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Abstract

Broadband power line communication (PLC) is a promising technology for the

convergence of Internet, data and video for indoor networking. Impulsive noise

(IN) and narrowband interference (NBI) are crucial affecting factors of the PLC

system performance and cause harmful pollution to the PLC spectrum. In this

thesis, a thorough study of IN and NBI is presented ranging from measurement,

modelling, detection and mitigation techniques, and performance analysis.

In the first contribution, the modelling of aperiodic IN for PLC is investi-

gated. To the best of our knowledge, this is the first work to model the correla-

tion between consecutive impulses for PLC, using a hybrid model which includes

the weighted contributions of deterministic and random patterns of individual

impulses in a burst. The occurrence dependence between bursts and between

impulses in a burst is described by a two-level Markov Chain (MC) based model.

An intensive performance analysis of the proposed models is provided. The ef-

fectiveness of the models is verified by measured results.

In the second contribution, the modelling of radio NBI for PLC is investigated.

A novel three-dimensional (3D) MC based statistical model is developed, to model

the occurrence of NBI which is associated with the behaviours of certain radio

users. An intensive performance analysis on the impact of the NBI on PLC is

provided. The effectiveness of the proposed model is verified by measured results.

The 3D MC model can be used for optimising cognitive PLC networks.

In the third contribution, detection and mitigation of aperiodic IN over un-

coded orthogonal frequency division multiplexing (OFDM) PLC systems is inves-

ii



tigated. A null subcarriers assisted IN mitigation scheme is proposed, to mitigate

IN in the scenarios of NBI absence and NBI presence, respectively. The IN vec-

tor is first reconstructed at the receiver, and then cancelled out from the received

signal. Theoretical analysis shows that the proposed scheme outperforms the

existing blanking method. Also, the implementation of pre-joint NBI/IN mitiga-

tion with the aid of null subcarriers in the proposed scheme can combat intensive

NBI, and achieve a near-optimal bit error rate (BER) performance with no itera-

tion. The effectiveness of the proposed mitigation scheme is verified by simulation

results.

In the fourth contribution, NBI detection over PLC systems is investigated.

A novel higher-order statistics (HOS) based NBI detection scheme is proposed

for cognitive PLC systems. In particular, the presence of IN is addressed for

NBI detection, which was not considered in the previous work. An intensive

performance analysis is provided, including the NBI detection probability and

system capacity. The proposed NBI detection scheme outperforms the existing

detection schemes and also leads to an enhanced system capacity over the existing

schemes.

As a conclusion, the proposed work in this thesis is applicable to the PLC

systems under the disturbance of IN and NBI, and enables optimisation of system

performance. In the future work, a single-carrier frequency-domain equalisation

(SC-FDE) PLC system will be investigated in order to reduce the high peak-to-

average power ratio (PAPR) of signals in OFDM PLC systems. Also, different

PLC channel attenuation models will be considered.
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Chapter 1

Introduction

1.1 Background

Power line communication (PLC), which enables transmission of data over exist-

ing power cables, is a cost-effective and energy-efficient solution for the integration

with growing ecosystem of indoor networking [8], smart grid [9] and other appli-

cations [10]. PLC for in-vehicle communication networks can also be found in the

literature [9, 11].

The deployment of outdoor PLC [12] has been discouraged in most countries

due to strong competition of cable services. Great attention has been drawn from

utility companies to utilise low-voltage distribution lines as a last-mile technol-

ogy [13] for indoor PLC applications, such as laptop and entertainment services

in small offices and homes. Generally, the applications of PLC fall into three

categories in terms of the operational bandwidth: ultra narrowband (0.3-3 KHz),

narrowband (3-500 KHz) and broadband (1.8-250 MHz) [14]. The regulations

prohibit PLC transmission between 500 KHz and 1.8 MHz to avoid interference

with AM radio applications [1]. Automatic meter reading and two-way automatic

communications are the applications for ultra narrowband PLC, which provides

about 100 bps data rate. Narrowband PLC provides a few kbps for single-carrier

and up to 500 kbps for multi-carrier. PRIME and G3-PLC are two commercial

initiatives, and ITU-T G.hnem (G.9955/G.9956) and IEEE 1901.2 are the stan-
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dards for narrowband PLC. Broadband PLC can achieve a data rate of several

hundred Mbps for home area networks. The well-known PLC standards include

IEEE 1901 [15], ITU-T G.hn (G.9960/G.9961) [16] and HomePlug AV/AV2 [17].

Future home networks are expected to support more high speed applications

such as high-definition video, interactive gaming and broadband networking, driv-

ing the need for higher throughput. Broadband PLC is of interest [2], especially

for indoor networks, in order to meet the demand for high throughput of Giga

bits per second.

Some crucial issues of cable losses, multipath channel and added electromag-

netic disturbance degrade the performance of indoor broadband PLC. Impulsive

noise (IN) and narrowband interference (NBI) are the two main sources of high

power electromagnetic disturbance causing harmful pollution to the PLC spec-

trum [2], which should be dealt with properly. In the HomePlug AV (HPAV)

standard [17], the frequency band of 1.8 MHz-30 MHz is utilised. In [7], the

frequency was extended to up to 100 MHz and the characterisation of PLC mul-

tipath channels was investigated. A dedicated system is required to deal with the

PLC electromagnetic characteristics in the frequency range of 1.8 MHz-100 MHz.

1.2 Research Contributions

For the reason mentioned in Section 1.1, in the thesis, a thorough study of IN

and NBI for indoor broadband PLC in the frequency band of 1.8 MHz-100 MHz

is considered.

This PhD research was aimed to:

• Characterise the IN caused by various electric appliances, and the occur-

rence of NBI from potential radio users for broadband indoor PLC network-

ing, through measurement-based approaches. Propose novel models for the

time characteristics of the IN and NBI in PLC systems, respectively.
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• Study novel and effective transmission techniques of detection and mitiga-

tion methods by considering the impact of both IN and NBI, in order to

enhance the PLC system performance.

The research conducted during the PhD study has produced the following

main contributions:

• Aperiodic IN for PLC is investigated using both measurement and mod-

elling approaches. To the best of our knowledge, this is the first work

to model the correlation between consecutive impulses for PLC, using a

hybrid model which includes the weighted contributions of deterministic

and random patterns of individual impulses in a burst, where the existing

works mainly focus on independent and identically distributed (i.i.d.) sam-

ples. The occurrence dependence between bursts and between impulses in

a burst is described by a two-level Markov chain (MC) based model. An

intensive performance analysis of the proposed models is provided. The

effectiveness of the models is verified by measured results.

• Radio NBI for PLC is investigated using both measurement and modelling

approaches. A novel three-dimensional (3D) MC based statistical model

is developed, to model the occurrence of NBI which is associated with the

traffic of certain radio users. An intensive performance analysis on the

impact of the NBI on PLC is provided. The effectiveness of the proposed

model is verified by measured results. The 3D MC model can be used

for optimising future cognitive PLC networks, through simulation-based

approaches.

• IN mitigation over uncoded orthogonal frequency division multiplexing (OFDM)

PLC systems is investigated considering the impact of NBI. A null sub-

carriers assisted IN mitigation scheme is proposed, to mitigate IN in the
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scenarios of NBI absence and NBI presence, respectively. The IN vector is

reconstructed at the proposed receiver first, and then cancelled out from

the received signal. Capability of detecting nonzero entries in the IN vector

for the proposed scheme is evaluated by means of receiver operating char-

acteristic (ROC) comparing to that for the conventional blanking scheme

reported in literature. According to the performance analysis, the proposed

scheme outperforms the blanking method. Also, the implement of pre-joint

NBI/IN mitigation with the aid of null subcarriers in the proposed scheme

can combat the impact of intensive NBI, and achieve a near-optimal bit

error rate (BER) performance with no iterations. The effectiveness of the

proposed mitigation scheme is validated by simulation results, which is ap-

plicable to the PLC systems under the disturbance of joint IN and NBI.

• NBI detection over PLC systems is addressed considering potential power

line IN source, which was not considered in the previous work. A novel

higher-order statistics (HOS) assisted NBI detection scheme is proposed.

Detection capability of the proposed scheme is evaluated by means of ROC

comparing to those conventional methods reported in literature. An inten-

sive performance analysis is provided, including the NBI detection probabil-

ity and system capacity. The proposed NBI detection scheme outperforms

the existing detection schemes and also leads to an enhanced system capac-

ity over the existing schemes, which can be applied for optimising future

cognitive PLC networks.

1.3 Thesis Organisation

The rest of this thesis is organised as follows. An overview of PLC channels and

transmission techniques are given in Chapter 2. Chapter 3 presents a novel sta-

tistical modelling of IN. A 3D MC model for NBI is proposed in Chapter 4. Null
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subcarriers aided IN mitigation scheme at PLC receivers is proposed in Chapter 5,

considering the NBI environments. In Chapter 6, a higher-order statistics based

NBI detection scheme for cognitive PLC is proposed, where detection in both

scenarios of IN absence and IN presence is conducted, respectively. Conclusions

and future work are provided in the final chapter.

1.4 Publications

• Jun Yin, Xu Zhu and Yi Huang, “Modeling of amplitude-correlated and

occurrence-dependent impulsive noise for power line communication”, in

Proc. IEEE International Conference on Communications (ICC), Jun.

2014, Sydney, Australia.

• Jun Yin, Xu Zhu and Yi Huang, “3D Markov chain based narrowband inter-

ference model for in-Home broadband power line communication”, accepted

by IEEE Global Communications Conference (Globecom), Dec. 2016, Wash-

ington, DC, USA.

• Jun Yin, Xu Zhu and Yi Huang, “Higher-Order Statistics assisted Narrow-

band Interference Detection for Cognitive Power Line Communication”,

submitted to IEEE International Conference on Communications (ICC).

• Jun Yin, Xu Zhu and Yi Huang, “Novel Statistical Modeling of Impulsive

Noise and Narrowband Interference for in-Home Broadband Power Line

Communication”, submitted to IEEE Transaction on Communications.

• Jun Yin, Xu Zhu and Yi Huang, “Null Subcarriers assisted Impulsive Noise

Mitigation for Indoor Broadband Power Line Communication”, to be sub-

mitted IEEE Transaction on Communications.

• Jun Yin, Xu Zhu and Yi Huang, “Higher-Order Statistics assisted Narrow-
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Chapter 2

Overview of Power Line
Communications

In this chapter, the overall PLC infrastructure, channel characteristics and trans-

mission techniques for indoor broadband PLC systems are reviewed. In Sec-

tion 2.1, general structures for overall PLC architecture and a home area PLC

networking are described. PLC specification by industry is also mentioned. More-

over, literature reviews on electromagnetic disturbance, channel attenuation and

detection, mitigation techniques are presented in Section 2.2 and Section 2.3,

respectively.

2.1 PLC Networking

2.1.1 Overall PLC Architecture

Normally, high-voltage (HV) transmission networks deliver power from power

plants to the populated areas. Medium-voltage (MV) networks distribute power

in a large scale while low-voltage (LV) networks distribute power to end-users.

The structure of a typical broadband PLC network considering the overall com-

munication architecture within the power grid is illustrated in Fig. 2.1. According

to Fig. 2.1, the overall PLC network model contains the following parts:

• A service provider for Internet.
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Figure 2.1: Overall PLC network structure [1].

• Backbone infrastructures for the communication between the MV PLC ring

and the Internet service provider.

• A PLC distribution network, where all data from the MV PLC ring is

concentrated at the MV to LV transformer substation.

• LV home area networks for the communication between the transformer

substations and the customers.

The network termination unit (NTU) denotes the interface between the PLC

networks and end-users. The repeaters are used to regenerate PLC signals in order

to cover the whole networks for effective communications over a long distance.

Among all the networking parts, the LV home area networking is of the interest

as a last-mile to customers. In this thesis, the network for indoor broadband PLC

is considered.

2.1.2 Indoor Broadband PLC Network Infrastructure

Due to the existing power line infrastructure, PLC makes it possible to deploy

home area networks without new wiring facilities, yielding a cost-effective solu-

tion. Broadband PLC is of the interest [18, 2] for indoor networking [8] to enable
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Figure 2.2: Block diagram of an indoor PLC network [1].

high data-rate applications, which provides an alternative to Ethernet and WiFi.

In Fig. 2.2, a typical layout of an indoor power grid is shown, which is con-

nected to the outdoor LV network. Various electric appliances are connected to

the network, such as computers, microwave oven, etc. Different types of distur-

bance inside the system can be generated due to the power distribution, running

devices and connection/disconnection of appliances inside the grid, and also the

external interference coupled into the network. The effect of multipath channel

fading can be caused by the impedance mismatch between various loads and the

power line.

2.1.3 Industry Specifications

The development in PLC technologies promotes a number of industry specifica-

tions for low data rate solutions or last-mile broadband Internet access of indoor

networking. Practical PLC devices have been produced by a group of individual

companies or alliance of companies, such as Lonworks, HomePlug, Open PLC

European Research Alliance (OPERA) and Panasonic, etc. More details of the

PLC industry companies can be found in [1].

The products from HomePlug Powerline Alliance [17], which is formed by

a group of companies in April 2000 have already been widely accepted by mil-
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lions of consumers. The HomePlug technology is driven by the demand of high-

speed home networking. The first specification HomePlug 1.0 was designed with

14 Mbps physical rate using the frequency band of 4-28 MHz. Then, the Home-

Plug AV operating in 2-30 MHz was adopted in 2005 for the physical rate up to

200 Mbps. Moreover, HomePlug AV2 as the next generation enables a Gigabit-

class physical rate using extra frequencies of 30-86 MHz and multiple-input and

multiple-output (MIMO) technique. HomePlug AV2 meets the high throughput

requirement for more indoor applications, such as whole home high-definition

video/audio, interactive gaming and broadband Internet, etc.

2.2 Channel Characterisation

2.2.1 Noise

The noise environment for PLC is typically different from the noise in other

communication systems and is one of the major challenges in the development of

PLC systems. Generally, the existing power line noise characterisation [19, 20]

from indoor PLC channels considers two main origins: noise incurred by the

electric appliances connected to the power grid, and external noise coupled to the

indoor networks by radiation or conduction. Detailed categorisation is given as

• Coloured background noise, is caused by overlaying of variety noise sources

with low Power Spectral Density (PSD) in high frequency band (10-30

MHz), and relatively higher PSD in low frequencies (1-10 MHz) [21]. Due to

a large number of low-frequency sources of noise, the PSD increases towards

lower frequencies.

• Periodic IN asynchronous to the mains frequency with a repetition rate

between 50 and 200 kHz.

• Periodic IN synchronous to the mains frequency with a repetition rate of

50 or 100 Hz (in Europe).
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• Aperiodic IN caused by switching transients of electric appliances in the

indoor PLC networks.

Unlike background noise, IN is distinctive in PLC system with extremely

larger variance of noise amplitude. Periodic IN is induced by AC voltage change,

which is cyclostationary with low repetition rates. However, aperiodic IN caused

by any switching operations in PLC is randomly generated with probabilities.

In the research area of PLC, IN has drawn many interests since its occurrence

significantly increases the BER. A variety of models for simulating power line

noise environments have been proposed. In the following, we introduce some

well-known IN models for PLC channels, i.e., the Middleton’s class A model [22],

the Bernoulli-Gaussian (BG) model [2] and the cyclostationary Gaussian model

[23].

Middleton’s Class A Model: The time-domain IN environment can be well

reproduced through an infinite Gaussian mixture model, referred to as the Mid-

dleton’s class A model, which has a probability density function (PDF) expressed

as

pη(ν) =
∞∑
k=0

e−AAk

k!
· N (0, σ2

k) (2.1)

where e−AAk/k! indicates the Poisson distributed probability for the kth IN term.

Let pk = e−AAk/k!, i.e.,
∑∞
k=0 pk = 1, where the first term (k = 0) is the proba-

bility for background noise only. N (0, σ2
k) is the Gaussian PDF with zero mean

and variance σ2
k, which can be defined by

N (x; 0, σ2
k) =

1

σk
√

2π
· e
− x2

2σ2
k (2.2)

with

σ2
k =

(
1 +

1

Γ

)(
(k/A) + Γ

1 + Γ

)
σ2

b (2.3)

where Γ is defined as the power ratio of background noise to impulsive noise, A

represents the impulse index.
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When the value of k is sufficiently large, the probability for the kth IN term

becomes negligible. The first three terms in the Middleton’s class A model are

usually considered enough to approximate the model, which can be simplified as

pη(ν) ≈ p0 · N (0, σ2
0) + p1 · N (0, σ2

1) + p2 · N (0, σ2
2) (2.4)

Bernoulli-Gaussian Model: Referring to the Middleton’s class A model, BG

model is also based on the Gaussian mixture distribution but with only two terms.

In order to simplify the IN modelling, only one IN term is considered in the BG

model with the variance σ2
i while the other term is for the background noise only,

expressed by

pη(ν) = (1− p) · N (0, σ2
b) + p · N (0, σ2

b + σ2
i ) (2.5)

where p represents the probability of a Bernoulli random process, i.e., the occur-

rence probability of IN. σ2
b and σ2

i are the variances for the background noise and

IN, respectively.

Cyclostationary Gaussian Model: As categorised above, the IN can be period-

ically generated which is synchronous with the mains frequency. The periodic IN

can be assumed as cyclostationary and modelled with zero mean and time-varying

variance Gaussian process, yielding the amplitude PDF as

pη(ν(iTs)) =
1√

2πσ2(iTs)
· e−

ν2(iTs)

2σ2(iTs) (2.6)

where Ts is the sampling period, σ2(iTs) is the instantaneous variance of the

noise which is synchronous to the mains due to different phases of AC voltage,

and expressed by

σ2(t) =
L−1∑
l=0

Al

∣∣∣∣sin(2πT

T0

+ θl

)∣∣∣∣nl (2.7)

where T0 is the duration of mains cycle, the parameters Al, θl and nl determine the

noise characteristics. Due to the low rate of periodic IN, such noise is insignificant

for broadband PLC transmission, while cannot be ignored for narrowband PLC

systems.
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Figure 2.3: An example of IN environment reproduced by BG model [2].

In narrowband PLC, the coloured background noise and the low-frequency

periodic IN is dominant [21, 24]. As learned previously, coloured background noise

is caused by the superimposition of numerous noise sources. Such combination

of multiple independent Rayleigh distributed sources is well modelled by the

Nakagami-m PDF in [21]. A cyclostationary model in [23] is proposed for the

periodic IN.

In broadband PLC, the dominant noise term is the aperiodic IN [25]. The

background noise has low and constant PSD in high frequencies, which is often

considered as additive white Gaussian noise (AWGN) [26, 27]. The periodic IN is

cyclostationary with a low repetition rate comparable to that of the mains, and

has relatively low amplitude [18], and hence is insignificant in broadband PLC.

Aperiodic IN often occurs randomly in bursts with large amplitude variance and

degrades the broadband PLC performance significantly [2, 25]. Due to the random

behaviour, aperiodic IN is often reproduced statistically in a random model, such

as the well-known BG model [28, 29], Middleton’s Class A model [22] and MC

model with memory in [25, 30]. Among them, BG model is most popular and

widely applied [31, 32].

Fig. 2.3 shows an example noise environment for broadband PLC generated by

the BG model [2], where noise is randomly generated by i.i.d. Gaussian samples.
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Referring to (2.5), it is assumed p = 0.01 and σ2
i = 100σ2

b. The horizontal axis

denotes the time samples where the sparsity level of the IN entries are presented.

The IN samples are uniformly distributed with a certain occurrence probability.

In this thesis, modelling of the burst-type aperiodic IN is considered.

2.2.2 Interference

Power line noise has its power spread over the whole frequency spectrum, which

shows wideband property, The disturbance type of interference can be easily

detected in the power line spectrum, since it normally has much higher intensity

of the PSD compared to that of the noise terms, referred to as NBI [18]. NBI can

be classified according to different categories, e.g., origins, shapes of PSD and

statistical properties [18]. Considering the origins, NBI in PLC systems is mainly

caused by two types of sources as

• Spurious disturbance inside the power grid caused by running electric de-

vices. It is also called narrowband noise in [25, 33]. Narrow band noise

between 3 and 148.5 kHz in Europe and below 450 kHz in Japan [23] is a

reason to induce high level of noise power in low frequencies.

• Mostly sinusoidal signals, with modulated amplitudes caused by ingress of

broadcast stations and amateur radio. This interference has PSD of a single

narrowband term and a significant level above the background noise (even

more than 30 dB). Normally below 2 MHz or above 20 MHz. NBI from

commercial AM radio stations is an example of this category.

The power of the NBI caused by spurious disturbance is usually at a lower level

than that from the external radio applications, and concentrates in the frequency

band below 8 MHz. Therefore, in this thesis, we focus on characterising the NBI

from various nearby radio applications.
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For indoor broadband PLC, NBI from radio systems may become a salient

issue that degrades the PLC system performance, since the unshielded power line

can be a good antenna picking up the radios around [6]. Normally, there are

various narrowband interferers inside the frequency range of 1.8 MHz-100 MHz,

from broadcast radios, amateur radios, etc., and the power level is generally time-

varying in daytime [6, 25]. Accurate modelling of NBI supports comprehensive

system performance analysis in order to achieve effective PLC transmission. Most

of the existing NBI models are for wireless communication channels [34, 35], such

as ad hoc networks. Currently, the analysis of the NBI for PLC is mainly through

measurement-based approaches, and NBI needs to be modelled in a statistical

manner. In this thesis, modelling of the radio NBI is considered.

2.2.3 Attenuation

The indoor power line channel attenuation due to multipath propagation and

frequency dependent cable losses has crucial effects on PLC system performance.

