σ

)2

T

)
= VaRt(ϕ−m).

Therefore,

E(ϕmI) =

ˆ 1

0

VaR1−t(ϕm)VaRt(I)dt

=

ˆ 1

0

VaRt(ϕ−m)VaRt(I)dt =

ˆ 1

0

VaRt(I)dΠπ̄(t).

Remark 5. Usually in practice, m ≥ 0 but, m < 0 can mathemaically happen.
However, give the last proposition one can easily see that the pricing rule is invariant
with respect to the sign of m. In the continuation we always consider the usual case
m ≥ 0, but all the following results can be derived similarly for m < 0 .

Going back to the bank problem, since % is cash invariant, (1) can be re-written
as 

min π(I),

%(L − I) + π̄ (I) ≤ b,

0 ≤ I ≤ L,
(10)

Before ending this section let us introduce the following notations for any random
variable X and risk measure %
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Φ% (t) := 1− Π% (t) ,

Φ%
X (t) := Φ% (FX (t)) .

Similar notation will be used to introduce Φπ̄and Φπ̄
X .

Now we can obtain Φπ̄
L. First note that in general

Φπ̄ (x) = 1− Ππ̄ (x) = 1−N

(
N−1(x)− m

√
T

σ

)
= N

(
m
√
T

σ
−N−1(x)

)
(11)

Then, we have

FL (t) = P (L (ST ) ≤ t)

= P
(
ST ≥ L−1 (t)

)
= P

(
S0 exp

((
µ− σ2

2

)
T + σWT

)
≥ L−1 (t)

)

= P

W1 ≥
log
(
L−1(t)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T


= N

− log
(
L−1(t)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T

 ,

and from this we get

Φπ̄
L (t) = N

m√T
σ
−N−1

N
− log

(
L−1(t)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T


= N

m√T
σ

+
log
(
L−1(t)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T

 . (12)

For instance, for L = Ln we get

Φπ̄
Ln (t) = N

m√T
σ

+
log
(
Ln(t)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T


=

N
(
m
√
T

σ
+

log(−t/S0+erT )−
(
µ−σ

2

2

)
T

σ
√
T

)
, t ≤ erTS0,

0, t > erTS0.
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3 Optimal Solutions

First, we need a technical assumption which is used in the sequel.

Assumption 2. We assume that any distortion measure % satisfies the following
regularity condition

lim
n→∞

%(X ∧ n) = %(X). (13)

It is worth mentioning that the Wang’s premium (9) has this property. Let us
introduce the following notation

B = b− %(L)

and

θ∗ := argmin
θ≥0

ˆ ∞
0

(Φπ̄
L (t) + θ (Φπ̄

L (t)− Φ%
L (t)))+ dt+Bθ.

Here (x)+ = max {x, 0}. Now, we can state the main theorem of this paper

Theorem 2. If assumptions 1 and 2 hold, and if m ≥ 0, the optimal solution to
(10) is given by I = f ∗(L), where

f ∗(x) =

ˆ x

0

h∗(t)dt,

and

1. If θ∗ > 0

h∗ (t) =

{
1, if Φπ̄

L (t) < θ∗

1+θ∗
Φ%
L (t) ,

0, if Φπ̄
L (t) > θ∗

1+θ∗
Φ%
L (t) ,

and

ˆ ∞
0

(Φπ̄
L (t)− Φ%

L (t))h∗(t)dt = B,

2. If θ∗ = 0
h∗(t) = 0.

12



Proof. First, we assume that L is bounded. Given Assumption 1, let I = f(L) be a
contract where f ∈ C. Therefore we can rewrite the optimal problem (10) as,

minπ(f(L)),

% (L − f (L)) + π̄(f(L)) ≤ b,

f ∈ C.
(14)

Since g := id − f is also non-decreasing, and since VaRt commutes with monotone
functions, we get

% (L − f(L)) =

ˆ 1

0

VaRt (L − f(L)) dΠ%(t)

=

ˆ 1

0

VaRt (g(L)) dΠ%(t)

=

ˆ 1

0

g (VaRt (L)) dΠ%(t)