Some popular power line channel models have already been proposed and widely

used, such as the bottom-up model [36] and the multipath model [37].

Due to the complexity of indoor PLC channel topology and the safety issues

of power line related measurements within the high voltage environment, it is dif-

ficult to conduct research on developing a universally recognised channel model.

According to the literature, two types of channel modelling approaches are con-

sidered, i.e., the bottom-up approach [36, 8] and the top-down approach [30, 37].

The channel model used in this thesis is from a top-down based random channel

generator.

2.2.3.1 Bottom-Up Channels

The bottom-up approach is normally to derive the channel attenuation math-

ematically using transmission line theory [3]. Perfect knowledge of the power

network parameters is required, such as the topology, cables and loads. There-
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Figure 2.4: An example transmission line model [3].

fore, the bottom-up approach is closely related to physical power line networks.

However, it is computational complex to collect all the network information.

An example transmission line model is shown in Fig. 2.4. The parameter L

indicates the cable length with the characteristic impedance ZC. The channel

transfer function can be obtained by calculating the voltage ratio [36]. Consider-

ing the source voltage VS with the impedance ZS, the channel transfer function

H(f) can be calculated by the ratio V (L)/VS, yielding

H(f) =
1 + ΓL

1− ΓLΓSe−2γL ·
ZC

ZC + ZS

· e−γL (2.8)

where ΓL and ΓS are the reflection coefficients for the load and the source, re-

spectively. γ denotes the attenuation constant and L is the cable length.

Using the voltage ratio approach in [36], the channel transfer function of each

segment can be derived as Hn(f) = Vn+1(f)/Vn(f). Then, the overall channel

transfer function is given by

H(f) =
N∏
n=1

Hn(f) (2.9)

where the source impedance is assumed as zero, i.e., V1(f) = VS(f).
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2.2.3.2 Top-Down Channels

Unlike the bottom-up approach, the top-down approaches try to generate the

channels statistically and then develop the channel models through data fitting.

It is a low complexity method to model the channel but great effort is needed for

the channel characterisation in order to get the statistical results.

The most popular top-down channel model can be found in [37], since it

considers the joint effects of the multipath delay, the cable length and frequency

dependent attenuation. The transfer function of the attenuation model can be

specified as

H(f) =
N∑
i=1

gi · e−(a0+a1fk)di · e−j2πfτi (2.10)

where N is the total number of paths. The first term gi indicates the weighting

factor for the ith path where |gi| ≤ 1. The attenuation term e−(a0+a1fk)di for the

ith path shows that the cable loss increases with the distance di and frequency

f . The parameters a0, a1 and k determine the dependency of attenuation on the

distance and frequency. The third term e−j2πfτi considers the multipath delay

where the time delay τi is given by

τi =
di
vp

(2.11)

which is determined by the path length di and the phase velocity vp.

Using the top-down approach, the attenuation parameters can be estimated

through measurements. The OPERA [30] defined 9 reference channels in respect

to linking the distances. However, various parameters are not easy to determine

for the model and the computational cost increases fast with the number of paths.

It is more convenient to generate the reference channels in a statistical manner.

Corresponding to the 9 reference channel, the nine-class channel model with 9 sets

of parameters [7] presents its benefit of simple expression of the channel transfer

functions, and is used in this thesis for indoor broadband PLC random channel

generator.
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Table 2.1: Capacities of the Nine-Class Model [7]

Class Percentage of Capacity range Average capacity

channels (%) (Gbps) (Gbps)

1 3.49 1 - 1.2 1.12

2 16.78 1.2 - 1.4 1.31

3 18.18 1.4 - 1.6 1.49

4 11.88 1.6 - 1.8 1.69

5 11.88 1.8 - 2 1.90

6 12.58 2 - 2.2 2.10

7 9.79 2.2 - 2.4 2.30

8 7.69 2.4 - 2.6 2.50

9 7.69 2.6 - 2.8 2.70

In [7], PLC channels are classified into 9 classes per ascending order of their

capacities since it is not easy to calculate the distances between PLC transmitters

and receivers. According to the Shannon’s capacity under the same signal-to-

noise power ratio, the capacity formula related to the channel response can be

expressed as

C =
∆f

N
·
N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)
(2.12)

where ∆f is the bandwidth, Pe and Pb are the transmitted signal PSD and white

noise PSD, respectively.

It can be seen in (2.12) that channel attenuation is a crucial factor to determine

the channel capacity C. According to the Shannon’s theorem, capacity states a

maximum allowed data rate for error-free communication. Namely, in order to

transmit the source data through the channel with no error, the data rate R

should be limited by

R ≤ ∆f

N
·
N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)
(2.13)

otherwise, it will cause bit errors certainly.

The 9 classes were defined within the frequency band of 1 MHz-100 MHz,

where the minimum capacity was around 1 Gbps and the maximum capacity

was around 2.8 Gbps. Detail results of the nine-class channel were given in [7]
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in reference to a number to indoor sites, while the classifications of the transfer

functions are presented in Table 2.1.

2.3 Transmission Techniques

2.3.1 Modulation Schemes

Modulation is to translate a baseband signal to a waveform suitable for transmis-

sion over different channels. There are sever modulation schemes to be considered

for PLC systems previously, such as single-carrier modulation, spread spectrum

modulation and multi-carrier modulation [1, 38].

Recent research emphasises the transmission techniques and error control cod-

ing for the binary modulation schemes, such as binary phase shift keying (BPSK)

and frequency shift keying (FSK). The single-carrier modulation leads the inter-

symbol interference issue and is vulnerable to frequency selective fading channels.

The spread spectrum modulation scheme is one of the candidates for broadband

PLC, since it is robust against selective fading and NBI. However, the spread

spectrum technique has a very low spectral efficiency and seems not feasible for

future applications. The multi-carrier modulation schemes are expected for the

future as exhibiting robustness against frequency selective fading and offering

high spectral efficiency. OFDM is the most popular multi-carrier modulation

technique and widely used in broadband PLC systems [21, 39].

2.3.2 OFDM Transmission

Power line channel is a very harsh media for transmissions which may suffer from

frequency-selective fading due to signal reflections and impedance mismatching at

transmission line discontinuities. The multi-carrier technique of OFDM is more

robust compared to single-carrier modulation in frequency selective channels. The

advantages of using OFDM can be listed in the following:

• The frequency selective fading channel can be divided into multiple narrow-
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Figure 2.5: Block diagram of an OFDM based communication system for PLC
under both IN and NBI (FEQ-frequency domain equalization).

band sub-channels where each sub-channel suffers from flat fading. Hence,

BER performance in frequency selective fading channels is the same as that

in flat fading channels.

• OFDM leads a higher spectrum efficiency than the conventional frequency

division multiplexing (FDM), since it uses orthogonal subcarriers and all

the subcarriers are overlapped with each other.

• Each subcarrier can be modulated and equalised independently, using con-

ventional schemes for single-carrier systems.

OFDM is the most popular modulation technique and widely used in broad-

band PLC [21, 39] to achieve high-speed communications, which is also specified

in current PLC standard [17]. The block diagram of a conventional baseband

uncoded OFDM system for PLC transmission is presented in Fig. 2.5, where s is

for the transmitted signal and r is the received signal.

To model the signal at a conventional OFDM transmitter for baseband com-

munications [40, 31], the data symbol Sk is selected from binary mapping (i.e.,

BPSK). Following OFDM modulation, the mth sample of transmitted signal can
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be expressed by

s(m) =
1√
N

N−1∑
k=0

Ske
j2πkm/N (2.14)

where m = 0, 1, ..., N − 1 and N is the number of subcarriers. The PLC signals

then will be attenuated by channel effects and disturbed by additive noise and

interference at receiver, where robust techniques like mitigation and detection are

required.

The signal at the PLC receiver is a mixture of various noises. Let r(m) denote

the mth received signal sample, which can be expressed as

r(m) = {hs ∗ s}(m) + ni(m) + v(m) + nb(m) (2.15)

where {hs ∗ s}(m) =
∑
n hs(n)s(m − n) and hs is the channel impulse response

for PLC signal s(m). A random PLC channel generator in [7] is applied as the

channel model. The background noise nb(m) is assumed to be AWGN with zero

mean and variance σ2
b. ni(m) is the considered IN at PLC receiver, which has a

zero mean and variance σ2
i . It is assumed that the variance of the background

noise is much lower than that of the IN, i.e., σ2
b � σ2

i . The NBI v(m) is from

radio applications and occurs with probabilities.

2.3.3 Noise Mitigation

IN has its power spread over all subcarriers in OFDM systems. Although Peak-

to-average power ratio (PAPR) of IN is lowered after doing fast Fourier transform

(FFT), it may still degrade the system performance significantly by damaging all

subcarriers, which should be seriously treated to ensure high quality communica-

tions.

Nonlinear techniques are popular with existing IN mitigation schemes exe-

cuted in OFDM systems, such as blanking [41], clipping/deep clipping [27] and

weighted combinations of them [40, 42]. Some conventional nonlinear methods

were studied in [40] and can be formulated as
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Clipping:

r̄(m) =

r(m), |r(m)| ≤ λ1

λ1e
jϕ, |r(m)| > λ1

(2.16)

Blanking:

r̄(m) =

r(m), |r(m)| ≤ λ2

0, |r(m)| > λ2

(2.17)

Joint Clipping/Blanking:

r̄(m) =


r(m), |r(m)| ≤ λ1

λ1e
jϕ, λ1 < |r(m)| ≤ λ2

0, |r(m)| > λ2

(2.18)

where ϕ = arg(r(m)), λ1 and λ2 (λ1 < λ2) denote the thresholds for clipping and

blanking respectively.

For the above nonlinear schemes, the detection performance on IN contami-

nated data subcarriers is disturbed by high PAPR OFDM signals. Higher values

of threshold may miss detect some of the impulses, while lower threshold values

may cause false alarms. Generally, the threshold chosen for blanking is larger than

the threshold for clipping. Some sophisticated IN mitigation schemes were devel-

oped in [11, 26] with the aid of compressed sensing [43, 44] and sparse Bayesian

learning [45]. Moreover, channel coding schemes were used in [46, 47] to correct

the bit errors. In this thesis, the technique of IN mitigation is considered for

indoor broadband PLC.

2.3.4 Cognitive Interference Detection

At PLC receivers, NBI caused by radio signals is another added disturbance

as learned previously. Cognitive technique [48, 49] meets the need of flexible

networking, which is defined in [50] as to sense the electromagnetic environment

and then adjust the operating frequency bands dynamically, in order to mitigate

interference and improve the throughput achievable. Some popular NBI detection

methods are widely applied for cognitive radio [4, 51], such as matched filtering,

amplitude detection and energy detection. Fig. 2.6 presents a comparison of the
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Figure 2.6: A comparison of main detection schemes in terms of the accuracy and
complexity [4].

existing radio detection schemes. There is a trade-off between the performance

and complexity while selecting a particular detection method. More details can

be found in [4].

For indoor broadband networking, cognitive PLC is currently of the interest

[52] to increase the transmission frequency bands by using the available radio

frequencies. Test campaigns in PLC systems were performed within 1.8-30 MHz

frequency band [17]. European project OMEGA [53] increases the bandwidth

until 100 MHz for future PLC systems with the aim of achieving 1 Gbps data-

rate. Cooperative scheme is widely used for NBI detection at PLC receivers

from different sites, while in [54], short wave broadcast radio band (1.6-20 MHz)

was investigated, and cognitive detection on the FM band (87.5-108 MHz) was

considered in [6]. In this thesis, detection of the radio NBI for the application of

cognitive PLC is considered.
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Chapter 3

Modelling of
Amplitude-Correlated and
Occurrence-Dependent Impulsive
Noise

High power electromagnetic disturbance of both IN and NBI are the two main

sources causing harmful pollution to the PLC spectrum [2], which should be dealt

with properly. This chapter focuses on investigating the burst-type IN. Accurate

modelling of IN will support comprehensive system performance analysis in order

to achieve effective PLC transmissions.

PLC IN can be classified as periodic and aperiodic [18]. Periodic IN, which is

caused by power converters occurring in dimmers and the rectifiers using diodes, is

either synchronous to the mains with a frequency of 50 or 100 Hz, or asynchronous

with a frequency between 50 and 200 kHz. It is cyclostationary with a certain rep-

etition period comparable to that of the mains, and has relatively low amplitude

[18]. Aperiodic IN is mainly incurred by switching/plugging/unplugging tran-

sients of electric appliances such as heater, oven and incandescent lamp [18, 30].

It often occurs randomly in bursts and degrades the PLC performance signif-

icantly [2, 25]. Hence, we focus on aperiodic IN in this paper. The random

Bernoulli-Gaussian (BG) model [28, 29] and Middleton’s Class A model [22] are

well-known for aperiodic IN modelling in PLC systems. However, it was assumed
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in both models that the impulses are independent and identically distributed

(i.i.d.), which is not practical. Markov chain (MC) is considered as an accurate

tool to predict a random source [55]. In [25], an MC based model was proposed,

which generates the impulses with occurrence probabilities dependent on the pre-

vious states. Aperiodic IN often occurs in a series of impulses, referred to as burst

[25]. The occurrence of a burst is dependent on the previous states, which can be

described by an MC based model [56]. In [30], a two-level hierarchical MC was

applied to model the defence of bursts with each other and the dependence of

the impulses. However, it was assumed in [30] that the impulses within a burst

are uncorrelated, and the impulse variance is fixed, regardless of noise source. In

practice, the impulses within a burst are not only dependent, but also correlated.

Also, different noise sources could result in significantly different impulse vari-

ances. In [25], two measured impulse examples reveal the coloured power spectral

density (PSD) and show different PSD levels above the background noise.

In this chapter, the measurement and modelling of correlated and occurrence-

dependent aperiodic IN for indoor broadband PLC are conducted. Our work is

different in the following aspects. First, to the best of our knowledge, this is

the first work to investigate modelling of correlations between impulses within

a noise burst for PLC. A hybrid model is proposed, where an adjustable weight

coefficient is applied to trade-off the deterministic pattern and the random pattern

of correlated impulses within a burst. The impact of different values of the

weight coefficient is also investigated. The existing BG model [2] and any other

Bernoulli process [57] can be regarded as a special case with weight coefficient set

to zero. Second, an enhanced hierarchical two-level MC based model is proposed

to describe the occurrence dependence of IN, where the first level chain models

the occurrence of bursts, while the second level chain models the occurrence of

impulses in a burst. Multiple impulse states, which represent IN induced by

different sources, are introduced in the second level chain, unlike [30] where only
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a single impulse state was assumed. The existing BG model [2] and any other

Bernoulli process [57] can be regarded as a special case with assumed independent

impulse samples. Third, we present an intensive performance analysis, including

autocorrelation function and PSD of the IN, average duration and interval of IN,

respectively, steady-state probabilities for the MC, and system capacity, using the

parameters obtained from the measured results. Fourth, the IN at both source

and receiver are investigated, while the existing noise characterisation is applied

either at source [33] or at receiver [18], where the channel propagation effects on

IN were not considered. The effectiveness of the proposed hybrid model and MC

based models is verified by the measured results.

In Section 3.1, measurement setup and results of the burst IN for PLC are

presented. A hybrid model to describe the correlation properties of IN, and a

two-level MC based model for the occurrence dependence of IN are proposed in

Section 3.2. A performance analysis is presented in Section 3.3. The summary is

remarked in Section 3.4.

3.1 Measurement of Burst IN for Indoor PLC

Systems

The block diagram of an indoor broadband PLC system disturbed by IN sources

is depicted in Fig. 3.1, where s(t) represents the transmit signal and r(t) is the re-

ceived signal. nb(t) denotes the added background noise. We assume K aperiodic

IN sources. At time t, nsk(t) (k = 1, . . . , K) denotes the IN from the kth source

(nsk(t) = 0 means no noise). Let ni(t) denote the overall IN at the receiver as

aperiodic IN, which can be treated as passing the noise from any potential switch-

ing/plug transients of the appliances in the system, through the corresponding

channel. While hs and hnk are the channel impulse responses for PLC signal s(t)

and the IN at source nsk(t), respectively.

In a discrete-time system, the signal at the PLC receiver is a mixture of various
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Figure 3.1: Block diagram of a PLC system disturbed by IN sources.
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Figure 3.2: Measurement setup for PLC noise at source.

noises. Let n(m) denote the mth sample of the added disturbance at receiver,

expressed as

n(m) = nb(m) + ni(m) (3.1)

where the background noise nb(m) is assumed to be additive white Gaussian noise

(AWGN) with zero mean and variance σ2
b, and the output IN at PLC receiver

ni(m) =
∑
k

∑
q hnk(q)nsk(m − q) (k = 1, . . . , K) is the discrete convolution be-

tween the IN at source and the corresponding channel impulse response, which has

a zero mean and variance σ2
i . It is assumed that the variance of the background

noise is much lower than that of the IN, i.e., σ2
b � σ2

i .

The measurements are divided into two aspects, the IN at source nsk(t) (k =

1, . . . , K), and the IN at the PLC channel output ni(t), respectively.
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3.1.1 IN at Source

It would be easier to characterise IN at source, since there are much less noise

types at source than that at receiver [58, 59], and the noise at receiver is simply

considered as the noise at source filtered by the channel.

The setup for measuring the noise at source for PLC is shown in Fig. 3.2. A

digital storage oscilloscope (DSO) is used to record the transients of waveform

generated by the device under test (DUT), and a line impedance stabilisation

network (LISN) is applied to reject noise current from mains. The use of LISN

protects the DSO input and also isolates the DUT, whose IN under measure.

The aperiodic IN measured often occurs in bursts. The impulses are associated

with electric switch on/off events as well as plug in and unplug events of the DUTs

within a laboratory of the University of Liverpool. Fig. 3.3 shows two examples

of the measured impulsive noises from source, which are induced by hair dryer

switch on and electric kettle unplug, respectively. The two presented examples

represent a long burst duration case and a short burst duration case, respectively.

They are considered to be representative as they show a clear difference in the

statistical patterns. The statistics of IN can vary according to the in-device

generators, appearing as short, medium and very long impulses. Other measured

IN events like monitor plug-in and incandescent lamp unplug generate impulses

in long and scattered form, while lamp switching on/off presents very short and

weak impulses. The IN caused by microwave oven plug-in is characterised by

several successive short bursts. Details of IN originating from more household

electrical appliances can be found in [59].

The measurements for the example events are repeated for 100 times to ensure

that sufficient samples are obtained for accurate analysis. A sampling rate of

100 Mega-samples per second is used. Hair dryer switch on event generates a

longer burst, while electric kettle unplug event yields the higher noise power.

The statistical results of the example noise durations, means and variances are

27



0 0.02 0.04 0.06 0.08 0.1
−15

−10

−5

0

5

10

15

Time (ms)

A
m

pl
itu

de
 (

V
)

(a)

0 0.02 0.04 0.06 0.08 0.1
−30

−20

−10

0

10

20

30

Time (ms)

A
m

pl
itu

de
 (

V
)

(b)

Figure 3.3: Measured IN at source caused by (a) hair dryer switch on; and (b)
electric kettle unplug.

listed in Table 3.1. The variance is a measure of the average squared differences

from the mean, i.e., σ2
x =

∑
i(xi − µ)2. The normalised variance indicates the

noise power level, which is the variance of measured IN events normalised to the

variance of background noise, i.e., σ2
i /σ

2
b. It can be seen that the higher power

of kettle unplug noise refers to the bursts with shorter time durations at both

source and receiver, i.e., less than 20 µs, the means of all the measured noises are

close to zero, which verify our assumption of zero-mean noise, and the variances

of impulsive noises caused by different events vary significantly.
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Figure 3.4: Measurement of example impulsive noises at a PLC channel output.

3.1.2 IN from Power Line Channel Output

The setup for measuring IN from a simple electric grid is given in Fig. 3.4, where

the example devices of hair dryer and electric kettle are the potential appliances to

the power line. The solid circle implies an energy delivery point. A PLC coupler

is essential to provide a smooth interface for the devices to pick up signals from

the power line. The inductive coupling unit is designed as a high pass filter that

suppresses the 50 Hz mains voltage.

The measured impulsive noises caused by the hair dryer switch on and the

electric kettle unplug respectively, are shown in Fig. 3.5, which can be treated

Table 3.1: Measured Characteristics of the Example Impulsive Noises

Duration Mean Variance Normalised

(µs) (mV) (V2) Variance

Background noise – 0.89 2.79e−3 1

Impulses by hair dryer 92.5 2.61 13.1 4695

switch on (Fig. 3.3(a))

Impulses by kettle 16.7 −5.6 54.89 19674

unplug (Fig. 3.3(b))

Impulses by hair dryer 91.3 9.4 5.8e−2 21

switch on (Fig. 3.5(a))

Impulses by kettle 14.1 −7.9 0.9 323

unplug (Fig. 3.5(b))
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Figure 3.5: Measured IN at PLC channel output caused by (a) hair dryer switch
on; and (b) electric kettle unplug.

as passing the corresponding IN in Fig. 3.3 through a certain channel block. As

can be seen from the results in Fig. 3.5, although a large amplitude attenuation

is caused due to channel propagation, the IN at the receiving end keeps a similar

shape as measured at source. The parameters of the IN at PLC channel output

is shown in Table 3.1, where channel propagation results in a reduction of the

average noise magnitude by around 93% and 87% to the hair dryer switch on

event and the electric kettle unplug event, respectively. For the frequency domain

analysis, Fig. 3.6 shows the mean PSD of the two example impulsive noises. It

can be seen the spectral power is concentrated towards lower frequencies which
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Figure 3.6: PSD of the impulsive noises from the power line (Fig. 3.5).

reveals coloured PSD, also shows different power levels for different IN events.