=

ˆ 1

0

(VaRt(L)− f(VaRt(L))) dΠ%(t)

= %(L)−
ˆ 1

0

f(VaRt(L))dΠ%(t)

= %(L)−
ˆ 1

0

VaRt(f(L))dΠ%(t)

= %(L)− %(f(L)). (15)

Similarly, since f is non-decreasing we have π̄(f (L)) =
´ 1

0
f(VaRt(L))dΠπ̄(t). Now,

assume that f(x) =
´ x

0
h(t)dt, for a function 0 ≤ h ≤ 1. Given that L is bounded,

by Fubini’s theorem we can interchange the order of integrals to get

%(I) = %(f(L)) =

ˆ ∞
0

(1− Π%(FL(t)))h(t)dt, (16)

and

π̄(I) = π̄(f(L)) =

ˆ ∞
0

(1− Ππ̄(FL(t)))h(t)dt.

Therefore, problem (14) can be written as
min
´∞

0
(1− Ππ̄(FL(t)))h(t)dt,´∞

0
(Π%(FL(t))− Ππ̄(FL(t)))h(t)dt ≤ b− %(L),

0 ≤ h ≤ 1.

(17)
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Then, problem (17) can again be rewritten as
min
´∞

0
Φπ̄
L (t)h(t)dt,´∞

0
(Φπ̄
L (t)− Φ%

L (t))h(t)dt ≤ B,

0 ≤ h ≤ 1.

(18)

For the rest of the proof, we need to use the theory of Lagrangian duality on Banach
spaces; for further information one can see Luenberger (1969), Chapter 8. Problem
(18) can be considered in the space of all bounded functions on R+ equipped with
the sup norm denoted by L∞ (R+). Let θ ≥ 0 be a Lagrangian multiplier, then the
dual problem is

max
0≤h≤1

λ(θ, h) = max
0≤h≤1

−
ˆ ∞

0

Φπ̄
L (t)h(t)dt+ θ

(
B −

ˆ ∞
0

(Φπ̄
L (t)− Φ%

L (t))h(t)dt

)
= − min

0≤h≤1

ˆ ∞
0

(Φπ̄
L (t) + θ (Φπ̄

L (t)− Φ%
L (t)))h(t)dt+ θB

=

ˆ ∞
0

(Φπ̄
L (t) + θ (Φπ̄

L (t)− Φ%
L (t)))− dt+ θB,

where (x)− = max {−x, 0}. Observe that since h ≡ ε > 0, for ε small enough, is in
the interior of the feasibility set, the Slater’s condition is satisfied. This implies the
strong duality holds and as a result the following minmax problem has a solution

min
θ≥0

max
0≤h≤1

λ(θ, h) = max
0≤h≤1

min
θ≥0

λ(θ, h).

Let us denote the solution to this problem by (θ∗, h∗). We have two cases :
First, assume θ∗ > 0. In this case the following complement slackness condition

θ

(
B −

ˆ ∞
0

(Φπ̄
L (t)− Φ%

L (t))h(t)dt

)
= 0,

implies that the primal constraint is active i.e.,
´∞

0
(Φπ̄
L (t)− Φ%

L (t))h(t)dt = B.
Therefore, h∗ can be found by solving the following problem{

min0≤h≤1

´∞
0

(Φπ̄
L (t) + θ∗ (Φπ̄

L (t)− Φ%
L (t)))h(t)dt,´∞

0
(Φπ̄
L (t)− Φ%

L (t))h(t)dt = B.

14



Therefore, the solution to this problem can be given as follows

h∗ (t) =

{
1, if Φπ̄

L (t) + θ∗ (Φπ̄
L (t)− Φ%

L (t)) < 0,

0, if Φπ̄
L (t) + θ∗ (Φπ̄

L (t)− Φ%
L (t)) > 0,

and

ˆ ∞
0

(Φπ̄
L (t)− Φ%

L (t))h∗(t)dt = B.

Second, assume θ∗ = 0. In this case, the complement slackness condition and the
dual feasibility hold, therefore the solution is given by

h∗(t) = 0.

This completes the proof for bounded L.

Now we assume the general case, when L is unbounded. Consider the mapping X 7→´ 1

0
VaRt (X) dΠ (t) for a distortion function Π, as a general representation of distor-

tion risk measures and premiums. It is clear that at each point t, {Π ◦ FX∧n(t)}n=1,2,... ,
is non-increasing in n. On the other hand, for any t, there exist nt such that if n > nt
then FX∧n(t) = FX(t). Therefore, for any t, we have Π(FX∧n(t)) ↓ Π(FX(t)). Now
by Monotone Convergence Theorem for any function 0 ≤ h ≤ 1, we have that

lim
n→∞

∞̂

0

Π (FX∧n(t))h(t)dt =

∞̂

0

Π (FX(t))h(t)dt.

Using this fact, our continuity assumption (13), and that f (x) =
´ x

0
h (t) dt is non-

decreasing, we have

ˆ 1

0

VaRt (f(L)) dΠ (t) = lim
n→∞

ˆ 1

0

VaRt (f(L) ∧ f(n)) dΠ (t)

= lim
n→∞

ˆ 1

0

VaRt (f (L ∧ n)) dΠ (t)

= lim
n→∞

ˆ ∞
0

(1− Π(FL∧n(t)))h(t)dt

=

ˆ ∞
0

(1− Π(FL(t)))h(t)dt,

The rest of the proof is the same as what follows after (16).
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Remark 6. In the same manner, one can consider a model with uncertain volatility.
However, there are two ways that we can think about uncertain volatility. The
first one is to consider a model uncertainty problem (see, Avellaneda et al. (1995))
by assuming that the true volatility is between two values σmin and σmax. Using
a robust approach towards risk, this model uncertainty gives rise to the following
problem 

minπ(I),

%(Lσ − I) + π̄ (I) ≤ b,

0 ≤ I ≤ Lσ,
σ ∈ [σmin, σmax],

where Lσ, is the loss variable when the real model has volatility σ. This problem
can be studied in a fairly similar way, however, there would be some discussions on
the existence of a saddle point solution.

Second, one can consider a stochastic volatility model e.g., the Heston model
(see, Heston (2015)), from which one needs to further incorporate the no-moral-
hazard assumption in our setup. Studying deposit insurances in this framework can
be a fairly challenging problem.

Both these approaches are out of the scope of this paper and can be the subjects
of new studies.

The following corollary is very helpful in the continuation.

Corollary 1. If in addition to assumptions 1, 2 and m ≥ 0, the following condition
holds

∀θ ≥ 0,

{
0 ≤ t < esssup (L) |Φπ̄

L (t) =
θ

1 + θ
Φ%
L (t)

}
is of Lebesgue measure zero ,

then the optimal solution to problem (10) is given by

h∗ = 1{Φπ̄L<
θ∗

1+θ∗Φ%L}.

Proof. According to Theorem 2, one can write the solution as

h∗ = 1{Φπ̄L<
θ∗

1+θ∗Φ%L<0} + h∗1{Φπ̄L= θ∗
1+θ∗Φ%L}.

First, observe that if esssup (L) = ∞, the result is clear. Now let us assume that
esssup (L) = a <∞. In that case we have L ≤ a. If

{
Φπ̄
L = θ∗

1+θ∗
Φ%
L
}

is of Lebesgue
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measure zero then again the result is clear. Now, let us assume that this set is not of
measure zero. It is clear that the equality Φπ̄

L (t) = θ∗

1+θ∗
Φ%
L (t) holds only if t ≥ a; in

which case FL (t) = 1. Therefore we get that Φπ̄
L (t) = Φ%

L (t) = 0 on
{

Φπ̄
L = θ∗

1+θ∗
Φ%
L
}

.
Now we claim h∗1 = 1{Φπ̄L<

θ∗
1+θ∗Φ%L} is an optimal solution. First of all, observe that

h∗1 ≤ h1, meaning that it does not increase the minimum in (18). On the other hand,
we have to check the constraint. Indeed, since Φπ̄

L (t) = Φ%
L (t) = 0, we have

ˆ
{Φπ̄L<

θ∗
1+θ∗Φ%L}

(Φπ̄
L (t)− Φ%

L (t)) dt =

ˆ
{Φπ̄L<

θ∗
1+θ∗Φ%L}

(Φπ̄
L (t)− Φ%

L (t)) dt

+

ˆ
{Φπ̄L= θ∗

1+θ∗Φ%L}
(Φπ̄
L (t)− Φ%

L (t))h∗1(t)dt ≤ B.