In practice, IN observed over a certain time period may be caused by multiple

sources and therefore should be treated differently. This is discussed in detail in

our noise models in Subsection 3.2.1 and Subsection 3.2.2.

3.2 Statistical Models for the Time Character-

istics of IN

The measured results in previous section demonstrate the time behaviour of the

noise bursts at source and channel output, respectively. Due to the randomness

and time variation properties, modelling makes it straightforward to analyse the

PLC IN environments statistically. In this section, two stochastic models are

proposed for the IN in according to the measured results.

3.2.1 Hybrid Model for Correlated IN

The amplitude correlation between the impulses measured at the receiver is anal-

ysed in this subsection. Based on the measured results, the IN can be regarded

as a wide-sense stationary (WSS) sequence. It is assumed that the current im-
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pulse magnitude has correlation with its previous sample. Thus, we model the

amplitude correlation in an autoregressive process. A hybrid model is proposed

to formulate the correlated IN samples as

ni(m) =
1√

1 + w2
[w · ni(m− 1) + x(m)] (3.2)

where x(m) are the independent IN samples following the Gaussian distribution

with zero-mean and variance σ2
x, which is equivalent to the aforementioned BG

model of IN in [2] and [28]; w (w ≥ 0) is the weighting coefficient to determine

the degree of correlation, and the larger the value of w, the higher the correlation

between the current noise sample and its previous sample. Thus, in (3.2), a hybrid

of the deterministic and random behaviours of the IN in a burst, are reflected by

the first term and the second term, respectively. To keep the average total noise

power constant, we apply a scaling factor 1/
√

1 + w2 and also let σ2
i = σ2

x .

The autocorrelation function of ni(m) can be expressed as R(k) = E[ni(m +

k) · ni(m)]. It can be further derived that

R(k) = σ2
x ·
(

w√
1 + w2

)|k|
(3.3)

where k is the discrete time separation between any two impulses. The complete

derivation is given in Appendix A.

In the following, we analyse the impact of the value of coefficient w on the

hybrid model for IN.

Scenario 1: If w = 0,

ni(m) = x(m) (3.4)

and R(k) = σ2
x · δ(k). In this case, the proposed model reduces to the BG model

[2] and any other Bernoulli process [57], where the IN samples are uncorrelated.

Scenario 2: If w = 1, ni(m) becomes

ni(m) =
(√

2/2
)
· ni(m− 1) +

(√
2/2

)
· x(m) (3.5)
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which indicates that the current noise sample is determined by the deterministic

behaviour (previous noise sample) and the random behaviour (uncorrelated noise

sample) with equal weights. The corresponding autocorrelation function of ni(m)

becomes R(k) = σ2
x ·
(√

2/2
)|k|

.

Scenario 3: If w � 1, ni(m) can be approximated by

ni(m) ≈ ni(m− 1) + (1/w) · x(m) (3.6)

which implies that the current IN sample is dominated by its previous sample, as

the second term in (3.6) is significantly suppressed by the large value of coefficient

w. The autocorrelation function is nearly constant in time, i.e., R(k) ≈ σ2
x, which

shows a strong correlation between any two adjacent samples.

The effectiveness of the proposed hybrid model is shown by Fig. 3.7, compar-

ing the autocorrelation function in (3.3) normalised to σ2
x with the normalised

autocorrelation function of the impulsive noises showed in Fig. 3.5. A unit time

separation is associated with a sampling interval of 0.01 µs. The value of w in

the statistical model can be obtained through data fitting. The method of least

squares is used to find the most fitted value provided from the model, which min-

imises the sum of squared difference between the observed curve and the fitted

curve. Hence, by setting w = 1.1 (an example of Scenario 2), the hair dryer

switch on event can be closely modelled. A larger value of w = 2 is applied to

demonstrate higher correlation between the impulses caused by the kettle unplug

event. The statistical results reflect that the hybrid model is more effective than

the existing BG model [2] in autocorrelation analysis. It can be seen the hybrid

model with a similar value of w can also be applied to the corresponding IN at

source, implying that the channel has little impact on the autocorrelation of the

IN when it passes through the channel.

The PSD of ni(m) in (3.2) can be defined as the discrete-time Fourier trans-

form of its autocorrelation function as S(f) =
∑
k R(k)e−j2πkf/fs , where the mag-
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Figure 3.7: Comparison of the hybrid model with the impulsive noises from the
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Figure 3.8: Comparison of the hybrid model with the impulsive noises from the
power line (Fig. 3.5) in terms of normalised PSD.

nitude |S(f)| of the PSD can be further derived in the linear form of

|S(f)| = σ2
x ·

1

1− 2w
√

1 + w2 cos(2πf/fs) + 2w2
(3.7)

where fs is the sampling frequency. The complete derivation is given in Ap-

pendix B. In Fig. 3.8, the hybrid model is verified in frequency domain, by com-
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paring the PSD function in (3.7) normalised to σ2
x with the measured results and

the BG model [2]. It can be seen that the hybrid model, which demonstrates

coloured PSD, is much closer to the measured results than the BG model which

has white PSD.

3.2.2 Two-Level Markov Chain based Model for Occurrence-
Dependent IN

After modelling the amplitude correlation between impulses in the hybrid model,

we now propose a two-level hierarchical MC model to study the occurrence de-

pendence of IN in PLC systems. This is an enhanced model over the model in

[30] in that we consider multiple states in the second MC level.

It is assumed that impulses occur in bursts only, as the probability of the

occurrence of single impulses is very low and the corresponding impulse power is

usually low. Hence, the occurrence of a burst can be described by the first level

MC, and the occurrence of individual impulses within a burst are characterised

by the second level MC, as showed in Fig. 3.9. A burst is defined as a series of

impulses, which has a minimum number (e.g., three) of impulses and a maximum

distance (e.g., 4 ms) between two consecutive impulses [25]. In the first level MC,

a relatively coarse time resolution is sufficient to model the bursts. For the second

level MC, a finer time resolution is needed to model the impulse transitions within

a burst.

In Fig. 3.9(a), ‘I 0’ represents the non-burst state where only consecutive

background noise is present, and ‘I 1’ denotes the state that a burst occurs. The

symbol PI i,j (i = 0, 1; j = 0, 1) denotes the probability of transition from state

‘I i’ to state ‘I j’. The first level transition probability matrix is given by

P
(imp)
I =

[
PI 0,0 PI 1,0

PI 0,1 PI 1,1

]
(3.8)

where PI i,0 + PI i,1 = 1 (i = 0, 1).

When the first level state is ‘I 0’ (non-burst), the second level chain is not
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Figure 3.9: (a) First level Markov chain for modelling the occurrence of bursts
(‘I 0’—non-burst state; ‘I 1’—burst state) (b) Second level Markov chain for
modelling the occurrence of individual impulses in a burst (‘II 0’—non-impulse
state; ‘II l’—impulse states with different impulse variances (l = 1, . . . , n)).

needed. In the presence of a burst, i.e., state ‘I 1’, the occurrence of impulses in a

burst is depicted by Fig. 3.9(b), where ‘II 0’ denotes the non-impulse state (only

background noise is present), and states ‘II 1’ to ‘II n’ represent occurrence

of impulses of different variances. A selection of n typical variance values for

impulses induced by different sources is used for different impulse states, e.g.,

σ2
i /σ

2
b can be 10 dB for the state ‘II 1’ and raised to 20 dB for the state ‘II 2’.

It is assumed that there is only one impulse state in a burst state, as the

impulses in the same burst are likely to be induced by the same source. Hence,

there are no transitions among impulse states ‘II 1’ to ‘II n’ in the second

level model. When the lth (l = 1, . . . , n) impulse state is in use, the symbol

PII i,j (i = 0, l; j = 0, l) denotes the probability of transition from state ‘II i’ to

state ‘II j’. The corresponding transition matrix is given by

P
(imp)
II l =

[
PII 0,0 PII l,0
PII 0,l PII l,l

]
(3.9)

where PII i,0 + PII i,l = 1 (i = 0, l). In the scenario that PI 0,i = PI 1,i (i = 0, 1)

and PII 0,i = PII l,i (i = 0, l), the proposed MC model is equivalent to the BG

model [2] and any other Bernoulli process [57] where the occurrence of IN is
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independent.

To validate the IN occurrence model in Fig. 3.9, the example IN generated

by the MC based model at two different levels are shown in Fig. 3.10. To il-

lustrate the IN clearly, the background noise is ignored in this case. It is as-

sumed that two of the example bursts are induced by hair dryer switch on (de-

noted as state ‘II 1’), and electric kettle unplug (denoted as state ‘II 2’), re-

spectively. In Fig. 3.10(a), the bursts are produced using P
(imp)
I =

[
0.995 0.4
0.005 0.6

]
as the first level transition probability matrix, and a relatively low sampling

frequency of 100 kHz is employed. While Fig. 3.10(b) and Fig. 3.10(c) demon-

strate the impulses caused by hair dryer switch on and kettle unplug events at

the channel output, respectively, using the parameters in Table 3.1, and a sam-

pling frequency of 100 MHz is applied. To evaluate the second level transition

probabilities from Fig. 3.5, any sample that has the amplitude larger than the

threshold 4σb is treated as an impulse sample, otherwise, a background noise

sample is returned. Let ‘1’ denote the impulse samples and ‘0’ represent the

non-impulse samples. The symbol Ni,j (i = 0, 1; j = 0, 1) denotes the number

of sample combinations [i, j] (i = 0, 1; j = 0, 1). Hence, the value of transition

probabilities PII 0,1 = N0,1/(N0,0 + N0,1) and PII 1,1 = N1,1/(N1,0 + N1,1). It

can be calculated that the corresponding transition probability matrices for the

second level MC are P
(imp)
II 1 =

[
0.7873 0.2663
0.2127 0.7337

]
for hair dryer switch on event,

and P
(imp)
II 2 =

[
0.9815 0.1205
0.0185 0.8795

]
for kettle unplug event, respectively. Note that

the impulses in a burst are not only occurrence-dependent, but also amplitude-

correlated. Therefore, the hybrid model described in Subsection 3.2.1 is applied

in the second level MC based model to produce the more realistic impulses in

Fig. 3.10(b) (with weight coefficient w = 1.1) and Fig. 3.10(c) (with weight co-

efficient w = 2), respectively, which have consistent amplitude-correlation and

occurrence-dependence as the measured impulses shown in Fig. 3.5. The pro-

posed MC model is also applicable for the occurrence-dependent impulses at
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Figure 3.10: (a) Noise bursts produced by the first level MC based model at PLC
receiving end; (b) Correlated and occurrence-dependent impulses by hair dryer
switch on event in a burst produced by the hybrid model (w = 1.1) and the
second level MC based model; (c) Correlated and occurrence-dependent impulses
by electric kettle unplug event in a burst produced by the hybrid model (w = 2)
and the second level MC based model.

source. The transition probabilities for the example impulses at source take sim-

ilar values as that from receiver, implying that the channel has little impact on

the transition probabilities.

In Fig. 3.11, the distribution of the random impulse amplitudes is presented

by the means of complementary cumulative distribution function (CDF), which

denotes the probability of impulse amplitude |ni| exceeding a value x (abscissa),

i.e., Pr(|ni| > x). Compared to the measured results, the overall fitting of the

two impulse events from modelling is fairly good.
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Figure 3.11: Statistics of the impulse amplitudes from measurement (Fig. 3.5)
and modelling in terms of complementary CDF.

3.3 Channel Characteristics

In Section 3.2, we have presented the modelling of amplitude-correlated and

occurrence-dependent IN using the tool of MC. In this section, we provide an

intensive performance analysis of the MC models, including the average impulse

duration and interval, steady-state probabilities of the MC, and maximum band-

width efficiency achievable.

3.3.1 Transition Probability based Time Characteristics

3.3.1.1 Average Impulse Duration

Define T
(imp)
S,II as the sampling interval for the second level in the two-level MC

model. The average impulse duration is determined by both the probabilities

of remaining in an impulsive state and the sampling interval T
(imp)
S,II . Define

PI1,IIl (l = 1, . . . , n) as the probability of entering impulse state ‘II l’ in a burst

state, which can be expressed as [60]

PI1,IIl = e−A
Al−1

(l − 1)!
(3.10)
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where A = lσ2
b/σ

2
l is the impulse index or the disturbance ratio [25] with σ2

l

denoting the variance of IN in state ‘II l’. The probability that the impulse state

‘II l’ lasts for k samples in a burst can be expressed as

Pwidth(k) = PI1,IIl · P k−1
II l,l · (1− PII l,l) (3.11)

The average impulse duration is given by t
(imp)
width = T

(imp)
S,II ·

n∑
l=1

∞∑
k=1

k · Pwidth(k).

Using (3.10) and (3.11), it can be expressed as

t
(imp)
width = T

(imp)
S,II ·

n∑
l=1

[
e−AAl−1

(l − 1)!
(1− PII l,l)

∞∑
k=1

(
kP k−1

II l,l

)]
(3.12)

3.3.1.2 Average Impulse Interval

It can be easily derived that the probability that interval between two consecutive

impulses lasts for k samples in a burst, referred to as state ‘II 0’, can be expressed

as

Pinterval(k) = P k−1
II 0,0 · (1− PII 0,0) (3.13)

The average impulse interval is given by t
(imp)
interval = T

(imp)
S,II ·

∞∑
k=1

k ·Pinterval(k). Using

(3.13), t
(imp)
interval becomes

t
(imp)
interval = T

(imp)
S,II · (1− PII 0,0)

∞∑
k=1

k · P k−1
II 0,0 (3.14)

3.3.2 Steady-State Probabilities of the Two-Level Markov
Chain

Normally, in a discrete-time MC model, the next state probabilities have depen-

dence on the current state probabilities and are determined by the transition

matrix as

Πt+1 = PΠt (3.15)

where P is transition probability matrix, Πt is a column vector whose elements

represent the state probabilities at time t, and have a sum of 1. In the steady

state, we have Πt+1 = Πt.
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In our two-level MC based model in Subsection 3.2.2, for the first level chain,

we define πI 1 as the steady-state probability (SSP) of incurring the burst state

‘I 1’, and πI 0 as the SSP for the non-burst state ‘I 0’. It is obvious that πI 0 +

πI 1 = 1. We substitute P = P
(imp)
I into (3.15) and obtain[

πI 0

πI 1

]
=

[
PI 0,0 PI 1,0

PI 0,1 PI 1,1

]
·
[
πI 0

πI 1

]
(3.16)

Solving (3.16) yields the values of πI0 and πI1 as[
πI 0

πI 1

]
=

[
PI 1,0/ (PI 0,1 + PI 1,0)
PI 0,1/ (PI 0,1 + PI 1,0)

]
(3.17)

For the second level chain, define πII l as the SSP of remaining in the impulse

state ‘II l’, and πII 0l as the SSP for the associated non-impulse state. We have

πII 0l + πII l = 1 (l = 1, . . . , n). It can be derived in a similar way as (3.17) that

the steady-state probabilities for the second level Markov chain are given by[
πII 0l

πII l

]
=

[
PII l,0/ (PII 0,l + PII l,0)
PII 0,l/ (PII 0,l + PII l,0)

]
(3.18)

The steady-state probabilities for the IN model in Fig. 3.9 are independent of

the initial probabilities, and are important to evaluate the channel capacity.

3.3.3 Maximum Bandwidth Efficiency under IN

The terminology of maximum bandwidth efficiency is a measure of channel capac-

ity over a given bandwidth in a specific communication system. The maximum

bandwidth efficiency using the two-level MC model is expressed as

C =
∑1

m=0
πI m · C(imp)

m (3.19)

where C
(imp)
0 and C

(imp)
1 denote the maximum bandwidth efficiencies achievable

for the non-burst and burst states, respectively. We analyse the upper bound

on channel capacity, where a full knowledge of the impulse state is assumed at

the transmitter and receiver. Applying the Shannon’s theorem [7], C(imp)
m can be

expressed as

C
(imp)
0 =

1

N

N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)
(3.20)
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and

C
(imp)
1 =

n∑
l=1

e−AAl−1

(l − 1)!

πII 0l

N

N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)

+
πII l
N

N∑
i=1

log2

(
1 +

Pe|H(fi)|2

P
(imp)
l (fi) + Pb

) (3.21)

where Pe denotes the transmitted PSD, and Pb is the background noise PSD,

which is denoted by σ2
b. N is the number of subcarriers, and H(f) is the channel

transfer function. P
(imp)
l (f) denotes the PSD of IN in state ‘II l’ (l = 1, . . . , n),

which is the discrete Fourier transform (DFT) of the corresponding autocorrela-

tion function in (3.3).

If n = 1, i.e., the MC model has a single impulse state in the second level

chain, (3.19) reduces to

C ≈(1− πI 1πII 1)

N
·
N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)

+
πI 1πII 1

N
·
N∑
i=1

log2

(
1 +

Pe|H(fi)|2

P
(imp)
1 (fi) + Pb

)
(3.22)

Let Hj(fi) denote the jth instantaneous channel frequency response on the ith

subcarrier. Assuming low occurrence probability of IN bursts, i.e., πI 1 is close

to 0, and πI 0 = 1−πI 1 is close to 1, the corresponding instantaneous maximum

bandwidth efficiency in (3.19) is given by

Cj ≈
πI 0

N

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(3.23)

Thus, the average maximum overall bandwidth efficiency under the burst IN

can be simplified as

C = lim
M→∞

πI 0

NM

M∑
j=1

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(3.24)

which implies that the system capacity is dominated by background noise and

the channel attenuation.

In Fig. 3.12, the overall maximum bandwidth efficiencies under proposed IN

models given by (3.24) is demonstrated, in comparison with the bandwidth effi-

ciency for the case of AWGN background noise only, and the bandwidth efficiency
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achieved by the BG model [2]. The horizontal axis denotes Pe/Pb, the signal-to-

background-noise ratio, which varies from 0 dB to 20 dB. It is assumed that

there are n = 2 IN sources, hair dryer switch on (state ‘II 1’) and electric kettle

unplug (state ‘II 2’). Using the measured impulses at the PLC receiving end,

the noise variances are obtained from Table 3.1 as σ2
1 = 21σ2

b and σ2
2 = 323σ2

b,

respectively, and the transition probability matrices for the second level MC are

P
(imp)
II 1 =

[
0.7873 0.2663
0.2127 0.7337

]
and P

(imp)
II 2 =

[
0.9815 0.1205
0.0185 0.8795

]
, respectively (same as

that used for Fig. 3.10(b) and Fig. 3.10(c)). The first level MC transition proba-

bility matrix is P
(imp)
I =

[
0.995 0.4
0.005 0.6

]
(same as that used for Fig. 3.10(a)). The

number of subcarriers N = 128. To compare with the AWGN channel, a random

PLC channel generator [7] is applied to obtain Fig. 3.12, for broadband PLC

transmission. With the effect of channel propagation, the system performance is

significantly degraded.

Fig. 3.12 shows that within AWGN channel, all cases achieve almost the same

system capacity, implying that IN with low occurrence probability have little

impact on system performance. In the AWGN channel, only noise effect is con-

sidered with no channel attenuation (the same applied for BG model in [2]).

Meanwhile, the occurrence probability for the first level MC of the proposed

model is assumed low enough (the same applied for BG model in [2]), i.e., πI 1

is close to zero. Hence, the maximum bandwidth efficiency in (3.21) is negli-

gible and (3.19) can be reduced to (3.24), indicating that background noise is

dominant for all cases. Considering the channel effect in the frequency range of

1.8 MHz-100 MHz, the maximum bandwidth efficiency is lowered by around 0.4

bps/Hz and 3 bps/Hz with class-9 and class-6 channels, respectively, verifying

our analysis in (3.24) that the theoretical capacity is dominated by background

noise and the channel attenuation.
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Figure 3.12: Analytical maximum bandwidth efficiency achievable under different
channel models.

3.4 Summary

In this chapter, measured results have been presented to help investigate the

nature of IN for indoor broadband PLC networks. A hybrid statistical model

to describe the correlation of IN, and a two-level MC based model to describe

the occurrence dependence of IN has been proposed, based on the measurement

results. The models are generic and adaptive to different scenarios (the BG

model [2] can be treated as a special case where impulses are independent). By

simply adjusting the value of the weight coefficient in the hybrid model, the

level of correlation between consecutive impulses can be changed. The example

IN illustrates that MC is suitable to model the transitions among time states,

where it is more realistic to consider multiple impulse states in the two-level MC.

The proposed models are validated in reference to the measured results. The

analytical throughput considering the impact of IN has been investigated.
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Chapter 4

Three-Dimensional Markov
Chain based Modelling of
Narrowband Interference

Other than the IN modelled in Chapter 3, NBI from radio applications is also a

major source of electromagnetic disturbance for broadband PLC, which should be

dealt with properly. This chapter focuses on modelling the radio NBI. Accurate

modelling of NBI supports comprehensive system performance analysis in order

to achieve effective transmission. Currently, there still lack thorough modelling

and performance analysis of the NBI for indoor broadband PLC.

NBI in PLC systems is mainly caused by two types of sources: spurious dis-

turbance inside the power grid such as running electric devices [33] and radio

applications such as broadcast radios and amateur radios [6]. The NBI caused by

spurious disturbance is usually synchronous to the mains frequency with much

lower power than that from the broadcast stations, and concentrates in the fre-

quency band below 8 MHz. Therefore, in this chapter, we focus on characterising

the NBI from various nearby radio applications. For indoor broadband PLC,

NBI from radio systems may become a salient issue that degrades the PLC sys-

tem performance, since the unshielded power line can be a good antenna picking

up the radios around [6]. Normally, there are various narrowband interferers in-

side the frequency range of 1.8 MHz-100 MHz, from broadcast radios, amateur
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radios, etc., and the power level is generally time-varying in daytime [6, 25]. In

[60], NBI was also called impulsive interference, and modelled by a Middleton’s

class A model, which shows a comparable behaviour as the IN modelling. Most

of the existing NBI models are for wireless communication channels, such as

[34, 35] for ad hoc networks, and the corresponding radio activities are modelled

with random occurrence probabilities, such as Poisson point process in [35] and

a simple Markov chain (MC) model in [61]. However, the existing models are

assumed to be memoryless, and the produced NBI is not associated with partic-

ular radio bands. Currently, the analysis of the NBI for PLC is mainly through

measurement-based approaches, and NBI needs to be modelled in a statistical

manner.

In this chapter, the measurement and statistical modelling of the occurrence

of NBI from nearby radio users for indoor broadband PLC are investigated. Our

work is different in the following aspects. First, a novel three-dimensional (3D)

MC model is proposed for the occurrence of narrowband radio interference, where

the NBI inside the PLC frequency spectrum is reproduced in a series of time

states, corresponding to the random activity of some certain radio bands. The

occurrence dependence and multi-level power of the potential NBI according to

the radio users traffic, are also reflected in our statistical model, which has not

been fully considered for indoor broadband PLC channel. Second, we present an

intensive performance analysis, including average interval of NBI, steady-state

probabilities for the MC, and the system capacity under the joint impact of IN

and NBI. Third, we observe the NBI in a broader spectrum of 1.8 MHz-100 MHz

and investigate the time-varying behaviour in a given environment, while the

existing NBI characterisation either from 80 MHz-100 MHz in [6] or up to 20 MHz

in [54] can only view the NBI variation from different sites. Thus, with our work,

it is possible to detect NBI in a single network for future cognitive PLC rather

than detect NBI cooperatively from different networks. The effectiveness of the
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proposed MC based model is verified by the measured results.

In Section 4.1, a system model is presented to describe the overall noise and

interference scenarios for an indoor broadband PLC. In Section 4.2, measure-

ment setup and results of NBI for PLC are presented. A 3D MC based model

for the random activities of radio interference is proposed in Section 4.3. The

system performance analysis is given in Section 4.4. The summary is remarked

in Section 4.5.

4.1 System Model

The block diagram of an indoor broadband PLC system under the high power

electromagnetic disturbance of both IN and NBI is depicted in Fig. 4.1, where

s(t) represents the transmit signal and r(t) is the received signal. n(t) denotes the

combined noise and interference at the receiver, including the aperiodic IN ni(t),

the NBI v(t) and the background noise nb(t). We assume K aperiodic IN sources

and L narrowband interferers. At time t, nsk(t) (k = 1, . . . , K) denotes the IN

from the kth source (nsk(t) = 0 means no noise). Let ni(t) denote the overall IN

at the receiver as aperiodic IN, which can be treated as passing the noise from

any potential switching/plug transients of the appliances in the system, through

the corresponding channel. While vl(t) (l = 1, . . . , L) denotes the lth narrowband

interferer (vl(t) = 0 means no interference). Let v(t) denote the combined NBI

at the PLC receiver, from various nearby radio applications.

In a discrete-time system, the signal at the PLC receiver is a mixture of various

noises. Let r(m) denote the mth received signal sample, expressed as:

r(m) = {hs ∗ s}(m) +
∑

k
{hnk ∗ nsk}(m) +

∑
l
vl(m) + nb(m) (4.1)

where {hs ∗ s}(m) =
∑
n hs(n)s(m− n) and {hnk ∗ nsk}(m) =

∑
n hnk(n)nsk(m−

n) (k = 1, . . . , K), while hs and hnk are the channel impulse response for PLC

signal s(m) and the IN at source nsk(m), respectively. vl(m) (l = 1, . . . , L) is the
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Figure 4.1: Block diagram of a PLC system.

NBI sample from the lth interferer added at PLC receiver, and the background

noise nb(m) is assumed to be AWGN with zero mean and variance σ2
b . Since

both IN and NBI occur with probabilities, the general added disturbance n(m)

in impulsive noise plus interference scenario can be expressed as

n(m) = α · ni(m) + β · v(m) + nb(m) (4.2)

where ni(m) is the output IN at PLC receiver, which has a zero mean and vari-

ance σ2
i . It is assumed that the variance of the background noise is much lower

than that of the IN, i.e., σ2
b � σ2

i . In (4.2), α, β ∈ {0, 1} are the parameters

indicating the occurrence states (absent or present) of the IN and NBI respec-

tively. Pr(α = 1) denotes the IN occurrence probability, while Pr(β = 1) reflects

the NBI occurrence probability.

The scenario of IN only (α = 1, β = 0) is considered in Chapter 3, while

Chapter 4 focuses on the electromagnetic disturbance of NBI only (α = 0, β = 1).

Joint impact of IN and NBI on system capacity is analysed in Subsection 4.4.3

of Chapter 4.
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Figure 4.2: Block diagram of a PLC system disturbed by NBI only.
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Figure 4.3: NBI measurement setup.

4.2 Measurement of NBI for Indoor Broadband

PLC

The block diagram of an indoor broadband PLC system disturbed by narrowband

interferers only is depicted in Fig. 4.2, i.e., α = 0, β = 1 in (4.2), which yields

n(m) = nb(m) +
∑

l
vl(m) (4.3)

Fig. 4.3 illustrates the setup of viewing NBI caused by the potential radio

services inside the PLC spectrum, using a Rohde & Schwarz-FSP30 spectrum

analyser. The measurement is made in different time during a day, in a certain

indoor environment. The spectrum analyser mode is applied to record the NBI

in the frequency range 1.8 MHz-100 MHz, with 10 KHz resolution bandwidth

and 10 times averaging. The coupler provides an interface in order to protect the
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spectrum analyser input. The inductive coupling circuit diagram is also shown

in Fig. 4.3, where the mains voltage can be physically isolated from the spectrum

analyser. Two 100 pF capacitors are used to block the DC. Besides, a transformer

can isolate the mains voltage completely.

Fig. 4.4 shows two examples of NBI and background noise in frequency domain

in the same lab at two different times during a day. It can be seen the NBI inside

the spectrum has a randomness and time-varying behaviour. Normally, Above

80 MHz, a massive local and international broadcast radios can be received, while

some radio users exist to communicate below 60 MHz, where the presence of NBI

is more random and likely to be generated by amateur radios, mobile-radios,

emergencies, astronomer-radios [62], etc.

To view the time variation of the particular NBI bands statistically, three

function generators are applied transmitting certain radio signals using the am-

ateur radio bands [5] around 14 MHz (band 1), 28 MHz (band 2) and 50 MHz

(band 3). The three radio bands are selected referring to the UK radio band

plans in [5], since they are primarily allocated for amateur services. The prefer-

able modes to be used for the particular NBI bands can be any digital modulation

Table 4.1: Activities of Three Example Narrowband Interferences around 14 MHz
(Band 1), 28 MHz (Band 2) and 50 MHz (Band 3) from the Measured Results

Spectrum sweeps Number of Occurrent Max. peak

(10 s interval) active NBI NBI band power (dBm)

1 2 Bands 1 & 2 -58.31

2 3 Bands 1, 2 & 3 -69.01

3 3 Bands 1, 2 & 3 -70.02

4 2 Bands 1 & 3 -61.47

5 2 Bands 1 & 3 -57.54

6 2 Bands 1 & 2 -71.54

7 1 Band 2 -59.80

8 0 None -88.96

9 1 Band 3 -57.33

10 1 Band 3 -45.66

11 2 Bands 2 & 3 -60.73
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Figure 4.4: Measured NBI (amateur radios below 60 MHz [5]; broadcast radios
above 80 MHz [6]) and background noise spectrum at two different times on the
same site.

such as phase-shift keying (PSK), with the maximum bandwidth of 500 Hz. The

status of noise spectrum is recorded in Table 4.1 for every 10 seconds. The eleven

samples of the spectrum show a time-varying behaviour, according to the radio

users activities.

It can be seen that the spectrum status varies with both the number and

the frequencies of the active NBI, and that the highest peak NBI power is also

different, which is associated with the number of radio users in the occupied

bands. The random occurrence of the example NBI is further analysed in our

statistical NBI model in Section 4.3.

4.3 3D Single-Level Markov Chain for the Oc-

currence of NBI

The measured results in previous section demonstrate the time behaviour of the

presence of potential interferences inside the PLC transmission spectrum. Due to

the randomness and time variation properties, modelling makes it straightforward
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to analyse the PLC interference scenarios statistically. In this section, we propose

a stochastic model for the PLC interference scenarios.

For the indoor broadband PLC, we put forward a novel structured 3D MC

model for the occurrence of NBI inside the PLC spectrum. It is assumed there

are some potential amateur radio users around transmitting and receiving sig-

nals in some particular radio bands within the PLC spectrum, which causes the

occurrence-dependent NBI to PLC networks.

First, let the variables φ1, φ2 denote the number of radio bands in the PLC

spectrum, and the number of potential radio users using the radio bands, respec-

tively. To simplify the 3D Markov analysis, we assume that φ1 = φ2 = φ. Then,

let the random variable a be the number of active radio channels (NBI) at current

state, let b represent the index of possible frequency locations of the presented

NBI channels, let c denote the index of possible radio user distributions in the

corresponding NBI channels, respectively.

In the proposed 3D MC model, the transition states are constructed by the

random variables {a, b, c}. For the non-NBI state, in which all the φ radio chan-

nels are non-active (no NBI), the variable a = b = c = 0.

Once NBI occurs, a = 1, 2, . . . , φ. The variation of the value in the random

variable a means a radio band is occupied or released. The total number of the

possible locations of NBI is actually a calculation of the combinations C(φ, a),

i.e., the binomial coefficient Ca
φ. Thus, the random variable b = 1, 2, . . . , C(φ, a).

The value change in the variable b represents the occupation of a radio band is

switched to another free radio band. To determine the value of c, it is assumed

that each active radio band is occupied by at least one radio user. The number

of the possible user distributions when j users appear on the a radio bands can

be calculated by Ca−1
j−1 , j = a, a + 1, . . . , φ. It can be derived using the Pascal’s

triangle and the binomial identity Ck
n + Ck+1

n = Ck+1
n+1, that the total number of

the possible user distributions is equal to the value of combinations
∑φ
j=aC

a−1
j−1 ,

52



P0,1

P1,0

P1,2P2,1

P2,3

P3,2

a = 0

a = 1

a = 2

a = 3

Figure 4.5: Structure of the 3D Markov chain for modelling the occurrence of
potential (φ = 3) NBI in a series of time.

i.e., C(φ, a). Thus, the random variable c = 1, 2, . . . , C(φ, a). The variation of c

reflects a radio user occupies, drops or switches in the presented a radio bands

with the location index b.

Fig. 4.5 shows the corresponding NBI state transition diagram for φ = 3. The

total number of transition states is
∑φ
a=0(Ca

φ)2 = Cφ
2φ = C3

6 = 20. Its steady-

state probabilities of the MC model need to be figured out to evaluate the PLC

performance in the occurrence of NBI, which is analysed in the next section.

Refering to the transition probability matrix in the aforementioned two-level

Markov chain, which denotes the transitions among the states, for the interference

model in Fig. 4.5, we first define Pa as the probability of remaining in the same

state in plane a, where {ak, bk, ck} = {ak−1, bk−1, ck−1}. It is clear that P0 =

Pφ = 1. Then, the symbol Pi,j is defined as the transition probability from plane

‘a = i’ to plane ‘a = j’, where i, j = 0, 1, 2, 3. The relationships are denoted by

the dashed green arrows in Fig. 4.5, and the corresponding transition probability
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matrix can be formulated as

P (int) =


P0,0 P1,0 0 0
P0,1 P1,1 P2,1 0

0 P1,2 P2,2 P3,2

0 0 P2,3 P3,3

 (4.4)

where the summation in each column equals one.

According to the model, if we assume no active radio band in the current

state, the next state can either be no active radio band with the probability P0,0

or one active radio band with the probability P0,1. If there are three active radio

bands in the current state, the next state can either be two active radio bands

with the probability P3,2 or three active radio bands with the probability P3,3.

Also, the proposed model can be adaptive to different NBI environments with a

more general expression of the transition probability matrix as

P (int) =



P0,0 P1,0 0 · · · 0

P0,1 P1,1
. . . . . .

...

0 P1,2
. . . Pφ−1,φ−2 0

...
. . . . . . Pφ−1,φ−1 Pφ,φ−1

0 · · · 0 Pφ−1,φ Pφ,φ


(4.5)

which has the element Pi,j with i, j = 0, 1, 2, . . . , φ.

To validate the NBI occurrence model in Fig. 4.5, the example NBI gener-

ated by the proposed model of φ = 3, is shown in Fig. 4.6. To clearly show

the occurrence-dependence of NBI in the system, we only illustrate the NBI re-

produced by the 3D MC model where the background noise is ignored in this

case. It is assumed that the potential NBI inside the PLC spectrum is from three

radio bands [5] around 14 MHz, 28 MHz and 50 MHz respectively. The ingress

of the interference power in a particular radio band varies from the number of

active radio users in that band, where more radio users cause higher NBI power

at the particular band. Thus, three levels of NBI are roughly set as 20 dB, 30

dB and 40 dB above the noise floor at the corresponding radio bands with zero

mean Gaussian amplitudes, respectively. The ingress of NBI power to the noise

floor may be lower when the IN occurs, which results in a higher power line
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Figure 4.6: Occurrence-dependent NBI produced by the 3D MC based model and
started with a = 1 at time sequence (10 s interval): (a) t = 1, (b) t = 2, (c) t = 3,
(d) t = 4, (e) t = 5, (f) t = 6, (g) t = 7, (h) t = 8, (i) t = 9.

noise floor and may submerge the relatively weak radio signals. In Fig. 4.6, the

potential occurrence of NBI is produced using the transition probability matrix

P (int) =


0.7 0.1 0 0
0.3 0.8 0.1 0
0 0.1 0.8 0.3
0 0 0.1 0.7

, and P1 = 0.44, P2 = 0.44 for the probabilities of

remaining in the same state in plane a = 1 and a = 2, respectively. The results

are associated with a unit time separation of 10 s sampling interval, which is con-

sistent as recorded in Table 4.1. It can be seen the time variation of NBI channel

is generated randomly. The transition of the NBI occurrence from Fig. 4.6(b) to

Fig. 4.6(c), implying that the value of variable a is changed from 1 to 2. Then,

the value of a becomes 3 for Fig. 4.6(i). In the case of a = 1, let the indices of

frequency location 1, 2 and 3 indicate the three radio bands 14 MHz, 28 MHz

and 50 MHz, respectively. Then, the variable b is equal to the index value of 3

for Fig. 4.6(a) and Fig. 4.6(b), and becomes 2 for Fig. 4.6(e). Besides, the vari-

ation in c is equivalent to the change on power levels, e.g., the values of a and
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b are the same for Fig. 4.6(a) and Fig. 4.6(b), while the value of c is different.

Moreover, the identical values of a, b and c during the transitions reflect a strong

dependence of the NBI occurrence by remaining on the same plane, or even in

the same state, such as Fig. 4.6(c) and Fig. 4.6(d); Fig. 4.6(f) and Fig. 4.6(g).

It denotes that the occurrence of NBI in the broadband PLC system can be well

modelled by the statistical 3D Markov chain based model.

4.4 Performance Analysis

In Section 4.3, the modelling of NBI using the 3D MC has been presented. In this

section, we provide an intensive performance analysis of the MC based model,

including the average NBI interval, steady-state probabilities of the MC, and

maximum bandwidth efficiency achievable.

4.4.1 Transition Probability based Time Characteristics

4.4.1.1 Average NBI Interval

In the 3D MC model, NBI interval is associated with the transition probability

that the non-NBI state {0, 0, 0} lasts for k samples, referred to as P0,0. Thus, the

average NBI interval can be expressed as

t
(int)
interval = T

(int)
S · (1− P0,0)

∞∑
k=1

k · P k−1
0,0 (4.6)

where T
(int)
S is the sampling time in the NBI model.

4.4.1.2 NBI Arrival Rate

If we know the value of the average NBI interval, the average NBI rate can also be

determined, which is approximately the reciprocal value of the average duration

of the non-NBI state. Since (4.6) can be simplified as t
(int)
interval = T

(int)
S /(1− P0,0),

the NBI arrival rate is formulated as

n
(int)
arrival =

1− P0,0

T
(int)
S

(4.7)
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4.4.2 Steady-State Probabilities of the MC Model

In the proposed 3D MC model, the structure is constructed by the number of

(φ+ 1) planes. Each plane indicates the corresponding number of a active radio

bands. To analyse the steady-state probability (SSP) of the discrete-time MC

model, we first learn the transition probabilities among the planes, which have

dependence with the previous state. To separate from SSP, let steady-plane

probability (SPP) denote the steady state of the plane probabilities, which is the

occurrence probability of the corresponding a active radio bands.

To obtain the SPP in Fig. 4.5, πa is defined as the SPP for plane a, where

a = 0, 1, 2, 3. It is obvious that π0 + π1 + π2 + π3 = 1. We substitute P = P (int)

and πa into (3.15) and obtain
π0

π1

π2

π3

 =


P0,0 P1,0 0 0
P0,1 P1,1 P2,1 0

0 P1,2 P2,2 P3,2

0 0 P2,3 P3,3

 ·

π0

π1

π2

π3

 (4.8)

Solving (4.8) yields the values of SPP as
π0

π1

π2

π3

 =


q0/

∑3
m=0 qm

q1/
∑3
m=0 qm

q2/
∑3
m=0 qm

q3/
∑3
m=0 qm

 (4.9)

where 
q0

q1

q2

q3

 =


P3,2P2,1P1,0

P3,2P2,1P0,1

P3,2P1,2P0,1

P2,3P1,2P0,1

 .
In Fig. 4.5, there are 20 transition states in total constructed by the random

variables {a, b, c}, where {0, 0, 0} for the non-NBI state, and a = 1, 2, . . . , φ; b, c =

1, 2, . . . , C(φ, a) when NBI arrives. To obtain the SSP, we define λa,b,c as the SSP

for the state {a, b, c}. Combine the normalised condition
∑φ
a=0

∑Caφ
b=1

∑Caφ
c=1 λa,b,c =

1 and the values of SPP derived in (4.9), the values of SSP can be obtained as

λa,b,c =


πa/

(
Ca
φ · Ca

φ

)
if (ak 6= ak−1) or

(
Ca
φ = 1

)
,

Pa · πa if (ak = ak−1) & (bk = bk−1) & (ck = ck−1) ,

(1− Pa) · πa/
(
Ca
φ · Ca

φ − 1
)

if
(
Ca
φ 6= 1

)
.

(4.10)
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where a = 0, 1, 2, . . . , φ, and b, c = 0, 1, 2, . . . , C(φ, a).

The steady probabilities for the NBI model in Fig. 4.5 are independent of the

initial probabilities, and are important to evaluate the channel capacity.

4.4.3 Maximum Bandwidth Efficiency Achievable

4.4.3.1 Maximum Bandwidth Efficiency under NBI

The terminology of maximum bandwidth efficiency is a measure of channel capac-

ity over a given bandwidth in a specific communication system. The maximum

bandwidth efficiency using the 3D MC model is expressed as

C =
φ∑
a=0

πa · C(int)
a (4.11)

where C(int)
a denotes the normalised channel capacity for plane a (a = 0, 1, . . . , φ).

Applying the Shannon’s theorem [7], for the non-NBI case (a = 0), C
(int)
0 can be

simply expressed as

C
(int)
0 =

1

N

N∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)
(4.12)

where Pe denotes the transmitted PSD, and Pb is the background noise PSD,

which is denoted by σ2
b. N is the number of subcarriers, and H(f) is the channel

transfer function. In the case of φ = 3 as shown in Fig. 4.5, C(int)
a , where a =

1, 2, . . . , φ for the number of a active NBI bands can be expressed as

C(int)
a ≈ 1

N
·

N−a∑
i=1

log2

(
1 +

Pe|H(fi)|2

Pb

)

+
φ−a+1∑
θ=1

∆θ log2

(
1 +

Pe|H̄(f)|2

P
(int)
θ + Pb

) (4.13)

where ∆θ is the coefficient calculated with the assumption of φ1 = φ2 = φ for the

capacity on the subcarriers interfered by the active radio bands, that when a = 1,

∆1 = ∆2 = ∆3 = 1/3, when a = 2, ∆1 = 4/3,∆2 = 2/3, when a = 3, ∆1 =

3. P
(int)
θ denotes different power levels of NBI, that the radio band on specific

subcarrier, is occupied by one (P
(int)
1 ), two (P

(int)
2 ) and three (P

(int)
3 ) radio users,
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respectively. H̄(f) is the average channel attenuation over the bandwidth, where

the channel is assumed flat fading in comparison with the frequency selective

NBI.

It can be derived that with negligible capacities at the active radio bands,

(4.11) reduces to

C ≈ 1

N

φ∑
a=0

N−a∑
i=1

πa · log2

(
1 +

Pe|H(fi)|2

Pb

)
(4.14)

Let Hj(fi) denote the jth instantaneous channel frequency response on the

ith subcarrier. Assuming the number of subcarriers N � φ, the corresponding

instantaneous maximum bandwidth efficiency in (4.11) is given by

Cj ≈
1

N

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(4.15)

Thus, the average maximum overall bandwidth efficiency under the impact of

NBI channel in (4.11) can be simplified as

C = lim
M→∞

1

NM

M∑
j=1

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(4.16)

which implies that the system capacity is dominated by background noise and

the channel attenuation.