This completes the proof .

Remark 7. The non-zero Lebesgue measurable set
{

Φπ̄
L = θ∗

1+θ∗
Φ%
L
}

appears in many

cases. For instance, for the loss function Ln, one can see that Ln (ST ) ≤ erTS0, which
means FL (t) = 1 for t ≥ erTS0. This implies Φπ̄

L (t) = θ∗

1+θ∗
Φ%
L (t) = 0, for t ≥ erTS0.

The following corollary shows that the conditions for Corollary 1 for important
cases are satisfied.

Corollary 2. If % = VaRα or % = CVaRα, and if L = Ln and m ≥ 0 then the
conditions of the Corollary 1 are satisfied.

Proof. First of all observe that FLn is absolutely increasing on
[
0, erTS0 = esssup (Ln)

]
.

On the other hand, as we visualize bellow, it is cleat that for any number 0 ≤ θ,
the set

{
Φπ̄ = θ

1+θ
Φ%
}

is of measure zero for % = VaRα or % = CVaRα. In-
deed one needs to know that Φ% for % = VaRα or % = CVaRα are piecewise
linear while Φπ̄ is strictly concave. The implication of these discussions is that{

0 ≤ t < esssup (L) |Φπ̄
Ln (t) = θ

1+θ
Φ%
Ln (t)

}
is of measure zero.

4 Designing the Optimal Contracts for Value at

Risk and Conditional Value at Risk

In this section, first we prove that the optimal deposit insurances, when the risk
measure is either VaRα or CVaRα, are two-layer policies. Then we will make a
numerical assessment of our results in order to discuss the evolution of the retention
levels with respect to changes in parameters. Furthermore, we compare the results
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from our framework, which is based on the no-moral-hazard assumption, with that
of Merton (1977).

But, first we need to obtain an explicit solution to the two-layer contracts. First
of all, as a two-layer policy we mean a contract in the following form

I = f (L (ST )) ,

where f is defined as

f (x) =


0, if x ≤ l,

x− l, if l ≤ x ≤ u,

u− l, if u ≤ x,

(19)

for upper and lower retention levels u and l, respectively.
To have a complete recipe for finding an optimal insurance contract we need to

know four elements: i) a representation of the contract in terms of lower and upper
retention levels ii) the values VaRα (L) CVaRα (L) iii) the price π̄ (D (ST )) for a
non-increasing function D iv) the value of upper and lower retention levels. In what
follows we discuss these elements through three propositions and two theorems.

Proposition 2. A general form of the stop-loss policy with retention levels u and l
is given by

I = L
(

exp
(

min
{

max
{(
µ− σ

2

)
T + σWT , log (u0)

}
, log (l0)

}))
− l.

Proof. Let u0 = L−1 (u) and l0 = L−1 (l). Then (19) can be represented as follows

f (x) = max {((min {x, u})− l) , 0} = max {min {x, L (u0)} , L (l0)} − l.

If we assume that L is continuous, the monotonicity of L provides

min {L (x) , u} = min {L (x) , L (u0)} = L (max {x, u0})

and
max {L (x) , l} = max {L (x) , L (l0)} = L (min {x, l0}) .

Therefore,
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I = f (L (ST ))

= max {min {L (ST ) , u} , L (l0)} − l
= max {min {L (ST ) , L (u0)} , L (l0)} − l
= max {L (max {ST , u0}) , L (l0)} − l
= L (min {max {ST , u0} , l0})− l

= L
(

min
{

max
{

exp
((
µ− σ

2

)
T + σWT

)
, u0

}
, l0

})
− l

= L
(

exp
(

min
{

max
{(
µ− σ

2

)
T + σWT , log (u0)

}
, log (l0)

}))
− l.