In Fig. 4.7, the overall maximum bandwidth efficiencies under proposed NBI

model given by (4.16) is demonstrated, in comparison with the bandwidth effi-

ciency for the case of AWGN background noise only, and the bandwidth efficiency

achieved under the IN channel [58]. The horizontal axis denotes Pe/Pb, the signal-

to-background-noise ratio, which varies from 0 dB to 20 dB. It is assumed low

occurrence probability of IN, and the presence of NBI is generated using the same

parameters as shown in Fig. 4.6, with the number of subcarriers N = 128. To

compare with the added noise and interference channel, a random PLC chan-

nel generator [7] is applied to obtain Fig. 4.7, for broadband PLC transmission.

With the effect of channel attenuation, the system performance is significantly

degraded.
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Figure 4.7: Analytical maximum bandwidth efficiency achievable under different
channels.

Fig. 4.7 shows that within noise and interference channel, all cases achieve al-

most the same system capacity, implying that limited number of potential radio

interferences, and IN with low occurrence probability have little impact on system

performance. In the frequency range of 1.8 MHz-100 MHz, the maximum band-

width efficiency is lowered by around 0.4 bps/Hz and 3 bps/Hz with class-9 and

class-6 channels, respectively, verifying our analysis in (4.16) that the theoretical

capacity is dominated by background noise and the channel attenuation.

4.4.3.2 Outage Capacity under both IN and NBI

As shown in (4.2), α, β ∈ {0, 1} are the parameters indicating the occurrence

states (absent or present) of the IN and NBI respectively. Let π(α, β) = Pr(α∩β)

denote the joint steady-state probabilities of the events IN and NBI. It is assumed

that the occurrence of IN and NBI is statistically independent, where π(1, 1) =

Pr(α = 1)Pr(β = 1) reflects the probability that both events occur. Thus, the

general maximum bandwidth efficiency achievable under IN and NBI scenarios is
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given by

C =
∑1

α=0

∑1

β=0
π(α, β)C(α, β) (4.17)

where 
π(0, 0)
π(0, 1)
π(1, 0)
π(1, 1)

 =


πI 0 · π0

πI 0 · (1− π0)
πI 1 · π0

πI 1 · (1− π0)


and C(α, β) is the maximum bandwidth efficiency under the corresponding sce-

nario. At the time when both IN and NBI occur, the corresponding maximum

bandwidth efficiency C(1, 1) can be formulated as

C(1, 1) =
n∑
l=1

e−AAl−1

(l − 1)!

·

 πII 0l

(1− π0)N

φ∑
a=1

N−a∑
i=1

πa · log2

(
1 +

Pe|H(fi)|2

Pb

)

+
πII l

(1− π0)N

φ∑
a=1

N−a∑
i=1

πa · log2

(
1 +

Pe|H(fi)|2

P
(imp)
l (fi) + Pb

) (4.18)

Let Hj(fi) denote the jth instantaneous channel frequency response on the ith

subcarrier. Assuming low occurrence probability of IN bursts, i.e., πI 1 is close

to 0, and πI 0 = 1− πI 1 is close to 1, and the number of subcarriers N � φ, the

corresponding instantaneous maximum bandwidth efficiency in (4.17) is given by

Cj ≈
πI 0

N

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(4.19)

Thus, the average maximum overall bandwidth efficiency under both IN and

NBI channel in (4.17) can be simplified as

C = lim
M→∞

πI 0

NM

M∑
j=1

N∑
i=1

log2

(
1 +

Pe|Hj(fi)|2

Pb

)
(4.20)

which implies that the system capacity is dominated by background noise and

the channel attenuation.

Normally, the subcarriers disturbed by NBI are not able to decode the data

correctly, which are allowed in outage.
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Figure 4.8: Outage capacity of the proposed noise and interference models for an
average received SNR = 10 dB at a class-9 channel output.

Let Pout be the parameter indicating the probability that the system can

be in outage, given by Pout = Pr(Ci < Γ). Ci denotes the average capacity

for each subcarrier, and Γ is a certain value of the normalised throughput with

an associated minimum received signal-to-noise ratio (SNR) γmin, where Γ =

log2(1 + γmin). For received SNRs below γmin, the data cannot be successfully

decoded, and the system declares an outage. Hence, the average outage capacity

Cout correctly received over a large number of transmissions is given by

Cout = (1− Pout) · Γ (4.21)

In Fig. 4.8, the results of maximising outage capacity numerically are shown

for an average SNR of 10 dB at a class-9 channel output, with the number of

subcarriersN = 128. The presence of NBI is generated using the same parameters

as shown in Fig. 4.6. It can be seen that with impulsive noise and interference,

the maximum outage capacity is lowered by around 0.25 bps/Hz.
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Figure 4.9: Comparison of the theoretical throughput between the dynamic and
static notching schemes, in terms of the outage probability that the received SNRs
are below a certain value of γmin, for an average SNR = 10 dB at a class-9 channel
output.

4.4.3.3 Dynamic Notching Implementation on the Active NBI Bands

Due to the concern about disturbing the surrounding radio users, many of the

existing systems do not consider the high frequency (HF) band for PLC [23].

In Future PLC systems, in order to get higher data rate, PLC aims to share

spectrum with other radio frequencies. An effective dynamic notching scheme

may be essential to protect the valid radio services, and mitigate the effect of

narrowband interferences from the active radios at the same time [6, 54]. To

resolve the coexistence issue, the spectrum should be monitored and detected

in real time, and then adjust the notched frequencies adaptively. An energy-

based detector is mentioned in [6], in order to detect out the active radio users.

With dynamic notching of the NBI, the maximum bandwidth efficiency under the

MC based NBI model can be estimated by (4.14). Normally, a static notching

is applied as in the HPAV standard [17], that the subcarrier with NBI and its

neighbour ±4 subcarriers are too notched.
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The comparisons of normalised throughput between the dynamic and static

notching implementations are reflected in Fig. 4.9, with the number of subcarriers

N = 128, and average SNR of 10 dB at a class-9 channel output. It is assumed

no IN, and the presence of NBI is generated using the same parameters as shown

in Fig. 4.6. The results obtained show the significance of using the radio bands

for PLC transmission. With the dynamic notching scheme, 25% more subcarriers

in average provide the data rate over 2 bps/Hz, than that with the normal static

notching approach.

4.5 Summary

In this chapter, measured results have been presented to help investigate the

nature of NBI for indoor broadband PLC networks. A 3D MC based statistical

model to describe the occurrence dependence of NBI has been proposed, based

on the measurement results. The example NBI illustrates that MC is suitable to

model the transitions among time states, where it is more realistic to consider

multiple NBI states in the 3D MC. The proposed model is validated in reference

to the measured results. The analytical throughput considering the impact of

both IN and NBI has been investigated. The dynamic spectrum access approach

is of the interest in added interference channel, especially for future cognitive

PLC solutions, which improves the throughput by sharing the spectrum of radio

bands.

The models proposed in Chapter 3 and Chapter 4 are applicable to perfor-

mance analysis and computer simulations of any broadband PLC systems, and

can be easily implemented to test the IN and NBI mitigation for green PLC spec-

trum and any other performance optimising methods, without carrying out any

measurements. The statistical model for the occurrence property of interferences

caused by radio users can be a valuable tool of analysing the performance of

future cognitive PLC networks.
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Chapter 5

Null Subcarriers Assisted
Impulsive Noise Mitigation

IN is one of the main sources causing pollution to the PLC spectrum [2], which

should be dealt with properly. The models of IN have been presented in Chap-

ter 3. A thorough mitigation of IN at PLC receivers supports an enhancement of

system performance in order to achieve effective transmissions.

As learned in Chapter 3, aperiodic IN caused by switching/plugging/unplugging

transients of electric appliances is dominant in broadband PLC systems, which

degrades the system performance significantly [2, 25]. Aperiodic IN often oc-

curs randomly in a series of impulses, referred to as burst [25], for which the

occurrence is statistically modelled in Chapter 3 using the tool of MC. It may

hence result in bust errors during data transmissions. This chapter focuses on

mitigating aperiodic IN. Most of the existing IN mitigation schemes are executed

in OFDM systems through a number of conventional nonlinear techniques, such

as blanking [41], clipping/deep clipping [27] and weighted combinations of them

[40, 42]. However, the conventional schemes are based on detecting the IN con-

taminated data tones instead of reconstructing the IN vector and cancelling it

out. Hence, the performance of the conventional methods is limited by the high

peak-to-average power ratio (PAPR) OFDM signals, where use of the advanced

techniques with channel coding schemes [46, 47] is necessary to achieve a satis-

factory bit error rate (BER) in OFDM systems [63, 31]. Some sophisticated IN
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mitigation schemes were developed in [11, 26] with the aid of compressed sensing

[43, 44] and sparse Bayesian learning [45]. However, calculations of the matrix

multiplication and inversion are required in these algorithms, and also the ac-

quisition of a priori information leads an extra computation. Iterative method

applied in [32, 64] is a good trade-off between the IN mitigation performance

and complexity. However, it lacks a thorough validation of their proposed algo-

rithms since the adopted IN model cannot simulate the burst environments, and

the common disturbance of NBI on the indoor PLC spectrum was not consid-

ered. Referring to Chapter 4, NBI at PLC receivers from various nearby radio

applications such as broadcast radios and amateur radios [6] is considered in this

chapter. Since the unshielded power line can be a good antenna picking up the

radios around [6], NBI may become a salient issue that degrades the PLC receiver

performance. Also, high power spectral density (PSD) of the intensive NBI may

lead a high rate of indistinguishable IN at PLC receivers. Thus, a suitable scheme

is required to qualify the IN mitigation at PLC receivers.

In this chapter, the problem of constructing an effective IN mitigation scheme

at uncoded OFDM-based PLC receivers is addressed. Our work is different in the

following aspects. First, a novel IN mitigation scheme is proposed where the feed-

back of IN estimation is updated iteratively for a thorough mitigation. The use

of null subcarriers leads a reduced number of iterations. Unlike the conventional

blanking scheme [40] executed given the test statistics of the received signal, the

harmful impact of high PAPR signals on the IN reconstruction is excluded in the

proposed scheme. The associated receiver operating characteristic (ROC) is de-

rived to show the performance of IN detection for both schemes. Second, the IN

mitigation in the presence of NBI from nearby radio users with different impacts

of NBI environments on the proposed receiver is evaluated, which has not been

fully investigated previously. The associated analytical expressions for ROC are

given to show the ability of IN detection under the disturbance of NBI. In the
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case that the system is intensively disturbed by NBI, the IN vector reconstruction

becomes ineffective, resulting in an incomplete IN mitigation. Third, null subcar-

riers aided pre-mitigation blocks are adopted in the proposed receiver to achieve

a near-optimal performance without updating the IN estimation iteratively. The

pre-mitigation significantly improves the initial IN estimation, while eliminates

the impact of intensive NBI when it is present, leading to a joint NBI and IN

mitigation. The thresholds for pre-NBI and pre-IN mitigation blocks are set to be

sufficiently high, in order to achieve a sufficiently low false alarm rate for outliers

detection. The performance of the proposed receiver is much higher than that of

the existing blanking nonlinearity especially in the high SNR region. Simulation

results are provided to demonstrate an improved BER performance achievable

under the proposed IN mitigation scheme compared to the conventional blanking

nonlinearity, while the robustness of the proposed receiver is also validated under

the intensive disturbance of NBI.

In Section 5.1, a system model is presented to describe the overall IN mit-

igation scenarios for an indoor broadband PLC. In Section 5.2, the IN vector

estimation in the proposed scheme is implemented over a PLC channel for NBI

absence and NBI presence, respectively. The performance of the proposed scheme

is compared to that of the conventional blanking approach. Simulation results

are given in Section 5.3 to validate the proposed IN mitigation approach. The

summary is finally remarked in Section 5.4.

5.1 System Model

The block diagram of an indoor broadband PLC system is depicted in Fig. 5.1,

where s(t) represents the transmit signal and r(t) is the received signal. A hybrid

of the aperiodic IN ni(t), the NBI v(t) and the background noise nb(t) are the

added disturbance at PLC receiver. While ni(t) is caused from any potential

switching/plug transients of the appliances in the system (ni(t) = 0 means no
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Figure 5.1: Block diagram of a PLC system with IN mitigation.

noise), and v(t) is from various nearby radio applications (v(t) = 0 means no

interference). We assume IN is present for each transmission. The dashed-line

block indicates the proposed IN mitigation scheme at the receiver, considering

two different scenarios that NBI is present and NBI is absent, respectively.

In a discrete-time system, the signal at the PLC receiver is a mixture of various

noises. Let r(m) denote the mth received signal sample, expressed as:

r(m) = {hs ∗ s}(m) + ni(m) + β · v(m) + nb(m) (5.1)

where in (5.1), β ∈ {0, 1} is the parameter indicating the occurrence states

(absent or present) of the NBI, where Pr(β = 1) reflects the NBI occurrence

probability.

As shown in Fig. 5.1, the IN mitigation scheme should be implemented in both

scenarios of NBI absence (β = 0) and NBI presence (β = 1), with the probabilities

of Pr(β = 0) and Pr(β = 1), respectively. In this chapter, the statistical models

presented in Chapter 3 and Chapter 4 are adopted. PLC systems under the

disturbance of IN and NBI can be simulated applying these statistical models,

and the effectiveness of the proposed mitigation scheme can be easily evaluated

without carrying out any measurements.

Referring to Chapter 3, the impact of aperiodic IN is considered since it is

dominant in broadband PLC systems [33]. Aperiodic IN occurs randomly and
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often refers to as burst in time domain [25], which has its occurrence probabilities

dependent on the previous states, following the MC process [56]. Modelling of

the time-domain (TD) occurrence-dependent IN was presented, where a two-level

MC-based model was proposed.

It is assumed that each event of the switching/plugging transients produces

a noise burst. The occurrence of a burst can be described by the first level

MC, and the occurrence of individual impulses within a burst are characterised

by the second level MC. The first-order Markov process can be described by

its transition probability matrix, which is conditioned by the previous one state.

Steady-state probability (SSP) can be applied to define the occurrence probability

of an event under discrete-time Markov process, where the next state probabilities

have dependence on the current state probabilities and are determined by the

transition probability matrix as

Πt+1 = PΠt (5.2)

where P is transition probability matrix, which has the elements defined by

Pr({t+ 1}|{t}). The probability of the next state ‘{t+ 1}’ is conditioned by the

current state ‘{t}’. Πt is a column vector whose elements represent the state

probabilities at time t. In the steady-state, we have Πt+1 = Πt.

For simplicity, it is assumed that the considered PLC system in Fig. 5.1 is

hit by one burst from a single IN source during each transmission. We adopt

the second level MC to reproduce the impulses in a burst. Let ‘{t}’ indicate the

state in the second level MC at the discrete-time t. The corresponding state has

a value of ‘1’ in the presence of an impulse, otherwise ‘0’ represents the absent of

IN. ΠII indicates the SSP of producing an individual impulse in the second level

MC, which can be derived by solving (5.2) as

ΠII =
Pr ({t+ 1} = 1|{t} = 0)

Pr({t+ 1} = 1|{t} = 0) + Pr({t+ 1} = 0|{t} = 1)
(5.3)

which is weighted by the corresponding transition probabilities.
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It is assumed the IN ni(m) with zero mean and variance σ2
i has a Gaussian

process of N (0, σ2
i ), where σ2

i � σ2
b. Thus, the PDF of the combined noise

n = ni + nb is given by

fn(n) =
[
f(n|{t} = 0) f(n|{t} = 1)

]
=
[
N (0, σ2

b) N (0, σ2
b + σ2

i )
]
·
[
Pr(0|0) Pr(0|1)
Pr(1|0) Pr(1|1)

]
(5.4)

which is conditioned by the current impulse state. In the steady-state of IN, the

PDF can be expressed as

fn(n) = (1−ΠII) · N (n; 0, σ2
b) +ΠII · N (n; 0, σ2

b + σ2
i ) (5.5)

where ΠII is independent of the initial transition state.

The corresponding arrival rate of the impulses normalised to the sampling

interval, follows the reciprocal value of the number of consecutive non-impulse

states k between two impulses, which has the probability distribution for remain-

ing in the non-impulse state as

P (k) = Pr(0|0)k−1 · (1− Pr(0|0)) (5.6)

The SSP ΠII and the arrival model of the second level MC can describe the

particular impulsive scenario in the considered PLC system accurately, which are

important to evaluate the performance of the proposed IN mitigation approach.

Referring to Chapter 4, a single level 3D MC model was presented for the

reconstruction of NBI in frequency-domain (FD), considering the TD occurrence-

dependence. Let P (int) be the transition probability matrix for the number of

active radio interferers over the total φ potential interferers, which can be formu-

lated as

P (int) =



P0,0 P1,0 0 · · · 0

P0,1 P1,1
. . . . . .

...

0 P1,2
. . . Pφ−1,φ−2 0

...
. . . . . . Pφ−1,φ−1 Pφ,φ−1

0 · · · 0 Pφ−1,φ Pφ,φ


(5.7)
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where Pi,j is defined as the transition probability from the number of i tone

interferers to j tone interferers, with i, j = 0, 1, 2, . . . , φ. For simplicity, it is

assumed the transition starts from φ interferers and Pφ,φ = 1.

IN mitigation for PLC applications is normally considered under the OFDM

systems [31]. As specified for the OFDM in HPAV standard [17], about 40% of

the total N subcarriers are set to zero to avoid interfering with other applications,

referred to as null subcarriers. NBI from radio applications normally presents in

those subcarriers from the total Nξ null subcarriers [11]. Thus, it is assumed the

FD sparse NBI vector with Nξ entries has its φ nonzero entries located at φ out

of all the Nξ null subcarriers.

The initial φ NBI entries are randomly chosen which has the disturbance

ratio µ = φ/Nξ. The amplitude distribution for each band-limited tone interferer

can be modelled by Gaussian noise as described in [11, 65] with the PSD σ2
v ,

following a Gaussian distribution of N (0, σ2
v). The NBI power normalised to the

background noise power at the NBI contaminated subcarriers is pv = Nσ2
v/φ.

In the proposed IN mitigation scheme in Section 5.2, null subcarriers are

adopted to improve the reconstruction of IN at PLC receiving end. In the pres-

ence of NBI, the accuracy of IN estimation is affected by the NBI contaminated

subcarriers, which brings challenges for IN mitigation. The environments with

NBI can be simulated using the statistical model, which is important to test the

proposed mitigation method under the joint impact of IN and NBI.

5.2 Iterative IN Mitigation

In Fig. 5.2, two detailed block diagrams of the proposed IN mitigation scheme at

receiver are demonstrated, where the red dashed-line block illustrates a zoom-in

on the IN mitigation block using an iterative approach. Basically, IN is esti-

mated using the feedback of soft data detection, and removal of the estimated

IN from the received sequence improves the data detection accordingly. Hence,
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Figure 5.2: Proposed receiver for IN mitigation (FEQ-frequency domain equal-
ization; FD-nulling is applied when NBI is present; TD-nulling is applied when
IN is present).

both IN estimation and data detection blocks are updated iteratively until the

hard decision is made for data output. The use of null subcarriers improves the

iterative method significantly, but also brings challenges on accurate IN recon-

struction when some of the subcarriers are contaminated by NBI. The design of

pre-NBI mitigation and pre-IN mitigation blocks is to combat the impact of NBI,

and further enhances the performance of the proposed mitigation scheme. In this

section, the IN mitigation proposed for both scenarios as shown in Fig. 5.1 is

described, considering the NBI absence (β = 0) and the NBI presence (β = 1),

respectively.

5.2.1 IN Mitigation in the Absence of NBI

In this subsection, the environment of IN only is considered, which is widely

applied to test the existing mitigation algorithms. First, we look into the con-

ventional blanking scheme reported in the literature. Then, the proposed IN
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mitigation scheme is studied, where the performance is also analysed to show the

benefit of using null subcarriers.

5.2.1.1 Conventional Blanking Approach

In the case of β = 0 in (5.1), where NBI from radio applications is absent. The

received signal in (5.1) is then simplified to

r(m) = {hs ∗ s}(m) + ni(m) + nb(m) (5.8)

which is usually applied as the received sequence for various indoor PLC com-

munication systems [31, 26]. Thus, most of the existing IN mitigation methods

such as [66, 32], are verified through the basic system model in (5.8).

The conventional nonlinear techniques are widely used to mitigate IN at the

receiver, including blanking, clipping and weighted combinations of them [27, 42].

Referring to Fig. 5.2, the blanking nonlinearity is normally applied directly on

the received signal r before FFT, which can be defined as [40]

r̄(m) =

r(m), |r(m)| ≤ λ

0, |r(m)| > λ
(5.9)

where λ denotes the blanking threshold and r̄(m) is the blanked sequence, with

m = 0, 1, . . . , N − 1.

As described in (5.5), each noise term has a Gaussian PDF. In a large number

N of OFDM subcarriers, the transmit signal s(m) filtered by power line channel

follows a Gaussian distribution of N (0, σ2
s ). Thus, the PDF of the received signal

r(m) in (5.8) can be expressed as

fr(r) = (1−ΠII) · N (r; 0, σ2
s + σ2

b) +ΠII · N (r; 0, σ2
s + σ2

b + σ2
i ) (5.10)

The basic principle for the threshold-based techniques is actually to use signal

detection theory, where the ROC can be analysed on the test signal statistics [67].