Corollary 3. In particular, if we consider the loss function (2), the policy I can be
represented as

I

= − exp
(

min
(

max
{(
µ− σ

2

)
T + σWT , log (u0)

}
, log (l0) , rT + log (S0)

))
+erTS0−l

Proposition 3. We have

VaRα (L) = L

(
S0 exp

(((
µ− σ2

2

)
T + σ

√
TN−1 (1− α)

)))
,

and

CVaRα (L) =
1

1− α

ˆ 1

α

L

(
S0 exp

(((
µ− σ2

2

)
T + σ

√
TN−1 (1− β)

)))
dβ.

Proof. Easily we have

VaRα (L) = VaRα (L (ST ))

= L (VaR1−α (ST ))

= L

(
VaR1−α

(
S0 exp

((
µ− σ2

2

)
T + σWT

)))
= L

(
S0 exp

(((
µ− σ2

2

)
T + σ

√
TN−1 (1− α)

)))
.

For CVaRα, we just need to apply its definition.
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To find the value of l the following proposition is very useful.

Proposition 4. Let D : R→ R be a non-increasing function, then

π̄ (D (ST )) =
c√

2πTσ

ˆ ∞
−∞

D (S0 exp (y)) exp

−
(
y −

(
µ− σ2

2

)
T
)2

2σ2T
− ym

σ2

 dy,

where

c = exp

((
1

2
m2/σ2 −m/2

)
T

)
(exp (−rT ))−m/σ

2

= exp
((
m2/2σ2 −m/2

)
T + rTm/σ2

)
.

Proof. According to (7), ϕ = cS
−m/σ2

T , is a non-increasing function of ST implying

π̄ (D (ST )) = E (D (ST )ϕ) = E

(
D
(
S0

ST
S0

)
c
(
ST
S0

)−m/σ2
)

. Given that log
(
ST
S0

)
has

a normal distribution N
((
µ− σ2

2

)
T, σ2T

)
we have the result.

Now we prove that for particular risk measures VaRα or CVaRα the optimal
deposit insurances are two-layer stop-loss policies.

4.1 Optimal solution for VaRα

Let us start with VaR.

Theorem 3. If % = VaRα, m ≥ 0 and the assumptions of Corollary 1 hold, then
the optimal insurance contract I is a two layer policy with upper retention level
u = F−1

L (α) = VaRα (L) and a lower retention level l given as a solution to

π̄ (min {L − l, 0})− π̄ (min {L,VaRα(L)}) + b = 0. (20)

Remark 8. In contrast with Merton (1977), where it is assumed that an insurance
contract is a put option, our assumptions lead to the contracts that are bounded
from above.

Proof. In this case we have Π% (t) = 1[α,1] (t) and therefore

Φπ̄
L (t) + θ (Φπ̄

L (t)− Φ%
L (t)) =

{
1− (1 + θ) Ππ̄(FL(t)), if FL(t) < α,

(1 + θ) (1− Ππ̄(FL(t))) , if FL(t) ≥ α.
(21)
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First of all, according to Corollary 2, I = f ∗(L) is an optimal contract where f ∗ (x) =´ x
0
h∗ (t) dt and h∗ = 1{Φπ̄L+θ∗(Φπ̄L−Φ%L)<0}. On the other hand, {Φπ̄

L + θ (Φπ̄
L − Φ%

L) < 0}
for any θ is an interval. Indeed, we have

{Φπ̄
L + θ∗ (Φπ̄

L − Φ%
L) < 0} = {1− (1 + θ∗) Ππ̄(FL(t)) < 0} ∩ {FL(t) < α}

=

{
1

1 + θ∗
< Ππ̄ (FL (t))

}
∩ {FL(t) < α}

=

{
Π−1
π̄

(
1

1 + θ∗

)
< FL (t)

}
∩ {FL(t) < α}

=

{
Π−1
π̄

(
1

1 + θ∗

)
< FL (t) < α

}
= (l,VaRα (L)) ,

where l = max
{
x ∈ R|FL (x) ≤ Π−1

π̄

(
1

1+θ∗

)}
. This relation shows that first, the

policy is a two-layer policy, second the upper retention level of the policy is u =
VaRα (L) (see Remark 3) and third that θ∗ > 0. Since θ∗ > 0, we have to check the
following condition for optimality by Theorem 2

ˆ ∞
0

(Φπ̄
L (t)− Φ%

L (t)) 1{Φπ̄L+θ∗(Φπ̄L−Φ%L)<0}(t)dt = B,

which after substituting from (21) we get

ˆ VaRα(L)

l

(1− Ππ̄ (FL (t))− (1− 0)) dt = b− VaRα(L).