ROC curves explore the trade-offs between the probability of detection Pd and

the probability of false alarm Pf for a range of varied thresholds. By comparing
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the test statistics |r(m)| to a given threshold λ, the associated probabilities Pf

and Pd are expressed as

Pf = erfc

 λ√
2(σ2

s + σ2
b)

 (5.11)

Pd = erfc

 λ√
2(σ2

s + σ2
b + σ2

i )

 (5.12)

where erfc is the complementary error function [68].

The corresponding optimal threshold can be determined with respect to a pair

of best trade-off probabilities, which can be selected for specific system require-

ments, and varied according to different criteria [31].

5.2.1.2 IN Estimation Using Data Subcarriers

Under the proposed IN mitigation scheme as shown in Fig. 5.2, IN samples are

estimated first and then suppressed from the received signal individually, rather

than set the IN contaminated signal samples to zero as described in the conven-

tional blanking approach. The basic principle for the IN estimation is to cancel

out the data term at the channel output from the received signal, and then re-

construct the IN vector from the remaining mixed noise terms.

For the considered system in (5.1) with β = 0, the received signal r(m) is

initially passed through the FFT module at the conventional OFDM receiver,

yielding

R(M) = {Hs · S}(M) + Fni(M) + Fnb(M) (5.13)

where F denotes the N-point DFT matrix and Hs is the channel frequency re-

sponse, with the subcarrier index M = 0, 1, . . . , N − 1.

Then, the signal can be simply compensated by a frequency-domain equalizer

(FEQ) on each subcarrier independently, using the zero-forcing (ZF) method. The

channel frequency response can be estimated with overhead, which is considered

separately. Assuming perfect channel estimation, i.e., complete knowledge of Hs,
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and using a ZF equalizer, the tentative soft decision Ŝ(M) can be obtained, which

is then cancelled out from the received signal in order to find the estimation of

noise terms as

N̂(M) = R(M)− {Hs · Ŝ}(M) (5.14)

To reconstruct the IN vector in TD, inverse fast Fourier transform (IFFT) is

performed on N̂(M) in order to obtain the mixed TD noise terms n̂(m). In the

proposed scheme, the IN vector can then be estimated by

n̂i(m) =

0, |n̂(m)| ≤ λ

n̂(m), |n̂(m)| > λ
(5.15)

where n̂i(m) denotes the estimated IN vector and λ is the corresponding threshold.

An accurate detection of the nonzero entries in n̂i leads a good estimation of

the IN vector, and hence improves the performance of the according mitigation

techniques. A perfect detection may lead to a thorough IN mitigation. Unlike

the conventional blanking approach in (5.9) which takes the detection on IN

entries given the received signal vector, the detection in the proposed scheme is

performed given the noise terms only. Thus, the impact of high PAPR signals

on the threshold-based detection is eliminated. According to (5.15), the test

statistics |n̂(m)| is compared to a given threshold λ, resulting in the detection

probabilities as

Pf = erfc

(
λ

σb

√
2

)
(5.16)

Pd = erfc

 λ√
2(σ2

b + σ2
i )

 (5.17)

which outperforms the conventional blanking in classifying between the zero and

nonzero entries of the IN vector, especially in the high SNR region. For a given

false alarm rate Pf in (5.16), the non-adaptive threshold λ can be simply calcu-

lated by the inverse complementary error function.

75



Then, the estimated IN vector n̂i can be used as a feedback to obtain a cleaner

received signal r̃(m) as

r̃(m) = r(m)− n̂i(m) (5.18)

where the estimated impulses are suppressed individually from the initially re-

ceived signal samples and a multiplexer is used to select the updated received

signal for further data processing of the proposed receiver.

5.2.1.3 IN Estimation Using Data and Null Subcarriers

In practical, the estimate of the IN vector n̂i in TD is imperfect, which is affected

by the accuracy of n̂(m) estimation and the trade-off thresholding. The tentative

soft decision Ŝ(M) may contain many errors without doing iterations. Thus,

after performing the IFFT on (5.14), the estimated noise terms can be expressed

by considering decision errors as

n̂(m) = ê(m) + ni(m) + nb(m) (5.19)

where ê(m) is caused by the feedback of wrong decisions. In the high SNR region,

decision errors are rare and negligible. While in the low SNR region, lots of wrong

decisions are made, and ê(m) can be assumed as Gaussian distributed due to the

IFFT operation. Thus, the PDF of n̂(m) in (5.19) can be expressed by

fn̂(n̂) = (1−ΠII) · N (n̂; 0, σ2
ê + σ2

b) +ΠII · N (n̂; 0, σ2
ê + σ2

b + σ2
i ) (5.20)

where σ2
ê is the variance of ê(m), which should be lowered to improve the IN

estimation. According to the proposed receiver in Fig. 5.2, it normally costs

several iterations to minimise σ2
ê .

Most of the power line systems do not use the whole spectrum for data trans-

mission, in order to avoid interfering with other applications. A spectrum mask

for HPAV is implemented to stay clear from transmission on some frequencies

[69]. This ability can be easily performed at the OFDM transmitter by setting

the corresponding subcarriers to zero, referred to as null subcarriers.
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At the receiver, the wideband IN spreads its power over all frequencies, which

has its components in the null subcarriers. Let ξ be the index set of the null

subcarriers, where the total number Nξ = |ξ| of null subcarriers is considered. In

the absence of NBI (β = 0 in (5.1)), the noise terms from the null subcarriers can

be observed at the receiver as

Rξ(M) = Fξni(M) + Fξnb(M) (5.21)

where (·)ξ indicates the sub-vector which has the entries indexed by the null

subcarriers set ξ, i.e., M∈ ξ.

The noise terms in null subcarriers are from nature with no decision errors,

resulting in a more accurate initial estimate of the IN vector. Hence, the receiver

performance can be improved with a certain number of iterations by adopting

the null subcarriers. The performance of detecting the nonzero entries in the

IN vector given n̂(m) in (5.19) can be evaluated by comparing the test statistics

|n̂(m)| to a given threshold λ, yielding the detection probabilities as

Pf = erfc

 λ√
2(σ2

ê + σ2
b)

 (5.22)

Pd = erfc

 λ√
2(σ2

ê + σ2
b + σ2

i )

 (5.23)

where the mean squared error σ2
ê is lowered by using null subcarriers since Fξê =

0. After few iterations, σ2
ê is negligible and equals zero in the high SNR region.

For a maximum allowed false alarm rate Pf in (5.22), the threshold can be

derived as

λ =
√

2σn̂ · erfc−1 (Pf ) (5.24)

where σn̂ is the standard derivation of the noise vector n̂(m) in (5.19) and erfc−1

denotes the inverse complementary error function. The chosen threshold is adap-

tive since σ2
ê is varied from the different values of SNR.
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With the assistance of null subcarriers and adaptive thresholding, feedback

of the improved IN vector n̂i estimation can be obtained to mitigate the IN

thoroughly by costing a reduced number of iterations.

5.2.1.4 Pre-Time Domain Processing using Null Subcarriers

To further improve the IN mitigation algorithm, the feedback of an accurate

initial estimated IN vector n̂i is the key to achieve a satisfactory performance of

the proposed receiver, without updating the IN vector n̂i iteratively.

A pre-processing block is applied to improve the tentative soft decision Ŝ(M)

before the initial IN estimation. Hence, a lower mean squared error σ2
ê caused by

wrong decisions can be obtained to achieve a better initial IN estimation. The

pre-processing vector can be reconstructed by using the null subcarriers as

Rpre(M) =

Rξ(M), M∈ ξ
0, M∈ ξ̄

(5.25)

where (̄·) indicates the set complement. Let rpre(m) denote the IFFT counterpart

of (5.25), with m = 0, 1, . . . , N − 1.

In the absence of NBI, the pre-TD processing is meant to remove the strong

portion in rpre(m) from the received signal r(m), which can be formulated by

r(TD)
pre (m) =

r(m), |rpre(m)| ≤ λpre

r(m)− rpre(m), |rpre(m)| > λpre

(5.26)

where λpre denotes the threshold for pre-TD processing, which can be determined

using the standard derivation of rpre(m) through (5.24). The threshold λpre is

non-adaptive to SNR since the test statistics |rpre(m)| only includes the noise

terms from nature.

Instead of the received signal r(m), the vector r(TD)
pre in (5.26) is passed through

the conventional OFDM receiver in order to obtain an improved initial feedback

of the tentative decision Ŝ(M). Thus, the initial IN estimation using (5.14) and

(5.15) can be refined accordingly.
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5.2.2 IN Mitigation in the Presence of NBI

The previous subsection demonstrates the proposed IN mitigation scheme in the

absence of NBI. With the aid of null subcarriers, the initial estimate of the IN

vector can be significantly improved. According to the system model in Fig. 5.1,

NBI is a common event for indoor PLC where the NBI contaminated subcarriers

bring challenges for the IN vector reconstruction. In this subsection, first, the

proposed receiver performance in the presence of NBI is analysed, and then a joint

mitigation of the NBI and IN before the estimate of the IN vector is applied, in

order to combat the effect of NBI as shown in Fig. 5.2.

5.2.2.1 IN Estimation Using Data and Null Subcarriers

The NBI from radio applications such as emergencies, amateur and mobile-radios

often happens to indoor scenarios. The use of null subcarriers for the OFDM PLC

avoids interfering with other applications, and on the other hand, improves the

proposed IN estimation when NBI is absent as learned in Subsection 5.2.1. In

the case of β = 1 in (5.1), the IN estimation should be performed in the presence

of NBI, where the IN samples observed in null subcarriers are polluted by the

NBI. Thus, the noise terms added at receiver from the null subcarriers can be

formulated as

Rξ(M) = Fξni(M) + Fξv(M) + Fξnb(M) (5.27)

where the subcarrier index M ∈ ξ. Let the complement set ξ̄ denote the index

set of the data subcarriers where Fξ̄v(M) = 0. Thus, the received signal from

the data subcarriers can be represented by (5.13) with M∈ ξ̄.

According to the proposed receiver in Fig. 5.2, the received signal before the

FFT operation equals

r(m) = {hs ∗ s}(m) + ni(m) + v(m) + nb(m) (5.28)

which can be adopted after FFT to obtain the estimated noise terms as in (5.14).
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Hence, the IFFT counterpart of (5.14) can be expressed as

n̂(m) = ê(m) + ni(m) + v(m) + nb(m) (5.29)

where the amplitude distribution for the NBI v(m) follows the random Gaussian

of N (0, σ2
v). Thus, the PDF of n̂(m) in (5.29) can be expressed by

fn̂(n̂) =(1−ΠII) · N (n̂; 0, σ2
ê + σ2

b + σ2
v)

+ΠII · N (n̂; 0, σ2
ê + σ2

b + σ2
v + σ2

i ) (5.30)

where the estimated IN vector n̂i(m) can be obtained in (5.15) by comparing the

test statistics |n̂(m)| modelled in (5.30) to a given threshold. In the presence of

NBI, the performance of detecting the nonzero entries in the IN vector can be

evaluated by

Pf = erfc

 λ√
2(σ2

ê + σ2
b + σ2

v)

 (5.31)

Pd = erfc

 λ√
2(σ2

ê + σ2
b + σ2

v + σ2
i )

 (5.32)

where the ingress of the intensive NBI (σ2
v � σ2

b) can cause a harmful impact on

the detection performance. For a maximum allowed false alarm rate Pf in (5.31),

the associated threshold λ can be calculated using (5.24) given the standard

derivation of n̂(m) in (5.29).

In the presence of intensive NBI, although the mean squared error σ2
ê can be

reduced iteratively, the high PSD σ2
v can still disturb the reconstruction of the

IN vector, leading an incomplete IN mitigation in (5.18). The intensive NBI in

null subcarriers should be removed in advance to enhance the performance of the

proposed IN mitigation scheme.

5.2.2.2 Pre-Joint Frequency Domain/Time Domain Nulling

The presence of NBI with high PSD σ2
v brings challenges for the IN detection

given the vector n̂(m) in (5.29), where the entries with weak IN would be indis-
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tinguishable from the entries with the combined terms of background noise, NBI

and decision errors only.

A pre-joint mitigation on the intensive NBI and IN is required to improve the

reconstruction of IN in the presence of NBI, which is indicated by the dashed-

line blocks in Fig. 5.2. The pre-FD nulling is meant to detect and null the NBI

contaminated subcarriers, which can be formulated by

R(FD)
pre (M) =

Rξ(M), |Rξ(M)| ≤ Λpre

0, |Rξ(M)| > Λpre

(5.33)

where R(FD)
pre is the output vector from the pre-FD nulling block with M ∈ ξ,

and Λpre denotes the threshold for the pre-FD nulling. Detection of the NBI

contaminated subcarriers would be accurate since it has much higher intensity of

the FD component compared to that of the IN and background noise. Hence, the

chosen threshold can be sufficiently high to keep a low rate of false alarm. For a

sufficiently low false alarm rate Pf , the threshold Λpre is given by

Λpre =
√

2(σ2
b +ΠIIσ2

i ) · erfc−1 (Pf ) (5.34)

where Λpre is non-adaptive to the SNR. The refined received signal R̂(M) can be

reconstructed by

R̂(M) =

R(FD)
pre (M), M∈ ξ

Rξ̄(M), M∈ ξ̄
(5.35)

which excludes the influence of NBI and has its IFFT counterpart r̂(m), with

m = 0, 1, . . . , N − 1.

Following the pre-FD nulling, it is possible to detect the IN from TD more

accurately. The pre-TD nulling is meant to detect and null the strong portion in

r̂(m), which is defined as

r(TD)
pre (m) =

r̂(m), |r̂(m)| ≤ λpre

0, |r̂(m)| > λpre

(5.36)

where r(TD)
pre indicates the output vector from the pre-TD nulling block. λpre

denotes the threshold for the pre-TD nulling, which can be set for a maximum
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allowed false alarm rate Pf as

λpre =
√

2σr̂ · erfc−1 (Pf ) (5.37)

where σr̂ is the standard derivation of the refined received signal r̂(m) by the

pre-FD nulling. At this stage, a sufficiently low Pf is expected that λpre should

be high enough, and the impact of strong IN would be mitigated. The chosen

threshold varies with σr̂, which is adaptive of various SNR values.

With the benefit of pre-joint FD/TD nulling, an improved initial feedback of

the tentative soft decision Ŝ(M) can be obtained before the IN reconstruction.

Meanwhile, the estimation on noise terms is given by

N̂(M) = R̂(M)− {Hs · Ŝ}(M) (5.38)

which eliminates the influence of NBI by using R̂(M) instead of the received

signal R(M) as in (5.14). Therefore, after the IFFT process, even the initial IN

estimation through (5.15) can be fairly good.

5.3 Numerical Results

The performance of the proposed IN mitigation scheme is evaluated through

extensive simulations over the PLC system in Fig. 5.1, where both scenarios of

NBI absence and NBI presence are considered. The results of BER are obtained

from an uncoded OFDM system with a total of N = 256 subcarriers. As specified

in the HPAV standard [17], about 40% of the total N subcarriers are set to zero

to avoid interference with other applications, i.e., the number of null subcarriers

is set to Nξ = 112, 40% of the total 256 subcarriers during the transmission. A

random PLC channel generator in [7] is applied to obtain the class-9 PLC channel

which is assumed perfectly estimated at the receiver. The IN environment is

generated statistically using the arrival model in (5.6) with Pr(0|0) = 0.98, where

ΠII = 0.1 and σ2
i = 1000σ2

b. Three different NBI environments are considered
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Figure 5.3: Complementary ROC curves for different IN detection schemes over
the PLC system.

as: weakly disturbed (µ = 0.01; pv/σ
2
b = 20 dB), strongly disturbed (µ = 0.9;

pv/σ
2
b = 20 dB) and intensively disturbed (µ = 0.1; pv/σ

2
b = 40 dB). Figs. 5.4, 5.5

and 5.6 are carried out in the absence of NBI (β = 0), while the BER performance

in Figs. 5.7 and 5.8 is evaluated in the presence of NBI (β = 1). Moreover,

the results obtained from the proposed scheme are compared to those from the

previous IN mitigation with the optimal blanking threshold in [40].

In Fig. 5.3, the performance of detecting the nonzero entries in the IN vector of

the proposed scheme is evaluated, in comparison with the conventional detection-

based blanking scheme, using the complementary ROC (1 − Pd versus Pf ) over

the non-NBI and intensive NBI scenarios. The curves are illustrated for SNR =

25 dB, which is high enough to achieve a negligible σ2
ê for the proposed scheme. It

can be seen in Fig. 5.3 that the proposed scheme which can achieve a sufficiently

high detection rate by causing a negligible false alarm rate, outperforms the

conventional blanking in terms of the ability of IN entries detection. According to

the test statistics for the blanking nonlinearity, the associated threshold-based IN

detection is disturbed by the high PAPR, resulting in a poor ROC performance.
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Figure 5.4: BER performance comparison of different mitigation schemes over
the PLC system using data subcarriers only (β = 0).

Meanwhile, the curves reveal that when the system is intensively disturbed by

added NBI, the rate of indistinguishable IN becomes quite high for both schemes

under the impact of high NBI power.

Fig. 5.4 shows the BER performance comparison between the proposed IN

mitigation scheme and the conventional blanking scheme using data subcarriers

only. Let Pe indicate the transmitted PSD. The horizontal axis denotes the signal-

to-background noise power ratio Pe/σ
2
b, which varies from 0 dB to 30 dB. For a

maximum allowed false alarm rate Pf = 10−3 in (5.22), the according thresh-

old value normalised to σn̂ in (5.24) is set as 3.29. It can be observed that the

proposed scheme with complete IN estimation clearly exhibits a much better per-

formance than the conventional blanking scheme especially in high SNR region,

where the curve for blanking illustrates an error floor over various SNR values.

According to (5.9) and (5.15), the high SNR would disturb the IN detection for

blanking nonlinearity, which however provides benefits on the proposed scheme

by causing a fairly low mean squared decision error σ2
ê . Thus, even with initial

IN estimation, the curves reveal that the proposed IN mitigation outperforms
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Figure 5.5: BER performance comparison of different mitigation schemes to show
the benefit of using null subcarriers in the proposed scheme (β = 0).

the blanking nonlinearity when the SNR value achieves 25 dB or above. The

complete IN estimation using data subcarriers only normally costs four or five

iterations, where the soft decision Ŝ cannot be improved any more and should

serve as the hard decision for data output.

The benefit of adopting null subcarriers in the proposed mitigation scheme is

learned in Fig. 5.5 in terms of BER performance. According to (5.21), use of the

null subcarriers containing no decision errors results in a lower σ2
ê , yielding an

improved IN estimation. Hence, the IN can be thoroughly mitigated using the

feedback of the estimated IN as in (5.18) with a reduced number of iterations.

The results show that with the aid of null subcarriers, only one update of the

estimated IN vector is required to lead a BER performance approaching that from

the complete IN estimation.

In Fig. 5.6, a pre-processing block is adopted to extend the use of null sub-

carriers, where the performance of the proposed receiver is further enhanced by

the feedback of an improved initial IN estimation. It can be seen that the pro-

posed scheme with pre-TD processing achieves 5 dB SNR gain over that without
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Figure 5.6: BER performance comparison under the proposed scheme with initial
IN estimation to show the benefit of adopting the pre-TD processing (β = 0).
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w/ NBI (intensively disturbed)

Figure 5.7: BER performance comparison under the proposed scheme with one
update of the IN estimation to see different impacts of NBI on the IN estimation
(β = 1).

pre-TD processing. Under the pre-TD processing aided initial IN estimation, a

fairly good BER performance can be obtained without iteratively updating the

estimated IN vector.

In the presence of NBI (β = 1), the performance of detecting the nonzero
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Proposed scheme w/ complete IN estimation

Figure 5.8: BER performance comparison under the proposed scheme with the
initial IN estimation intensively disturbed by NBI to show the benefit of adopting
the pre-joint FD/TD nulling (β = 1).

entries in the IN vector is affected by the added σ2
v in (5.31) and (5.32), which may

result in an incomplete IN mitigation. The impacts of different NBI environments

are depicted in Fig. 5.7 in terms of BER performance. It can be observed that the

proposed receiver works well under the weak disturbance of NBI, which achieves

BER values close to that with no NBI. In the case of strong disturbance which

has a high value of NBI disturbance ratio µ = 0.9, the null subcarriers assisted

method requires 2.5 dB SNR gain to achieve the same BER of no NBI, which

however still outperforms that without using null subcarriers by approximately

2.5 dB. When the system is intensively disturbed where the NBI to background

noise power ratio at the NBI contaminated subcarriers is considered as 40 dB, the

according BER curve reveals a harmful impact from the ingress of the intensive

NBI, which requires to be eliminated properly before the IN vector reconstruction.

In Fig. 5.8, the benefit of adopting the pre-joint FD/TD nulling is evaluated

under the impact of intensive NBI disturbance. To achieve a sufficiently low false

alarm rate Pf = 10−4, the threshold for pre-FD nulling in (5.34) normalised to
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σb is set as 39.10, while the pre-TD nulling threshold in (5.37) normalised to σr̂

has its value of 3.89. It can be seen that the deployment of the pre-joint FD/TD

nulling at the proposed receiver, results in a near-optimal BER performance with

the initial IN estimation only. The IN vector is accurately reconstructed by the

initial estimation in the proposed scheme with the aid of pre-joint FD/TD nulling,

which outperforms that without pre-mitigation and the conventional blanking

scheme at the BER of 10−2 by approximately 12 dB and 17 dB, respectively. The

effectiveness of the proposed IN mitigation scheme is validated by simulation

results, even under the environment of intensive NBI.