Therefore,

b− VaRα(L) =

ˆ VaRα(L)

l

−Ππ̄(FL(t))dt (22)

= −
ˆ VaRα(L)

l

Ππ̄(FL(t))dt.

Note that for any general random variable X and a number a we have

Fmin{a,X} (x) =

{
1, a ≤ x,

FX (x) , a > x.
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Therefore

−
ˆ VaRα(L)

l

Ππ̄(FL(t))dt = −
ˆ VaRα(L)

l

dt+

ˆ VaRα(L)

l

(1− Ππ̄(FL(t))) dt

= l − VaRα(L) +

ˆ VaRα(L)

0

(1− Ππ̄(FL(t))) dt

−
ˆ l

0

(1− Ππ̄(FL(t))) dt

= l − VaRα(L) + π̄ (min {VaRα(L),L})− π̄ (min {l,L}) .

Therefore, if we plug this in (22) we get

b− VaRα(L) = l − VaRα(L) + π̄ (min {VaRα(L),L})− π̄ (min {l,L})

After rearrangement we obtain

π̄ (min {L − l, 0}) + b = π̄ (min {L,VaRα(L)}) .
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Figure 1: Obtaining the lower and upper retention levels for VaRα. The solid
curve is the graph of 1 − Ππ̄ (x) and the dashed and dotted lines are the curve
of θ

1+θ
(1− ΠVaRα (x)) for two different values of θ. If θ

1+θ
is greater that γ the lower

retention is denoted by l0 and the upper retention is equal to α. If θ
1+θ

is less that γ
the two graphs do not intersect.

Note that the upper retention level is easily equal to u = VaRα (L), and can be
found using Proposition 3 (see Fig. 1). On the other hand, to find the lower retention
level, we have to solve (20). In order to do that we need to apply Proposition 4. We
define Dl (y) = min {L (y)− l, 0} and

D (y) = min {y,VaRα (L)}

= min

{
y, L

(
S0 exp

(((
µ− σ2

2

)
T + σ

√
TN−1 (1− α)

)))}
.
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Then, we find solution to π̄ (Dl (ST )) + b = π̄ (D (ST )). One can numerically find
π̄ (Dl (ST )) and π̄ (D (ST )) as follows:

π̄ (Dl (ST )) =
c√

2πTσ

ˆ ∞
−∞

min {L (S0 exp (y))− l, 0}

× exp

−
(
y −

(
µ− σ2

2

)
T
)2

2σ2T
− ym

σ2

 dy,

and

π̄ (D (ST )) =
c√

2πTσ

ˆ ∞
−∞

(
min

{
S0 exp (y)

, L

(
S0 exp

(((
µ− σ2

2

)
T + σ

√
TN−1 (1− α)

)))})

× exp

−
(
y −

(
µ− σ2

2

)
T
)2

2σ2T
− ym

σ2

 dy.

4.2 Optimal solution for CVaRα

Next we will have the same discussions for CVaRα.

Theorem 4. If % = CVaRα, m ≥ 0 and the assumptions of Corollary 1 hold, then
the optimal solution is either h∗ = 0 or it is a stop-loss policy with upper and lower
retention level u and l satisfying the following system of equations

E (min {L,VaRα(L)}) + uα

1− α
+ b

= π̄ (min {L, l})− π̄ (min {L, u}) + CVaRα(L) +
E (min {L, u}) + VaRα(L)α

1− α
,

(23)

and

Φπ̄ (FL (I))
1− FL (u)

1− α
= Φπ̄ (FL (u)) . (24)
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Proof. In this case, we have Φ% (t) = 1[0,α) (t) + 1−t
1−α1[α,1] (t). Note that for θ ≥ 0

Φπ̄
L (t) + θ (Φπ̄

L (t)− Φ%
L (t)) = (1 + θ) Φπ̄

L (t)− θΦ%
L (t) .