5.4 Summary

In this chapter, the IN mitigation for OFDM-based PLC systems have been stud-

ied. A null subcarriers assisted iterative receiver has been proposed to reconstruct

the IN vector, considering the potential NBI contaminated null subcarriers. The

proposed IN mitigation scheme has been evaluated in the scenarios of NBI ab-

sence and NBI presence, respectively. The ROC expressions of detecting nonzero

entries in the IN vector have been given, which are conditioned by the presence

of NBI. In the absence of NBI, the improvement in IN detection capability of

the proposed scheme over the conventional blanking scheme, has been quantified

by the complementary ROC curves. While both schemes can be harmfully af-

fected under the disturbance of intensive NBI. Moreover, a pre-FD/TD nulling

block has been adopted as an extended use of null subcarriers in the proposed

receiver, in order to improve the initial IN estimation by joint mitigating the

high-amplitude NBI and IN. The associated thresholds for the detection of NBI

and IN can be simply computed, given a desired false alarm rate. Furthermore,

simulation results have demonstrated a much better BER performance of the

proposed receiver than that of the blanking scheme especially in the high SNR

region, meanwhile, a reduced number of iterations is required with the aid of
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null subcarriers in the proposed scheme. In the presence of intensive NBI that

the power of the NBI contaminated subcarriers is extremely high, the IN vector

cannot be reconstructed accurately. Hence, the pre-mitigation is implemented,

which makes it possible to achieve a BER performance with initial IN estimation

only close to that with complete IN estimation. The proposed IN mitigation

scheme is particularly useful at PLC receivers since it combats the disturbance

of NBI whenever the NBI is present, and can probably be applied to any other

communication systems disturbed by both IN and NBI.
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Chapter 6

Higher-Order Statistics Assisted
Narrowband Interference
Detection

Cognitive PLC is of the interest [52] to increase the transmission frequencies

by using the available radio frequencies. NBI is one of the main sources causing

pollution to the PLC spectrum [2], which should be dealt with properly. Accurate

detection of NBI supports system performance enhancement in order to achieve

effective transmission, and also provides a reliable protection of radio applications

for cognitive PLC.

As learned in Chapter 4, NBI from radio systems may become a salient issue

that degrades the PLC system performance, since the unshielded power line can

be a good antenna picking up the radios around [6]. Here, we focus on detect-

ing the NBI from various nearby radio applications, since it has great impact

on system performance and is significant for cognitive PLC. Most existing NBI

detection schemes are for cognitive radio applications, such as matched filtering,

amplitude detection and energy detection methods [4, 51]. The well-known en-

ergy detector is simple and fast, however, it is sensitive to threshold setting and

can not operate for low-power scenarios. A cooperative energy detection scheme

was proposed for cognitive PLC in [54], however, NBI was detected from different

networks rather than at the receiver of a single network. Higher-order statistics
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(HOS) based detection techniques [70] are an alternative solution to the cooper-

ative method, which has significantly better performance especially in low-power

NBI scenarios. However, there lacks a generic theoretical analysis of detection

performance and the previous work did not consider the common disturbance

of IN for PLC systems. Referring to Chapter 3, PLC aperiodic IN incurred by

switching/plugging/unplugging transients of electric appliances such as heater,

oven and incandescent lamp [18, 30] is considered in this chapter. The IN often

occurs randomly in bursts and degrades the PLC system performance signifi-

cantly [2, 25]. Also, the time-domain IN has its energy spread over a wideband

channel and increases the overall power line noise level, which brings a huge chal-

lenge to the conventional NBI detectors. A suitable detection scheme is required

to qualify the NBI detection over PLC systems.

In this chapter, we propose a novel HOS based detection scheme for NBI

from radio applications in cognitive PLC systems. Our work is different in the

following aspects. First, our detection scheme is based on HOS of radio signals

only, and is less complex than the method in [70], where both third-order and

fourth-order statistics are used for NBI detection. It also outperforms the existing

NBI detection schemes based on amplitude level [31] and energy level [71], and

in particular, demonstrates more robustness against low-power NBI. Second, we

consider the presence of IN, which is a challenging and practical problem, but was

not addressed in the previous work on NBI detection. The two-level hierarchical

MC based model proposed in Chapter 3 is applied to generate the occurrence-

dependent IN. Third, we present a closed-form analysis, including analysis of the

NBI detection probability for various detection schemes (amplitude-, energy- and

HOS-based detection schemes), as well as analysis of the system capacity. While

the work in [70] was verified by simulations only. The proposed scheme is shown

to lead to a higher system capacity than the previous schemes, and is therefore

more suitable for cognitive PLC networks.
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In Section 6.1, a system model is presented to describe the NBI detection

scenarios for PLC. In Section 6.2, the proposed NBI scheme is presented. NBI

detection probability is analysed for the proposed HOS based scheme and also

for the conventional schemes in Section 6.3. In Section 6.4, the system capacity

analysis is presented. The conclusion is remarked in Section 6.5.

6.1 System Model

The block diagram of an indoor broadband PLC system is depicted in Fig. 6.1,

where s(t) represents the transmit signal and r(t) is the received signal. A hybrid

of the aperiodic IN ni(t), the NBI v(t) and the background noise nb(t) are the

added disturbance at PLC receiver. While ni(t) is caused from any potential

switching/plug transients of the appliances in the system (ni(t) = 0 means no

noise), and v(t) is from various nearby radio applications (v(t) = 0 means no

interference). The dashed-line block indicates the proposed NBI detection scheme

at the receiver, considering two different scenarios. Without loss of generality,

we assume only one aperiodic IN source and one narrowband interferer. The

background noise nb(m) is assumed to be AWGN with zero mean and variance

σ2
b. ni(m) is the considered IN at PLC receiver, which has a zero mean and

variance σ2
i . It is assumed that the variance of the background noise is much

lower than that of the IN, i.e., σ2
b � σ2

i . The NBI v(m) is from various nearby

radio applications.

Overall Disturbance Model : In a discrete-time system, since both IN and NBI

occur with probabilities, the general added disturbance n(m) can be expressed as

n(m) = α · ni(m) + β · v(m) + nb(m) (6.1)

In (6.1), α, β ∈ {0, 1} are the parameters indicating the occurrence states (ab-

sence or presence) of the IN and NBI respectively. Pr(α = 1) denotes the IN

occurrence probability, while Pr(β = 1) reflects the NBI occurrence probability.
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Figure 6.1: Block diagram of a PLC system with NBI detection.

Impulsive Noise Model : Referring to Chapter 3, it is assumed that each event

of the switching/plugging transients produces a noise burst. The burst IN often

occurs with much higher power over the background noise, which increases the

overall power line noise level and brings challenges for NBI detection. The oc-

currence of a burst can be described by the first level MC, and the occurrence of

individual impulses within a burst are characterised by the second level MC. The

first-order Markov process can be described by its transition probability matrix,

which is conditioned by the previous one state. Steady-state probability (SSP)

can be applied to define the occurrence probability of an event under discrete-time

Markov process, where the next state probabilities have dependence on the cur-

rent state probabilities and are determined by the transition probability matrix

as

Πt+1 = PΠt (6.2)

where P is transition probability matrix, which has the elements defined by

Pr({t+ 1}|{t}). The probability of the next state ‘{t+ 1}’ is conditioned by the

current state ‘{t}’. Πt is a column vector whose elements represent the state

probabilities at time t. In the steady state, we have Πt+1 = Πt.

Let ΠI denote the SSP of incurring a burst in the first level MC, and ‘{t}I’

indicate the state of first level MC at the discrete-time t. The corresponding state
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has a value of ‘1’ in the presence of a burst, otherwise ‘0’ represents the absent

of noise burst, solving (6.2) yields

ΠI = Pr({t+1}I=1|{t}I=0)
Pr({t+1}I=1|{t}I=0)+Pr({t+1}I=0|{t}I=1)

(6.3)

which is weighted by the corresponding transition probabilities. ΠII indicates the

SSP of producing an individual impulse in the second level MC, which can be

derived in a similar way as

ΠII = Pr({t+1}II=1|{t}II=0)
Pr({t+1}II=1|{t}II=0)+Pr({t+1}II=0|{t}II=1)

(6.4)

where the steady-state probabilities ΠI and ΠII are independent of the initial

transition probabilities.

In the presence of a noise burst, the corresponding arrival rate of the sample

impulses normalised to the sampling interval, follows the reciprocal value of the

number of consecutive non-impulse states k between two impulses, which has the

probability distribution for remaining in the non-impulse state as

P (k) = Pr(0|0)k−1 · (1− Pr(0|0)) (6.5)

The steady-state probabilities ΠI, ΠII and the arrival model can describe the

particular impulsive environment in the considered PLC system accurately, which

are important to verify the effectiveness of the proposed NBI detection scheme in

the presence of IN.

6.2 HOS-based NBI Detection

As shown in Fig. 6.1, the NBI detection scheme should be implemented in both

scenarios of IN absence (α = 0) and IN presence (α = 1), with the probabilities

of Pr(α = 0) and Pr(α = 1), respectively.

The proposed NBI detection scheme is actually to classify between the follow-

ing two hypotheses

n(m) =

α · ni(m) + nb(m) H0,

α · ni(m) + v(m) + nb(m) H1.
(6.6)

94



where α = 0 denotes that NBI detection is performed in the absence of PLC

IN, while α = 1 indicates the scenario often applied to indoor PLC systems that

wideband IN is present during the NBI detection. The two hypotheses of H0 and

H1 refer to NBI absence and NBI presence, respectively.

Generally, to test the two hypotheses H0 and H1, the test statistics K for the

kth-order statistics can be expressed as

K =
N∑
m=1

|n(m)|k (6.7)

The decision can be obtained by comparing the test statistics of K against

a certain threshold λ. The performance of a detector can be evaluated by the

probability of detection Pd and the probability of a false alarm Pf , which are

defined as

Pd = Pr(K > λ|H1) (6.8)

Pf = Pr(K > λ|H0) (6.9)

where Pd denotes the probability that a signal is correctly detected when an NBI

event occurs, and Pf represents the probability that an NBI occurrence event is

wrongly detected when there is no NBI present. Pd and Pf of a detector are

two key interrelated parameters to assess the detection performance. The given

threshold λ results in a trade-off, since a high value of Pd and a low value of Pf

are expected. A best trade-off can be selected for specific system requirements,

and varies according to different criteria [31]. The decision threshold λ varies

according to different values of test statistics K for a given Pf , and is conditioned

by the parameter value of α.

HOS is an effective tool for NBI detection. In [70], an HOS based method

was empirically evaluated by a testbed for cognitive radio. The bounds of the

probability distributions of the HOS were given in [72] according to the Cheby-

shev inequality. There lacks analysis of the probability distributions of HOS
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and analytical connection between statistics of different orders. In the following,

closed-form expressions are presented for the HOS-based probabilities.

With a large number of OFDM subcarriers, a large number N of OFDM

subcarriers, the unknown signal v(m) follows a Gaussian distribution of N (0, σ2
v).

For the fourth-order statistics of K, it follows an example of K-distribution [73],

which can be defined as a product distribution of two random variables having a

gamma distribution. For K > 0, the PDF of a generalized K-distribution with

the normalised average power can be shown as [74]

f(K; ν, L) =
2(Lν)(L+ν)/2

Γ(L)Γ(ν)
K

L+ν
2
−1Kν−L

(
2
√
LνK

)
(6.10)

where Γ(·) denotes the gamma function [68], ν and L are shaping parameters.

Km(·) in (6.10) is the mth-order modified Bessel function of the second kind. To

simplify the K-distribution algorithm, an accurate approximation to the PDF

of K-distribution has been given in [75], in order to avoid detailed calculation

involving modified Bessel functions of the second kind. Hence, with 2N degrees

of freedom that L = ν = N , (6.10) can be simplified as

f(K;σ2
n,α) =

N2
√
π
(
NK1/2

)2N− 5
2(√

2σn,α=0

)4N−1
Γ2(N)

· e
−NK1/2

σ2n,α (6.11)

where n = 1, 2, with σ2
1,α=0 = σ2

b and σ2
2,α=0 = σ2

b +σ2
v for non-impulsive scenarios.

While, σ2
1,α=1 = σ2

b + ΠIIσ
2
i and σ2

2,α=1 = σ2
b + ΠIIσ

2
i + σ2

v when the scheme is

disturbed by IN.

The cumulative distribution function (CDF) of the K-distribution can be

defined as F (K;λ) = Pr(K ≤ λ), which is the integral of its PDF in (6.11) and

expressed as

F (u;λ) =
∫ λ

0

f(u;σ2
1,α) H0

f(u;σ2
2,α) H1

du. (6.12)

In threshold-aided signal detection, F̄ (K;λ) = Pr(K > λ) = 1 − F (K;λ) de-

notes the complementary cumulative distribution function (CCDF), which has
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applications in statistical hypothesis testing. For the proposed HOS-based de-

tector, CCDF of K can be obtained by solving (6.12), and used to evaluate the

detection probabilities.

In OFDM systems, the decision metric of K in (6.7) is equivalent to the test

statistics of the frequency-domain fourth order cumulants [76] after performing

the fast Fourier transform (FFT), which can be expressed as

C4(ω) =
1

N

∑
z
n2(z)n2(z + ω)−

[
1

N

∑
z
n2(z)

]2

− 2
[

1

N

∑
z
n(z)n(z + ω)

]2

(6.13)

The frequency-domain kurtosis is estimated by setting ω = 0,

C4(0) =
1

N

∑
z
n4(z)− 3

[
1

N

∑
z
n2(z)

]2

(6.14)

(6.13) has its inverse FFT counterpart to be shown as [77]

F−1{C4(τ)} = |{n ∗ n}(τ)|2 − [C2(0)]2 δ(τ)− 2{R ∗R}(τ) (6.15)

where ∗ denotes the discrete-time convolution, e.g., {n ∗ n}(τ) =
∑
m n(m)n(τ −

m), the variance C2(0) = E[n2(m)] and R(τ) is the autocorrelation of n(m).

Thus, we have

F−1{C4(0)} = [C2(0)]2 − [C2(0)]2 − 2{R ∗R}(τ)|τ=0 (6.16)

i.e., ∣∣∣F−1{C4(0)}
∣∣∣ = 2

∑
m
|n(m)|4 (6.17)

which is the test statistics of the proposed HOS-based method in (6.7) with k = 4.

6.3 Analysis of NBI Detection Probabilities

In this section, we present an analysis of the NBI detection probabilities, including

the correct detection probability and false alarm probability of an NBI occurrence

in Subsection 6.3.1, and the overall NBI detection probability in Subsection 6.3.2.
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6.3.1 Receiver Operating Characteristic Performance

In order to evaluate the proposed detector performances, the receiver operating

characteristic (ROC) curve and its variants are commonly used [67]. ROC curves

explore the relationship between the probability of detection and the probability

of false alarm for a range of varied thresholds. Different NBI detection approaches

result in different ROC curves for the considered PLC system and hence, it pro-

vides a valuable tool to select a more reliable detector according to the ROC

performance comparisons among a number of different detectors. For a given

probability of false alarm, the higher the probability of detection, the better the

detection technique is. On the other hand, with a robust detector, it is possible

to meet the requirement of the probability of detection for a reduced probability

of false alarm.

The complementary ROC performance [67], defined as (1 − Pd) vs. Pf , is

to explore the relationship between the probability of miss detection and the

probability of false alarm. In the following, we present analysis of Pd and Pf

for the proposed HOS based detection scheme, and also for the first-order based

scheme [31] and the second-order statistics (SOS) based scheme [71], which were

not analysed in the literature.

In the steady state of IN, the PDF of the combined power line impulsive and

background noise is given by

f(H0) = (1−ΠII) · N (0, σ2
b) +ΠII · N (0, σ2

b + σ2
i ) (6.18)

HOS based Detection: For the proposed HOS-based NBI detector, CCDF

of K can be obtained by solving the complementary of (6.12) i.e., F̄ (K;λ) =

1−F (K;λ). UnderH0 in (6.6), Pf,α can be evaluated using the CCDF F̄ (K;λ|H0)

yields

Pf,α =

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
1,α

)
(6.19)

where Γ(·, ·) denotes the upper incomplete gamma function [68]. Pf,α is the
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probability of false alarm. Likewise, underH1 in (6.6), the probability of detection

Pd,α can be obtained similarly as

Pd,α =

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
2,α

)
(6.20)

where the values of both Pf,α and Pd,α are conditioned by the occurrence status of

IN. In the absence of IN (α = 0), the detection and false alarm probabilities can

be derived using σ2
1,α=0 = σ2

b and σ2
2,α=0 = σ2

b + σ2
v . While, in the presence of IN

(α = 1), the associated probabilities can be calculated with σ2
1,α=1 = σ2

b + ΠIIσ
2
i

and σ2
2,α=1 = σ2

b +ΠIIσ
2
i + σ2

v .

First-Order based Detection: The first-order statistics of K follow a Gaussian

distribution according to these assumptions. Thus, for an amplitude-level based

detector [31], the detection and false alarm probabilities can be expressed as

Pf,α = erfc

(
λ

σ1,α

√
2

)
(6.21)

Pd,α = erfc

(
λ

σ2,α

√
2

)
(6.22)

where erfc is the complementary error function [68]. For the non-IN case, σ2
1,α=0 =

σ2
b and σ2

2,α=0 = σ2
b +Nσ2

v . Under the disturbance of IN, σ2
1,α=1 = σ2

b +ΠIIσ
2
i and

σ2
2,α=1 = σ2

b +ΠIIσ
2
i +Nσ2

v .

SOS based Detection: For the second-order statistics of K, which is widely ap-

plied in spectrum sensing techniques, K follows a chi-square distribution with 2N

degrees of freedom (special case of gamma distribution). Hence, the probabilities

Pf,α and Pd,α of an energy detector [71] can be calculated as

Pf,α =
Γ
(
N, λ

2σ2
1,α

)
Γ(N)

(6.23)

Pd,α =
Γ
(
N, λ

2σ2
2,α

)
Γ(N)

(6.24)
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Figure 6.2: Complementary ROC curves for different NBI detection schemes in
the case of background noise only.

where σ2
1,α=0 = σ2

b and σ2
2,α=0 = σ2

b + σ2
v for non-impulsive scenarios. While,

σ2
1,α=1 = σ2

b + ΠIIσ
2
i and σ2

2,α=1 = σ2
b + ΠIIσ

2
i + σ2

v when the scheme is disturbed

by IN.

In Fig. 6.2, the complementary ROC performances of different NBI detection

schemes are shown for the case with background noise only (α = 0), with N =

128, σ2
b = 1 and the 20 dB NBI power normalised to the background noise power.

The proposed method performs much better than the approaches in [31, 71] and

maintains almost a perfect detection at a negligible false alarm rate.

It can be seen that the widely used SOS based energy detector has a moderate

performance with a simple and fast operation. However, it is sensitive to threshold

and can not operate for a relatively low NBI power (weakly disturbed) scenario.

[71] proposes to apply diversity schemes such as square-law combining (SLC)

and square-law selection (SLS) to improve the energy detection capability. The

proposed HOS-based detection method can be treated as implementing a second-

order diversity of the SLC, which has the property that

Pr
(∑L

i=1
Ki > λ

)
∼ Γ (LN, λ) (6.25)
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Figure 6.3: Complementary ROC curves for different NBI detection schemes in
the presence of IN (σ2

i /σ
2
b = 100, ΠII = 0.1 and Pr(0|0) = 0.98).

where L diversity branches are assumed. In the case that L = 2 and N is

large enough, the improved energy detector performance is analogous to that of

our proposed detector in analytical form as (6.19) and (6.20). However, due to

the higher performance sensitivity to HOS of NBI than that to the NBI energy,

approximately half of the gain over the amplitude-level detector is lost when

applying the energy detector with diversity scheme.

In Fig. 6.3, the complementary ROC performance considering the impact of

power line IN (α = 1) for σ2
i = 100σ2

b, ΠII = 0.1 and Pr(0|0) = 0.98 is evaluated,

rather than for the background noise only case as shown in Fig. 6.2. In PLC

channel, the wideband IN power normalised to the background noise power is

10 dB since the time-domain IN spreads its power over the whole PLC frequency

spectrum, which causes an increase of the average noise level. Thus, the radio

interference has relatively low power above the noise level and the weak NBI

would be submerged in the strong power line noise, increasing the risk of high miss

detection rate. It can be seen in Fig. 6.3 that the rate of indistinguishable NBI is

quite high by deploying the energy detector under IN, while the proposed HOS-
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based method presents a similar performance as the energy detector achieved for

background noise only.

6.3.2 Overall Detection Performance

For the considered PLC system in Fig. 6.1, the potential IN source separates

the NBI detection into two scenarios, with the probability Pr(α = 0) for the

scenario 1 of IN absence and the probability Pr(α = 1) for the scenario 2 of IN

presence. Here, we evaluate the overall detection performance of the proposed

HOS-based method considering both scenarios.

Let π(0) and π(1) be the SSP for the scenario of IN absence and the scenario

of IN presence, respectively. The overall probability of false alarm P̄f and the

overall probability of detection P̄d can be written as

P̄f =
∑1

α=0
π(α) · Pf,α (6.26)

P̄d =
∑1

α=0
π(α) · Pd,α (6.27)

where
∑1
α=0 π(α) = Pr(α = 0) + Pr(α = 1) = 1, and assuming that Pr(α =

1) = ΠI, applying Pf,α in (6.19) and Pd,α in (6.20), the overall NBI detection

probabilities achievable for the considered PLC system can be formulated as

P̄f =(1−ΠI)

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,
λ

4σ4
b

)

+
ΠI

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
1,α=1

)
(6.28)

P̄d =(1−ΠI)

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
2,α=0

)

+
ΠI

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
2,α=1

)
(6.29)

where σ2
1,α=1 = σ2

b +ΠIIσ
2
i , σ2

2,α=0 = σ2
b + σ2

v and σ2
2,α=1 = σ2

b +ΠIIσ
2
i + σ2

v .

102



10
−4

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 M

is
s 

D
et

ec
tio

n

 

 

Π
I
 = 0.01

Π
I
 = 0.1

Π
I
 = 0.5

Figure 6.4: Complementary ROC curves of the proposed NBI detection scheme
for different IN occurrence probabilities over the PLC system.

In Fig. 6.4, the overall capability of the proposed HOS-based detector is eval-

uated across the considered PLC system for different occurrence probabilities

of the IN event, including ΠI = 0.01 for the weak impact, ΠI = 0.1 for the

medium impact and ΠI = 0.5 for the strong impact. σ2
i = 100σ2

b, ΠII = 0.1 and

Pr(0|0) = 0.98 are assumed. It can be seen that with high impulsive to back-

ground noise power ratio, the increase in the threshold results in the decrease in

the detection rate, but barely results in reduction of the overall false alarm rate

due to the occurrence of IN, yielding a sharp increase in the probability of miss

detection perspective. The false alarm rate achieved on the sharp increase in the

miss detection rate is determined by the occurrence probability of IN, i.e., ΠI,

and 1/10 times of the value of ΠI yields a gain of one order of magnitude in the

probability of false alarm perspective.

6.4 System Performance Analysis

The proposed NBI detection and false alarm probabilities considering the IN

disturbance have been learned. In this section, an intensive performance analysis
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of the proposed detection scheme is provided for the considered PLC system.

6.4.1 Markov’s Inequality

For the proposed HOS-based NBI detection capability as (6.19) and (6.20), PLC

IN ni(m) may not have the Gaussian PDF for the wideband distribution. The

Markov’s inequality [78] yields an upper bound of the probability that the non-

negative random variable K lies above the threshold for any λ > 0, which refers

to the CCDF of K, i.e.,

Pr(K > λ) <
4σ4

n,α=1

λ
(6.30)

where n = 1, 2, with σ2
1,α=1 = σ2

b + ΠIIσ
2
i and σ2

2,α=1 = σ2
b + ΠIIσ

2
i + σ2

v . Hence,

the probabilities Pf,α=1 and Pd,α=1 satisfy

Pf,α=1 <
4 (σ2

b +ΠIIσ
2
i )

2

λ
(6.31)

Pd,α=1 <
4 (σ2

b +ΠIIσ
2
i + σ2

v)
2

λ
(6.32)

The occurrence of time-domain IN varies significantly according to different

events [58], hence in OFDM system, it is natural to assume an unknown distri-

bution of IN across the subcarriers. The Markov’s inequality applies to arbitrary

probability distribution, and the probabilities are upper bounded as expressed in

(6.31) and (6.32). In the case that the number of OFDM subcarriers is sufficiently

large, the noise distribution follows Gaussian and the detection probabilities can

be evaluated using (6.19) and (6.20).

6.4.2 Maximum Bandwidth Efficiency Achievable under
IN and NBI

In this subsection, we analyse the system capacity (maximum bandwidth ef-

ficiency achievable) with the proposed NBI detection scheme. As shown in
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(6.1), α, β ∈ {0, 1} are the parameters indicating the occurrence states (ab-

sent or present) of the IN and NBI respectively. Let π(α, β) = Pr(α ∩ β) de-

note the joint steady-state probabilities of the events of IN and NBI. It is as-

sumed that the occurrence of IN and NBI is statistically independent, where

π(1, 1) = Pr(α = 1)Pr(β = 1) reflects the probability that both events oc-

cur. Let probabilities π(η), η ∈ {0, 1} indicate the NBI detection performance,

where π(η)|η=1 reflects the probability of detection and the probability of false

alarm for the scenarios of NBI presence and NBI absence, respectively. The value

of π(η)|η=1 is conditioned by the event of IN as learned previously in Subsec-

tion 6.3.1, and π(η)|η=0 = 1−π(η)|η=1. Let C(α, β, η) be the corresponding max-

imum bandwidth efficiency under the specific scenario. Thus, the general maxi-

mum bandwidth efficiency achievable for the considered PLC system in Fig. 6.1

is given by

C =
∑1

α=0

∑1

β=0

∑1

η=0
π(α, β, η)C(α, β, η) (6.33)

where 
π(α, 0, 0)
π(α, 0, 1)
π(α, 1, 0)
π(α, 1, 1)

 =


P(H0) · (1− Pf,α)
P(H0) · Pf,α

P(H1) · (1− Pd,α)
P(H1) · Pd,α


and [

π(0, β, η)
π(1, β, η)

]
=

[
1−ΠI

ΠI

]

P(H0) and P(H1) denote the probabilities of NBI absence and presence, respec-

tively. We have 
Pf,α=0

Pd,α=0

Pf,α=1

Pd,α=1

 =


Pr(η = 1|α=0,β=0)
Pr(η = 1|α=0,β=1)
Pr(η = 1|α=1,β=0)
Pr(η = 1|α=1,β=1)


which has been defined in (6.19) and (6.20). For the scenario that NBI is present

and has been successfully detected using our proposed method when IN also

occurs at the same time, the associated probability π(1, 1, 1) can be formulated
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as

π(1, 1, 1) =
ΠIP(H1)

√
π

22N− 3
2 Γ2(N)

· Γ
(

2N − 1

2
,

λ

4σ4
2,α=1

)
(6.34)

We analyse the system capacity for the application of spectrum sharing cog-

nitive PLC, where the so called NBI at PLC receiver is assumed from the radio

primary, such as some narrowband amateur radio users around and operated in-

side the broadband PLC spectrum [5]. Cognitive PLC should be able to adapt

the transmit power based on the decision of the NBI detection. Let P0 be the

normal transmit power to be used when NBI is not detected, and it should be

reduced to a lower power P1 when NBI is detected to protect the radio primary.

Due to imperfect NBI detection, in the scenario of positive detection (η = 1), the

associated capacity can be classified into four different cases based on the status

of radio users and IN as
C(0, 0, 1)
C(0, 1, 1)
C(1, 0, 1)
C(1, 1, 1)

 =


log2 (1 + P1|H(f)|2/σ2

b)
log2 (1 + P1|H(f)|2/(σ2

b + σ2
v))

log2 (1 + P1|H(f)|2/(σ2
b +ΠIIσ

2
i ))

log2 (1 + P1|H(f)|2/(σ2
b +ΠIIσ

2
i + σ2

v))


where H(f) denotes the average PLC channel attenuation.

In the scenario that NBI is present and has been successfully detected given IN

occurs, cognitive PLC will transmit with a lower power P1 on a higher power line

noise level, and hence has harmful impact on the system performance with sig-

nificantly reduced capacity in C(1, 1, 1). Since NBI occurs frequency selectively

in comparison with wideband IN and background noise, orthogonal frequency-

division multiplexing (OFDM) can be applied to mitigate the impact of NBI,

which is also specified in current PLC standard [17]. In OFDM PLC, the sub-

carriers with NBI have negligible capacities, thus C(1, 1, 1) can be derived as

C(1, 1, 1) ≈(1−ΠII)

N
·
N∑
i=1

log2

(
1 +

P1|H(fi)|2

Pb

)

+
ΠII

N
·
N∑
i=1

log2

(
1 +

P1|H(fi)|2

Pb + P (imp)

)
(6.35)
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where Pb is the background noise power spectral density (PSD), which is denoted

by σ2
b, N is the number of subcarriers. P (imp) denotes the PSD of IN.

Given the scenario of NBI presence (β = 1), a power constraint is imposed to

limit the average interference within a tolerable power level by the radio users,

and it can be formulated as

∑1

α=0

∑1

η=0
π(α, 1, η)Pη ≤ Pmax (6.36)

where Pmax indicates the maximum tolerable average interference normalised by

the average channel gain between the cognitive PLC transmitter and the radio

receiver. When α = 0, a simplified formulation of (6.36) in [61] was considered

for cognitive radio with AWGN only. Moreover, we consider the presence of IN

(α = 1) for cognitive PLC, and hence (6.36) is equivalent to

(1−ΠI)P(H1)(1− Pd,α=0)P0 + (1−ΠI)P(H1)Pd,α=0P1

+ΠIP(H1)(1− Pd,α=1)P0 +ΠIP(H1)Pd,α=1P1 ≤ Pmax (6.37)

Inserting the overall probability of detection for the considered PLC system in

(6.27), yields

(1− P̄d)P(H1)P0 + P̄dP(H1)P1 ≤ Pmax (6.38)

thus, it can be derived that

P̄d ≥
P(H1)P0 − Pmax
P(H1)(P0 − P1)

(6.39)

where the average probability of detection should meet a minimum required value

to protect the radio primary, and for a given probability of false alarm, the higher

the probability of detection, the more protection to the radio users. Hence, the

NBI detection scheme with higher ROC performance can protect the radio users

more effectively.

Given the scenario of NBI absence (β = 0), and assuming low occurrence

probability of IN bursts, i.e., ΠI is close to 0, and using the overall probability

107



of false alarm in (6.26), the maximum bandwidth efficiency in (6.33) can be

expressed as

C =
(1−ΠI)P(H0)

N

(1− P̄f )
N∑
i=1

log2

(
1 +

P0|H(fi)|2

Pb

)

+ P̄f
N∑
i=1

log2

(
1 +

P1|H(fi)|2

Pb

) (6.40)

which implies that the overall system capacity is dominated by the adaptive

transmit power, background noise and the channel attenuation. For a given

probability of detection following the constraint in (6.39), it can be seen in (6.40)

that the lower the probability of false alarm, the higher the capacity achievable for

spectrum sharing cognitive PLC. Hence, the NBI detection scheme with higher

ROC performance results in a better system performance.

In Fig. 6.5, the maximum bandwidth efficiencies achievable in (6.40) are

demonstrated for different detection schemes. For a target P̄d following the

constraint in (6.39), the corresponding P̄f varies from different detectors. The

horizontal axis denotes the signal-to-background noise power ratio P0/Pb, which

varies from 0 dB to 20 dB. A random PLC channel generator in [7] is applied

to obtain the class-9 channel from 1.8 MHz-100 MHz. We consider ΠI = 0.01,

P(H0) = 0.9, P1 = 0.1P0, N = 128 and the target probability of miss detection

(1 − P̄d) is 10−3. It can be seen in Fig. 6.5 that under the target probability of

miss detection, the proposed HOS-based detector has its average probability of

false alarm low enough yielding a negligible loss in the system capacity. Using

the amplitude-level detector, the maximum bandwidth efficiency is lowered by

around 2 bps/Hz for SNR = 10 dB, comparing to the perfect case with no false

alarm.
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Figure 6.5: Maximum bandwidth efficiency achievable under different NBI detec-
tion schemes for a target probability of miss detection (1− P̄d = 10−3).

6.4.3 Dynamic Notching Implementation on the NBI Fre-
quencies

Due to the concern about disturbing the surrounding radio users, many of the

existing systems do not consider some HF bands for PLC transmission [79]. Nor-

mally, a static notching is applied as in the HPAV standard [17], that the subcar-

rier with NBI and its neighbour ±4 subcarriers are too notched. In Future PLC

systems, in order to get higher data rate, PLC aims to share spectrum with other

radio frequencies. An effective dynamic notching scheme may be essential to pro-

tect the valid radio services, and mitigate the effect of NBI from the active radios

at the same time [6, 54]. To resolve the coexistence issue, the spectrum should

be monitored and detected in real time, and then adjust the notched frequencies

adaptively.

The comparisons of normalised throughput between the dynamic and static

notching implementations are reflected in Fig. 6.6, with N = 128, P(H1) =

0.1, and average SNR of 10 dB at a class-9 channel output. Assuming no IN

occurs, and the NBI frequencies are pre-known with a perfect detection of the
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Figure 6.6: Comparison of the theoretical throughput between the dynamic and
static notching schemes, in terms of the outage probability that the received SNRs
are below a certain value of γmin, for an average SNR = 10 dB at a class-9 channel
output.

NBI presence. It can be seen that with the dynamic notching scheme, 25% more

subcarriers in average provide the data rate over 2 bps/Hz, than the normal static

notching approach. The results obtained show the significance of implementing

an effective detection of the NBI from radio bands for cognitive PLC.

6.5 Summary

In this chapter, an HOS-based NBI detection scheme has been proposed, con-

sidering the occurrence model of power line IN. Analytical expressions for the

probability of detection, which is conditioned by the presence of wideband IN

have been given. The proposed detection scheme has been implemented in both

scenarios of IN absence and IN presence, respectively. The improvement in detec-

tion capability of the proposed scheme over the conventional methods, has been

quantified using the complementary ROC curves. The HOS-based NBI detection

scheme is shown to be more suitable for PLC systems as it is robust against IN.

Simulation results have demonstrated a near perfect system capacity achievable
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with the proposed NBI detection scheme, indicating its suitability for cognitive

PLC networks by allowing sharing of the spectrum of radio frequencies. The dy-

namic spectrum access approach is of the interest in added interference channels,

especially for future cognitive PLC solutions, which improves the throughput by

sharing the spectrum of radio frequencies.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, a thorough study has been made on IN and NBI for indoor broad-

band PLC, ranging from measurement, modelling, detection and mitigation tech-

niques, and performance analysis. The main achievements of the study are high-

lighted in the following:

• In Chapter 3, a hybrid statistical model to describe the correlation of IN,

and a two-level MC based model to describe the occurrence dependence of

IN has been proposed, based on the measurement results. The models are

generic and adaptive to different scenarios (the BG model [2] can be treated

as a special case where impulses are independent). By simply adjusting the

value of the weight coefficient in the hybrid model, the level of correlation

between consecutive impulses can be changed. The example IN illustrates

that MC is suitable to model the transitions among time states, where it is

more realistic to consider multiple impulse states in the two-level MC. The

proposed models are validated in reference to the measured results.

• In Chapter 4, a 3D MC based statistical model to describe the occurrence

dependence of NBI has been proposed, based on the measurement results.

The example NBI illustrates that MC is suitable to model the transitions

among time states, where it is more realistic to consider multiple NBI states
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in the 3D MC. The proposed model is validated in reference to the measured

results. The analytical throughput considering the impact of both IN and

NBI has been investigated. The dynamic spectrum access approach is of

the interest in added interference channel, especially for future cognitive

PLC solutions, which improves the throughput by sharing the spectrum of

radio bands.

• In Chapter 5, the IN mitigation for OFDM-based PLC systems have been

studied. A null subcarriers assisted iterative receiver has been proposed

to reconstruct the IN vector, considering the potential NBI contaminated

null subcarriers. The proposed IN mitigation scheme has been evaluated

in the scenarios of NBI absence and NBI presence, respectively. The ROC

expressions of detecting nonzero entries in the IN vector have been given,

which are conditioned by the presence of NBI. In the absence of NBI, the

improvement in IN detection capability of the proposed scheme over the con-

ventional blanking scheme, has been quantified by the complementary ROC

curves. While both schemes can be harmfully affected under the disturbance

of intensive NBI. Moreover, a pre-FD/TD nulling block has been adopted

as an extended use of null subcarriers in the proposed receiver, in order

to improve the initial IN estimation by joint mitigating the high-amplitude

NBI and IN. The associated thresholds for the detection of NBI and IN

can be simply computed, given a desired false alarm rate. Furthermore,

simulation results have demonstrated a much better BER performance of

the proposed receiver than that of the blanking scheme especially in the

high SNR region, meanwhile, a reduced number of iterations is required

with the aid of null subcarriers in the proposed scheme. In the presence of

intensive NBI that the power of the NBI contaminated subcarriers is ex-

tremely high, the IN vector cannot be reconstructed accurately. Hence, the

pre-mitigation is implemented, which makes it possible to achieve a BER
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performance with initial IN estimation only close to that with complete IN

estimation.

• In Chapter 6, we have proposed an HOS-based NBI detection scheme for

broadband cognitive PLC networks, considering the occurence model of IN.

Closed-form expressions for the probabilities of detection have been given.

The improvement in detection capability of the proposed NBI detection over

the conventional methods, has been quantified using the complementary

ROC curves. The HOS based NBI detection scheme is shown to be more

suitable for PLC systems as it is robust against IN. Simulation results have

demonstrated a near perfect system capacity achievable with the proposed

NBI detection scheme, indicating its suitability for cognitive PLC networks

by allowing sharing of the spectrum of radio frequencies.

As a conclusion, the proposed work in this thesis is applicable to the PLC

systems under the disturbance of both IN and NBI, and also optimises the system

performance.

7.2 Future Work

Following this thesis, it is desirable to extend the work in the future as:

• The performance of PLC suffering from IN and NBI is analysed in an OFDM

system in this thesis. Future work includes performance optimisation tech-

niques in a single-carrier frequency-domain equalisation (SC-FDE) system

[80, 81] in order to reduce the high PAPR of signals in OFDM systems.

• IN and NBI mitigation can be extended in a SC-FDE based PLC sys-

tem. The NBI from radio applications normally appears at null subcarriers,

where the frequencies are notched from the PLC transmit power spectrum.

Some of the unexpected NBI may have the ingress at data subcarriers.
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Mitigation of NBI on data subcarriers in a SC-FDE system can be studied.

Moreover, hybrid SC-FDE/OFDM PLC systems can be considered.

• Dynamic channel frequency response due to the connection/disconnection

of electric appliances inside the grid can be investigated with extensive mea-

surement. Different PLC channel attenuation models will be considered. As

learned in Chapter 3, different plugging/unplugging operations reproduce

different statistics of IN, which can be applied as a signature for channel

estimation. Hence, the patterns of burst IN can be further analysed for the

dynamic channel variations.

• Extensive work can be conducted on spectrum sharing cognitive PLC for

the demand of high throughput indoor PLC networking. Specifically, as

learned in Chapter 6, PLC limits the transmit power from the higher power

P0 to the lower power P1, in order to avoid causing intolerable interference

to the radio users. The ratio of P1/P0 is not given, since it is bounded

by the values of maximum tolerable interference and the total aggregated

interference at the radio receivers. The connection between P0 and P1 can

be further studied. Also, the aggregated interference from the power line

network to radio receivers can be learned.

• The IN mitigation scheme proposed in this thesis is at the OFDM receiving

end. IN mitigation can be further considered at OFDM transmitters. For

example, clipping of the large magnitude signals to reduce the high PAPR

problem and make the IN reconstruction more accurate. Also, it is an

interesting technique to add a random phase rotation in the transmit OFDM

symbol, and rotated back at receiver to avoid the tail of noise PDF.
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Appendix A

Derivation of the Autocorrelation
Function of Impulsive Noise

The autocorrelation function of ni(m) can be expressed as R(k) = E[ni(m+ k) ·

ni(m)]. By using (3.2), it becomes

R(k) = Rxx(k) + w ·Rxni
(k + 1) + w ·Rnix(k − 1) (A.1)

where Rnix(k) is the cross-correlation between ni(m) and x(m), expressed as

Rnix(k) = E[ni(m+ k) · x(m)]

=
w√

1 + w2
Rnix(k − 1) +

1√
1 + w2

Rxx(k) (A.2)

Rxx(k) in (A.1) and (A.2) is the autocorrelation function of x(m), and Rxx(k) =

σ2
x · δ(k). Thus, we derive Rnix(k) as

Rnix(k) =
1√

1 + w2
· σ2

x

(
w√

1 + w2

)k
u(k) (A.3)

where u(k) is the step function, and the cross-correlation Rxni
(k) = Rnix(−k) can

be solved as

Rxni
(k) =

1√
1 + w2

· σ2
x

(
w√

1 + w2

)−k
u(−k) (A.4)

Thus, by substituting (A.3) and (A.4) into (A.1), the autocorrelation function in

(3.3) can be derived.
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Appendix B

Derivation of the PSD of
Impulsive Noise

The PSD of ni(m) can be defined as the discrete-time Fourier transform of its

autocorrelation function as S(f) =
∑
k R(k)e−j2πkf/fs . By applying (3.3), it can

be expressed as

S(f) = σ2
x

∞∑
k=−∞

(
w√

1 + w2

)|k|
e−j2πkf/fs (B.1)

which is equivalent to

S(f) = σ2
x ·

 −1∑
k=−∞

(
w√

1 + w2

)−k
e−j2πkf/fs

+
∞∑
k=0

(
w√

1 + w2

)k
e−j2πkf/fs

 (B.2)

where (B.2) can simply be expressed as

S(f) = σ2
x ·

 1

1− (w/
√

1 + w2)e−j2πf/fs

− w/
√

1 + w2

w/
√

1 + w2 − e−j2πf/fs

 (B.3)

It can be derived that

|S(f)|2 = S(f)S∗(f)

= σ4
x

 1 + (w/
√

1 + w2)2

1 + (w/
√

1 + w2)2 − 2(w/
√

1 + w2) cos(2πf/fs)

− 4(w/
√

1 + w2)2(
1 + (w/

√
1 + w2)2 − 2(w/

√
1 + w2) cos(2πf/fs)

)2
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+
2(w/

√
1 + w2)(1 + (w/

√
1 + w2)2) cos(2πf/fs)(

1 + (w/
√

1 + w2)2 − 2(w/
√

1 + w2) cos(2πf/fs)
)2


= σ4

x ·
1(

1− 2w
√

1 + w2 cos(2πf/fs) + 2w2
)2 (B.4)

Thus, the expression of the PSD in (3.7) can be derived.
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