First of all, according to Corollary 2, I = f ∗(L) is an optimal contract where
f ∗ (x) =

´ x
0
h∗ (t) dt and h∗ = 1{Φπ̄L+θ∗(Φπ̄L−Φ%L)<0} is a solution. Now we show

{Φπ̄
L + θ∗ (Φπ̄

L − Φ%
L) < 0} is an interval.

If we let γ = Φπ̄ (α), one can distinguish two different cases. First, θ∗

1+θ∗
≤ γ, for

which, Φπ̄
L (t) > θ∗

1+θ∗
Φ%
L (t), and therefore, the optimal solution is h∗ = 0. Second,

θ∗

1+θ∗
> γ, where in this case Φπ̄

L (l) = θ∗

1+θ∗
and u0 < 1 is the unique solution to

θ∗

1+θ∗
1−FL(u)

1−α = Φπ̄ (FL (u)). If we replace θ∗

1+θ∗
from the former into the latter we get

Φπ̄
L (l)

1− FL (u)

1− α
= Φπ̄ (FL (u)) .

On the other hand, we have

b− CVaRα(L) =

ˆ VaRα(L)

l

(1− Ππ̄ (FL (t))− (1− 0)) dt

+

ˆ u

VaRα(L)

(
1− Ππ̄ (FL (t))−

(
1− FL (t)− α

1− α

))
dt

=

ˆ VaRα(L)

l

−Ππ̄ (FL (t)) dt

+

ˆ u

VaRα(L)

(
FL (t)− α

1− α
− Ππ̄ (FL (t))

)
dt

= −π̄ (min {L, u}) + π̄ (min {L, l}) +

ˆ u

VaRα(L)

FL (t)− α
1− α

dt

= −π̄ (min {L, u}) + π̄ (min {L, l})

+

´ u
VaRα(L)

FL (t) dt−
´ u

VaRα(L)
αdt

1− α
=− π̄ (min {L, u}) + π̄ (min {L, l})

+
E (min {L, u} −min {L,VaRα(L)})− (u− VaRα(L))α

1− α
.
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Therefore, after rearrangement we get

E (min {L,VaRα(L)}) + uα

1− α
+ π̄ (min {L, u}) + b

= CVaRα(L) + π̄ (min {L, l}) +
E (min {L, u}) + VaRα(L)α

1− α
.

In order to find the upper and lower levels based on solving the system of equations
(23) and (24), we need to use Propositions 3 and 4 (see Fig. 2). The only quantities
we need to know, further to what we have discussed for VaRα, is π̄ (Du (ST )), where
Du (y) = min {L (y) , u}, and the following values (from (11) and (12))

Φπ̄
L (l) = N

(
m
√
T

σ
−N−1(l)

)
,

and

Φπ̄ (FL (u)) = Φπ̄
L (u) = N

m√T
σ

+
log
(
L−1(u)
S0

)
−
(
µ− σ2

2

)
T

σ
√
T

 .
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Figure 2: Obtaining the lower and upper retention levels for CVaRα. The solid
curve is the graph of 1 − Ππ̄ (x) and the dashed and dotted lines are the curve of
θ

1+θ
(1− ΠCVaRα (x)) for two different values of θ. If θ

1+θ
is greater that γ the lower

retention is denoted by l0 and the upper retention by u0. If θ
1+θ

is less that γ the
two graphs do not intersect.

4.3 Numerical assessment

In this section, we make a numerical assessment of the two cases where risk is either
measured by VaRα or CVaRα, for some α ∈ (0, 1). We obtain the optimal solutions
based on the results in Theorems 3 and 4. This way, we can also make a comparison
of our results to that of Merton (1977), and see how the no-moral-hazard assumption
can make a difference in the results.

But, first we state the following lemma which is numerically helpful.
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Lemma 1. Assuming that L = Ln, we have

π̄(max{L− l, 0})− π̄(max{L−u, 0}) = erT (P (r, σ, T, ertS0− l)−P (r, σ, T, ertS0−u)),

where P (r, σ, T,K) denotes the price of a put option with risk-free return r, volatility
σ, expiration T and strike price K.

Proof. If we take J1 = max{L(x)− l, 0}, J2 = max{L(x)− u, 0}, we have

J1 − J2 = max{max{ertS0 − x, 0} − l, 0} −max{max{ertS0 − x, 0} − u, 0}
= max{max{ertS0 − x− l,−l}, 0} −max{max{ertS0 − x− u,−u}, 0}
= max{ertS0 − x− l,−l, 0} −max{ertS0 − x− u,−u, 0}
= max{ertS0 − l − x, 0} −max{ertS0 − u− x, 0}.

Now let us put x = ST , and take expectation with respect to the risk neutral prob-
ability measure from both sides.

This fact computationally helps a lot in (20) and (23). More precisely, the two
terms in the left-hand side of (20) can be written as

π̄ (min {L − l, 0})− π̄ (min {L,VaRα(L)})
= erT (P (r, σ, T, ertS0 − l)− P (r, σ, T, ertS0 − VaRα(L)))− VaRα(L).

Furthermore, the first two terms in the right-hand side of (23) can be written as

π̄ (min {L, l})− π̄ (min {L, u})
= erT (P (r, σ, T, ertS0 − l)− P (r, σ, T, ertS0 − u))− (u− l).

Now let us present our numerical results. First of all, the retention levels given
by (20), (23) and (24) are found using the MATLAB software6. Parameters values
that we have chosen are popular for the calibration of the Black-Scholes model, in
a one year time horizon. We let r = 0.05, T = 1, and we let µ ∈ [0.09, 0.12] and
σ ∈ [0.08, 0.12]. In Figures 3 and 4, we present the results for the upper and lower
retention levels for the two different risk tolerance levels α = 0.95 and α = 0.99,

6We used the optimization and finance toolboxes, in particular we used the FSOLVE and
BLSPRICE commands
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respectively. In each figure, the row on the top shows the results for CVaRα, and the
row on the bottom shows the results for VaRα.

We have the following three immediate observations from the results. First, all
lower retention levels for VaRα are zero, which means all losses up to u are covered.
The same is not true for CVaRα, where the lower retention levels are pretty high
comparing to the upper retention levels. Second, any decrease in the drift µ, or any
increase in the market volatility σ, results in an increase in both lower and upper
retention levels. Third, as one may expect, a more risk avers risk measure always
results in larger retention levels i.e., the retention levels for α = 0.99 are always
larger than or equal to those for α = 0.95. We leave further interpretation of the
numerical results to the reader.

Finally, we can compare our results to that of Merton (1977). Indeed, the Merton
model gives a sub-optimal solution in our framework provided that for his model we
have to assume L = Ln and f = id. Note that f = id is a two layer stop-loss policy
with l = 0 and u = ∞. The numerical results of our study show the failure of the
Merton model in constructing an optimal contract with no risk of moral hazard given
l 6= 0 or u 6=∞ always is happening in the presented results in this paper.
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Figure 3: The evolution of the upper and lower retention levels in terms of changes in µ and σ. The calibration
values are r = 0.05, T = 1, α = 0.95. The figures in the first row considers CVaR0.95, and the second row
considers VaR0.95.
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Figure 4: The evolution of the upper and lower retention levels in terms of changes in µ and σ. The calibration
values are r = 0.05, T = 1, α = 0.99. The figures in the first row considers CVaR0.99, and the second row
considers VaR0.99.
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5 Concluding remarks

A deposit insurance contract is designed that does not produce the risk of moral haz-
ard. In a complete market framework, we considered a bank that seeks an optimal
insurance policy to keep the bank position solvent. We characterized optimal insur-
ance contracts in a general framework when the bank uses a distortion risk measure
to meet the solvency requirements. In particular we have seen that if one uses VaRα

and CVaRα, the optimal policies are stop-loss policies.
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